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Non-Gaussian continuous variable states play a central role both in the foundations of quantum
theory and for emergent quantum technologies. In particular, “cat states”, i.e., two-component
macroscopic quantum superpositions, embody quantum coherence in an accessible way and can be
harnessed for fundamental tests and quantum information tasks alike. Degenerate optical parametric
oscillators can naturally produce single-mode cat states and thus represent a promising platform for
their realization and harnessing. We show that a dissipative coupling between degenerate optical
parametric oscillators extends this to two-mode entangled cat states, i.e., two-mode entangled cat
states are naturally produced under such dissipative coupling. While overcoming single-photon loss
still represents a major challenge towards the realization of sufficiently pure single-mode cat states
in degenerate optical parametric oscillators, we show that the generation of two-mode entangled
cat states under such dissipative coupling can then be achieved without additional hurdles. We
numerically explore the parameter regime for the successful generation of transient two-mode
entangled cat states in two dissipatively coupled degenerate optical parametric oscillators. To certify
the cat-state entanglement, we employ a tailored, variance-based entanglement criterion, which can
robustly detect cat-state entanglement under realistic conditions.

I. INTRODUCTION

When Schrödinger imagined a cat in a quantum
superposition of simultaneously being dead and alive, he
intended to illustrate the seemingly absurd consequences
when taking quantum mechanics too literally. Since
then, however, macroscopically distinct quantum
superpositions, “Schrödinger cat states” [1–6], and in
particular entangled versions [7–12] thereof, have been
identified as versatile resources, not only to explore the
applicability of quantum mechanics in the macroscopic
realm, but also to be utilized in quantum technologies.
Consequently, great efforts have been invested to realize
entangled cat states, and today, these are readily
available on various experimental platforms [13–18].

Degenerate optical parametric oscillators
(DOPOs) [19–22] have found widespread application in
quantum optics, and their dynamics naturally comprises
cat-like superpositions of coherent states in the limit of
small single-photon loss. In addition, the generation of
cat states and entangled cat states in DOPOs is of great
interest for recent endeavors to deploy a coherent Ising
machine (CIM) [23–31]. The CIM represents a time-
multiplexed network of DOPOs, with target application
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in optimization, quantum simulation, and quantum
information processing. Such DOPO networks excel in
their flexibility to tailor individual couplings between
arbitrary nodes. Cat states and entangled cat states
could serve to encode, process, and read out discrete
(quantum) information in these continuous variable
systems. However, the successful production of cat
states in DOPOs is, due to the difficulty in suppressing
the single-photon loss, still challenging. Proposed
strategies to overcome this decoherence include, for
instance, the utilization of squeezed-state inputs [31].

It is therefore important to understand under
what conditions single-mode cat states and two-mode
entangled cat states can be produced in DOPOs. In the
case of single-mode cat states [32–39], a growing body
of literature has studied potential ways, and detailed
parameter regimes, towards their generation in DOPOs
[31, 40–46]. These results for single-mode cat states can
potentially also be relevant to understand the generation
of entangled cat states. For example, a dissipative
coupling [24, 30] between two DOPOs, i.e., a dissipation
process that acts collectively on both DOPOs, can drive
a product state of two single-mode cat states into an
entangled cat state, by suppressing a certain parity in
the product state. Such dissipative couplings emerge,
for instance, from the coupling of DOPOs via lossy
delay lines in time-multiplexed DOPO networks. As
this dissipative coupling can be strong compared to
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the single-photon leakage in DOPOs, this suggests that
the main challenge for the generation of entangled cat
states remains the production of single-mode cat states
of sufficiently high quality; i.e., given single-mode cat
states can be generated with high quality, the possibility
to generate entangled cat states under the dissipative
coupling follows.

In this work, we analyze in detail the generation of two-
mode entangled cat states in two dissipatively coupled
DOPOs. To this end, we first specify the theoretical
model and justify in some detail the generic expectation
that entangled cat states can be produced in this
setup. Then we recapitulate the entanglement criterion
applied in the article, which, by construction, detects
entanglement in two-mode entangled cat states [47–51].
Subsequently, we determine the threshold parameters
under which entangled cat states (or states that are
sufficiently close to these) are detectably present in the
system. In order to relate our threshold parameters
to the generation of single-mode cat states, we also
determine the fidelity of the cat state production under
these threshold parameters when the dissipative coupling
is switched off. Moreover, we investigate how the
recently proposed environmental engineering [31] towards
enhanced cat state production carries over to the
generation of entangled cat states.

In Sec. II, we theoretically analyze the generation
of two-mode entangled cat states and the detrimental
effects of the single-photon loss. In Sec. III, we briefly
introduce and discuss the entanglement criterion used
here. In Sec. IV, we determine the threshold parameters
for generating detectable two-mode entangled cat states
and compare these with the single-mode case. Section V
discusses possible improvements with environmental
engineering. Section VI contains our conclusions.

II. THEORETICAL MODEL

We consider two dissipatively coupled DOPOs.
Including the effects of the pump modes up to second
order and changing to the interacting picture, the system
Hamiltonian can be expressed as (we set ~ = 1),

H =

2∑
k=1

−iS[(a†k)2 − (ak)2], (1)

with S the effective pump intensity, and the annihilation

(creation) operator ak (a†k) of the kth DOPO mode.
The overall system evolution is governed by the master
equation

d

dt
ρ(t) = −i[H, ρ(t)] + Ltot(ρ(t)), (2)

where the Lindblad superoperator Ltot adds three
dissipative contributions,

Ltot(ρ) = Ls(ρ) + Ld(ρ) + Lc(ρ). (3)

To express these dissipative terms more conveniently, we
define

L(Γ, L, ρ(t)) =
Γ

2

[
2Lρ(t)L† −

{
L†L, ρ(t)

}]
, (4)

with the dissipation rate Γ, some operator L, and the
anti-commutator {A,B} ≡ AB + BA. The first two
terms in (3) describe the dissipation of single DOPOs,
and are also relevant in the dissipative generation of cat
states on other platforms [37, 39].

Ls(ρ) =

2∑
k=1

L(γs, ak, ρ(t)),

Ld(ρ) =

2∑
k=1

L(γd, a
2
k, ρ(t)). (5)

Here, Ls is the single-photon loss of each mode with
rate γs. The two-photon loss [53–59] Ld is induced by
the nonlinear coupling to a pump mode with strong
dissipation. In Eq. (5), γd is the effective two-photon
dissipation rate. The third term in (3) describes the
dissipative coupling between the two DOPOs,

Lc(ρ) = L(γc, a1 − a2, ρ(t)). (6)

The collective dissipation rate is γc. Such a dissipative
coupling, which has the power to generate entanglement,
can be realized by a lossy mode coupled to both DOPOs.
In time-multiplexed networks of DOPOs, such coupling
emerges when two DOPOs are connected through a lossy
delay line [24].

A. Ideal entangled-cat state generation

We briefly discuss the mechanism underlying the
generation of entangled cat states. If we consider only the
system Hamiltonian (1) and the two-photon dissipation
Ld in Eq. (5), the resulting system assumes, for an initial
vacuum state, the steady state

ρsteady(t) =
1

2 + εsc
(|α〉+ | − α〉)(〈α|+ 〈−α|), (7)

with the coherent state amplitude α = i
√

2S/γd and
the normalization factor (2 + εsc). Note that εsc is a
small correction depending on the overlap between |α〉
and | − α〉. The subindex “sc” refers to single-mode cat
state. The steady state ρsteady is a cat state if |〈α|−α〉| �
1 is satisfied.

Next, we note that the direct product of two cat states
can be expressed as the sum of two entangled cat states
with different parities,

|ψ〉 =
1

2 + εsc
[(|α〉+ | − α〉)⊗ (|α〉+ | − α〉)]

≡ 1√
2 + εeo

[|even〉+ |odd〉], (8)
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where the entangled cat states with even and odd parity,
respectively, read

|even〉 ≡ 1√
2 + εec

(|α〉 ⊗ |α〉+ | − α〉 ⊗ | − α〉) , (8a)

|odd〉 ≡ 1√
2 + εec

(|α〉 ⊗ | − α〉+ | − α〉 ⊗ |α〉) . (8b)

The normalization factor of the total state in Eq. (8) is
modified by a small quantity εeo, as the entangled cat
states with different parities are not orthogonal to each
other. For a similar reason, the correction εec is necessary
in Eqs. (8a) and (8b). The even parity state |even〉 is a
dark state of the dissipator (6), while the odd one is not.
Therefore, the steady state of the system is the entangled
cat state with even parity under the influence of H, Ld,
and Lc.

B. Influence of single-photon loss

The single-photon dissipation generically has a
negative effect on the generation of entangled cat states.
It is straightforward to check the relations

Ls(|even〉〈even|) 6= 0,

Ls(|odd〉〈odd|) 6= 0, (9)

which imply that the steady state is, when Ls is included,
not an entangled cat state. In addition, both the pure
state |even〉 and the mixed state

|α〉〈α| ⊗ |α〉〈α|+ | − α〉〈−α| ⊗ | − α〉〈−α| (10)

are steady states of the system in absence of the single-
photon dissipation. Therefore, the effect of a sufficiently
weak single-photon loss Ls is to destroy the coherence.
For a strong single-photon loss, the steady state becomes
a squeezed vacuum state [27]. This parameter regime,
which is below threshold, is not considered here. In the
regime of medium single-photon loss, i.e., slightly above
threshold, the dissipative coupling can pick up the wrong
parity [52], so that the qualities of entangled cat states
can be significantly reduced. However, it is still possible
to obtain a cat-like transient state if the single-photon
dissipation is within a proper range.

III. ENTANGLEMENT DETECTION

To certify the presence of entanglement in the
generated states, we apply an entanglement criterion
which is formulated in terms of modular variables [47–51].
By virtue of these, the criterion is sensitive to periodic
structures in the states, which comprises entangled cat
states as the two-component case. On the other hand,
the criterion is not sensitive to the “internal” structure
of the repeating state component, e.g., if it is Gaussian
or not. This is relevant here, because we can only assume
coherent-state components in the ideal case.

We now briefly recapitulate the steps towards the
evaluation of the cat state-sensitive entanglement
criterion. The criterion is based on the measured joint
position and momentum distributions,

Px(x1, x2) = 〈x1|〈x2|ρ|x1〉|x2〉,
Pp(p1, p2) = 〈p1|〈p2|ρ|p1〉|p2〉, (11)

with |xk〉 and |pk〉 the “position” and “momentum”
(i.e., conjugate quadratures) eigenstates of the two
modes, respectively. For simplicity, we assume that the
frequency ω and the effective mass m satisfy ωm = 1
for the DOPO modes, so that we define the position and
momentum operators as

x̂k =
1√
2

(ak + a†k),

p̂k =
1√
2i

(ak − a†k), (12)

where k = 1, 2. By introducing a length scale lx and
an associated momentum scale lp with lxlp = 2π, we now
redefine the position and momentum eigenvalues in terms
of integer and modular parts,

xk = Nx,klx + x̄k,

pk = Np,klp + p̄k, (13)

with the integer components Nx,k and Np,k, and the
modular rest components x̄k ∈ [0, lx) and p̄k ∈ [0, lp).
While the length scale can, in principle, be chosen
arbitrarily, there exists an optimal choice of lx (or lp),
which depends on the phase-space separation between
different state components. Note that the relation lxlp =
2π reflects the relation between the separation of the
state components (be it in position or momentum space)
and the periodicity of the associated interference pattern
in the conjugate variable.

To assess if the measurement data (11) implies
entanglement, we now determine, from this data, the
distributions of collective variables that are derived from
the decompositions (13), e.g., the distribution of the
total modular position (x̄1 + x̄2). Such postprocessing
of the measurement data is always possible. The optimal
choice of the two required collective variables depends
on the form of the state that underlies the measurement
data (11). In our case, where, due to pure imaginary
amplitudes α (in the ideal case), the macroscopic
superposition is laid out in the momentum coordinate,
the appropriate collective variables are the total modular
position and the relative integer momentum,

x̄tot = x̄1 + x̄2,

Np,rel = Np,1 −Np,2. (14)

The distributions of x̄tot and Np,rel can be calculated
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with the distributions (11),

Px̄tot
=

∑
Nx,1,Nx,2

∫ lx

0

dxPx(Nx,1lx + x̄tot − x,Nx,2lx + x),

PNp,rel
=
∑
N

∫ lp

0

dp1dp2Pp((Np,rel +N)lp + p1, Nlp + p2),

(15)

The entanglement criterion is now formulated in terms
of the variances that follow from the distributions of
the collective variables (14). Specifically, the modular
entanglement criterion (mec) [48] states that the state
underlying the measurement data (11) must be entangled
if

Cmec ≡ 〈(∆Np,rel)
2〉+ 〈(∆x̄tot/lx)2〉 ≤ Cet, (16)

i.e., if the sum of variances Cmec remains below
the entanglement threshold value Cet ≈ 0.1565
[47]. The latter follows from a state-independent
additive uncertainty relation for the modular variables,
〈(∆Np)2

j 〉 + 〈(∆x̄)2
j 〉 ≥ Cet/2. The criterion (16), which

is a sufficient condition for entanglement, is similar
to a variance-based entanglement criterion in terms of
standard (i.e., not modular) variables, which is sensitive
to the entanglement in bipartite Gaussian states [60, 61].
Note that a suppressed variance (∆x̄tot)

2 of the total
modular position reflects the presence of a fringe pattern
in the distribution of the total position xtot = x1 + x2.
While we cannot exclude that the state is entangled if
the criterion is not satisfied (e.g., entangled Gaussian
states never satisfy the criterion), we can expect that
any cat state-like entanglement is reliably detected. For
instance, the criterion (16) may also be used to verify the
continuous-variable entanglement in alternative cat-state
generation schemes [15].

A. Modular entanglement criterion examples

1. Even-parity entangled cat state

Let us consider three instructive examples to see how
the modular entanglement criterion works. First, let us
assume that the state underlying the measured data (11)
is our ideal target state 1

Ne
(|α〉 ⊗ |α〉 + | − α〉 ⊗ | − α〉),

with an imaginary (i.e., the macroscopic superposition is
laid out in momentum) amplitude α, cf. (8a). To detect
the entanglement in this state, we use the total modular
position variable and the relative integer momentum
variable, cf. (14). The optimal choice for the modular

length scale lp is Re(2
√

2α) [the factor
√

2 can be traced
back to the transformation to position and momentum
operators, cf. (12)]. For sufficiently large |α|, the variance
of the relative integer momentum is negligibly small,
(∆Np,rel)

2 ≈ 0, while the variance of the total modular
position, due to the presence of an interference pattern,

becomes (∆x̄tot/lx)2 ≈ 0.1167 [47]. We thus obtain for
the sum of variances Cmec ≈ 0.1167 < Cet ≈ 0.1565,
and the state is certified as entangled by the modular
entanglement criterion (16). Note that the value Cmec ≈
0.1167 is the smallest possible that can be achieved with
two-component macroscopic superpositions; therefore, in
our realistic setting, Cmec will always exceed this value,
due to single-photon dissipation and finite |α|.

2. Odd-parity entangled cat state

As the second example, let us consider the odd-parity
entangled cat state 1

No
(|α〉 ⊗ | − α〉 + | − α〉 ⊗ |α〉),

cf. (8b). The appropriate variables are now the total
integer momentum Np,tot = Np,1 +Np,2 and the relative
modular position x̄rel = x̄1 − x̄2, while the optimal value
of the length scale remains lp = Re(2

√
2α). Under these

conditions, the modular entanglement criterion again
provides as Cmec ≈ 0.1167 for |α| � 1, and the state’s
entanglement is certified.

3. Separable classically correlated mixed state

Thirdly, we consider the separable, but classically
correlated, mixed state in Eq. (10). We can then again
choose the variables (14) to obtain a strongly suppressed
variance of the relative integer position, (∆Np,rel)

2 ≈ 0
for |α| � 1. However, due to the absence of a fringe
pattern in the distribution of xtot = x1 +x2, the variance
of the total modular position becomes (∆x̄tot/lx)2 ≈
0.167 [47], and the modular entanglement criterion (16)
does, correctly, not detect entanglement.

B. Modular variables during evolution

Assigning to a set of model parameters a unique and
optimal entanglement qualifier Cmec requires a time-
adaptive evaluation of Cmec, which we detail in the
following. The initial state is assumed to be the vacuum
state |0〉 ⊗ |0〉, and the time evolution is governed by the
Hamiltonian (1) and all three dissipative contributions
summarized in (3). The two-photon dissipation rate γd

is set to be 1, and all the other parameters are provided
as the ratio to γd. While the optimal length scale
for the ideal asymptotic state is lp = 4

√
S/γd, it can,

under realistic conditions, take other values. Therefore,
we determine the optimal lp for every choice of model
parameters and at every point in time.

In Figure 1 we demonstrate how the mechanism
underlying the state generation unfolds in the temporal
evolution of the variances of the collective variables (14).
The small jumps of the length scale lp in Figure 1(b) are
due to the discrete set of scanned values. Figure 1(a)
shows the evolution of the entanglement qualifier Cmec

in relation to the entanglement detection threshold for
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FIG. 1. Time-adapted evaluation of the modular
entanglement criterion. The pump intensity S and the two-
photon dissipation rate γd are set to be 1. All the other
parameters are expressed as the ratios to γd. The collective
dissipation rate γc is set to be 10γd. (a) Instantaneous sum
of variances Cmec. (b) Time-adapted optimal momentum
scale lp. We set the optical frequency ω = 1 to better
show the relation between lp and cat state separation α.
(c) Instantaneous variance of the total modular position
x̄tot. (d) Instantaneous variance of the relative integer
momentum Np,rel. (e) For a given set of model parameters,
the minimizing instantaneous entanglement qualifier Cmec is
taken to assess the detectable entanglement for this model
parameter set. This is shown for the example of γs = 0.05.

different choices of the single-photon dissipation rate γs.
In absence of single-photon dissipation γs (black dotted
curve), the steady state is the entangled cat state (8a).
However, single-photon dissipation significantly modifies
the evolution. If this dissipative process is sufficiently
weak (red dashed curve), the entanglement qualifier Cmec

still temporarily drops below the entanglement detection
threshold. With increasing γs, however, the minimum
Cmec eventually exceeds the threshold, and entanglement
cannot be detected at any time.

Additional insights can be drawn from the unfoldings
of lp, 〈(∆x̄tot/lx)2〉, and 〈(∆Np,rel)

2〉, as depicted in
Figs. 1 (b)-(d). The increasing lp in Fig. 1(b) informs us
about the growing amplitudes towards their steady-state
values. In absence of single-photon dissipation, we find
the steady-state value of the ideal entangled cat state,
lp = 4

√
S/γd. For other cases, we find slight deviations

from this value.

The temporal course of the variance of the total

modular position x̄tot is shown in Fig. 1(c). This variance
is related to the interference pattern, and hence is highly
sensitive to the single-photon dissipation. In absence of
single-photon loss, this variance assumes an asymptotic
value below the entanglement detection threshold (black
dotted curve); in the other cases, it grows, after taking
a minimum, towards the “no interference” value 0.167
(red dashed curve and yellow solid curve). We can
interpret this variance as an indicator for the coherence
in the state. Figure 1(d) shows the course in time of
the variance of the relative integer momentum N̄p,rel,
which captures the correlations between the macroscopic
state components of the two modes. Since these
correlations are also present in the decohered state
(cf. the discussion of our third example above), this
variance is not significantly affected by the single-photon
dissipation rate. After the analysis of 〈(∆x̄tot/lx)2〉 and
〈(∆Np,rel)

2〉, we come to a counterintuitive result. In
Fig. 1(b), the optimal lp increases with increasing single-
photon dissipation. This is because larger lp can decrease
the variance of Np, and thus can become favorable in
the presence of decoherence, since the latter neutralizes
the detrimental effect of the length-scale offset on the
variance of the interference-sensitive variance of x.

As we have shown, in the presence of single-
photon dissipation, Cmec assumes a minimum before it
monotonically grows towards its asymptotic value. We
thus can take this minimum value of Cmec as a qualifier
for detectable entanglement. This is exemplified in
Fig. 1(e). From now on, we use this minimum value Cmin

mec

to assess the potential to achieve cat-state entanglement
for different model parameter choices. Note that Cmin

mec

does not qualify as an entanglement measure, and thus
lower values of Cmin

mec (below the threshold) do not
necessarily indicate higher entanglement.

IV. CONDITIONS FOR ENTANGLEMENT
GENERATION AND DETECTION

In the previous section, we demonstrated the
possibility to generate detectable entangled cat states
in DOPOs, and detailed the underlying state formation.
The preliminary insights from Fig. 1 indicate that
the generation of entangled cat states is challenging
in DOPOs, due to the requirement of a small rate
ratio γs/γd. In the following, we perform a systematic
analysis in parameter space, to determine the minimum
requirements for the successful generation of entangled
cat states. This is achieved by finding the minimum Cmec

for each set of parameters.
In Figures 2(a) and 2(b) we analyze the interplay

between the pump intensity S and the single-photon
dissipation γs with respect to the entanglement
generation. To reach below the threshold under the
influence of dissipation, there is an optimal choice of the
pump intensity S in both figures. Such a value is decided
by the trade off between coherence and the separation,
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FIG. 2. Cat-state entanglement qualifier Cmin
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model parameters. Here, S is the pump intensity, γs is
single-photon loss rate, and γc is collective dissipation rate.
Parameter combinations that give rise to a Cmin

mec below the
the entanglement detection threshold, i.e., detectable cat-
state entanglement, are shown in red; while the parameter
combinations that give rise to a Cmin

mec above threshold are
shown in blue. The black solid curves demarcate the
approximate boundary between the cat state-entanglement
certifiable parameter choices and the inconclusive parameter
choices. The two-photon dissipation intensity γd is set to be
1. All other parameters are expressed as ratios to γd. The
collective dissipation rates are γc = 5γd and γc = 10γd for (a)
and (b), respectively. (c) shows the results for different values
of γc, with S = 1.05γd.

which are both key properties of a high quality entangled
cat state. When the pump is strong, the average
photon number is large. Two components of such a
“large” state have less overlap [smaller 〈(∆Np,rel)

2〉], but
the system can suffer stronger single-photon-loss effects.
As we have shown in Fig. 1(c), this loss can increase
〈(∆x̄tot/lx)2〉. With a small average photon number, the
〈(∆x̄tot/lx)2〉 can be small due to lower probability to loss
photons. However, the large overlap can result in a large
〈(∆Np,rel)

2〉. The optimal value of S slightly changes
with γc, but is around 1.05γd for both the γc = 10
case and the γc = 5 case. It is not surprising to see
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FIG. 3. Properties of the states near the boundary. (a)
The section of the joint Wigner function on the real plane.
(b) Section of the joint Wigner function on the imaginary
plane. (c) Purity of the state, with minimum Cmec during the
evolution, for different pump intensities S near the boundary.
(d) Highest cat state fidelity, which can be achieved in single
DOPO with parameters S, γd, and γs near the boundary.

a larger area with entanglement in Fig. 2(b) compared
to Fig. 2(a), because the collective dissipation rate γc

is stronger. As γc can be conceptually very strong, we
further check how much it can improve the results in
Fig. 2(c). It is confirmed in Fig. 2(c) that increasing γc

always has positive effects. However, such effects become
insignificant if γc is larger than 10γd.

Although the modular entanglement criterion provides
a simple description of entanglement, the information of
the state is insufficient. Next, we consider the state with
entanglement near the boundary in Figs. 2(a) and (b).
The sections of joint Wigner function, purity of the state,
and the corresponding cat state in a single DOPO are
shown in Fig. 3. The joint Wigner function is a tool
to provide some intuitive pictures of the entangled cat
states [15] by calculating the distribution on the coherent
state basis |α1〉⊗|α2〉 of the two entangled modes. Such a
function is similar to a Wigner function [62] but in a four-
dimension space, so that only important sections instead
of full function are plotted. In Fig. 3(a), the section on
the real plane Im(α1) = Im(α2) = 0, which refers to the
interference pattern, is shown. This pattern can reveal
the coherent superposition of several components, but
does not assure entanglement. Figure 3(b) provides the
section on the imaginary plane Re(α1) = Re(α2) = 0.
This figure is very similar to the Wigner function of a
cat state, and clearly shows the two components of the
entangled cat state. The top right disk corresponds to the
|α〉|α〉 component, and the bottom left one corresponds
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to the | − α〉| − α〉 component. Note that the disk
in the center is a section of the interference pattern
instead of an additional component. This central disk
can become negative for entangled cat state with odd
parity [15]. Figure 3(c) shows the purity of the state
with minimum Cmec during the evolution. Oscillations in
Fig. 3(c) are the result of choosing an optimal modular
length, which has limited influence on the main trends.
The purity changes with pump intensity S but the
variation is only about 0.05. Generally speaking, purity
decreases with increasing S, because larger separation
brings more tolerance for poor coherence. However,
purity can increase with pump intensity for large S when
the collective dissipation rate is weak (blue solid curve).
The pump term creates the entangled cat states with
both parities. A weak γc can result in a larger probability
of the state with unwanted parity. This state contributes
to the purity, but has negative effects on entanglement.

With the results in Figs. 3(a)-(c), some basic
information of the entangled state near threshold is
provided. Then, we try to compare it to the single-
mode case, which are well discussed in other works [40–
44]. The highest fidelity of the cat state, which can be
obtained with the single-mode parameters in Fig. 3(c),
is shown in Fig. 3(d). It is intuitive to expect a similar
parameter dependence in the single-mode case and the
entangled case, because the main deleterious effects in
both cases are the single-photon dissipation. The results
in Fig. 3(d) also agrees with this expectation, which
shows the same trend as the curves in Fig. 3(c). Without
the modular length choice, there is no jump in Fig. 3(d).
We can also find that the cat state fidelity with boundary
parameters is below 0.9 for most values of S. Therefore,
the entangled cat state can be generated if we can access
cat states with fidelity higher than 0.9 in single DOPO.

V. ENVIRONMENTAL ENGINEERING

In the previous section, we analyzed the condition for
generating entangled cat states in coupled DOPOs. It
is obvious that these parameters are very challenging.
The cat state in DOPO, which is less difficult, is also
hard to access for now. Therefore, control methods
might be necessary to creation of such quantum states
in DOPOs. One potential choice can be environmental
engineering [31, 63–65], which can significant reduce the
influence of single-photon dissipation. Below, we show
that this approach for a single-mode system can also
be applied to generate entangled states. Squeezing is
only introduced in the single-photon dissipation channel,
while other dissipation terms are unaffected. The
squeezed single-photon dissipation term has the following

0.10 0.15 0.20
0

1

 

 

 

 
0.08 0.12

10

20

  

 

 

0.06 0.12
0.8

1.6

 

 0.06 0.12
0.8

1.0

1.2

𝛾 /𝛾

𝛾
/𝛾

𝑆/
𝛾

𝛾

(a)

(b)

(c)

(d)

entangled

entangled

entangled

entangled

0.148 0.168

𝑆/
𝛾

FIG. 4. The value of Cmin
mec for a squeezed environment. The

area below threshold is marked as red, and the one above is
marked as blue. The black solid curve is the approximate
boundary between the entangled area and unentangled area.
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form,

Lsq
s (ρ) = (1 +N)

2∑
k=1

L(γs, ak, ρ) +N

2∑
k=1

L(γs, a
†
k, ρ)

−M
2∑
k=1

γs

2
(2akρak − {akak, ρ})

−M∗
2∑
k=1

γs

2

(
2a†kρa

†
k − {a

†
ka
†
k, ρ}

)
. (17)
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Here, the two parameters are N = sinh2(γsq) and M =
sinh(γsq)cosh(γsq)e−iθsq , with the intensity of squeezing
γsq and the phase θsq. The phase term should fit the
orientation of the entangled cat state, which is set to be
π in our case.

In Fig. 4, we show the results with squeezed
environment. Figures 4(a) and (b) correspond to the
situations in Figs. 2 (a) and (b), respectively. We can find
that the regime for detectable entanglement is enlarged
for both the strong collective dissipation case and the
weak collective dissipation case. Another difference is the
optimal value for the pump intensity S, which increases
under the influence of the squeezed dissipation channel.
Squeezing results in weaker x fluctuations at the cost of
stronger p fluctuations. Therefore, a larger S is necessary,
so that a larger p separation can compensate for the
fluctuation. Figure 4(c) shows the influence of γc and γs.
In Fig. 2(c) the effect of γc saturates around γc = 10γd,
but increasing γc can improve the performance after
passing 20γd in the squeezed case. We study the influence
of the squeezing parameter γsq in Fig. 4(d). There
is an optimal value of γsq, which is about 0.5 for the
parameters in Fig. 4(d).

The compatibility of the dissipative coupling with the
single-mode environment engineering is shown with the
results in Fig. 4. Although the parameters are not the
optimal ones, the improvement obtained is significant.
If high quality cat states can be realized with control
methods, then these approaches are very likely also
effective for the entangled cat states.

VI. CONCLUSIONS

We studied the generation of entangled cat states
in DOPOs with collective dissipation. The quality of
the state is characterized by the modular entanglement
criterion, which can detect the entanglement in cat-like
states. Based on this criterion, we provide the necessary
parameter regimes to observe entangled cat states. Our
results also reveal the influence of different parameters
and the optimal ones to access the desired entangled

state. To better relate the problem considered to the
existing works, we compared the threshold cases with the
single-mode cat state situations. Although the choice
of optimal parameters can be quite complicated, the
fidelity of the corresponding single-mode state does not
change much. As a result, creating an entangled cat
state is somewhat equivalent to the problem of a cat
state with enough quality, if the collective dissipation
method is applied. Due to the challenging parameters in
DOPO, quantum control can be necessary. Therefore, we
also considered environment engineering as an example.
According to our numerical results, the entanglement
creating method can cooperate well with the single-mode
control method. Our work presents the conditions for
achieving entangled cat states in DOPOs, and relates
this task to its single-mode counterpart. In this sense,
it may help to extend the application of the coherent
Ising machine into the quantum regime.
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