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In this paper, we introduce the resource theory of unextendibility as a relaxation of the resource
theory of entanglement. The free states in this resource theory are the k-extendible states, associated
with the inability to extend quantum entanglement in a given quantum state to multiple parties.
The free channels are k-extendible channels, which preserve the class of k-extendible states. We
define several quantifiers of unextendibility by means of generalized divergences and establish their
properties. By utilizing this resource theory, we obtain non-asymptotic, upper bounds on the rate at
which quantum communication or entanglement preservation is possible over a finite number of uses
of an arbitrary quantum channel assisted by k-extendible channels at no cost. These bounds are
significantly tighter than previously known bounds for both the depolarizing and erasure channels.
Finally, we revisit the pretty strong converse for the quantum capacity of antidegradable channels
and establish an upper bound on the non-asymptotic quantum capacity of these channels.

I. INTRODUCTION

In quantum information theory, an important task is
to quantify the amount of entanglement that a sender
Alice and a receiver Bob can share after using a quan-
tum channel N a large number of times. That is, if Alice
sends one share of a bipartite state ρAnA′n over n uses
of a quantum channel, then what is the amount of en-
tanglement that can be transmitted from Alice to Bob?
One then considers three variations of the above task
depending on the classical communication that can be
employed by Alice and Bob to assist their task. In the
first one, Alice and Bob are not allowed to employ classi-
cal communication (the unassisted case). This is referred
to as unassisted entanglement transmission. In the sec-
ond case, Alice is allowed to communicate classically with
Bob for free. In the third variation, Alice and Bob are
allowed two-way classical communication for free. In the
asymptotic regime of many channel uses, the entangle-
ment transmission capacity of a channel assisted by one-
way classical communication is equal to its unassisted
entanglement transmission capacity [1, 2].

Since obtaining the exact capacities for these tasks
can be challenging, one important goal is to obtain tight
upper bounds on the rates for these tasks, in order to
understand the basic limitations of quantum commu-
nication. In this context, [3, 4] have obtained upper
bounds for finite n; however, these hold for entangle-
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ment transmission assisted by two-way classical commu-
nication. Therefore, we do not expect them to be tight
for the unassisted entanglement transmission or entan-
glement transmission assisted by one-way classical com-
munication (1W-LOCC).

In this paper, we develop the details of the resource
theory of unextendibility, which was proposed in our ear-
lier companion paper [5]). As mentioned previously, this
resource theory is a semi-definite relaxation of the re-
source theory of entanglement and thus is connected to
fundamental aspects of quantum mechanics. Further-
more, we put the resource theory of unextendibility to
use by obtaining bounds on the rates at which entan-
glement can be transmitted over a quantum channel as-
sisted by 1W-LOCC. We obtain these upper bounds by
defining and employing monotones in the resource the-
ory of unextendibility. What we find here is that these
bounds are significantly tighter than bounds previously
obtained in [3, 4], primarily because they are tailored to
hold for entanglement transmission with the assistance
of 1W-LOCC.

For every integer k ≥ 2, there is a resource theory of k-
unextendibility, and each of these can be understood as a
relaxation of resource theory of entanglement [1, 6]. The
free states in the resource theory of k-unextendibility are
the k-extendible states [7–9], and the free channels are
the k-extendible channels, which we define in Section III.
These k-unextendible resource theories have a hierarchi-
cal structure, with the k-unextendible resource theory
being contained in the (k−1)-unextendible resource the-
ory. By “contained in the resource theory,” we mean that
the free states in the k-unextendible resource theory are
free states in the (k − 1)-unextendible resource theory.
This implies that the separable states are free states for
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all k-unextendible resource theories. A similar structure
is observed for the free channels. The resource theories
of k-unextendibility are relaxations alternative to the re-
source theory of negative partial transpose states from
[10, 11], in which the free states are the positive par-
tial transpose (PPT) states and the free channels are the
PPT-preserving channels.

The main application of the resource theory of un-
extendibility reported here is that we obtain tighter
upper bounds on the non-asymptotic quantum capac-
ity of a quantum channel. We can get a sense of
this by considering the following example: if we send
one share of the maximally entangled state ΦAB :=
1
2

∑
i,j∈{0,1} |i〉〈j|A⊗ |i〉〈j|B through a 50% erasure chan-

nel with erasure symbol |e〉〈e|B , then the resulting state
1
2 (ΦAB + IA/2 ⊗ |e〉〈e|B) is a two-extendible state, and
is thus free in the resource theory of unextendibility for
k = 2. However, this state has distillable entanglement
via two-way LOCC [12], and so it is not free in the re-
source theory of entanglement. Thus, by relaxing the
resource theory of entanglement, and as a consequence
expanding the set of free states, we show in what follows
how to obtain tighter, non-asymptotic upper bounds on
the entanglement transmission rates of a quantum chan-
nel.

The paper is organized as follows. In Section II, we es-
tablish some notation and some definitions required for
the proofs of our results. In Section III, we introduce
the resource theory of k-unextendibility. We also de-
fine quantifiers of unextendibility based on generalized
divergences, and we establish their properties. In Sec-
tion IV, we obtain upper bounds on the non-asymptotic
quantum capacity and one-way distillable entanglement.
In Section V, we showcase our bounds for depolarizing
channels and erasure channels. In Section VI, we revisit
the pretty strong converse for the quantum capacity of
antidegradable channels, and we employ the resource the-
ory of unextendibility to obtain tighter bounds on their
non-asymptotic quantum capacity. We finally conclude
with some open questions in Section VII.

Note on related work : The relation of this paper to our
previous one [5] is that, in this paper, we go into far more
detail on the resource theory and many of the proofs of
the claims in [5] are presented here. There is also another
paper [13] that uses k-extendibility to place bounds on
entanglement distillation protocols, but the kinds of pro-
tocols they consider and the particular way that they
use k-extendibility are different from our approach in [5]
and in the present paper. Another paper [14] employed
k-extendibility in the context of placing bounds on the
error in quantum communication protocols. They also
introduced a definition of k-extendible channels that is
slightly different from that given in [5].

II. PRELIMINARIES

A. States, channels, isometries, and k-extendibility

The Hilbert space of a quantum system A is denoted
by HA. The state of system A is represented by a den-
sity operator ρA, which is a positive semi-definite op-
erator with unit trace. The set of density operators is
denoted by D(HA). The density operator of a com-
posite system RA is defined as ρRA ∈ D(HRA), where
HRA = HR ⊗ HA. The notation An := A1A2 · · ·An in-
dicates a composite system consisting of n subsystems,
each of which is isomorphic to Hilbert space HA. The fi-

delity of τ, σ ∈ D(HA) is defined as F (τ, σ) = ‖√τ√σ‖21
[15], where ‖·‖1 denotes the trace norm.

A quantum channel is a completely positive trace pre-
serving map (CPTP) map. Let MA→B be a quantum
channel, and let |Γ〉RA denote the following maximally
entangled vector:

|Γ〉RA :=
∑
i

|i〉R|i〉A, (1)

where dim(HR) = dim(HA) and {|i〉R}i and {|i〉A}i are
fixed orthonormal bases. We extend this notation to mul-
tiple parties with a given bipartite cut as

|Γ〉RARB :AB := |Γ〉RA:A ⊗ |Γ〉RB :B . (2)

The maximally entangled state ΦRA is denoted as

ΦRA =
1

|A| |Γ〉〈Γ|RA, (3)

where |A| = dim(HA). The Choi operator for a channel
MA→B is defined as

ΓMRA = (idR⊗MA→B) (|Γ〉〈Γ|RA) , (4)

where idR denotes the identity map on R.
Let SEP(A :B) denote the set of all separable states

σAB ∈ D(HA⊗HB), which are states that can be written
as

σAB =
∑
x

p(x)ωxA ⊗ τxB , (5)

where p(x) is a probability distribution, ωxA ∈ D(HA),
and τxB ∈ D(HB) for all x. These are the free states in
the resource theory of entanglement [6, 16].

A local operations and classical communication
(LOCC) channel LAB→A′B′ can be written as

LAB→A′B′ =
∑
y

EyA→A′ ⊗FyB→B′ , (6)

where {EyA→A′}y and {FyB→B′}y are sets of completely
positive maps such that LAB→A′B′ is trace preserving.
However, note that there exist separable channels that
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can be written in the form in (6) but are not realizable
by LOCC [17, 18].

A special kind of LOCC channel is a one-way (1W-)
LOCC channel from A to B, in which Alice performs a
quantum instrument, sends the classical outcome to Bob,
who then performs a quantum channel conditioned on
the classical outcome received from Alice. As such, any
1W-LOCC channel takes the form in (6), except that
{EyA→A′}y is a set of CP maps such that the sum map∑
y E

y
A→A′ is trace preserving, while {FyB→B′}y is a set

of quantum channels.

B. Entropies and information

The quantum entropy of a density operator ρA is de-
fined as [19]

S(A)ρ := S(ρA) = −Tr[ρA log2 ρA]. (7)

The quantum relative entropy of two quantum states
is a measure of their distinguishability. For ρ ∈ D(H)
and σ ∈ B+(H), where B+(H) is the set of positive semi-
definite operators on H, it is defined as [20]

D(ρ‖σ) :=

{
Tr{ρ[log2 ρ− log2 σ]}, supp(ρ) ⊆ supp(σ)

+∞, otherwise.
(8)

The quantum relative entropy is non-increasing under
the action of positive trace-preserving maps [21], that is
D(ρ‖σ) ≥ D(M(ρ)‖M(σ)) for any two density operators
ρ and σ and a positive trace-preserving map M.

C. Generalized divergence and relative entropies

Let D be a function from D(H) × B+(H) to R. Then
D is called a generalized divergence [22, 23] if it satisfies
the following data-processing inequality:

D(ρ‖σ) ≥ D(N (ρ)‖N (σ)), (9)

where ρ ∈ D(H) and σ ∈ B+(H) and N is a quantum
channel. Specific generalized divergences of relevance
to this work are the sandwiched Rényi relative entropy
[24, 25], quantum relative entropy [20], and ε-hypothesis
testing relative entropy [26, 27].

The sandwiched Rényi relative entropy [24, 25] is de-

noted as D̃α(ρ‖σ) and defined for ρ ∈ D(H), σ ∈ B+(H)
and α ∈ (0, 1) ∪ (1,∞) as

D̃α(ρ‖σ) :=
1

α− 1
log2 Tr

{(
σ

1−α
2α ρσ

1−α
2α

)α}
. (10)

It is set to +∞ for α ∈ (1,∞) if supp(ρ) * supp(σ).
The sandwiched Rényi relative entropy is monotone non-
decreasing in α [24]:

D̃α(ρ‖σ) ≤ D̃β(ρ‖σ), (11)

if α ≤ β, for α, β ∈ (0, 1) ∪ (1,∞). For certain values of

α, the sandwiched Rényi relative entropy D̃α(ρ‖σ) is a
particular kind of generalized divergence:

Lemma 1 ([28, 29]) Let N : B+(HA) → B+(HB) be
a quantum channel and let ρA ∈ D(HA) and σA ∈
B+(HA). Then, for all α ∈ [1/2, 1) ∪ (1,∞),

D̃α(ρ‖σ) ≥ D̃α(N (ρ)‖N (σ)), (12)

In the limit α → 1, the sandwiched Rényi relative en-

tropy D̃α(ρ‖σ) converges to the quantum relative entropy
[24, 25]. In the limit α → ∞, the sandwiched Rényi

relative entropy D̃α(ρ‖σ) converges to the max-relative
entropy [24], which is defined as [30, 31]

Dmax(ρ‖σ) := inf{λ : ρ ≤ 2λσ}, (13)

with Dmax(ρ‖σ) = ∞ if supp(ρ) * supp(σ). Another
generalized divergence of interest is the ε-hypothesis-
testing divergence [26, 27], defined as

Dε
h(ρ‖σ) :=

− log2 inf
Λ
{Tr{Λσ} : 0 ≤ Λ ≤ I ∧ Tr{Λρ} ≥ 1− ε},

(14)

for ε ∈ [0, 1], ρ ∈ D(H), and σ ∈ B+(H).

D. Channels with symmetry

Consider a finite group G. For every g ∈ G, let
g → UA(g) and g → VB(g) be projective unitary rep-
resentations of g acting on the input space HA and the
output space HB of a quantum channel NA→B , respec-
tively. A quantum channel NA→B is covariant with re-
spect to these representations if the following relation is
satisfied [32–34]:

NA→B(UA(g)ρAU
†
A(g)) = VB(g)NA→B (ρA)V †B(g).

(15)
In our paper, we define covariant channels in the fol-

lowing way:

Definition 1 (Covariant channel) A quantum chan-
nel is covariant if it is covariant with respect to a group
G for which each g ∈ G has a unitary representation
U(g) acting on HA, such that {U(g)}g∈G is a unitary
one-design; i.e., the map (·) → 1

|G|
∑
g∈G U(g)(·)U†(g)

always outputs the maximally mixed state for all input
states.

The notion of teleportation simulation of a quantum
channel first appeared in [1], and it was subsequently
generalized in [35, Eq. (11)] to include general LOCC
channels in the simulation. It was developed in more
detail in [36] and used in the context of private commu-
nication in [37] and [38, 39].
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Definition 2 (Teleportation-simulable channel)
A channel NA→B is teleportation-simulable if there
exists a resource state ωRB ∈ D (HRB) such that for all
ρA ∈ D (HA)

NA→B (ρA) = LRAB→B (ρA ⊗ ωRB) , (16)

where LRAB→B is an LOCC channel (a particular exam-
ple of an LOCC channel could be a generalized teleporta-
tion protocol [40]).

Lemma 2 ([41]) All covariant channels (Definition 1)
are teleportation-simulable with respect to the resource
state NA→B(ΦRA).

III. FRAMEWORK FOR THE RESOURCE
THEORY OF k-UNEXTENDIBILITY

Any quantum resource theory consists of three ingre-
dients [16, 42]: the resourceful states, the free states, and
the restricted set of free channels. The resource states by
definition are those that are not free; they are useful and
needed to carry out a given task. These states cannot
be obtained by the action of the free channels on the free
states. Also, free channels are incapable of increasing the
amount of resourcefulness of a given state, whereas free
states can be generated for free.

A. k-extendible states

To develop a framework for the quantum resource the-
ory of k-unextendibility, specified with respect to a fixed
subsystem (B) of a bipartite system (AB), let us first
recall the definition of a k-extendible state [7–9]:

Definition 3 (k-extendible state) For integer k ≥ 2,
a state ρAB ∈ D(HAB) is k-extendible if there exists a
state σABk := σAB1B2···Bk ∈ D(HAB1B2···Bk) that satis-
fies the following two criteria:

1. The state σAB1B2···Bk is permutation invariant with
respect to the B systems, in the sense that for all
π ∈ Sk,

σAB1B2···Bk =Wπ
B1···Bk(σAB1B2···Bk), (17)

whereWπ is the unitary permutation channel asso-
ciated with π and Sk is the symmetric group defined
over a finite set of k symbols.

2. The state ρAB is the marginal of σAB1···Bk , i.e.,

ρAB = TrB2···Bk{σAB1...Bk}. (18)

Determining whether a bipartite state is separable or
not is a computationally hard task [43, 44]. The k-
extendible states, introduced in [7, 9], provide a system-
atic way of testing the entanglement of a state. If a state

is entangled, it is not k-extendible for at least some k;
furthermore, it is not k′-extendible for all k′ ≥ k. How-
ever, if the state is separable, then it is k-extendible for
all k. Then the question regarding the separability of
the state can be reformulated as the verification of k-
extendibility of a state, which is a semidefinite program
(SDP). The size of the SDP increases with increase in k,
because the number of constraints that need to be spec-
ified increases. Nevertheless, checking for k-extendibility
of a state provides a hierarchy of SDPs in the sense dis-
cussed above, which can be insightful in understanding
the entanglement of a bipartite state.

To give some physical context to the definition of a k-
extendible state, suppose that Alice and Bob share a bi-
partite state and that Bob subsequently mixes his system
and the vacuum state at a 50:50 beamsplitter. Then the
resulting state of Alice’s system and one of the outputs
of the beamsplitter is a two-extendible state by construc-
tion. As a generalization of this, suppose that Bob sends
his system through the N -splitter of [45, Eq. (10)], with
the other input ports set to the vacuum state. Then the
state of Alice’s system and one of the outputs of the N -
splitter is N -extendible by construction. One could also
physically realize k-extendible states in a similar way by
means of quantum cloning machines [46].

Although the following definition might be obvious, we
nevertheless state it explicitly for clarity:

Definition 4 (Unextendible state) A state that is
not k-extendible according to Definition 3 is called k-
unextendible.

For simplicity and throughout this work, if we men-
tion “extendibility,” “extendible,” “unextendibility,” or
“extendible,” then these terms should be understood
as k-extendibility, k-extendible, k-unextendibility, or k-
unextendible, respectively, with an implicit dependence
on k.

Let EXTk(A : B) denote the set of all states σAB ∈
D(HAB) that are k-extendible with respect to system B.
A k-extendible state is also `-extendible, where ` ≤ k.
This follows trivially from the definition.

B. k-extendible channels

In order to define k-extendible channels, we need to
generalize the notions of permutation invariance and
marginals of quantum states to quantum channels. First,
permutation invariance of a state gets generalized to per-
mutation covariance of a channel. Next, the marginal of a
state gets generalized to the marginal of a channel, which
includes a no-signaling constraint, in the following sense:

Definition 5 (k-extendible channel) A bipartite
channel NAB→A′B′ is k-extendible if there exists a
quantum channel MAB1···Bk→A′B′1···B′k that satisfies the
following two criteria:
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FIG. 1. A visual depiction of the conditions for the channel
MAB1···Bk→A′B′1···B

′
k

to be a k-extension of NAB→A′B′ . (a)

The extension channel MAB1···Bk→A′B′1···B
′
k

should be per-

mutation covariant with respect to Bob’s systems. (b) The
extension channel MAB1···Bk→A′B′1···B

′
k

should reduce to the

original channel NAB→A′B′ when tracing out the output sys-
tems B′2 · · ·B′k of MAB1···Bk→A′B′1···B

′
k
.

1. The channel MAB1···Bk→A′B′1···B′k is permutation
covariant with respect to the B systems. That is,
for all π ∈ Sk and for all states ρAB1···Bk , the fol-
lowing equality holds

MAB1···Bk→A′B′1···B′k(Wπ
B1···Bk(ρAB1···Bk))

=Wπ
B′1···B′k

(MAB1···Bk→A′B′1···B′k(ρAB1···Bk)), (19)

where Wπ is the unitary permutation channel as-
sociated with the permutation π.

2. The channel NAB→A′B′ is the marginal of
MAB1···Bk→A′B′1···B′k in the following sense: for ev-
ery state ρAB1···Bk ,

NAB→A′B′(ρAB1
)

= TrB′2···B′k{MAB1···Bk→A′B′1···B′k(ρAB1···Bk)}. (20)

We can alternatively write (20) as

TrB′2···B′k ◦MAB1···Bk→A′B′1···B′k

= NAB→A′B′ ◦ TrB2···Bk (21)

A channel MAB1···Bk→A′B′1···B′k satisfying the above con-
ditions is called a k-extension of NAB→A′B′ .

The conditions in Definition 5 are depicted in Fig-
ure 1. The condition in (20) corresponds to a one-way no-
signaling (semi-causal) constraint on the extended (k−1)

subsystems Bk−1 := Bk \ Bi to A′B′i for all i ∈ [k] (cf.,
[47, Proposition 7]). This condition can be reformulated
as [48]

TrB′2···B′k{MAB1···Bk→A′B′1···B′k(ρAB1···BK )} =

TrB′2···B′k{MAB1···Bk→A′B′1···B′k(RπB2···Bk(ρAB1···BK ))},
(22)

where RπB2···Bk is a channel that replaces the state in
systems B2 · · ·Bk with a mixed state πB2···Bk (or any
other arbitrary state). Equivalently, the condition in (20)
can also be expressed as

TrB′2···B′k{MAB1···Bk→A′B′1···B′k(XAB1
⊗ YB2···Bk)} = 0

(23)

for all XAB1
, YB2···Bk such that Tr{YB2···Bk} = 0 [47].

Classical k-extendible channels were defined in a some-
what similar way in [49], and so our definition above rep-
resents a quantum generalization of the classical notion.
We also note here that k-extendible channels were defined
in a slightly different way in [50], but our definitions re-
duce to the same class of channels in the case that the
input systems B1 through Bk and the output systems A′

are trivial.
We can reformulate the constraints on the k-extendible

channels in terms of the Choi operator ΓM
ÂA′B̂kB′k

of the

extension channel MAB1···Bk→A′B′1···B′k of NAB→A′B′ as
follows:

ΓM
ÂA′B̂kB′k

≥ 0, (24)

TrA′B′k{ΓMÂA′B̂kB′k} = IÂB̂k , (25)[
Wπ
B̂1···B̂k

⊗Wπ
B′1···B′k

,ΓM
ÂA′B̂1···B̂kB′1···B′k

]
= 0, ∀π ∈ Sk

(26)

ΓM
ÂA′B̂1B′1B̂2···B̂k

= ΓN
ÂA′B̂1B̂′1

⊗ πB̂2···B̂k (27)

The first constraint corresponds to complete positivity of
the k-extendible channel, while the second constraint cor-
responds to trace preservation of the channel. The third
constraint reflects the permutation covariance property
of the channel with respect to the permutation group,
and the last constraint corresponds to the no-signaling
condition.

The following theorem is the key statement that
makes the resource theory of unextendibility, as pre-
sented above, a consistent resource theory:

Theorem 1 For a bipartite k-extendible channel
NAB→A′B′ and a k-extendible state ρAB, the output
state NAB→A′B′(ρAB) is k-extendible.

Proof. Let ρAB1···Bk be a k-extension of ρAB .
Let MAB1···Bk→A′B′1···B′k be a channel that extends
NAB→A′B′ . Then the following state is a k-extension
of NAB→A′B′(ρAB):

MAB1···Bk→A′B′1···B′k(ρAB1···Bk). (28)



6

To verify this statement, consider that for all π ∈ Sk,
the following holds by applying (19) and the fact that
ρAB1···Bk is a k-extension of ρAB :

Wπ
B′1···B′k

(MAB1···Bk→A′B′1···B′k(ρAB1···Bk))

=MAB1···Bk→A′B′1···B′k(Wπ
B1···Bk(ρAB1···Bk)) (29)

=MAB1···Bk→A′B′1···B′k(ρAB1···Bk). (30)

Due to (20), it follows thatNAB→A′B′(ρAB) is a marginal
of MAB1···Bk→A′B′1···B′k(ρAB1···Bk).

With the above framework in place, we note here that
postulates I–V of [42] apply to the resource theory of
unextendibility. The k-extendible channels are the free
channels, and the k-extendible states are the free states.

Example 1 (1W-LOCC) An example of a k-
extendible channel is a one-way local operations and
classical communication (1W-LOCC) channel. Consider
that a 1W-LOCC channel NAB→A′B′ can be written as

NAB→A′B′ =
∑
x

ExA→A′ ⊗FxB→B′ , (31)

where {ExA→A′}x is a collection of completely positive
maps such that

∑
x ExA→A′ is a quantum channel and

{FxB→B′}x is a collection of quantum channels. A k-
extensionMAB1···Bk→A′B′1···B′k of the channel NAB→A′B′
can be taken as follows:

MAB1···Bk→A′B′1···B′k =∑
x

ExA→A′ ⊗FxB1→B′1
⊗FxB2→B′2

⊗ · · · ⊗ FxBk→B′k . (32)

It is then clear that the condition in (19) holds for
MAB1···Bk→A′B′1···B′k as chosen above. Furthermore, the

condition in (20) holds because each FxBi→B′i is a channel

for i ∈ {1, . . . , k}.

We now define a subclass of k-extendible channels.
These channels are realized as follows: Alice performs
a quantum channel EA→A′C on her system A and ob-
tains systems A′C. Then, Alice sends C to Bob over a k-
extendible channel AkC→C′ . The channel AkC→C′ is a spe-
cial case of the bipartite k-extendible channel NAB→A′B′
considered in Definition 5, in which we identify the in-
put C with A of NAB→A′B′ , the output C ′ with B′ of
NAB→A′B′ and the systems B and A′ are trivial. Fi-
nally, Bob applies the channel DC′B→B′ on system C ′

and his local system B to get B′. Denoting the overall
channel by KkAB→A′B′ , it is realized as follows:

KkAB→A′B′(·) := DC′B→B′ ◦ AkC→C′ ◦ EA→A′C(·). (33)

Due to their structure, we can place an upper bound
on the distinguishability of a channel in the subclass
described above and the set of 1W-LOCC channels, as
quantified by the diamond norm [51]. See Appendix A
for the precise statement and for details of the proof.

C. Quantifying k-unextendibility

In any resource theory, it is pertinent to quantify the
resourcefulness of the resource states and the resourceful
channels. Based on the resource theory of unextendibil-
ity, any measure of the k-unextendibility of a state should
possess the following two desirable properties:

1. data processing: non-increasing under the action of
k-extendible channels,

2. attains minimum value if the state is k-extendible.

Here we present a measure of unextendibility that is
based on generalized divergence and satisfies both criteria
discussed above:

Definition 6 (Unextendible generalized divergence)
The k-unextendible generalized divergence of a bipartite
state ρAB is defined as

Ek(A;B)ρ = inf
σAB∈EXTk(A:B)

D(ρAB‖σAB), (34)

where D(ρ‖σ) denotes the generalized divergence
from (9).

We can extend the definition above to obtain an unex-
tendible generalized divergence of a channel, in order to
quantify how well a quantum channel can preserve unex-
tendibility.

Definition 7 The k-unextendible generalized divergence
of a quantum channel NA→B is defined as

Ek(N ) :=

sup
ψRA∈D(HRA)

inf
σRB∈EXTk(R:B)

D (NA→B(ψRA)‖σRB) ,

(35)

where D(·‖·) is a generalized divergence and the opti-
mization is over all pure states ψRA ∈ D(HRA) with
dim(HR) = dim(HR).

In the definition above, we could have taken an opti-
mization over all mixed-state inputs with the reference
system R arbitrarily large. However, due to purification,
data processing, and the Schmidt decomposition theo-
rem, doing so does not result in a larger value of the
quantity, so that it suffices to restrict the optimization
as we have done above.

In Definitions 6 and 7, we can take the generalized
divergence to be the quantum relative entropy D, the
ε-hypothesis-testing divergence Dε

h, the α-sandwiched-

Rényi divergence D̃α, the traditional Rényi divergence,
the trace distance, etc., in order to have various k-
unextendible measures of states and channels (see Sec-
tion II C for definitions).
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1. k-unextendible divergences for isotropic and Werner
states

In this section, we evaluate some unextendible diver-
gences for two specific classes of states: isotropic and
Werner states. In particular, we obtain an analytic form
for the k-unextendible generalized divergence (Proposi-
tion 1) for isotropic states [52] and Werner states [53],
and, as a consequence, we calculate its k-unextendible
relative entropy and Rényi divergence (Proposition 2).

Definition 8 (Isotropic state [52]) An isotropic state

ρ
(t,d)
AB is U ⊗ U∗-invariant for an arbitrary unitary U ,

where dim(HA) = d = dim(HB). Such a state can be
written in the following form for t ∈ [0, 1]:

ρ
(t,d)
AB = tΦdAB + (1− t)IAB − ΦdAB

d2 − 1
, (36)

where ΦdAB denotes a maximally entangled state of
Schmidt rank d.

Lemma 3 ([54]) An isotropic state ρ
(t,d)
AB written as in

(36) is k-extendible if and only if t ∈
[
0, 1

d

(
1 + d−1

k

)]
.

Proof. Isotropic states are parametrized in [54] for y ∈
[0, d] as

d

d2 − 1

[
(d− y)

IAB
d2

+

(
y − 1

d

)
ΦdAB

]
. (37)

There, as shown in [54, Theorem III.8], an isotropic state
is k-extendible if

y ≤ 1 + (d− 1) /k. (38)

Translating this to the parametrization in (36), we find
that

d

d2 − 1

[
(d− y)

IAB
d2

+

(
y − 1

d

)
ΦdAB

]
=

d

d2 − 1

[
d− y
d2

(
IAB − ΦdAB

)
+

(
d− y
d2

+ y − 1

d

)
ΦdAB

]
(39)

=
d− y
d

IAB − ΦdAB
d2 − 1

+
y

d
ΦdAB . (40)

Using the fact that t = y/d to translate between the two
different parametrizations of isotropic states, the condi-
tion in (38) translates to

t ≤ 1

d

(
d− 1

k
+ 1

)
. (41)

This concludes the proof.

Definition 9 (Werner state [53]) Let A and B be
quantum systems, each of dimension d. A Werner state
is defined for p ∈ [0, 1] as

W
(p,d)
AB := (1− p) 2

d (d+ 1)
Π+
AB + p

2

d (d− 1)
Π−AB , (42)

where Π±AB := (IAB ± FAB) /2 are the projections onto
the symmetric and antisymmetric subspaces of A and B.

Lemma 4 ([54]) A Werner state W
(p,d)
AB is k-extendible

if and only if p ∈
[
0, 1

2

(
d−1
k + 1

)]
.

Proof. Werner states are parametrized in [54] for q ∈
[−1, 1] as

d

d2 − 1

[
(d− q) IAB

d2
+

(
q − 1

d

)
FAB
d

]
. (43)

There, as shown in [54, Theorem III.7], a Werner state is
k-extendible if

q ≥ − (d− 1) /k. (44)

Translating this to the parametrization in (42), and using
that

IAB = Π+
AB + Π−AB , (45)

FAB = Π+
AB −Π−AB , (46)

we find that

d

d2 − 1

[
(d− q) IAB

d2
+

(
q − 1

d

)
FAB
d

]
=

d

d2 − 1

[
d− q
d2

(
Π+
AB + Π−AB

)
+

(
q

d
− 1

d2

)(
Π+
AB −Π−AB

)] (47)

=
d

d2 − 1

[(
d− q
d2

+
q

d
− 1

d2

)
Π+
AB

+

(
d− q
d2
−
(
q

d
− 1

d2

))
Π−AB

] (48)

=
1 + q

2

2

d (d+ 1)
Π+
AB +

1− q
2

2

d (d− 1)
Π−AB . (49)

Using the fact that p = (1− q) /2 to translate between
the two different parametrizations of Werner states, the
condition in (44) translates to

p ≤ 1

2

(
d− 1

k
+ 1

)
. (50)

This concludes the proof.
For p, q ∈ [0, 1] and for any generalized divergence D,

we make the following abbreviation:

D(p‖q) := D(κ(p)‖κ(q)), (51)

where

κ(x) = x|0〉〈0|+ (1− x)|1〉〈1|. (52)

We then have the following:
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Proposition 1 The k-unextendible generalized diver-

gence of a Werner state W
(p,d)
AB and an isotropic state

ρ
(t,d)
AB are respectively equal to

Ek(A;B)W (p,d) = inf
q∈[0, 12 ( d−1

k +1)]
D(p‖q), (53)

Ek(A;B)ρ(t,d) = inf
q∈[0, 1d ( d−1

k +1)]
D(t‖q). (54)

Proof. By definition, Ek(A;B)Wp involves an infimum
with respect to all possible k-extendible states. It is
monotone with respect to all 1W-LOCC channels, and
one such choice is the full bilateral twirl:

ωAB → T WAB(ωAB) (55)

:=

∫
dµ(U) [UA ⊗ UB ]ωAB [UA ⊗ UB ]

†
. (56)

Note that this can be implemented by a unitary two-
design [55]. The Werner state is invariant with respect to
this channel, whereas any other k-extendible state σAB
becomes a Werner state under this channel. Let σAB
denote an arbitrary k-extendible state. We thus have

D(W
(p,d)
AB ‖σAB) ≥ D(T WAB(W

(p,d)
AB )‖T WAB(σAB)) (57)

= D(W
(p,d)
AB ‖T WAB(σAB)) (58)

= D(W
(p,d)
AB ‖W

(r,d)
AB ), (59)

where in the last line, we have noted that T WAB(σAB) is

a Werner state and can thus be written as W
(r,d)
AB for

some r ∈ [0, 1]. Furthermore, by Theorem 1, W
(r,d)
AB is

a k-extendible state since σAB is by assumption. Thus,
it suffices to consider only k-extendible Werner states in
the optimization of Ek(A;B)W (p,d) . Next, the following
equality holds

D(W
(p,d)
AB ‖W

(r,d)
AB ) = D(p‖r), (60)

because the quantum-to-classical channel

ωAB → Tr{Π+
ABωAB}|0〉〈0|+ Tr{Π−ABωAB}|1〉〈1| (61)

takes a Werner state W
(p,d)
AB to (1− p) |0〉〈0|+p|1〉〈1| and

the classical-to-quantum channel

τ → 〈0|τ |0〉 2

d (d+ 1)
Π+
AB + 〈1|τ |1〉 2

d (d− 1)
Π−AB (62)

takes (1− p) |0〉〈0| + p|1〉〈1| back to W
(p,d)
AB . Finally, we

can conclude the first equality in the statement of the
theorem.

The reasoning for the second equality is exactly the
same, but we instead employ the bilateral twirl

T IAB(ωAB) :=

∫
dµ(U) [UA ⊗ U∗B ]ωAB [UA ⊗ U∗B ]

†
.

(63)

This is a k-extendible channel, the isotropic states are in-
variant under this twirl, and all other states are projected
to isotropic states under this twirl. Also, the channel

ωAB → Tr{ΦABωAB}|0〉〈0|+Tr{(IAB − ΦAB)ωAB}|1〉〈1|
(64)

takes an isotropic state ρ
(t,d)
AB to t|0〉〈0|+ (1− t) |1〉〈1| and

the classical-to-quantum channel

τ → 〈0|τ |0〉ΦAB + 〈1|τ |1〉IAB − ΦAB
d2 − 1

(65)

allows for going back. These statements allow us to con-
clude the second inequality.

Lemma 5 Let 1 > p > q > 0. Then the relative entropy
D(p‖q) is a monotone decreasing function of q for p >
q > 0. That is, for 1 > p > q > r > 0, the following
inequality holds

D(p‖r) > D(p‖q). (66)

Proof. To prove the statement, we show that the deriva-
tive of D(p‖q) with respect to q is negative. The deriva-
tive of D(p‖q) with respect to q is equal to

d

dq
D(p‖q) =

1− p
1− q −

p

q
. (67)

The condition that d
dqD(p‖q) < 0 is thus equivalent to

the condition

q

1− q <
p

1− p . (68)

This latter condition holds because the function x/(1−x)
is a monotone increasing function on the interval x ∈
(0, 1). That this latter claim is true follows because the
derivative of x/(1− x) with respect to x is given by

d

dx

(
x

1− x

)
=

1

1− x +
x

(1− x)
2 , (69)

which is positive for x ∈ (0, 1).

Lemma 6 Let 1 > p > q > 0 and let α ∈ (0, 1)∪ (1,∞).
Then the Rényi relative entropy Dα(p‖q) is a monotone
decreasing function of q for p > q > 0. That is, for
1 > p > q > r > 0, the following inequality holds

Dα(p‖r) > Dα(p‖q). (70)

Proof. To prove the statement, we show that the deriva-
tive of Dα(p‖q) with respect to q is negative. The deriva-
tive of Dα(p‖q) with respect to q is equal to

d

dq
Dα(p‖q) =

1− q +
1(

q
1−q/

p
1−p

)α
− 1

−1

(71)
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=

(
q

1−q/
p

1−p

)α
− 1[(

q
1−q/

p
1−p

)α
− 1
]

[1− q] + 1
. (72)

Since p
1−p > q

1−q for 1 > p > q > 0 (as shown in the

previous proof), it follows that(
q

1− q /
p

1− p

)α
− 1 < 0 (73)

for all α ∈ (0, 1) ∪ (1,∞). We would then like to prove
that [(

q

1− q /
p

1− p

)α
− 1

]
[1− q] + 1 > 0. (74)

Note that this is equivalent to[
1−

(
q

1− q /
p

1− p

)α]
[1− q] < 1, (75)

which follows because

1−
(

q

1− q /
p

1− p

)α
∈ (0, 1) (76)

and 1 − q ∈ (0, 1). Thus, we can conclude that
d
dqDα(p‖q) < 0 for 1 > p > q > 0, and the statement

of the lemma follows.

With all of the above, we conclude the following:

Proposition 2 The k-unextendible relative entropy of a

Werner state W
(p,d)
AB and an isotropic state ρ

(t,d)
AB are re-

spectively equal to

Ek(A;B)W (p,d)

=

{
0 if p ∈

[
0, 1

2

(
d−1
k + 1

)]
D(p‖ 1

2

(
d−1
k + 1

)
) else

, (77)

Ek(A;B)ρ(t,d)

=

{
0 if p ∈

[
0, 1

d

(
d−1
k + 1

)]
D(t‖ 1

d

(
d−1
k + 1

)
) else

. (78)

Similarly, the k-unextendible Rényi divergences are given
for α ∈ (0, 1) ∪ (1,∞) by

Eαk (A;B)W (p,d)

=

{
0 if p ∈

[
0, 1

2

(
d−1
k + 1

)]
Dα(p‖ 1

2

(
d−1
k + 1

)
) else

, (79)

Eαk (A;B)ρ(t,d)

=

{
0 if p ∈

[
0, 1

d

(
d−1
k + 1

)]
Dα(t‖ 1

d

(
d−1
k + 1

)
) else

(80)

2. Properties of k-unextendible divergences of a bipartite
state

In this section, we discuss some of the properties of an
unextendible generalized divergence, focusing first on the
quantity derived from quantum relative entropy. The k-
unextendible relative entropy of a state ρAB is given by
Definition 6, by replacing D with the quantum relative
entropy D. In particular, we prove several properties of
unextendible relative entropy, including uniform conti-
nuity (Lemma 8), faithfulness (Lemma 9), subadditivity,
additivity under tensor-product states (Lemma 10), and
convexity (Lemma 11).

We begin by proving the uniform continuity of unex-
tendible relative entropy. In order to do so, we use the
following result [56] concerning the relative entropy dis-
tance with respect to any closed, convex set C of states,
or more generally positive semi-definite operators:

DC(ρ) := inf
γ∈C

D(ρ‖γ). (81)

Lemma 7 ([56]) For a closed, convex, and bounded set
C of positive semi-definite operators, containing at least
one of full rank, let

κ := sup
τ,τ ′

[DC(τ)−DC(τ ′)] (82)

be the largest variation of DC . Then, for any two states
ρ and σ for which 1

2‖ρ−σ‖1 ≤ ε, with ε ∈ [0, 1], we have
that

|DC(ρ)−DC(σ)| ≤ εκ+ g(ε), (83)

where g(ε) := (ε+ 1) log2(ε+ 1)− ε log2 ε.

Lemma 8 (Uniform continuity) For any two bipar-
tite states ρAB and σAB acting on the composite Hilbert
space HA ⊗HB, with d = min{|A|, |B|}, and

1

2
‖ρAB − σAB‖ ≤ ε ∈ [0, 1], (84)

we have that

|Ek(A;B)ρ−Ek(A;B)σ| ≤ ε log2 min{d, k}+ g(ε). (85)

Proof. This follows directly from Lemma 7. To see this,
observe that we have the following inequalities holding
for any states τAB and τ ′AB :

Ek(A;B)τ ′ ≥ 0, (86)

Ek(A;B)τ ≤ ER(A;B)τ (87)

≤ min{S(A)τ , S(B)τ} (88)

≤ log d, (89)

where ER(A;B)τ denotes the relative entropy of entan-
glement [6, 57].



10

Finally, we obtain the log2 k upper bound on
Ek(A;B)τ by picking the k-extendible state for
Ek(A;B)τ = infσAB∈EXTk(A:B)D(τAB‖σAB) as

σAB =
1

k
τAB +

(
1− 1

k

)
τA ⊗ τB . (90)

Such a state is k-extendible with a k-extension given by

σAB1···Bk =
1

k

k∑
i=1

τB1
⊗· · ·⊗τBi−1

⊗τABi⊗τBi+1
⊗· · ·⊗τBk .

(91)
Then by using the facts that D(ρ‖σ) ≥ D(ρ‖σ′) for 0 ≤
σ ≤ σ′ and D(ρ‖cσ) = D(ρ‖σ)− log2 c for c > 0, we find
that

Ek(A;B)τ = inf
σAB∈EXTk(A:B)

D(τAB‖σAB) (92)

≤ D
(
τAB

∥∥∥∥1

k
τAB +

(
1− 1

k

)
τA ⊗ τB

)
(93)

≤ D(τAB‖τAB)− log2(1/k) = log2 k. (94)

This concludes the proof.

Lemma 9 (Faithfulness) Fix ε ∈ [0, 1]. The k-
unextendible relative entropy Ek(A;B)ρ of any arbitrary
state ρAB is a faithful measure, in the following sense: If
Ek(A;B)ρ ≤ ε, then

inf
σAB∈EXTk(A:B)

‖ρAB − σAB‖1 ≤
√
ε · 2 ln 2 (95)

and if infσAB∈EXTk(A:B)
1
2‖ρAB − σAB‖1 ≤ ε, then

Ek(A;B)ρ ≤ ε log2 min{d, k}+ g(ε). (96)

Proof. The proof of the first statement follows directly
from the quantum Pinsker inequality [58, Theorem 1.15].
The second statement follows directly from Lemma 8.

Lemma 10 (Subadditivity and non-extensivity)

For a state ρA1B1A2B2···AnBn := ω
(1)
A1B1

⊗ ω
(2)
A2B2

⊗
· · · ⊗ ω

(n)
AnBn

, the k-unextendible relative entropy is
sub-additive and non-extensive, in the sense that

Ek(A1A2 · · ·An;B1B2 · · ·Bn)ρ

≤ min

{
log2 k,

n∑
i=1

Ek(Ai;Bi)ω(i)

}
. (97)

In fact, the non-extensivity bound

Ek(A1A2 · · ·An;B1B2 · · ·Bn)ρ ≤ log2 k (98)

applies to an arbitrary state ρA1B1A2B2···AnBn .

Proof. The subadditivity proof is straightforward. We
show it for a tensor product of two states and note that
the general statement follows from induction:

Ek(A1A2;B1B2)ρ

= inf
σA1A2B1B2

∈
EXTk(A1A2:B1B2)

D(ωA1B1
⊗ τA2B2

‖σA1A2B1B2
)

≤ inf
σA1B1

⊗σA2B2
∈

EXTk(A1A2:B1B2)

D(ωA1B1 ⊗ τA2B2‖σA1B1 ⊗ σA2B2)

= inf
σA1B1

∈EXTk(A1:B1)
D(ωA1B1‖σA1B1)

+ inf
σA2B2

∈EXTk(A2:B2)
D(τA2B2

‖σA2B2
)

= Ek(A1;B1)ω + Ek(A2;B2)τ . (99)

The first equality follows from the definition. The first
inequality follows from a particular choice of σA1A2B1B2 .
The second inequality follows from additivity of relative
entropy with respect to tensor-product states.

The proof of the non-extensivity upper bound of log2 k
follows from the same reasoning as in (92)–(94).

Lemma 11 (Convexity) Let a bipartite state ρAB =∑
x∈X pX(x)ρxAB, where pX(x) is a probability distribu-

tion and {ρxAB}x is a set of quantum states. Then, the
k-unextendible relative entropy is convex, in the sense
that

Ek(A;B)ρ ≤
∑
x∈X

pX(x)Ek(A;B)ρx . (100)

Proof. Let σxAB be the k-extendible state that achieves
the minimum for ρxAB in Ek(A;B)ρx . Then,

Ek(A;B)ρ = inf
σAB∈EXTk(A:B)

D(ρAB‖σAB) (101)

≤ D
(∑

x

pX(x)ρxAB

∥∥∥∥∥∑
x

pX(x)σxAB

)
(102)

≤
∑
x

pX(x)D(ρxAB‖σxAB) (103)

=
∑
x

pX(x)Ek(A;B)ρ. (104)

The second inequality follows from the joint convexity of
quantum relative entropy.

The following lemmas have straightforward proofs,
making use of the additivity of sandwiched Rényi rel-
ative entropy with respect to tensor-product states, as
well as its joint quasi-convexity:

Lemma 12 (Subadditivity and non-extensivity)

For a state ρA1B1A2B2···AnBn := ω
(1)
A1B1

⊗ ω(2)
A2B2

⊗ · · · ⊗
ω

(n)
AnBn

and α ∈ (0, 1) ∪ (1,∞), the k-unextendible
α-sandwiched-Rényi divergence is sub-additive and
non-extensive, in the sense that

Ẽαk (A1A2 · · ·An;B1B2 · · ·Bn)ρ

≤ min

{
log2 k,

n∑
i=1

Ẽαk (Ai;Bi)ω(i)

}
. (105)
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In fact, the non-extensivity bound

Ẽαk (A1A2 · · ·An;B1B2 · · ·Bn)ρ ≤ log2 k (106)

applies to an arbitrary state ρA1B1A2B2···AnBn .

Lemma 13 The k-unextendible α-sandwiched-Rényi di-
vergence is quasi-convex; i.e., if ρAB ∈ D(HAB) decom-
poses as ρAB =

∑
x∈X pX(x)ρxAB, where

∑
x∈X pX(x) =

1 and each ρxAB ∈ D(HAB), then

Ẽαk (A;B)ρ ≤ sup
x
Ẽαk (A;B)ρx . (107)

IV. UNEXTENDIBILITY, NON-ASYMPTOTIC
ONE-WAY DISTILLABLE ENTANGLEMENT,
AND NON-ASYMPTOTIC QUANTUM RATES

In this section, we use the resource theory of unex-
tendibility to derive non-asymptotic converse bounds on
the rate at which entanglement can be transmitted over
a finite number of uses of a quantum channel. We do the
same for the non-asymptotic, one-way distillable entan-
glement of a bipartite state.

A. Entanglement transmission codes and one-way
entanglement distillation protocols

An (n,M, ε) entanglement transmission protocol ac-
complishes the task of entanglement transmission over
n independent uses of a quantum channel NA→B . The
case of n = 1 is known as “one-shot entanglement trans-
mission,” given that we are considering just a single
use of a channel in this case. However, note that a
given (n,M, ε) entanglement transmission protocol for
the channel NA→B can be considered as a (1,M, ε) en-
tanglement transmission protocol for the channel N⊗nA→B .

An entanglement transmission code for N , is speci-
fied by a triplet {M, E ,D}, where M = dim(HR) is the
Schmidt rank of a maximally entangled state ΦRA′ , one
share of which is to be transmitted overN . The quantum
channels EA′→An and DBn→Â are encoding and decoding
channels, respectively. An (n,M, ε) code is such that

F (ΦRÂ, ωRÂ) ≥ 1− ε, (108)

where

ωRÂ :=
(
DBn→Â ◦ N⊗nA→B ◦ EA′→An

)
(ΦRA′) . (109)

We note that the criterion F (ΦRÂ, ωRÂ) ≥ 1−ε is equiv-
alent to

Tr{ΦRÂωRÂ} ≥ 1− ε. (110)

We can also consider a modification of the above proto-
col in which the final decoding is a k-extendible channel
DRBn→RÂ, acting on the input systems R : Bn and out-

putting the systems R : Â. See Figure 2 for a depiction

ÂA’

A1

A2

A

B1

B2

BAlice Bob
E

N

N

N

R

K

n n

FIG. 2. Depiction of an entanglement transmission proto-
col assisted by a k-extendible post-processing channel. The
quantum channel N is used n times, in conjunction with an
encoding channel EA′→An and a k-extendible post-processing
decoding channel KRBn→RÂ, in order to establish entangle-
ment shared between Alice and Bob.

of such a modified protocol. We call such a protocol en-
tanglement transmission assisted by a k-extendible post-
processing, and the resulting non-asymptotic quantum

capacity is denoted by Q
(k)
I (NA→B , n, ε).

Another kind of protocol to consider is a one-way en-
tanglement distillation protocol. An (n,M, ε) one-way
entanglement distillation protocol begins with Alice and
Bob sharing n copies of a bipartite state ρAB . They then
act with a 1W-LOCC channel LAnBn→MAMB

on ρ⊗nAB ,
and the resulting state satisfies

F (LAnBn→MAMB
(ρ⊗nAB),ΦMAMB

) ≥ 1− ε, (111)

where ΦMAMB
is a maximally entangled state of Schmidt

rank M . We can also modify this protocol to allow for
a k-extendible channel instead of a 1W-LOCC channel,
and the resulting protocol is an (n,M, ε) entanglement
distillation protocol assisted by a k-extendible channel.
Let D(k)(ρAB , n, ε) denote the non-asymptotic distillable
entanglement with the assistance of k-extendible chan-
nels; i.e., D(k)(ρAB , n, ε) is equal to the maximum value
of 1

n log2M such that there exists an (n,M, ε) protocol
for ρAB as described above.

B. Bounds on non-asymptotic quantum capacity
and one-way distillable entanglement in terms of

k-extendible divergence

We now establish an upper bound on the non-
asymptotic quantum capacity in terms of the unex-
tendible hypothesis testing divergence:

Theorem 2 The following bound holds for all k ∈ N
and for every (1,M, ε) entanglement transmission pro-
tocol over a quantum channel N and assisted by a k-
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extendible post-processing:

− log2

[
1

M
+

1

k
− 1

Mk

]
≤ sup
ψRA

Eεk(R;B)τ , (112)

where

Eεk(R;B)τ := inf
σRB∈EXTk(R;B)

Dε
h (τRB‖σRB) (113)

is the k-unextendible ε-hypothesis-testing divergence,
τRB := NA→B(ψRA), and the optimization in (112) is
with respect to pure states ψRA such that dim(HR) =
dim(HA). Similarly, the following bound holds for any
(1,M, ε) entanglement distillation protocol for a state
ρAB, which is assisted by a k-extendible post-processing:

− log2

[
1

M
+

1

k
− 1

Mk

]
≤ Eεk(A;B)ρ, (114)

Proof. Suppose that there exists a (1,M, ε) entangle-
ment transmission protocol, assisted by a k-extendible
post-processing, that satisfies the condition in (108). Let

σRÂ ∈ EXTk(R; Â), and let ΦRÂ denote a maximally
entangled state. Then the following chain of inequalities
holds

Dε
h(ωRÂ‖σRÂ)

≥ − log2 Tr{ΦRÂσRÂ} (115)

= − log2 Tr

{∫
dU
(
UR ⊗ U∗Â

)
ΦRÂ

(
UR ⊗ U∗Â

)†
σRÂ

}
(116)

= − log2 Tr

{
ΦRÂ

∫
dU
(
UR ⊗ U∗Â

)†
σRÂ

(
UR ⊗ U∗Â

)}
.

(117)

The first inequality follows because the condition in (110)
implies that we can relax the measurement operator Λ in
(14) to be equal to ΦRÂ. The first equality is due to the
“transpose trick” property of the maximally entangled
state, which leads to its U ⊗ U∗ invariance. For the last
equality, we use the cyclic property of the trace.

Let

σRÂ :=

∫
dU
(
UR ⊗ U∗Â

)†
σRÂ

(
UR ⊗ U∗Â

)
. (118)

The state σRÂ is k-extendible because σRÂ is and because
the unitary twirl can be realized as a 1W-LOCC channel.
The symmetrized state σRÂ is furthermore isotropic be-
cause it is invariant under the action of a unitary of the
form U ⊗ U∗. From Lemma 3, we find that

σRÂ = tΦRÂ + (1− t)IRÂ − ΦRÂ
M2 − 1

, (119)

for some t ∈
[
0, 1

M + 1
k − 1

Mk

]
. Combining (119) with

(117) leads to

Dε
h(ωRÂ‖σRÂ) ≥ − log2 t (120)

≥ − log2

[
1

M
+

1

k
− 1

Mk

]
. (121)

Since the above bound holds for an arbitrary state
σRÂ ∈ EXTk(R; Â), we conclude that

Eεk(R; Â)ω = inf
σRÂ∈EXTk(R;Â)

Dε
h(ωRÂ‖σRÂ) (122)

≥ − log2

[
1

M
+

1

k
− 1

Mk

]
. (123)

Let ρRB := NA→B(ρRA), where ρRA := EA′→A (ΦRA′),
and let σRB ∈ EXTk(R;B). Then for a k-extendible
post-processing channel DRB→RÂ, we have that

Dε
h(ρRB‖σRB)

≥ Dε
h(DRB→RÂ(ρRB)‖DRB→RÂ(σRB)) (124)

= Dε
h(ωRÂ‖σRÂ) (125)

≥ Eεk(R; Â)ω. (126)

The first inequality follows from the data-processing
inequality for the hypothesis testing relative entropy.
The channel DRB→RÂ is a k-extendible channel, and
given that σRB ∈ EXTk(R;B), Theorem 1 implies that

σRÂ ∈ EXTk(R; Â). The last inequality follows from
the definition in (113). Since this inequality holds for all
σRB ∈ EXTk(R;B), we conclude that

Eεk(R;B)ρ ≥ Eεk(R; Â)ω. (127)

We now optimize Eεk with respect to all inputs ρRA to
the channel NA→B :

sup
ρRA

Eεk(R;B)N (ρ) ≥ Eεk(R;B)N (ρ). (128)

Using purification, the Schmidt decomposition theorem,
and the data processing inequality of Eεk(R;B)ρ, we find
that

sup
ρRA

Eεk(R;B)N (ρ) = sup
ψRA

Eεk(R;B)N (ψ). (129)

for a pure state ψRA with |R| = |A|. Combining (122),
(127), and (129), we conclude the bound in (112).

By employing similar reasoning as above, we arrive at
the bound in (114).

Remark 1 Note that Theorem 2 applies in the case that
the channel N is an infinite-dimensional channel, tak-
ing input density operators acting on a separable Hilbert
space to output density operators acting on a separable
Hilbert space. In claiming this statement, we are sup-
posing that an entanglement transmission protocol be-
gins with a finite-dimensional space, the encoding then
maps to the infinite-dimensional space, the channel N
acts, and then finally the decoding channel maps back
to a finite-dimensional space. Furthermore, an entan-
glement distillation protocol acts on infinite-dimensional
states and distills finite-dimensional maximally entangled
states from them. We arrive at this conclusion because
the ε-hypothesis testing relative entropy is well defined for
infinite-dimensional states.
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Remark 2 Due to the facts that Dε
h(ρ‖σ) ≥ Dε

h(ρ‖σ′)
for 0 ≤ σ ≤ σ′, Dε

h(ρ‖cσ) = Dε
h(ρ‖σ) − log2 c for c > 0

[59, Lemma 7], Dε
h(ρ‖ρ) = log2

(
1

1−ε

)
, and by applying

the same reasoning as in (92)–(94), we conclude that

sup
ψRA

Eεk(R;B)τ ≤ log2

(
1

1− ε

)
+ log2 k, (130)

which provides a limitation on the (ε, k)-unextendibility
of any quantum channel.

By turning around the bound in (112), we find the
following alternative way of expressing it:

Remark 3 The number of ebits (log2M) transmitted by
a (1,M, ε) entanglement transmission protocol over a
quantum channel N and assisted by a k-extendible post
processing is bounded from above as

log2M ≤ log2

(
k − 1

k

)
−log2

(
2− supψRA

Eεk(R;B)τ − 1

k

)
.

(131)
where Eεk(R;B)τ is defined in (113).

1. On the size of the extendibility parameter k versus the
error ε

By observing the form of the bound in Remark 3, we
see that it is critical for the inequality

2− supψRA
Eεk(R;B)τ − 1

k
> 0 (132)

to hold in order for the bound to be non-trivial. Related,
we see that this inequality always holds in the limit k →
∞, and in this limit, we recover the ε-relative entropy of
entanglement bound from [4, 38]. Here, we address the
question of how large k should be in order to ensure that
the inequality in (132) holds.

Proposition 3 For a fixed ε ∈ (0, 1), the following in-
equality holds

2−E
ε
k(N ) − 1

k
> 0, (133)

or equivalently, that

Eεk(N ) < log2 k. (134)

as long as

k > 2I
ε
h(N )ε+ 1, (135)

where

Iεh(N ) := sup
ψRA

Dε
h(NA→B(ψRA)‖ψR⊗NA→B(ψA)) (136)

is the channel’s ε-mutual information.

Proof. This follows because the condition in (134) is
equivalent to

Eεk(N ) = sup
ψRA

inf
σRB∈EXTk(R;B)

Dε
h(NA→B(ψRA)‖σRB)

< log2 k. (137)

We can pick the k-extendible state σψRB , for a fixed ψRA,
as follows:

σψRB =
1

k
NA→B(ψRA) +

(
1− 1

k

)
ψR ⊗NA→B(ψA),

(138)
implying that

Eεk(N ) ≤ sup
ψRA

Dε
h(NA→B(ψRA)‖σψRB). (139)

The choice σψRB is k-extendible because the following
state constitutes its k-extension:

σψRB1···Bk =
1

k

k∑
i=1

NA→B1
(ψA)⊗ · · · ⊗ NA→Bi−1

(ψA)

⊗NA→Bi(ψRA)⊗NA→Bi+1(ψA)⊗ · · ·
⊗ NA→Bk(ψA). (140)

The optimal measurement operator Λ∗ for

Dε
h(NA→B(ψRA)‖σψRB) satisfies

Tr{Λ∗NA→B(ψRA)} ≥ 1− ε, (141)

which means that

Tr{Λ∗σψRB} =
1

k
Tr{Λ∗NA→B(ψRA)}

+

(
1− 1

k

)
Tr{Λ∗(ψR ⊗NA→B(ψA))}

≥ 1

k
[1− ε] +

(
1− 1

k

)
2−I

ε
h(N ), (142)

and in turn that

Dε
h(NA→B(ψRA)‖σψRB)

≤ − log2

(
1

k
[1− ε] +

(
1− 1

k

)
2−I

ε
h(N )

)
. (143)

The goal is to have the right-hand side above less than
log2 k for all ψRA, and this condition is equivalent to

− log2

(
1

k
[1− ε] +

(
1− 1

k

)
2−I

ε
h(N )

)
< log2 k. (144)

Rewriting this, it is the same as

1

k
[1− ε] +

(
1− 1

k

)
2−I

ε
h(N ) >

1

k
, (145)

which is in turn the same as

− ε
k

+

(
1− 1

k

)
2−I

ε
h(N ) > 0 (146)
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⇔ (k − 1) 2−I
ε
h(N ) > ε (147)

⇔ k > 2I
ε
h(N )ε+ 1. (148)

This concludes the proof.

Remark 4 We note that the lower bound on k from
Proposition 3 is not necessarily optimal and certainly
could be improved. For example, when ε < 1/2 and the
channel N is a two-extendible channel, k = 2 suffices in
order for the bound from Theorem 2 to apply, and thus
the bound in Proposition 3 can be very loose. The value
of Proposition 3 is simply in knowing that a finite lower
bound on k exists for every channel, such that one can
always find a finite k for and beyond which our bound on
entanglement transmission rates applies.

C. Non-asymptotic quantum capacity assisted by
k-extendible channels

In this subsection, we define another kind of non-
asymptotic quantum capacity, in which a quantum chan-
nel is used n times, and between every channel use, a
k-extendible channel is employed for free to assist in the
goal of entanglement transmission. Such a protocol is
similar to those that have been discussed in the litera-
ture previously [60–62], but we review the details here
for completeness.

In such a protocol (see Figure 3 for a depiction of an
example), a sender Alice and a receiver Bob are spa-
tially separated and connected by a quantum channel
NA→B . They begin by performing a k-extendible channel

K(1)
∅→A′1A1B′1

, which leads to a k-extendible state ρ
(1)
A′1A1B′1

,

where A′1 and B′1 are systems that are finite-dimensional
but arbitrarily large. The system A1 is such that it
can be fed into the first channel use. Alice sends sys-
tem A1 through the first channel use, leading to a state

σ
(1)
A′1B1B′1

:= NA1→B1
(ρ

(1)
A′1A1B′1

). Alice and Bob then per-

form the k-extendible channel K(2)
A′1B1B′1→A′2A2B′2

, which

leads to the state

ρ
(2)
A′2A2B′2

:= K(2)
A′1B1B′1→A′2A2B′2

(σ
(1)
A′1B1B′1

). (149)

Alice sends system A2 through the second chan-

nel use NA2→B2 , leading to the state σ
(2)
A′2B2B′2

:=

NA2→B2
(ρ

(1)
A′2A2B′2

). This process iterates: the protocol

uses the channel n times. In general, we have the follow-
ing states for all i ∈ {2, . . . , n}:

ρ
(i)
A′iAiB

′
i

:= K(i)
A′i−1Bi−1B′i−1→A′iAiB′i

(σ
(i−1)
A′i−1Bi−1B′i−1

),

(150)

σ
(i)
A′iBiB

′
i

:= NAi→Bi(ρ(i)
A′iAiB

′
i
), (151)

where K(i)
A′i−1Bi−1B′i−1→A′iAiB′i

is a k-extendible channel.

The final step of the protocol consists of a k-extendible

channel K(n+1)
A′nBnB

′
n→MAMB

, which generates the systems

MA and MB for Alice and Bob, respectively. The proto-
col’s final state is as follows:

ωMAMB
:= K(n+1)

A′nBnB
′
n→MAMB

(σ
(n)
A′nBnB

′
n
). (152)

The goal of the protocol is that the final state ωMAMB

is close to a maximally entangled state. Fix n,M ∈ N and
ε ∈ [0, 1]. The original protocol is an (n,M, ε) protocol
if the channel is used n times as discussed above, |MA| =
|MB | = M , and if

F (ωMAMB
,ΦMAMB

)

= 〈Φ|MAMB
ωMAMB

|Φ〉MAMB
(153)

≥ 1− ε. (154)

Let Q
(k)
II (NA→B , n, ε) denote the non-asymptotic

quantum capacity assisted by k-extendible channels; i.e.,

Q
(k)
II (NA→B , n, ε) is the maximum value of 1

n log2M such
that there exists an (n,M, ε) protocol for NA→B as de-
scribed above.

A rate R is achievable for k-extendible-assisted quan-
tum communication if for all ε ∈ (0, 1], δ > 0, and suf-
ficiently large n, there exists an (n, 2n(R−δ), ε) protocol.
The k-extendible-assisted quantum capacity of a chan-

nel N , denoted as Q
(k)
II (N ), is equal to the supremum of

all achievable rates.

Theorem 3 The following converse bound holds for ev-
ery integer k ≥ 2 and for every (n,M, ε) k-extendible
assisted quantum communication protocol over n uses of
a quantum channel N :

− 1

n
log2

[
1

M
+

1

k
− 1

Mk

]
≤ Emax

k (N )+
1

n
log2

(
1

1− ε

)
,

(155)
where Emax

k (N ) is the k-unextendible max-relative en-
tropy of the channel N , defined as

Emax
k (R;B)ρ := inf

σRB∈EXTk(R:B)
Dmax (ρRB‖σRB) ,

(156)
τRB := NA→B(ψRA), and the optimization is with respect
to pure states ρRA with |R| = |A|.

Proof. The above bound can be derived by invoking
Proposition 6 and following arguments similar to those
given in the proof of [62, Theorem 3]. We also require
the amortization collapse of Emax

k (N ), as given in Ap-
pendix B.

Similar to the observation in Remark 3, by turning
around the bound in (155), we find the following alter-
native way of expressing it:

Remark 5 The number of qubits (log2M) transmitted
by an (n,M, ε) k-extendible assisted quantum communi-
cation protocol conducted over a quantum channel N is
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FIG. 3. Depiction of a quantum communication protocol using a quantum channel N assisted by k-extendible channels before
and after every channel use. The quantum channel N is used n times, in conjunction with the assisting k-extendible channels,
in order to establish entanglement shared between Alice and Bob.

bounded from above as

log2M ≤ log2

(
k − 1

k

)
− log2

(
2−nE

max
k (N )[1− ε]− 1

k

)
.

(157)
where Emax

k (N ) is the k-unextendible max-relative en-
tropy of the channel N , as defined in (B7).

Related to the discussion in Section IV B 1, it is neces-
sary for the inequality 2−nE

max
k (N )[1− ε]− 1

k > 0 to hold
in order for the bound in (157) to be non-trivial. The
following proposition gives a sufficient condition on the
size of k in order for the inequality in (157) to hold. This
condition can be checked numerically.

Proposition 4 Fix ε ∈ (0, 1), a channel N , and n ≥ 1.
The following inequality holds

2−nE
max
k (N ) [1− ε]− 1

k
> 0, (158)

or equivalently,

nEmax
k (N ) + log2

(
1

1− ε

)
< log2 k, (159)

as long as

k > 2Imax(N )

[
k1−1/n

[1− ε]1/n
−
(

1− 2−Imax(N )
)]

, (160)

where

Imax(N ) := sup
ψRA

Dmax(NA→B(ψRA)‖ψR ⊗NA→B(ψA))

(161)
is the channel’s max-mutual information.

Proof. The condition in (159) is equivalent to

Emax
k (N ) = sup

ψRA

inf
σRB∈EXTk(R:B)

Dmax(NA→B(ψRA)‖σRB)

< log2 k. (162)

We can pick the k-extendible state σψRB , for a fixed ψRA,
as follows:

σψRB =
1

k
NA→B(ψRA) +

(
1− 1

k

)
ψR ⊗NA→B(ψA),

(163)

implying that

Emax
k (N ) ≤ sup

ψRA

Dmax(NA→B(ψRA)‖σψRB). (164)

Now defining, for a fixed ψRA,

λ(ψ) := Imax(R;B)N (ψ) (165)

:= Dmax(NA→B(ψRA)‖ψR ⊗NA→B(ψA)), (166)

we find that

σψRB

=
1

k
NA→B(ψRA) +

(
1− 1

k

)
ψR ⊗NA→B(ψA) (167)

≥ 1

k
NA→B(ψRA) +

(
1− 1

k

)
2−λ(ψ)NA→B(ψRA)

(168)

=

[
1

k
+

(
1− 1

k

)
2−λ(ψ)

]
NA→B(ψRA). (169)

Now exploiting the fact that Dmax(ρ‖σ) ≤ Dmax(ρ‖σ′)
for σ ≥ σ′ ≥ 0, as well as Dmax(ρ‖cσ) = Dmax(ρ‖σ) −
log2 c for c > 0, we find that

sup
ψRA

Dmax(NA→B(ψRA)‖σψRB)

≤ sup
ψRA

[
Dmax(NA→B(ψRA)‖NA→B(ψRA))

− log2

(
1

k
+

(
1− 1

k

)
2−λ(ψ)

)]
(170)

= sup
ψRA

[
− log2

(
1

k
+

(
1− 1

k

)
2−λ(ψ)

)]
(171)

= − log2

(
1

k
+

(
1− 1

k

)
2−Imax(N )

)
(172)

= − log2

(
2−Imax(N ) +

1

k

(
1− 2−Imax(N )

))
. (173)

The goal is to have the inequality in (159) holding, and,
by the above analysis, this results if the following inequal-
ity holds
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− n log2

([
2−Imax(N ) +

1

k

(
1− 2−Imax(N )

)])
+ log2

(
1

1− ε

)
< log2 k. (174)

Rewriting this, it is the same as[
2−Imax(N ) +

1

k

(
1− 2−Imax(N )

)]n
[1− ε] > 1

k

⇔
[
2−Imax(N ) +

1

k

(
1− 2−Imax(N )

)]
[1− ε]1/n > 1

k1/n

⇔
[
k2−Imax(N ) +

(
1− 2−Imax(N )

)]
[1− ε]1/n > k1−1/n

(175)

⇔ k2−Imax(N ) +
(

1− 2−Imax(N )
)
>

k1−1/n

[1− ε]1/n
, (176)

⇔ k > 2Imax(N )

[
k1−1/n

[1− ε]1/n
−
(

1− 2−Imax(N )
)]

.

(177)
This concludes the proof.

A similar comment as in Remark 4 applies to Proposi-
tion 4.

We now define k-simulable channels and observe how
the upper bounds on non-asymptotic quantum capacity
simplify for these channels.

Definition 10 (k-simulable channels) A channel
NA→B is k-simulable with associated resource state ωRB̂
if the following holds for every input state ρA ∈ D(HA):

NA→B(ρA) = KRAB̂→B(ρA ⊗ ωRB̂), (178)

where KRAB→B is a k-extendible channel.

Note that a teleportation-simulable channel, as given
in Definition 2, is a particular example of a k-simulable
channel, whenever the LOCC channel in (16) is a 1W-
LOCC channel.

For a k-simulable channel, an (n,M, ε) quantum com-
munication protocol assisted by k-extendible channels
simplifies in such a way that it is equivalent to an
(n,M, ε) entanglement distillation protocol starting from
the resource state ω⊗n

RB̂
and assisted by a k-extendible

post-processing channel. This kind of observation was
made in [1, 36] and extended to any resource theory in
[61]. See Figure 5 of [61] for a summary of the reduction
that applies to our case of interest here. We then have
the following:

Corollary 1 Let N be a k-simulable channel as in Def-
inition 10. The following bound holds for all k ∈ N and
for every (n,M, ε) quantum communication protocol con-
ducted over the quantum channel N and assisted by k-
extendible channels:

− log2

[
1

M
+

1

k
− 1

Mk

]
≤ Eεk(Rn; B̂n)ω⊗n , (179)

where ωRB̂ is the resource state in Definition 10.

V. EXAMPLES

We now showcase the above bounds for depolarizing
and erasure channels.

A. Depolarizing Channel

The action of a qubit depolarizing channel DpA→B on
an input state ρ is as follows:

DpA→B(ρ) := (1− p)ρ+
p

3
(XρX + Y ρY + ZρZ), (180)

where p ∈ [0, 1] is the depolarizing parameter and X, Y ,
and Z are the Pauli operators. A depolarizing channel is
a covariant channel for all p ∈ [0, 1], which is a fact that
is easy to see after expressing its action as DpA→B(ρ) =
(1− q)ρ+ qI/2, for q = 4p/3. This property is crucial to
obtain an upper bound on the unextendible ε-hypothesis-
testing divergence of the depolarizing channel.

To this end, we first argue that the optimal input
state for n independent uses of the depolarizing channel
is an n-fold tensor product of the maximally entangled
state ΦRA = 1

2

∑
i,j∈{0,1} |i〉〈j|R ⊗ |i〉〈j|A. For tensor-

product channels, we can restrict the input state to be
invariant under permutations of the input systems, due
to Lemma 16 in Appendix C. Also, for covariant chan-
nels, the input states that optimize the k-extendible rel-
ative entropy are of the form given in Lemma 16 in Ap-
pendix C. Therefore, it suffices to restrict the input state
to be a tensor-power maximally entangled state; i.e., we
conclude that

Eεk([Dp]⊗n) =

inf
σRnBn∈EXTk(Rn:Bn)

Dε
h([DpA→B(ΦRA)]⊗n‖σRnBn).

(181)

We make a particular choice of the k-extendible state
σRnBn above (which is not necessarily optimal) to be a

tensor product of the isotropic states σ
(t,2)
AB , defined as

ρ
(t,d)
AB = tΦdAB + (1− t)IAB − ΦdAB

d2 − 1
, (182)

where ΦdAB denotes a maximally entangled state of
Schmidt rank d, and t ∈ [0, 1]. Note that the ac-
tion of Dp on a maximally entangled state results in an

isotropic state σ
(p,2)
AB parametrized by p. Since the states(

σ
(p,2)
AB

)⊗n
and

(
σ

(t,2)
AB

)⊗n
are diagonal in the same basis,

the ε-hypothesis testing relative entropy between the two
states is equal to the ε-hypothesis testing relative entropy
between the product Bernoulli probability distributions
{1 − p, p}×n and {t, 1 − t}×n. We therefore obtain the
following bound on the number of ebits transmitted by
n channel uses of the depolarizing channel:
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FIG. 4. Upper bounds on the number of qubits that can be
reliably transmitted over a depolarizing channel with p = 0.1,
and ε = 0.05. The red dashed line is the bound from Theorem
2. The green dash-dotted and blue dotted lines are upper
bounds from [4] and [3], respectively.

1

n
log2M ≤

1

n
log2

(
k − 1

k

)
−

1

n
log2

(
2−D

ε
h({1−p,p}×n‖{t,1−t}×n) − 1

k

)
. (183)

The resulting classical hypothesis testing relative entropy
between the product Bernoulli distributions can be dis-
tinguished exactly by the optimal Neyman-Pearson test
[63].

Note that (183) converges to the upper bound given
in [4] in the limit as k → ∞. Refer to Figures 4 and 5
for a comparison of various upper bounds on the non-
asymptotic quantum capacity of the depolarizing chan-

nel. For tensor products of the isotropic states σ
(t,2)
AB ,

the numerics suggest that the minimizing state is either
k = 2 extendible or a separable state. If the minimiz-
ing state is a separable state, then the bound in (183) is
equal to the TBR bound from [4].

B. Erasure channel

The action of a qubit erasure channel [64] on an input
density operator ρ is as follows:

EpA→B(ρA) := (1− p)ρB + p |e〉〈e|B , (184)

where p ∈ [0, 1] is the erasure parameter and |e〉〈e| is a
pure state, orthogonal to any input state. The optimal
input state for n uses of erasure channel, when consider-
ing its unextendible generalized divergence, is the n-fold
tensor product maximally entangled state Φ⊗nA′A. This
follows also from the covariance of the erasure channel
and Lemma 16.
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FIG. 5. Upper bounds on the number of qubits that can
be reliably transmitted over a depolarizing channel with p =
0.25, and ε = 5×10−5. The red dashed line is the bound from
Theorem 2. The green dash-dotted and blue dotted lines are
upper bounds from [4] and [3], respectively.

Our goal is to obtain upper bounds on the entangle-
ment transmission rate when using the erasure channel
n times. Consider sending n shares of the maximally
entangled state ΦAA′ over n uses of the erasure channel
EpA′→B . The output state ρA1B1A2B2···AnBn has the form

ρA1B1A2B2···AnBn =
∑

xn∈{0,1}n
p(xn)

 n⊗
j=1

τ
xj
AjBj

 ,

(185)
where for all j ∈ [n],

τ
xj
AjBj

∈
{

ΦAjBj , πAj ⊗ |e〉〈e|Bj
}
, (186)

and for all xn ∈ {0, 1}n, p(xn) ∈ [0, 1] is a product dis-
tribution such that

∑
x∈{0,1}n p(x

n) = 1. Due to an

i.i.d. application of the channels, we find that the prob-
abilities p(xn) corresponding to a state τx

n

A1B1A2B2···AnBn
with the same number of erasure symbols are equal. The
total probability for having ` erasure symbols in the
state ρA1B1A2B2···AnBn is equal to

(
n
`

)
(1−p)n−`p`, where

` ∈ {0, . . . , n}.
Without loss of generality, the block-diagonal form of

the output state of n uses of an erasure channel, when
inputting a tensor-power maximally entangled state, al-
lows us to restrict the class of k-extendible states σ ∈
EXTk(An;Bn), over which we optimize the unextendible
ε-hypothesis testing relative entropy, to be of the form
in (185), except with p(xn) a probability distribution
that is not necessarily product and chosen such that
the state is k-extendible. This follows because the state
ρA1B1A2B2···AnBn is invariant under n independent bi-
lateral twirls, along with n independent and incomplete
measurements of the form {|0〉〈0|+ |1〉〈1|, |e〉〈e|} by Bob,
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while such a 1W-LOCC channel symmetrizes the k-
extendible state to have the aforementioned form. We
let σA1B1A2B2···AnBn be of the form in (185) with coeffi-
cients (probabilities) set to q(xn). Furthermore, we note
that ρA1B1A2B2···AnBn is permutation invariant after Al-
ice and Bob perform a coordinated random permutation
channel on their composite systems locally. This allows
us to restrict the form of σA1B1A2B2···AnBn to be permu-
tation invariant under such a symmetrizing permutation
channel because it is a k-extendible channel.

From the argument above, we find that the minimiz-
ing state has the block structure given in (185), and the
coefficients for states in the sum with the same number
of erasure symbols are equal. We now want to obtain
conditions on the probabilities q(xn), where xn ∈ {0, 1}n
from the k-extendibility of the state σA1B1A2B2···AnBn .
The constraints that we impose on q(xn) are not unique.
That is, there could exist other constraints such that the
state σA1B1A2B2···AnBn is still k-extendible.

Let us first consider n = 2 channel uses. By what
we discussed above, the minimizing k-extendible state
σA1B1A2B2 then has the following form

σA1B1A2B2
:=

c0ΦA1B1
⊗ ΦA2B2

+ c1
(
ΦA1B1

⊗ πA2
⊗ |e〉〈e|B2

+ ΦA2B2 ⊗ πA1 ⊗ |e〉〈e|B1

)
+ c2πA1 ⊗ |e〉〈e|B1

⊗ πA2 ⊗ |e〉〈e|B2
, (187)

where {ci}i for i ∈ {0, 1, 2} is a probability distribution
such that c0 + 2c1 + c2 = 1. Focusing on the special case
k = 2, we now want to obtain constraints on each ci such
that σA1B1A2B2

is a two-extendible state. To this end,
we replace all the terms ΦAiBi in the above state with
the two-extendible state 1

2ΦAiBi +
(
1− 1

2

)
πAi ⊗ |e〉〈e|Bi .

We obtain the following state, which is guaranteed to be
two-extendible by construction:

c0
4

ΦA1B1
⊗ ΦA1B1

+
(c0

4
+
c1
2

) (
ΦA1B1

⊗ πA2
⊗ |e〉〈e|B2

+

πA1 ⊗ |e〉〈e|B1
⊗ ΦA2B2

)
+
(c0

4
+ c1 + c2

) (
πA1 ⊗ |e〉〈e|B1

⊗ πA2 ⊗ |e〉〈e|B2

)
.

(188)

Abbreviating the new coefficients as b0, b1, and b2, the
above approach leads to the following constraint on them
such that the state σA1B1A2B2

is two-extendible:b0b1
b2

 =

 1
4 0 0
1
4

1
2 0

1
4 2 · 1

2 1

c0c1
c2

 . (189)

We now generalize the above procedure of obtaining
two-extendible states for two channel uses to obtaining
k-extendible states for n channel uses. We obtain the

following condition on the coefficients bi:
b0
b1
b2
...
bn

 = M



(
n
0

)
c0(

n
1

)
c1(

n
2

)
c2

...(
n
n

)
cn

 , (190)

where the general form of the matrix M(n+1)×(n+1) =
[mu,v] is given as

mu,v =

(
n− v
u− v

)(
1− 1

k

)u−v (
1

k

)n−u
(191)

if u ≥ v, and otherwise, mu,v = 0, where n is the number
of channel uses and u, v ∈ {0, . . . , n}. The coefficients
are such that c0, c1, . . . , cn ∈ [0, 1] and

∑n
j=0

(
n
j

)
cj = 1.

We then have that

inf
σ′A1B1···AnBn

∈EXTk

Dε
h(ρA1B2···AnBn‖σ′A1B1···AnBn)

≤ min
b0,b1,...,bn

Dε
h({a0, a1, . . . , an} ‖ {b0, b1, . . . , bn}),

(192)

where the distribution {a0, a1, . . . , an} is induced by mea-
suring the number of erasures in ρA1B2···AnBn and the co-
efficients {b0, b1, . . . , bn} are chosen as discussed above.
The inequality follows from restricting the form of the
minimizing state. By exploiting the dual formulation of
the hypothesis testing relative entropy [65], we can now
write the expression in (192) as the following linear pro-
gram:

min
c0,c1,...,cn

Dε
h ({a0, a1, . . . , an} ‖ {b0, b1, . . . , bn}) =

− log2

(
max

{c0,c1,...,cn},{αi}i,y
y(1− ε)−

n∑
i=0

αi

)
, (193)

such that

∀i ∈ [0, n], αi − yai + bi ≥ 0, (194)

bi =

n∑
j=0

mi,jcj , (195)

0 ≤ ci ≤ 1, (196)

y ≥ 0, αi ≥ 0, (197)
n∑
j=0

(
n

j

)
cj = 1. (198)

For the plots in Figures 6 and 7, we have taken
σA1B1A2B2···AnBn to be in a particular set of extendible
states as defined above. Within this set, we have opti-
mized over at most k = 10 extendible states.
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FIG. 6. Upper bounds on the number of qubits that can be
reliably transmitted over an erasure channel with p = 0.35,
and ε = 0.05. The red dashed line is the bound from Theorem
2. The green dash-dotted line is an upper bound from [4].
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FIG. 7. Upper bounds on the number of qubits that can be
reliably transmitted over an erasure channel with p = 0.49,
and ε = 0.05. The red dashed line is the bound from Theorem
2. The green dash-dotted line is an upper bound from [4].

VI. PRETTY STRONG CONVERSE FOR
ANTIDEGRADABLE CHANNELS

As a direct application of Theorem 3, we revisit the
“pretty strong converse” of [66] for antidegradable chan-
nels. A channel NA→B is antidegradable [67, 68] if
the output state NA→B(ρRA) is two-extendible for ev-
ery input state ρRA. Due to this property, antidegrad-
able channels have zero asymptotic quantum capacity
[12, 69]. Theorem 3 implies the following bound for the
non-asymptotic case:

Corollary 2 Fix ε ∈ [0, 1/2). The following bound holds

for every (n,M, ε) quantum communication protocol em-
ploying n uses of an antidegradable channel N interleaved
by two-extendible channels:

1

n
log2M ≤

1

n
log2

(
1

1− 2ε

)
. (199)

Proof. Let NA→B be an antidegradable channel, and
suppose that ρRA is a state input to the channel. Then
the output state NA→B(ρRA) is always a two-extendible
state (due to anti-degradability) [68]. As a direct conse-
quence of Theorem 3, the following bound applies to ev-
ery (n,M, ε) quantum communication protocol employ-
ing n uses of an antidegradable channel N interleaved by
two-extendible channels:

− 1

n
log2

[
1

M
+

1

2
− 1

2M

]
≤ 1

n
log2

(
1

1− ε

)
. (200)

This follows by setting k = 2 and noticing that
supψRA E

max
k (R;B)τ = 0, where τRB := NA→B(ψRA),

for such antidegradable channels. After some basic al-
gebraic steps, for ε < 1/2, we can rewrite this bound
as

1

n
log2M ≤

1

n
log2

[
1

2 (1− ε)− 1

]
. (201)

These steps are as follows:

− 1

n
log2

[
1

M
+

1

2
− 1

2M

]
≤ 1

n
log2

(
1

1− ε

)
⇔ log2

[
2M

M + 1

]
≤ log2

(
1

1− ε

)
(202)

⇔ 2

1 + 1/M
≤ 1

1− ε (203)

⇔ 2 (1− ε) ≤ 1 + 1/M (204)

⇔ 2 (1− ε)− 1 ≤ 1/M (205)

⇔ 1− 2ε ≤ 1/M. (206)

This concludes the proof.
We conclude from the above inequality that, for an an-

tidegradable channel, there is a strong limitation on its
ability to generate entanglement whenever the error pa-
rameter ε < 1

2 , as is usually desired for applications in
quantum computation. We also remark that the bound
above is tighter than related bounds given in [66], and
furthermore, the bound applies to quantum communi-
cation protocols assisted by interleaved two-extendible
channels, which were not considered in [66].

More generally, if the output of the channel is always
a k-extendible state, then we have the following bound:

Corollary 3 Fix ε ∈ [0, 1 − 1/k). Let NA→B be a k-
extendible channel, in the sense that NA→B(ρRA) is k-
extendible for every input state ρRA. Then the following
bound holds for every (n,M, ε) quantum communication
protocol employing n uses of the channel N interleaved
by k-extendible channels:

1

n
log2M ≤

1

n
log2

(
1

1− k
k−1ε

)
. (207)
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Proof. This follows by the same reasoning as in the pre-
vious proof. If the output of the channel is k-extendible,
then employing Theorem 3 gives that

− 1

n
log2

[
1

M
+

1

k
− 1

Mk

]
≤ 1

n
log2

(
1

1− ε

)
. (208)

We then employ the following algebraic steps:

− 1

n
log2

[
1

M
+

1

k
− 1

Mk

]
≤ 1

n
log2

(
1

1− ε

)
(209)

− 1

n
log2

[
k − 1 +M

kM

]
≤ 1

n
log2

(
1

1− ε

)
(210)

kM

k − 1 +M
≤ 1

1− ε (211)

k

(k − 1) /M + 1
≤ 1

1− ε (212)

k (1− ε) ≤ (k − 1) /M + 1 (213)[
k (1− ε)− 1

k − 1

]
≤ 1/M (214)

1− k

k − 1
ε ≤ 1/M. (215)

We then get that

1

n
log2M ≤

1

n
log2

(
1

1− k
k−1ε

)
. (216)

This concludes the proof.

Thus, for a fixed ε ∈ [0, 1− 1/k), we conclude that
the rate of quantum communication for a single-sender
single-receiver k-extendible channel decays to zero as
n → ∞. Related, if the communication rate for a
sequence of codes used over such a channel is strictly
greater than zero, then it must be the case that the error
in communication is greater than or equal to 1 − 1/k,
which is a higher jump than discussed in the previous
case. An example of a channel for which this effect oc-
curs is a quantum erasure channel with erasure probabil-
ity 1− 1/k.

Another example of a channel for which the bound in
Corollary 3 holds is the universal cloning machine chan-
nel (a 1 → k universal quantum cloner followed by a
partial trace over k − 1 of the clones) [46]. When the
dimension of the channel input is M , the bound in Corol-
lary 3 is in fact saturated, as observed in the proof of [54,
Theorem III.8].

VII. CONCLUSIONS

In this paper, we obtained tight non-asymptotic
bounds on the rates of entanglement transmission of a
channel assisted by a k-extendible channel. To obtain
these tight bounds, we developed the resource theory of
unextendibility. The free states in this resource theory
are k-extendible states, which have been studied previ-
ously for quantifying the entanglement present in a quan-
tum state. We define k-extendible channels, and prove
that these are free channels in the resource theory of k-
unextendibility. We then obtain non-asymptotic upper
bounds on the rate at which qubits can be transmitted
over a finite number of uses of a given quantum channel,
by utilizing the monotones introduced for the resource
theory of unextendibility. We show that these bounds
are significantly tighter than those in [3, 4] for depolar-
izing and erasure channels.

An interesting research direction would be to further
explore the resource theory of unextendibility. One plau-
sible direction would be to use this resource theory to
obtain non-asymptotic converse bounds on the entangle-
ment distillation rate of bipartite quantum interactions
and compare with the bounds obtained in [70]. Another
direction is to analyze the bounds in Theorem 2 for other
noise models that are practically relevant. Finally, it re-
mains open to link the bounds developed here with the
open problem of finding a strong converse for the quan-
tum capacity of degradable channels [66]. To solve that
problem, recall that one contribution of [66] was to re-
duce the question of the strong converse of degradable
channels to that of establishing the strong converse for
symmetric channels.
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Entanglement and secret-key-agreement capacities of bi-
partite quantum interactions and read-only memory de-
vices. Physical Review A, 101(1):012344, January 2020.
arXiv:1712.00827.

[71] Joel J. Wallman and Steven T. Flammia. Randomized
benchmarking with confidence. New Journal of Physics,
16(10):103032, October 2014. arXiv:1404.6025.

[72] Jianxin Chen, Zhengfeng Ji, Nengkun Yu, and Bei Zeng.
Detecting consistency of overlapping quantum marginals
by separability. Physical Review A, 93(3):032105, Mar
2016.

[73] Matthias Christandl, Robert König, Graeme Mitchison,
and Renato Renner. One-and-a-half quantum de Finetti
theorems. Communications in Mathematical Physics,
273(2):473–498, July 2007. arXiv:quant-ph/0602130.

[74] Mathew S. Leifer, Leah Henderson, and Noah Linden.
Optimal entanglement generation from quantum opera-
tions. Physical Review A, 67(1):012306, January 2003.
arXiv:quant-ph/0205055.

[75] Charles H. Bennett, Aram W. Harrow, Debbie W. Le-
ung, and John A. Smolin. On the capacities of bipar-
tite Hamiltonians and unitary gates. IEEE Transactions
on Information Theory, 49(8):1895–1911, August 2003.
arXiv:quant-ph/0205057.

[76] Matthias Christandl and Alexander Müller-Hermes. Rel-
ative entropy bounds on quantum, private and repeater
capacities. Communications in Mathematical Physics,
353(2):821–852, July 2017. arXiv:1604.03448.
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Appendix A: Class of k-extendible channels

Before stating the proposition, we state an alternate
representation of 1W-LOCC channels, which is of rela-
vance in the proof. 1W-LOCC channels can also be rep-
resented as

DC′B→B′ ◦ PC̄→C′ ◦MC→C̄ ◦ EA→A′C , (A1)

where EA→A′C is an arbitrary channel,MC→C̄ is a mea-
surement channel, PC̄→C′ is a preparation channel, such
that C̄ is a classical system, and DC′B→B′ is an arbitrary
channel.

Proposition 5 The diamond distance of the channel
KkAB→A′B′ in (33) to a 1W-LOCC channel is bounded
from above as

inf
LAB→A′B′∈1W−LOCC

∥∥KkAB→A′B′ − LAB→A′B′∥∥�
≤ |C| 2|C|2

|C|2 + k
, (A2)

where |C| = |ABA′B′|, and 1W-LOCC denotes the set
of all 1W-LOCC channels acting on input systems AB
and with output systems A′B′.

Proof.
Letting SkC→C′1C′2···C′k denote an extension channel for

AkC→C′ , observe that

inf
LAB→A′B′∈1W−LOCC

∥∥KkAB→A′B′ − LAB→A′B′‖�
≤ inf
P◦M

∥∥∥TrCk−1 ◦SkC→C′1C′2···C′k ◦ EA→A′C
−PC̄→C′ ◦MC→C̄ ◦ EA→A′C‖�

(A3)

= inf
P◦M

max
ψRA

∥∥∥TrCk−1 ◦SkC→C′1C′2···C′k ◦ EA→A′C(ψRA)

−PC̄→C′ ◦MC→C̄ ◦ EA→A′C (ψRA)‖1
(A4)

≤ inf
P◦M

∥∥∥TrCk−1 ◦SkC→C′1C′2···C′k − PC̄→C′ ◦MC→C̄

∥∥∥
�
.

(A5)

The first inequality follows from (33), by choosing a par-
ticular 1W-LOCC and from the monotonicity of trace
norm with respect to quantum channels. The first equal-
ity follows from the definition of diamond distance. The
second inequality follows from the definition of diamond
distance, which has an implicit maximization over all the
input states. We now observe that

inf
P◦M

∥∥∥TrC′k−1 ◦SkC→C′1C′2···C′k − PC̄→C′ ◦MC→C̄

∥∥∥
�

≤ |C| inf
ΓEB
R′C′

∥∥∥Γk,SR′C′/|C| − ΓEBR′C′/|C|
∥∥∥

1
(A6)

≤ |C| 2|C ′|2
|C ′|2 + k

, (A7)

where

Γk,SR′C′/|C| = TrC′k−1 ◦SkC→C′1C′2···C′k (ΦRC) (A8)

∈ EXTk(R :C ′), (A9)

ΓEBR′C′/|C| = PC̄→C′ ◦MC→C̄ (ΦRC) (A10)

∈ SEP(R :C ′). (A11)
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The first inequality follows from bounding the diamond
distance between the two channels by the trace norm
between the corresponding Choi operators (see, e.g.,
[71, Lemma 7]). The last inequality follows from [72,
Eq. (11)], which in turn built on the developments in
[73].

Appendix B: Amortization does not enhance the
max-k-unextendibility of a channel

The amortized entanglement EA(N ) of a channel
NA→B is defined as the following optimization [61] (see
also [74–78]):

EA(N ) := sup
ρRAARB

[E(RA;BRB)τ − E(RAA;RB)ρ] ,

(B1)
where E is an entanglement measure, τRABRB =
NA→B(ρRAARB ) for a state ρRAARB and RA, RB are ref-
erence systems associated with the systems A,B, respec-
tively. The supremum is with respect to all input states
ρRAARB and the systems RA, RB are finite-dimensional
but could be arbitrarily large. Thus, in general, EA(N )
need not be computable. The amortized entanglement
quantifies the net amount of entanglement that can be
generated by using the channel NA→B , if the sender and
the receiver are allowed to begin with some initial en-
tanglement in the form of the state ρRAARB . That is,
E(RAA;RB)ρ quantifies the entanglement of the initial
state ρRAARB , and E(RA;BRB)τ quantifies the entan-
glement of the final state produced after the action of
the channel.

The purpose of this appendix is to prove that the un-
extendible max-relative entropy of a quantum channel
does not increase under amortization. Similar results are
known for the squashed entanglement of a channel [60], a
channel’s max-relative entropy of entanglement [76], and
the max-Rains information of a quantum channel [62].
Our proof of this result is strongly based on the approach
given in [62], which in turn made use of the developments
in [3].

We begin by establishing equivalent forms for the un-
extendible max-relative entropy of a state and a channel.

Let
−−−→
EXTk(A;B) denote the cone of all k-extendible op-

erators. This set is defined in the same way as the set
of k-extendible states, but there is no requirement for a
k-extendible operator to have trace equal to one. Then
we have the following alternative expression for the max-
relative entropy of unextendibility:

Lemma 14 Let ρAB ∈ D(HA ⊗HB). Then

Emax
k (A;B)ρ = log2Wk(A;B)ρ, (B2)

where

Wk(A;B)ρ := inf
XAB∈

−−−→
EXTk(A;B)

{Tr{XAB} : ρAB ≤ XAB}.

(B3)

Proof. Employing the definition of k-unextendible max-
relative entropy, consider that

Emax
k (A;B)ρ

= inf
σAB∈EXTk(A:B)

Dmax(ρAB‖σAB) (B4)

= log2 inf
µ,σAB

{µ : ρAB ≤ µσAB , σAB ∈ EXTk(A :B)}
(B5)

= log2 inf
XAB
{Tr{XAB} : ρAB ≤ XAB ,

XAB ∈
−−−→
EXTk(A;B)}. (B6)

This concludes the proof.
Let Emax

k (N ) denote the unextendible max-relative en-
tropy of a channel N , as defined in (35), but with the
generalized divergence D replaced by the max-relative
entropy Dmax. We can write Emax

k (N ) in an alternate
way, by employing similar reasoning as given in the proof
of [79, Lemma 6]:

Emax
k (N )

= max
ρS∈D(HS)

inf
σSB∈EXTk(S;B)

Dmax(ρ
1/2
S ΓNSBρ

1/2
SB‖σSB),

(B7)

where ΓNSB is the Choi operator for the channel N .
An alternative expression for the unextendible max-

relative entropy Emax
k (N ) of the channel N is given by

the following lemma:

Lemma 15 For any quantum channel NA→B,

Emax
k (N ) = log2 Σk(N ), (B8)

where

Σk(N ) = inf
YSB∈

−−−→
EXTk(S;B)

{‖TrB{YSB}‖∞ : ΓNSB ≤ YSB},

(B9)
and ΓNSB is the Choi operator for the channel NA→B.

Proof. The proof follows by employing (B7) and
Lemma 14, and following arguments similar to those

needed to prove [62, Lemma 7], given that
−−−→
EXTk is also

a cone.

Proposition 6 (Amortization inequality) Let
ρRAARB be a state, and let NA→B be an arbitrary
quantum channel. Then the following inequality holds
for the k-unextendible max-relative-entropy of a channel
N :

Emax
k (RA;BRB)ω ≤ Emax

k (RAA;RB)ρ + Emax
k (N ),

(B10)
where ωRABRB := NA→B(ρRAARB ).

Proof. We adapt the proof steps of [62, Proposition 8]
to show that amortization does not enhance the unex-
tendible max-relative entropy of an arbitrary channel.
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By removing logarithms and applying Lemmas 14 and
15, the desired inequality is equivalent to the following
one:

Wk(RA;BRB)ω ≤Wk(RAA;RB)ρ · Σk(N ), (B11)

and so we aim to prove this one. Exploiting the identity
in Lemma 14, we find that

Wk(RAA;RB)ρ = inf Tr{CRAARB}, (B12)

subject to the constraints

CRAARB ∈
−−−→
EXTk(RAA;B), (B13)

CRAARB ≥ ρRAARB , (B14)

while the identity in Lemma 15 gives that

Σk(N ) = inf ‖TrB{YSB}‖∞, (B15)

subject to the constraints

YSB ∈
−−−→
EXTk(S;B), (B16)

YSB ≥ ΓNSB . (B17)

The identity in Lemma 14 implies that the left-hand side
of (B11) is equal to

Wk(RA;BRB)ω = inf Tr{ERABRB}, (B18)

subject to the constraints

ERABRB ∈
−−−→
EXTk(RA;BRB), (B19)

ERABRB ≥ NA→B(ρRAARB ). (B20)

Once we have these optimizations, we can now show
that the inequality in (B11) holds by making an appro-
priate choice for ERABRB . Let CRAARB be optimal for
Wk(RAA;RB)ρ, and let YRABRB be optimal for Σ(N ).
Let |Γ〉SA be the maximally entangled vector. Choose

ERABRB = 〈Γ|SACRAARB ⊗ YSB |Γ〉SA. (B21)

We need to prove that ERABRB is feasible for
Wk(RA;BRB)ω. To this end, we have

〈Γ|SACRAARB ⊗ YSB)|Γ〉SA
≥ 〈Γ|SAρRAARB ⊗ ΓNSB)|Γ〉SA
= NA→B(ρRAARB ). (B22)

Now, since CRAARB ∈
−−−→
EXTk(RAA;RB) and YSB ∈−−−→

EXTk(S;B), it immediately follows that 〈Γ|SACRAARB⊗
YSB)|Γ〉SA ∈

−−−→
EXTk(RA;RBB).

Consider that

Tr{ERABRB} = Tr{〈Γ|SA(CRAARB ⊗ YSB)|Γ〉SA}
= Tr{CRAARBTA(YAB)}
= Tr{CRAARBTA(TrB{YAB)}}
≤ Tr{CRAARB}‖TA(TrB{YAB})‖∞
= Tr{CRAARB}‖TrB{YAB}‖∞
= Wk(RAA;RB)ρ · Σ(N ). (B23)

The inequality is a consequence of Hölder’s inequality
[80]. The final equality follows because the spectrum of
a positive semi-definite operator is invariant under the
action of a full transpose (note, in this case, TA is the
full transpose as it acts on reduced positive semi-definite
operator YA).

Therefore, we can infer that our choice of ERABRB is
feasible for Wk(RA;BRB)ω. Since Wk(RA;BRB)ω in-
volves a minimization over all ERABRB satisfying (B19)
and (B20), this concludes our proof of (B11).

Remark 6 We briefly remark here that if a channel
NA→B can be simulated by the action of a k-extendible
channel KARB′→B on the channel input ρA as well as a
resource state ωRB′ (i.e., NA→B(ρA) = KARB′→B(ρA ⊗
ωRB′)), then the k-unextendible divergence of that chan-
nel does not increase under amortization, for divergences
that are subadditive with respect to tensor-product states.
This is a special case of the more general observation put
forward in [61, Section 7] for general resource theories.

Appendix C: Exploiting symmetries

In this appendix, we provide the following Lemma 16, similar to Proposition 2 of [81], which is helpful in determining
the form of the state that optimizes the unextendible generalized channel divergence of a quantum channel that has
some symmetry. Its proof is identical to that given for [81, Proposition 2], but we give it here for completeness.

Lemma 16 Let NA→B be a covariant channel with respect to a group G. Let ρA ∈ D(HA), and let ψρRA be a

purification for it. Define ρRB := NA→B(ψρRA) and ρ̄A := 1
|G|
∑
g∈G UA(g)ρAU

†
A(g). Let φρ̄RA be a purification of ρ̄A

and ρ̄RB := NA→B(φρ̄RA). Then

Ek(R;B)ρ̄ ≥ Ek(R;B)ρ. (C1)

Proof. Define

|φ〉PRA :=
1√
|G|
∑
g∈G
|g〉P [IR ⊗ UA(g)] |ψ〉RA , (C2)
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so that φPRA is a purification of ρ̄A. Let τPRB ∈ EXTk(PR :B), and, given that a local channel is a k-extendible
channel, observe that ∑

g∈G
|g〉〈g|P τPRB |g〉〈g|P =

∑
g∈G

p(g)|g〉〈g|P ⊗ τgRB ∈ EXTk(PR :B), (C3)

where τgRB = 1
p(g) 〈g|τPRB |g〉P and p(g) = Tr{〈g| τPRB |g〉P }. Then

D(NA→B(φPRA) ‖τPRB)

= D

NA→B
 ∑
g,g′∈G

1

|G| |g〉〈g
′|P ⊗ [IR ⊗ UA(g)]ψρRA[IR ⊗ U†A(g′)]

∥∥∥∥∥∥ τPRB
 (C4)

≥ D

∑
g∈G

1

|G| |g〉〈g|P ⊗NA→B
(
UA(g)ψρRAU

†
A(g)

)∥∥∥∥∥∥
∑
g∈G

p(g)|g〉〈g|P ⊗ τgRB

 (C5)

= D

∑
g∈G

1

|G| |g〉〈g|P ⊗ VB(g)NA→B(ψρRA)V †B(g)

∥∥∥∥∥∥
∑
g∈G

p(g)|g〉〈g|P ⊗ τgRB

 (C6)

= D

∑
g∈G

1

|G| |g〉〈g|P ⊗NA→B(ψρRA)

∥∥∥∥∥∥
∑
g∈G

p(g)|g〉〈g|P ⊗ V †B(g)τgRBVB(g)

 (C7)

≥ D

NA→B(ψρRA)

∥∥∥∥∥∥
∑
g∈G

p(g)V †B(g)τgRBVB(g)

 (C8)

≥ inf
τ ′RB∈EXTk(R;B)

D(NA→B(ψRA)‖τ ′RB) (C9)

= Ek(R;B)ρ. (C10)

The first inequality follows because any general divergence is monotonically non-increasing under the action of a
quantum channel, which in this case is the completely dephasing channel (·) → ∑

g∈G |g〉〈g|P (·)|g〉〈g|P . The sec-
ond equality follows because the channel N is covariant. To arrive at the third equality, we use the fact that any
generalized divergence is invariant under the action of isometries. To get the second inequality, we apply the par-
tial trace over the classical register P , which is a quantum channel. The last inequality follows because the state∑
g∈G p(g)V †B(g)τgRBVB(g) is k-extendible, given that it arises from the action of a 1W-LOCC channel on the k-

extendible state τPRB . Noticing that the chain of inequalities holds for arbitrary τPRB ∈ EXTk(PR;B), we can then
take an infimum over all possible τPRB ∈ EXTk(PR;B), and we arrive at the following inequality:

Ek(PR;B)N (φ) ≥ Ek(R;B)ρ (C11)

The desired inequality in the statement of the lemma then follows because all purifications of a given state are related
by an isometry acting on the purifying system, and the unextendible generalized divergence is invariant under the
action of a local isometry.
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