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While quantum measurement theories are built around density matrices and observables, the laws
of thermodynamics are based on processes such as are used in heat engines and refrigerators. The
study of quantum thermodynamics fuses these two distinct paradigms. In this article, we highlight
the usage of quantum process matrices as a unified language for describing thermodynamic processes
in the quantum regime. We experimentally demonstrate this in the context of a quantum Maxwells
demon, where two major quantities are commonly investigated; the average work extraction 〈W 〉 and
the efficacy γ which measures how efficiently the feedback operation uses the obtained information.
Using the tool of quantum process matrices, we develop the optimal feedback protocols for these
two quantities and experimentally investigate them in a superconducting circuit QED setup.

I. INTRODUCTION

The interplay of information and energy is at the heart
of thermodynamics, originating from the thought experi-
ment of Maxwell’s demon [1–6]. In particular, the laws of
thermodynamics have been generalized to accommodate
the presence of feedback operations [7–14]. Experimental
implementations of various types of classical demons have
been realized [15–21]. The modern development of quan-
tum technologies further enables us to investigate the
idea of Maxwell’s demon in the quantum regime [22–31],
where concepts such as coherence, entanglement, mea-
surement backaction, and the exponential scaling of sys-
tem Hilbert spaces may become important. Furthermore,
quantum information theory allows us to analyze and op-
timize these measurement and feedback-based protocols
in a way that can reveal quantum thermodynamical ad-
vantages.

In this article, we introduce the tool of the quan-
tum process matrix to analyze and optimize a weak-
measurement-based Maxwell’s demon protocol [28]. The
quantum process matrix has vast application in quan-
tum information processing [32–37] and quantum optics
[38–40], but its usage in quantum thermodynamics is still
nascent [22]. The optimization of feedback protocols has
been considered in classical [41] and quantum [42] con-
texts, with experimental implementation so far limited to
classical systems [43]. Using quantum process matrices,
we are able to assign new meaning to the efficacy—a mea-
sure of how efficiently feedback uses obtained information
[17]—which can be related to violations of Jarzynski’s
equality when the role of information is neglected. Pre-
vious experimental work has demonstrated efficacy above
unity [28]. However, optimization and maximization of
the efficacy reveal certain fundamental limitations asso-
ciated with the usual language of quantum mechanics.
First, while quantum mechanics provides us with meth-
ods to describe states and observables, thermodynam-
ics concerns work, which is not an observable [44]. Sec-
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ond, we show that the quantum state alone—the density
matrix—does not provide the full description of the evo-
lution, and is thus inadequate for certain feedback tasks.
As a consequence, in order to design a feedback proto-
col that maximizes the efficacy, we harness the quantum
process matrix to derive effective states that achieve this
goal. Using a circuit QED setup, we experimentally test
work and efficacy maximizing feedback protocols that
utilize the quantum coherence encoded in the off-diagonal
elements during the evolution. We examine their perfor-
mance over the parameter space of time, temperature,
and measurement efficiency.

This article is organized as follows: In Section II we
introduce the stochastic master equation that is used to
track the quantum state of a qubit undergoing weak con-
tinuous measurement. We extend this stochastic mas-
ter equation treatment to derive a stochastic differen-
tial equation for the quantum process matrix that con-
tains complete information about the quantum evolu-
tion. In Section III we introduce the protocol for a
single qubit quantum Maxwell’s demon along with the
Jarzynski equality and the efficacy. We consider the op-
timization of feedback protocols that maximize different
moments of the work distribution and study the perfor-
mance of these protocols versus measurement efficiency
and temperature. Several appendices discuss the ex-
perimental setup and data acquisition, the formalism of
quantum process inference, analysis of the efficacy, the
equivalence of different work distributions, methods used
to reduce the measurement efficiency, statistical analy-
sis methods, and the tomographic validation of quantum
trajectories.

II. CONTINUOUS MEASUREMENT OF A
SUPERCONDUCTING QUBIT

We use superconducting transmon qubit [45, 46] as
a versatile platform for weak measurements and quan-
tum state tracking. By coupling the qubit with a mi-
crowave cavity in the dispersive regime [47–51], one can
perform continuous weak measurement and qubit state
tracking without completely destroying coherences in the
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measurement basis. Using the measurement records, we
experimentally reconstruct the time-dependent quantum
process matrix along a single trajectory.

The system is subject to a resonant drive given by
the Hamiltonian HR = −ΩRσy/2 in the rotating frame
(ΩR is the Rabi frequency and σx, σy, σz are the Pauli
operators, with σz diagonal in the energy basis). The
drive creates coherences between the qubit energy levels.
Simultaneously, a continuous weak measurement probe
signal coupled to σz is used by the demon to track the
state. The weak measurement record is denoted by r(t)
and the resulting conditional state evolution ρr can be
obtained from the stochastic master equation (SME) [28,
52, 53],

ρ̇r =
1

i~
[HR, ρr] + k(σzρrσz − ρr)

+ 2ηk[σzρr + ρrσz − 2 Tr(σzρr)ρr]r(t),
(1)

where η is the efficiency of the detector and k repre-
sents the strength of the measurement. In this mea-
surement architecture, the signal r(t) is the demodulated
quadrature amplitude that encodes qubit state informa-
tion (Fig. 1a), such that

r(t) = 〈σz〉(t) + dW, (2)

where dW is a zero-mean Gaussian distributed Wiener
increment [54]. This noise arises from the quantum fluc-
tuations of the cavity probe. The noise obscures state
information, resulting in weak measurement.

We now introduce the tool of the quantum process ma-
trix in our experiment, which represents the complete set
of the information obtained from the measurement record
[55]. The evolution of the density matrix under the quan-
tum operation Er can be written as

Er(ρi) =
∑
jk

χjk(r)K†j ρiKk, (3)

where ρi is the initial density matrix of the system and
χjk(r) are the elements of the quantum process matrix
written in the basis of standard quantum process tomog-
raphy (Fig. 1b,c)

{Kj} = {I, σx, σy, σz} . (4)

Note that quantum operations are not trace-
preserving. The resulting normalized density matrix is
given by ρr = Er(ρi)/Tr Er(ρi). While there exists a
technique of quantum process tomography to determine
a quantum operation [55], it fails to apply to a time-
dependent quantum process matrix, as we study here.
This quantum process matrix is determined by a single
stochastic measurement record, where repeated measure-
ment and statistical averaging is impossible. Here, we
develop an alternative way to infer the conditional quan-
tum process by using a stochastic differential equation
for the quantum process matrix (see Appendix B),

χ̇jk(r) =
∑
mn

∑
m′n′

cjmm′c
∗k
nn′θmn(r)χm′n′(r), (5)

where cljk are the structure constants of the basis {Kj}
defined by

KjKk =
∑
l

cljkKl, (6)

whose complex conjugates are denoted by c∗ljk. The co-

efficients θmn(r) are stochastic variables determined by
the SME of the system. In our experimental setup, we
have the closed form

θ(r) =


−k 0 −iΩR

2 2ηkr
0 0 0 0
iΩR

2 0 k 0
2ηkr 0 0 0

 . (7)

Fig. 1b shows the evolution of the quantum process
matrix obtained from one example measurement record.
Clearly, the quantum process matrix contains more infor-
mation about the system evolution than is preserved in
the trajectories. χ(r) is a Hermitian matrix with positive
diagonal elements. Although the information encoded in
χjk(r) is generally obscure, in our experimental setup
when the system undergoes 3/4 of a Rabi cycle (approx-
imately at t = 0.94 µs), the quantum operation can be
compared with an ideal Hadamard gate where the effects
of measurement backaction and dephasing are neglected
(Fig. 1c). We also show that the quantum trajectory of
the system can be recovered from χ(r). The result is com-
pared with the trajectory expressed as Pauli expectation
values x = Tr(ρσx), z = Tr(ρσz), where ρ is calculated
from Eq. 1 (xρ, zρ) or via Eq. 3 (xχ, zχ). The trajectories
generated from these two methods are nearly identical
and agree with the tomographic validation (Fig. 1d).

III. QUANTUM THERMODYNAMICS

As is shown in Fig. 2, the qubit system is initialized in
the thermal state

ρi = ρth(β) =
1

Z
e−βH =

1

2 cosh(β/2)

(
eβ/2 0

0 e−β/2

)
.

(8)
where H = −~ωσz/2 and Z = 2 cosh(β/2) are the Hamil-
tonian and partition function of the qubit, respectively
and β = (kBT )−1 is the inverse temperature. For sim-
plicity, the qubit energy levels are given in units such
that ~ω = 1.

We consider a Maxwell’s demon protocol where infor-
mation from weak continuous measurement is used to ex-
tract work through unitary feedback. In order to experi-
mentally determine the work extraction, we introduce the
two-point measurement (TPM) protocol [56], which con-
sists of a pair of projective measurements at the begin-
ning and the end of the measurement and feedback. The
work extraction measured by the TPM protocol (Fig. 2)
is calculated as

−WTPM = 〈Ei〉 − 〈Ef 〉 , (9)
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FIG. 1. Quantum process matrix and quantum trajectory descriptions of the qubit evolution. (a) The signal r obtained
from continuous weak measurement. (b) The diagonal and off-diagonal matrix elements of the quantum process matrix χjk.
The colors of the shaded areas represent the phases of the off-diagonal elements. (c) The matrix elements of the quantum
process matrix at t = 0.94 µs. The length and color of each bar represent the norm and phase of the corresponding matrix
elements of χjk, respectively. The quantum process matrix of a (rescaled) ideal Hadamard gate (dashed boxes). (d) The
quantum trajectory for ρr calculated from a weak measurement record with the quantum process matrix (xχ, zχ) (solid lines
with markers) and with the SME (xρ, zρ) (solid lines). These trajectories are verified with tomographic validation (xtom, ztom)
(dotted lines). In this example, the qubit is initialized in the ground state.
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FIG. 2. Demon utilizing quantum process inference. The
qubit is prepared in a high-temperature initial state. We ap-
ply an initial measurement to determine Ei. The system un-
dergoes Rabi drive and continuous weak measurement. The
demon infers the quantum process matrix χjk from the mea-
surement record and performs a feedback rotation to extract
work. At the end, we apply a final measurement to determine
Ef concluding the TPM protocol.

where Ei and Ef represent the initial and final energy
of the qubit system, respectively. Previous work [28] has
studied a feedback protocol that was solely determined
by the density matrix ρr. Starting with a thermal state,
the demon tracked the quantum trajectory of the qubit
via the SME (Eq. 1). After a variable duration, the de-
mon applied a feedback rotation to rotate the qubit state

toward the ground state. This protocol maximized the
work extracted from the qubit.

In addition to W , the higher-order moments of the
work distribution and their combinations are informa-
tive since they encode the correlation of the initial and
final states of the system. For example, the second order
moment of W ,〈

W 2
〉

=
〈
E2
i

〉
+
〈
E2
f

〉
− 2 〈EiEf 〉 , (10)

explicitly involves the correlation between Ei and Ef in
the cross term 〈EiEf 〉, which, unlike a quantum mechan-
ical observable, is inaccessible from the initial and the
final density matrices of the system. With the language
of quantum operations, this cross term can be expressed
as

〈EiEf 〉 =

∫
DrTr[HEr(ρthH)], (11)

where
∫
Dr (see Appendix C) represents the path integral

over the entire space of possible measurement records. In
summary, the higher-order moments of the work distri-
bution serve as the probe of the correlation information
encoded in the quantum operation beyond a traditional
density matrix treatment.

Among the various choices, one of the most valuable
quantities to consider is given by the Jarzynski’s equality
[57, 58]. In the case that the initial and final free ener-
gies of the system are the same, Jarzynksi’s equality is
written,

〈e−βW 〉 = γ. (12)
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The equality introduces the efficacy, γ [59]. In the ab-
sence of measurement and feedback, γ = 1. On one hand,
−W > 0 is thermodynamic evidence of the demon ex-
tracting work while the γ > 1 is, on the other hand,
more of an information-theoretical measure, since (i) γ is
dimensionless, and (ii) as we will show, γ is bounded by
n, the size of the system Hilbert space and is irrelevant to
the energy spectrum of the system considered, and (iii)
γ can only be maximized if the correlation information
contained in the quantum process matrix is not destoyed.

We now analyze the feedback protocols that maxi-
mize the work extraction and efficacy. Previous work
has pointed out that the role of γ is closely related to the
idea of backward processes [59]. Quantum operations can
be utilized to study the time reversal of open quantum
systems [60]. Motivated by these results, we also no-
tice that the flexibility provided by quantum operations
allows us to extract the information solely encoded in
the measurement records without a specific initial state,
which is of key importance for optimizing the feedback
protocols considered in this letter. We emphasize that
while the measurement records preserve the correlation
between the initial and final states of the system, specify-
ing an intial state in the SME Eq. (1) or Eq. (3) may be
invasive as this correlation information can be destroyed.
However, by replacing the initial state ρi in Eq. (3) with
the completely mixed state I/2, which can be understood
as a “least invasive” choice, we effectively discard any
prior thermodynamic information about the system. The
resulting quantity

ρ̃r ∝ Er(I/2) =
∑
jk

χjk(r)K†jKk =
∑
jkl

χjk(r)cljkKl

(13)
is the effective density matrix that we define, which is
similarly normalized as ρ̃r = Er(I)/Tr Er(I). The sig-
nificance of ρ̃r becomes clearer if we rewrite the efficacy
as

γ =

∫
Dr Tr [ρthEr(I)] = nE[Tr(ρthρ̃r)|I], (14)

where n = 2 is the number of the energy levels of the
system (see Appendix C). The expectation value E[·|I]
is evaluated as if the system were initialized into a com-
pletely mixed state. We comment that in the case where
no feedback operation is performed on the system, the
average of ρ̃r remains the completely mixed state I/n
and the value of Eq. (14) reduces to 1 (Eq. (12)). This
equation also shows that γ is proportional to the over-
lap between ρth and ρ̃r. Noting the overlap Tr(ρthρ̃r)
never exceeds unity, we conclude that the efficacy of any
feedback protocol is bounded by n, which can be expo-
nentially large for multi-qubit systems.

After a unitary feedback Ur, the effective density ma-
trix of the system becomes ρ̃f = U†r ρ̃rUr. Since ρth has
more population in the ground state, we conclude that
an optimal feedback that maximizes the efficacy given
ρ̃r will maximize its overlap with ρth by returning ρ̃f to
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FIG. 3. Two different feedback protocols. (a) The feedback
protocol that maximizes the work extraction: an ensemble of
ρr, obtained by tracking single trajectories via the SME from
an initial thermal state (β = 1.3) are represented as points in
the X–Z plane. As is shown in the plot, the feedback rotation
angle is directly related to arctan(z/x) returning the state to
the +Z-direction. Experimentally, this feedback rotation is
approximated by 20 discrete angles separated by π/10. (b)
The feedback protocol that maximizes the efficacy: the map
is more complicated because the optimal feedback rotation
(color) is determined by ρ̃r rather than ρr (points on the
X–Z plane). (c) The efficacy of the two feedback protocols
measured at different evolution times (round marks) for β =
2.5. The generalized Jarzynski equality is verified for the ρ-
demon (square marks). (d) Work advantage due to the two
feedback protocols for β = 2.5.

the +Z-direction, which defines the behavior of the “χ-
demon” in our experiment. On the other hand, since in
general, ρ̃r is not a function of ρr and is obtained from
χ(r), a “ρ-demon” unaware of ρ̃r is unable to perform
this optimal feedback. This is the direct consequence of
the fact that work is not an observable [44].

As is shown in Fig. 3a,b the feedback protocols de-
signed for these two different tasks have very different
behavior for the same ensemble of measurement records.
Remarkably, we observe that maximizing the work ex-
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traction and maximizing the efficacy are generally incom-
patible tasks.

Both of the feedback protocols are able to achieve the
γ > 1 regime, as is shown in Fig. 3c. Especially, we con-
firm that the χ-demon possesses a significant advantage
over the ρ-demon under this measure. This advantage
is larger for small t because in the limit of long time
evolution where the significance of ρi decreases, we ex-
pect the difference between these two feedback protocols
to vanish. Figure 3c also shows the generalized Jarzyn-
ski equality 〈e−βW−I〉 = 1. This generalized equal-
ity accounts for the information exchange, defined as
Ii,f = lnPf (ρr)−lnPi(ρi), where Pi and Pf represent the
populations of the system before and after the evolution
calculated in the instantaneous eigenbasis, respectively
[7, 28]. Fig. 3d displays the extracted work due to feed-
back for the two protocols. As is expected, the ρ-demon,
which is optimized for work extraction performs better
than the χ-demon.

In order to build deeper intuition on the optimiza-
tion of the two protocols, we examine the efficacy ad-
vantage (〈e−βW 〉χ − 〈e−βW 〉ρ) of the χ-demon’s proto-
col for different temperatures and measurement efficien-
cies. Experimentally, we reduce the quantum efficiency
by adding zero-mean Gaussian noise to our measure-
ment signals, and different temperatures are obtained by
sampling experiments with initial states given by respec-
tive Gibbs distributions. These data are displayed in
Fig. 4a. We first note that the χ-demon always outper-
forms the ρ-demon in efficiently using the obtained in-
formation. This difference becomes most stark at short
times and low temperature, where the ρ-demon’s feed-
back protocol is most significantly biased by the initial
state. Fig. 4b displays the corresponding work advantage
(−(〈W 〉ρ − 〈W 〉χ)) of the ρ-demon. In regions of short
evolution time, low temperature, and low quantum effi-
ciency, initial state information is very relevant to work
extraction. Likewise in the limits of high temperature,
high efficiency, and long evolution time, the final state
becomes less correlated with the initial state, leading to
similar performance of the two protocols.

IV. OUTLOOK

Experiments in quantum thermodynamics strive to
elucidate opportunities for quantum advantage in ther-
modynamics, clarifying the interplay of measurement, in-
formation, and energy. We highlight the limitations of
the quantum state alone for the optimization of feed-
back protocols, which can be addressed through the use
of the quantum process matrix, which we track through
continuous-time weak measurement. This work enables
us to consider and optimize a broader variety of feed-
back protocols that take advantage of the information
that is inaccessible in the density matrix alone, enabling
new opportunities for achieving quantum thermodynam-
ical advantages.
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APPENDIX A: EXPERIMENTAL SETUP

The experimental setup in this work is identical to that
used in reference [28]. Briefly, the system consists of a
Transmon circuit (EC/h = 325 MHz, EJ/h = 8.88 GHz,
where h is Planck’s constant), embedded in a three di-
mensional microwave cavity (ωc/2π = 6.86 GHz). A dis-
persive interaction, characterized by a Hamiltonian term
χa†aσz, with χ/2π = −0.3 MHz, and a†a the cavity
number operator, leads to a qubit-state-dependent phase
shift on a cavity probe. The weak cavity probe is am-
plified by a Josephson parametric amplifier operating in
phase-sensitive mode, achieving an overall measurement
quantum efficiency of η = 0.48. The experimental se-
quence consists of a strong (projective) measurement of
the qubit energy, followed by variable duration evolution
under continuous measurement with strength k/2π = 57
kHz and ΩR/2π = 0.8 MHz, a feedback rotation, and
finally a second projective energy measurement. The



6

projective energy measurements are used for the TPM
work distributions. The feedback operation is applied
in a post-processing step; the data set contains differ-
ent feedback rotations, and the subset of data where the
correct rotations are chosen are selected from the data
set for analysis. This allows for zero-latency feedback,
especially when the computational overhead for calculat-
ing the quantum process matrix would require significant
time. We treat the photons in the weak measurement
probe signal as a free thermodynamic resource because
the dispersive interaction only changes the phase of the
incoming photons without changing their energy.

APPENDIX B: QUANTUM PROCESS
INFERENCE

The stochastic master equation (SME) is written as

ρ̇r = −i [HR, ρr] + k(σzρrσz − ρr)
+2ηk [σzρr + ρrσz − 2 Tr(σzρr)ρr] r, (15)

where ρ(0) = ρi is the initial state. Note that this
equation is nonlinear in ρ because of the quadratic term
Tr(σzρ)ρ. In order to recover the linear nature of Kraus
operators, we relax the restriction of trace preservation
to get

ϕ̇r = −i [HR, ϕr]+k(σzϕrσz−ϕr)+2ηk [σzϕr + ϕrσz] r,
(16)

where ϕ is the unnormalized density matrix with ϕ(0) =
ρi. It can be verified that

ρr =
ϕr

Trϕr
. (17)

The right-hand-side of Eq. (16) is represented in the basis
{Kj} as

ϕ̇r =
∑
j,k

θjk(r)KjϕrK
†
k, (18)

where the stochastic variables θjk are determined by the
SME. Meanwhile, the evolution of ϕ is also described by
quantum operation Er and the corresponding quantum
process matrix χ,

ϕr = Er(ρi) =
∑
j,k

χjk(r)KjρiK
†
k. (19)

Substituting Eq. (19) into Eq.(18), we obtain∑
j,k

χ̇jk(r)KjρiK
†
k

=
∑
m,n

∑
m′,n′

θmn(r)χm′n′(r)KmKm′ρiK
†
n′K

†
n

=
∑
m,n

∑
m′,n′

cjmm′c
∗k
nn′θmn(r)χm′n′(r)KjρiK

†
k,

(20)

where cljk are the structure constants of the basis {Kj}.
By comparing the coefficients, we arrive at the stochastic
differential equation for χ

χ̇jk(r) =
∑
m,n

∑
m′,n′

cjmm′c
∗k
nn′θmn(r)χm′n′(r). (21)

Using Eq. (21) and the initial quantum process matrix

χi =

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , (22)

we can therefore determine χjk(r). The structure con-

stants cjmm′ form a 64-element tensor and are determined
based on their definition in Eq.(6). We also note that
because we have relaxed the trace preservation, the el-
ements of χ(r) are statistically increasing in time, this
growth in the elements of χ(r) can be seen in Fig. 1.
This has no physical consequence because we explicitly
normalize the density matrix determined by the quantum
process.

APPENDIX C: EFFICACY AND THE
EFFECTIVE DENSITY MATRIX

We study the statistical aspect of the formalism by first
considering the operator-sum form of Er

Er(ρi) =
∑
j

Mr,jρiM
†
r,j , (23)

where Mr,j is a set of Kraus operators implicitly deter-
mined by the χ matrix. With these Kraus operators, var-
ious types of probability density can be evaluated. Since
each Mr,j can be understood as an individual contribu-
tion to Er, by performing the summation over the traces,∑

j

Tr
(
Mr,jρiM

†
r,j

)
= Tr Er(ρi) = p(r|ρi), (24)

we obtain the total probability density of getting the tra-
jectory r starting from initial state ρi [55]. Note that in
Eq. (24), we have not incorporated the TPM protocol
yet, which can be done by considering a particular pair
of initial and final states |i〉 and |f〉. By replacing the
trace operation in Eq. (24) with the projection onto |f〉,
we obtain∑

j

〈f |Mr,jρiM
†
r,j |f〉 = 〈f |Er(ρi)|f〉 = p(f, r|ρi). (25)

By further specifying the initial state to be |i〉, we obtain∑
j

〈f |Mr,j |i〉〈i|M†r,j |f〉 = 〈f |Er(|i〉〈i|)|f〉 = p(f, r|i).

(26)
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Then we arrive at the joint probability density p(f, r, i)
by writing

p(f, r, i) = p(f, r|i)Pi = 〈f |Er(|i〉〈i|)|f〉Pi, (27)

where Pi represents the initial population of the system
in |i〉. In this section, we will mainly focus on the two
types of probability densities given by Eq. (24) and Eq.
(27).

Noting that r is a function of time, the normalization
condition of these probability densities are properly ex-
pressed using the language of path integrals,∫

Dr p(r|ρi) = 1, (28)

and ∑
f,i

∫
Dr p(f, r, i) = 1, (29)

respectively. Based on these normalization conditions,
two types of expectation values over the ensemble of r
can be defined. For quantity A(r, ρi) which explicitly
depends on the initial density matrix, we define

E[A|ρi] =

∫
Dr p(r|ρi)A

=

∫
Dr ATr Er(ρi),

(30)

where the second line is obtained by applying Eq. (24).
For quantity A(f, r, i) which explicitly depends on the
TPM measurement results, we define

〈A〉 =
∑
f,i

∫
Dr p(f, r, i)A. (31)

With these probabilities and expectation values properly
defined, now we can use them to analyze the efficacy.

We consider an initial state described by the canonical
ensemble at temperature β with population in the i-th
energy level given by

Pi(β) =
1

Z
e−βEi . (32)

The initial density matrix is described by the thermal
state

ρth =
∑
i

Pi(β) |i〉〈i| . (33)

Using Eq. (31), the efficacy can be defined in a
straightforward way as

γ = 〈e−βW 〉 =
∑
f,i

∫
Dr p(f, r, i)e−β(Ef−Ei). (34)

Eq. (34) can be simplified in several steps. By utilizing
Eq. (32), we can rewrite the exponential part to get

γ =
∑
f,i

∫
Dr p(f, r, i)Pf (β)

Pi(β)
. (35)

With Eq. (27) the probability part can be reformatted
with Er

γ =
∑
f,i

∫
Dr 〈f |Er(|i〉〈i|)|f〉Pi(β)

Pf (β)

Pi(β)

=
∑
f,i

∫
Dr 〈f |Er(|i〉〈i|)|f〉Pf (β). (36)

Next, we deal with the summations. Since Er is a linear
mapping, the summation over i is straightforward,

γ =
∑
f

∫
Dr 〈f |Er(

∑
i

|i〉〈i|)|f〉Pf (β)

=
∑
f

∫
Dr 〈f |Er(I)|f〉Pf (β). (37)

In order to perform the summation over f , we rewrite
the quantum mechanical expectation value with the trace
operation,

γ =

∫
Dr Tr

∑
f

Pf (β) |f〉〈f | Er(I)

. (38)

By utilizing Eq (33), we obtain,

γ =

∫
Dr Tr[ρthEr(I)]. (39)

The physical meaning of Eq. (39) becomes clearer by
introducing the effective density matrix

ρ̃r =
Er(I)

Tr Er(I)
=
Er(I/n)

Tr Er(I/n)
. (40)

Combining Eq. (40) and Eq. (39), we obtain,

γ = n

∫
Dr Tr [ρthEr(I/n)]

= n

∫
Dr Tr [ρthρ̃r] Tr Er(I/n). (41)

By comparing this result with Eq. (30), we arrive at

γ = nE[Tr(ρthρ̃r)|I], (42)

where the expectation value E[·|I] is evaluated as if the
system were initialized as a completely mixed state and
the denominator n has been omitted from the complete
form E[·|I/n] for convenience. Note that Eq. (42) is in
the form of a nested expectation value because it is the
statistical average of the quantum expectation value over
the ensemble of measurement records.
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Similarly, we can evaluate

〈EiEf 〉 =
∑
f,i

∫
Dr p(f, r, i)EiEf

=
∑
f,i

∫
Dr 〈f |Er(|i〉〈i|)|f〉Pi(β)EiEf

=
∑
f

∫
Dr 〈f |Er(ρthH)|f〉Ef

=

∫
DrTr[HEr(ρthH)].

(43)

APPENDIX D: WORK DISTRIBUTION

To characterize how the demon extracts work we com-
pare the work distribution with and without unitary feed-
back. The work distribution obtained from the TPM is
always discrete, but this quantity does not reflect the
true expectation from the demon’s point of view because
the demon has no prior knowledge of the TPM measure-
ment results, the actual work distribution viewed by the
demon is the conditional expectation value

−Wr = −E[W |r, ρi] = Tr(ρiH)− Tr(ρfH). (44)

The conditional work extraction depends on the stochas-
tic measurement record r and is a continuous variable
taking values from −1 to 1. We experimentally recover
the conditional work extraction for each trajectory and
obtain its statistical distribution (Fig. 5).

0.5 0.0 0.5
Wr

0.0

1.0

2.0

p
(W

r)

Wr =0.167(. 001)

0.5 0.0 0.5
Wr

0.0

2.0

4.0 Wr = 0.113(. 002)

(a)

(b)

Without feedback With feedback

1 0 1
WTPM

0.0

0.2

0.4

0.6

P
(W

T
P
M
)

WTPM =0.167(. 01)

1 0 1
WTPM

0.0

0.2

0.4

0.6
WTPM = 0.104(. 01)

FIG. 5. Two approaches to calculate the work distribution.
The left and right panels display the work distribution before
and after the feedback rotation, respectively. (a) The TPM
work distribution measured at β = 0.5. The dashed lines in-
dicate the average work. (b) The corresponding conditional
work distribution viewed by the demon. 〈Wr〉 is in fair agree-
ment with 〈WTPM〉.

Naturally, these two different descriptions of work pro-
duce the same overall expectation value, as is guaranteed
by the law of total expectation,

〈WTPM〉 = 〈Wr〉, (45)

where 〈Wr〉 is defined from Eq. (30) as

〈Wr〉 =

∫
Dr p(r|ρi)Wr. (46)

From Eq. (44), we also see the optimal feedback that
maximizes the work extraction will minimize the overlap
between ρf and H by returning the state to the +Z-
direction, which corresponds to the behavior of the “ρ-
demon” in our experiment.

APPENDIX E: OPTIMIZATION OF THE
FEEDBACK PROTOCOLS

We optimize the feedback protocols by considering the
expectation value of a given operator A with respect to
the density matrix ρr under a unitary feedback operation
U . The final state and the final expectation value after
the feedback are written as

ρf = UρrU
†, (47)

and

〈A〉f = Tr(ρfA), (48)

respectively. If U is the optimal feedback, we expect
〈A〉f to stay unchanged under an arbitrary additional
infinitesimal unitary operation

V = I + iJδλ, (49)

up to the first order in δλ, where J is a Hermitian opera-
tor and δλ is an infinitesimal real parameter. By applying
the infinitesimal operation V to ρf , we obtain

δρf = (I + iJδλ)ρf (I − iJδλ)− ρf = i[J, ρf ]δλ. (50)

The resulting variation of 〈A〉f ,

δ〈A〉f = iδλTr([J, ρf ]A). (51)

Since J is arbitrary, we can choose J to be a projection
operator

J = |ψ〉 〈ψ| , (52)

where |ψ〉 is an arbitary pure state. Then 〈A〉f reduces
to

δ〈A〉f = i 〈ψ|[ρf , A]|ψ〉 δλ. (53)

Note here [ρf , A] is an anti-Hermitian operator. The con-
dition δ〈A〉f = 0 for any |ψ〉 implies

[ρf , A] = 0. (54)
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In other words, the optimal feedback operation always
makes the final density matrix diagonalized in the basis
defined by A. As a consequence, for the ρ-demon which
maximizes the work extraction, the optimal feedback op-
eration diagonalizes the density matrix in the energy ba-
sis, with the larger population occupying the lower energy
states. For the χ-demon which maximizes the efficacy
given by Eq. (42), the effective density matrix defined
by Eq. (40) is used, instead.

APPENDIX F: LOWERING MEASUREMENT
EFFICIENCY WITH ADDED GAUSSIAN NOISE

In Fig. 4, we study the behavior of the feedback proto-
cols at low measurement efficiency by adding zero-mean
Gaussian random numbers into the measurement record
while processing the data. The variance σ2 of the noise
is determined by the equality,(

dW√
4kη∆t

)2

+ σ2 =

(
dW√

4kη′∆t

)2

, (55)

where η is the efficiency of experimental set up and η′

is the effective measurement efficiency with the added
noise.

APPENDIX G: STATISTICAL ANALYSIS

The error analysis in Fig. 3 and Fig. 5 relies on the
formula,

∆A =

√
〈A2〉 − 〈A〉2

N
, (56)

where A represents the quantity averaged over and N is
the number of measurement records used. Experimen-

tally, the quantity A and A2 are determined for each
measurement record and their mean values are calculated
separately. In Fig. 3c,d, a total data set of 676,072 mea-
surement records is used. Of this data set, we select
subensembles that meet the specified feedback protocols
with N varying from 6,205 to 6,669. In Fig. 3d, the work
advantage is displayed as −(〈W 〉ρ,χ−〈W 〉n), where 〈W 〉n
represents the work extraction with no feedback. The
corresponding statistical uncertainties are determined by
error propagation as

√
(∆Wρ,χ)2 + (∆Wn)2. The statis-

tical uncertainties of 〈e−βW 〉, 〈e−βW−I〉 and −(〈W 〉ρ,χ−
〈W 〉n) are displayed as vertical bars. In Fig. 5, a total of
68,856 measurement records is used, with subensembles
of around 3,300. The errors of P (WTPM), 〈WTPM〉 and
〈Wr〉 are included in the corresponding figures.

APPENDIX H: TOMOGRAPHIC VALIDATION

We validate the prediction of the quantum trajecto-
ries by performing quantum state tomography over a
subensemble (Fig. 1d). We first generate a reference
quantum trajectory from the measurement record shown
in Fig. 1a. For each time t, the quantum trajectory pre-
dicts a pair of expectation values x(t) and z(t) (solid
lines). This pair of expectation values are validated by
preparing an ensemble of trajectories with an identical
experimental setup but an evolution time truncated to
t. Then we examine a subset of this ensemble such that
their prediction on the final state is close enough to x(t)
(or z(t)), within ±0.04 tolerance. Note that although
these trajectories may behave differently prior to t, ide-
ally they share the common final expectation value. Since
each of the trajectories are followed by a final projective
measurement, we are allowed to apply quantum state to-
mography to examine this subensemble. The resulting
expectation values (dashed lines) given by the tomogra-
phy are compared with the reference trajectory.
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senko, Autonomous Maxwell’s demon in a cavity QED
system, Physical Review Research 2, 032025 (2020),
arXiv:2001.07445.

[30] R. Sánchez, P. Samuelsson, and P. P. Potts, Autonomous
conversion of information to work in quantum dots, Phys-
ical Review Research 1, 033066 (2019), arXiv:1907.02866.

[31] A. Kumar, T. Y. Wu, F. Giraldo, and D. S. Weiss, Sorting
ultracold atoms in a three-dimensional optical lattice in
a realization of Maxwell’s demon, Nature 561, 83 (2018).
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