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Analog quantum simulation – the technique of using one experimentally well-controlled physi-6

cal system to mimic the behavior of another – has quickly emerged as one of the most promising7

near term strategies for studying strongly correlated quantum many-body systems. In particular,8

systems of interacting photons, realizable in solid-state cavity and circuit QED frameworks, for ex-9

ample, hold tremendous promise for the study of nonequilibrium many-body phenomena in part due10

to the capability to locally create and destroy photons. These systems are typically modeled using a11

Jaynes-Cummings-Hubbard (JCH) Hamiltonian, named due to similarities with the Bose-Hubbard12

Hamiltonian. While comparisons between the two are often made in the literature, the JCH Hamil-13

tonian comprises both bosonic and psuedo-spin operators, leading to physical deviations from the14

Bose-Hubbard model for particular parameter regimes. Here, we present a non-perturbative pro-15

cedure for transforming the Jaynes-Cummings Hamiltonian into a dressed operator representation16

that, in its most general form, admits an infinite sum of bosonic k-body terms where k is bound17

only by the number of excitations in the system. We closely examine this result in both the dis-18

persive and resonant coupling regimes, finding rapid convergence of this sum in the former and19

contributions from k � 1 in the latter. Through extension to the simple case of a two-site JCH20

system, we demonstrate that this approach facilitates close inspection of the analogy between the21

JCH and Bose-Hubbard models and its breakdown for resonant light-matter coupling. Finally, we22

use this framework to survey the many-body character of a two-site JCH for general system param-23

eters, identifying four unique quantum phases and the parameter regimes in which they are realized,24

thus highlighting phenomena realizable with finite JCH-based quantum simulators beyond the Bose-25

Hubbard model. More broadly, this work is intended to serve as a clear mathematical exposition26

of bosonic many-body interactions underlying Jaynes-Cummings-type systems, often postulated ei-27

ther through analogy to Kerr-like nonlinear susceptibilities or by matching coefficients to obtain the28

appropriate eigenvalue spectrum.29

I. INTRODUCTION30

Efficient simulation of strongly correlated many-body systems remains one of the most important unsolved problems31

in the physical sciences today, promising advances in a diverse set of fields ranging from high-energy physics and32

cosmology to quantum chemistry and condensed matter physics [1, 2]. It is also one of the most challenging, as such33

systems involve dynamics within a Hilbert space whose size increases exponentially with added degrees of freedom,34
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rendering brute force study of many-body systems impractical with even the most powerful classical computers.35

Feynman famously recognized this problem nearly four decades ago and proposed what is now termed a quantum36

simulator – a programmable machine whose underlying degrees of freedom are quantum mechanical, circumventing the37

exponential scaling problem and thus enabling efficient simulation of quantum systems [3–6]. These devices generally38

fall into two classes: digital and analog quantum simulators. The former are an application of universal quantum39

computers which, despite rapid advancement in recent years, are likely decades away from a practical, fault-tolerant40

realization [1, 7–10]. In contrast, the latter are specialized, comparatively less ambitious devices comprising a well-41

controlled quantum system which mimics a particular quantum system of interest with some degree of tunability [2, 11].42

Analog quantum simulators thus offer a viable near-term solution for study of quantum many-body phenomena, and43

consequently a wide array of physical systems have been experimentally and theoretically studied as platforms for44

analog quantum simulation in recent years [2, 8, 12–25].45

One of the most unique classes of proposed platforms entails emulation of quantum many-body physics with light.46

As photons do not naturally interact, replicating an interacting many-body system relies on experimental realization47

of single-photon nonlinearities, a difficult task particularly in the optical domain. In cavity and circuit QED settings,48

one strategy for achieving nonlinearity involves realization of the Jaynes-Cummings model, which describes a single49

quantized cavity mode interacting with a two-level system (TLS). If the rate of dissipation to the environment is50

exceeded by the rate of coherent energy exchange between the cavity mode and TLS, the system is said to be in the51

strong coupling regime and a phenomenon known as photon blockade can occur whereby absorption of a single photon52

of a particular frequency prevents further absorption at that same frequency, thus enabling single photon nonlinearity53

and, consequently, Kerr-type photon-photon interactions [26–32]. A suitable platform for quantum simulation is54

then realized by an array of TLS-enabled nonlinear cavities, where the pure photonic modes of adjacent cavities are55

coupled through the mutual overlap of their evanescent fields [33–36]. Such a system shares similarities with the Bose-56

Hubbard model and is commonly referred to as the Jaynes-Cummings-Hubbard (JCH) model [33, 37–40], combining57

Hubbard-like on-site interactions (mediated by the TLS) with bosonic hopping between adjacent sites.58

Unlike other notable quantum simulation platforms, such as those composed of ultracold atoms in optical lattices59

[41–43], an array of TLS-enabled nonlinear cavities does not provide an exact analog of the Bose-Hubbard model.60

For one, the JCH Hamiltonian is composed of both bosonic and psuedospin operators, while the Bose-Hubbard61

Hamiltonian contains only the former. In addition, whereas the insulator-to-superfluid phase transition of the Bose-62

Hubbard model is understood through analysis of the competition between on-site repulsion U and hopping strength63

J , the various phases of the JCH model are determined by three competing energy scales: on-site repulsion U ,64

hopping strength J , and TLS-cavity detuning ∆. Despite these differences, it has been shown that the JCH model65

admits an insulator-to-superfluid phase transition much like that of the Bose-Hubbard model [33, 36–39, 44–47] and,66

consequently, the two have been closely compared in a number of publications [33, 35, 37–39, 44–57].67

Here, we present a thorough analysis of the many-body character underlying the Jaynes-Cummings Hamiltonian68

and ultimately revisit the analogy between the JCH and Bose-Hubbard models for the simplest possible imple-69

mentation: a two-site system. We begin by considering just a single Jaynes-Cummings system and introduce a70

parameter-independent strategy for studying its intrinsic nonlinearities using unitary transformation, exposing an71

infinite hierarchy of effective bosonic many-body interactions in the process. In contrast to similar methods promi-72

nent in the literature [58–60], our approach is non-perturbative and is therefore valid for general system parameters,73
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facilitating analysis of both dispersive and resonant light-matter coupling regimes. This procedure ultimately leads74

to the primary result of this work – an exact many-body representation of the Jaynes-Cummings Hamiltonian which75

brings effective boson-boson interactions to the forefront at the level of dressed operators. We show that this rep-76

resentation offers a unique perspective on the comparison between the Jaynes-Cummings and on-site Bose-Hubbard77

terms, the former containing an infinite hierarchy of many-body interactions and the latter only two-body inter-78

actions. Furthermore, we derive explicit mathematical relations between the parameters and operators appearing79

in the Jaynes-Cummings Hamiltonian and its many-body representation. We then apply this methodology toward80

analysis of a two-site JCH model and show that the dispersive coupling limit provides an approximate analog to the81

Bose-Hubbard model, albeit with weak nonlinearities. By restricting to the subspace of two or fewer total excitations,82

we perform a block-by-block analysis of the truncated Hamiltonian in matrix form to facilitate further comparison.83

We illustrate that, in the dispersive regime, correspondence with the Bose-Hubbard model can be understood as the84

two-site JCH Hamiltonian becoming approximately block-diagonal when expressed in the basis of dressed excitations.85

In contrast, appreciable couplings between the individual blocks emerge for resonant coupling, ultimately provoking86

a disconnect between the two models. We then conclude with an analysis of the truncated two-site JCH Hamil-87

tonian’s two-excitation ground state as a function of system parameters. In analogy to the Bose-Hubbard model,88

we find that both dispersive and resonant coupling lead to an insulator-to-superfluid-like transition. For the case89

of resonant coupling, we demonstrate that this transition (i) is accompanied by a polaritonic-to-photonic transition90

and (ii) admits a third, intermediary phase consistent with a polaritonic superfluid-like state, highlighting the dis-91

tinct possibilities afforded by the JCH model over the Bose-Hubbard case. Taken together, the goal of this paper is92

to present a unique, parameter-independent approach for studying the effective many-body interactions realizable in93

Jaynes-Cummings-type systems and, via extension to a two-site system, fully explore the various parameter regimes of94

a simple, finite Jaynes-Cummings-Hubbard system with an eye towards experimental study of many-body phenomena95

using photonics-based platforms.96

The subsequent sections are organized as follows. In Section II we derive a many-body representation for the Jaynes-97

Cummings Hamiltonian in terms of dressed operators and discuss its limiting cases for various parameter regimes. This98

is carried out in three parts: Section IIA contains a derivation of the dressed operator representation of the Jaynes-99

Cummings Hamiltonian, followed by a discussion of the behavior of the dressed operators in II B and, in Section100

II C, a derivation and analysis of our main result – an exact, many-body representation of the Jaynes-Cummings101

Hamiltonian. Section III extends our methods to the two-site JCH model, beginning with a brief comparison between102

the Bose-Hubbard and JCH models in Section IIIA. This is followed by a more thorough analysis of the two-site JCH103

in the dispersive and two excitation limits in Sections III B and III C. We then examine the various quantum phases104

of the two-site JCH in Section IIID before concluding with a summary of our findings in Section IV.105

II. NON-PERTURBATIVE MANY-BODY REPRESENTATION OF THE JAYNES-CUMMINGS106

HAMILTONIAN107

We begin by examining the hidden bosonic many-body nature of the Jaynes-Cummings Hamiltonian, one of the108

simplest and most versatile models in quantum optics describing the coherent interaction between a single cavity109

mode and a TLS, as shown in Fig. 1. Defining a† and a as creation and annihilation operators for the bosonic cavity110
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mode and σ+ = |e〉 〈g| and σ− = |g〉 〈e| as psuedo-spin raising and lowering operators describing transitions between111

the ground |g〉 and excited |e〉 states of the TLS, the Jaynes-Cummings Hamiltonian is given by112

H = ~ωca†a+
1

2
~ωaσz + ~g(a†σ− + aσ+). (1)

Here, ωc is the resonant frequency of the cavity mode and ωa that of the TLS or “atom” - terminology which will be113

used interchangeably for the remainder of this work. We emphasize that the physical implementation of the TLS need114

not be an atom, and may instead describe the energy levels of a so-called artificial atom such as a superconducting115

qubit [60–63] or quantum dot [32, 64–68]. The rate of energy exchange between the cavity and TLS is defined by116

the coupling strength g, here assumed to be fast enough such that the atom and cavity are strongly coupled and117

dissipation may be neglected at first approximation [67, 69], yet not so fast that the counter-rotating terms of the118

Rabi model be considered (i.e., g � {ωc, ωa}) [70, 71]. Finally, σz is the Pauli operator σz = [σ+, σ−] = |e〉 〈e|−|g〉 〈g|.119

The eigenvectors and eigenvalues of Eq. (1) are most easily found by recognizing that the Hamiltonian conserves120

the total number of quanta121

N = a†a+ σ+σ−. (2)

Consequently, only states within the same excitation number manifold couple and Eq. (1) may be rewritten as a122

block-diagonal matrix with each 2× 2 block independently diagonalizable. Following Ref. [58], we define123

λ = g/∆, (3)

where ∆ = ωa − ωc is the atom-cavity detuning. Then the eigenvalues may be written as124

En,± =

(
n− 1

2

)
~ωc ±

~
2

∆
√

1 + 4λ2n (4)

with associated eigenvectors125

|n,−〉 = cos θ |n, g〉 − sin θ |n− 1, e〉

|n,+〉 = sin θ |n, g〉+ cos θ |n− 1, e〉 ,
(5)

where n are eigenvalues of the total number operator N which label the excitation manifold and the mixing angle126

θ = tan−1(2λ
√
n)/2 describes the degree of hybridization between photonic and atomic degrees of freedom, taking127

values in the range −π/4 ≤ θ ≤ π/4. For |λ| � 1 (θ ≈ ±π/4), the system is said to be resonantly coupled and the128

eigenstates are maximally mixed. Consequently, the fundamental excitations of the system are not those of the bare129

photonic and TLS components, but are instead hybrid light-matter quasiparticles known as polaritons. Assuming130

the few excitation limit, for |λ| � 1 (small θ), the system is said to be dispersively coupled and the eigenstates131

approximate the bare, uncoupled states of the cavity and TLS up to a small perturbative correction.132

The eigenspectrum of Eq. (1) is often referred to as the Jaynes-Cummings ladder [72–75], shown in Fig. 1b.133

Crucially, this spectrum is nonlinear in n, leading to a phenomenon known as photon blockade [26, 28], whereby134



5

FIG. 1. (a) A realization of the Jaynes-Cummings model consisting of a single cavity mode and a two-level system (TLS) of
resonant frequency ωc and ωa, respectively. The two interact, exchanging quanta at a rate determined by the coupling strength
g. (b) The eigenspectrum of the Jaynes-Cummings Hamiltonian for ∆ > 0. The left set of horizontal black lines indicates the
eigenenergies of the bare cavity mode and TLS, while the right portrays the impact of light-matter coupling. Pairs of states with
the same total number of excitations n hybridize, yielding pairs of dressed eigenstates |n,±〉 which are split by the frequency
Ωn. If the system begins in the ground state |0,−〉, absorption of one photon of frequency (E1,− − E0,−) prohibits absorption
of a second of the same frequency due to the additional energy cost U . This phenomenon is known as photon blockade, and
may be used to realize effective photon-photon interactions.

absorption of a photon at a particular frequency inhibits further absorption of photons at that same frequency (see135

Fig. 1b). In this way, the Jaynes-Cummings Hamiltonian facilitates effective photon-photon interactions in the few136

photon limit. Caution must be exercised, however, in attempting to write down an effective Hamiltonian which137

accounts for these effects. In particular, it is clear from Fig. 1b that transition to the state |2,−〉 through absorption138

of successive photons of frequency ω = (E1,−−E0,−)/~ requires an additional energy of U > 0, leading to an effective139

repulsion of the second photon. This effect is similar to a Kerr-type nonlinearity of the form140

HKerr = UeffN(N − 1) (6)

and therefore parallels the on-site interactions of the Bose-Hubbard model [37, 50, 76]. However, this comparison141

must be approached with caution due to two key subtleties. First, applicability for an arbitrary number of excitations142
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requires that Ueff itself depends on the number operatorN , as in the large excitation limit the Jaynes-Cummings ladder143

approaches a linear spectrum [77, 78]. This idea – defining an explicit, excitation number dependent Ueff – has been144

explored in several publications to date [35, 37, 39] but, as noted in Ref. [39], leads to inaccuracies in the dispersive145

coupling regime. Second, the operators appearing in Eq. (6) correspond not to the number of photons in the cavity,146

but to the total number of hybrid-light matter quanta. As a result, the very nature of the underlying excitations147

themselves depend upon the parameter regime, changing from photonic in the dispersive regime to polaritonic for148

resonant coupling, behavior which is not apparent from Eq. (6). A useful effective bosonic many-body representation149

of Eq. (1) therefore requires a more careful consideration of these subtleties.150

In the following subsections, we present a transformed representation of Eq. (1) which makes explicit the bosonic151

many-body interactions generated through photon-blockade for general system parameters. In contrast with similar152

methods in the literature relying on Schrieffer-Wolff perturbation theory [58–60], our approach is applicable for both153

resonant (|λ| � 1) and dispersive (|λ| � 1) light-matter coupling. Through techniques of unitary transformation, we154

systematically develop an exact many-body description of the Jaynes-Cummings Hamiltonian and expose a hierarchy155

of normally ordered, effective k-body interactions and their parameter-dependent scaling. The end result is an exact156

generalization of Eq. (6) which is absent of excitation number dependent coefficients. Particular attention is given157

in identifying the physically appropriate basis for the many-body interactions as it has been shown that insulator-to-158

superfluid quantum phase transition of the JCH model is accompanied by a polaritonic-to-photonic transition in the159

nature of the excitations [36–38].160

A. Unitary diagonalization of the Jaynes-Cummings Hamiltonian161

While it is straightforward to find the eigenvalues and eigenvectors of the Jaynes-Cummings Hamiltonian by consid-162

ering each excitation number manifold individually, an alternate route toward diagonalizing Eq. (1) involves unitary163

transformation of the canonical operators. This approach was first reported in Ref. [79] and has since been adopted in164

a number of more recent works [58–60]. At first glance, this strategy appears to be a more complicated pathway to-165

ward computing the well-known eigenvalues and eigenvectors of Eqs. (4−5). However, it provides additional physical166

insight into the diagonal form of the Hamiltonian through an analytic understanding of the dressed canonical oper-167

ators and will allow us to more clearly compare between Hamiltonians endowed with Jaynes-Cummings interactions168

and those having two-body bosonic interactions of the form of Eq. (6).169

We begin by writing the Jaynes-Cummings Hamiltonian as170

H = H0 + ~gI+, (7)

where we have adopted the shorthand notation [58]171

H0 = ~ωca†a+
1

2
~ωaσz

I± = a†σ− ± aσ+.

(8)
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Defining the unitary transformation operator172

U = e−ΛI− , (9)

we aim to find the appropriate choice of Λ for which the Hamiltonian is diagonal once cast in terms of the transformed173

operators ã = U†aU and σ̃− = U†σ−U . Due to the unitarity of U , all commutation relations are invariant under174

transformation.175

Here we employ the method of active transformation [80], whereby the Hamiltonian H is rewritten in terms of176

transformed operators. This strategy typically entails finding closed analytic relationships between each canonical177

operator O and its transformed pair Õ using the Baker-Campbell-Hausdorff formula [81],178

Õ = U†OU

= O + [O, S] +
1

2!
[[O, S], S] +

1

3!
[[[O, S], S], S] + . . . ,

(10)

where U = eS . In the case of the Jaynes-Cummings Hamiltonian, however, direct application of Eq. (10) to the179

canonical operators a and σ− leads to an infinite series of commutation relations which do not close, and a “nonuni-180

tarian short circuit” must be employed to obtain closed form expressions through this approach [81]. Instead, it is181

advantageous to transform H0 and I+ in their entirety. Using the commutation relations182

[H0, I−] = −~∆I+

[I+, I−] = 2Nσz
(11)

along with the inverted form of Eq. (10), it can be shown that183

H0 = H̃0 + Λ[H̃0, I−] +
Λ2

2!
[[H̃0, I−], I−] + . . .

= H̃0 − ~∆
∑
n=1

Λn

n!
F̃n−1

I+ = Ĩ+ + Λ[Ĩ+, I−] +
Λ2

2!
[[Ĩ+, I−], I−] + . . .

=
∑
n=0

Λn

n!
F̃n,

(12)

where F̃n is the nth order commutator of Ĩ+ and I− given by184

F̃n =

(−1)
n−1
2 (2
√
N)n+1 σ̃z/2 n odd

(−1)
n
2 (2
√
N)n Ĩ+ n even

(13)

and tildes denote transformed operators (e.g., H̃0 = U†H0U) . Note that both N and I− commute with U and,185

consequently, tildes on these operators are neglected for simplicity.186

Using the relations in Eq. (13), the commutator expansions of H0 and I+ may be formally summed and substituted187
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into Eq. (7), yielding188

H = ~ωc
(
N − 1

2

)
− ~

2
√
N

[
∆ sin(2Λ

√
N)− 2g

√
N cos(2Λ

√
N)
]
Ĩ+

+
~
2

[
∆ cos(2Λ

√
N) + 2g

√
N sin(2Λ

√
N)
]
σ̃z.

(14)

Diagonalization is achieved through elimination of the second term proportional Ĩ+, leading to the constraint189

Λ(N) ≡ θ(N)√
N

=
1

2
√
N

tan−1
(

2λ
√
N
)
, (15)

defined here in terms of the mixing angle θ, previously introduced in Eq. (5) but now appearing as a function of the190

number operator N rather than its eigenvalue n. Critically, Λ is also a function of the operator N . This is allowed only191

because N commutes with H0 and I± and therefore may be effectively treated as a scalar in writing the commutation192

series of Eq. (12). We emphasize, however, that caution must be exercised in endowing Λ with arbitrary operator193

dependence.194

With the above choice of Λ, simplification of Eq. (14) yields195

H = ~ωc
(
N − 1

2

)
+

~
2

∆
√

1 + 4λ2N σ̃z. (16)

The above Hamiltonian is now entirely diagonal written in terms of the dressed bosonic and TLS operators, the former196

appearing via the total number operator N = ã†ã+ σ̃+σ̃−. While it is evidently clear that this Hamiltonian returns197

the same eigenvalues previously reported in Eq. (4), this procedure allows for an exact representation of the Jaynes-198

Cummings Hamiltonian in terms of the dressed operators rather than a description at the level of the dressed states199

provided by the manifold-by-manifold approach. As will be shown in later sections, the dressed operator form of the200

Jaynes-Cummings Hamiltonian provides a deeper understanding of the underlying bosonic many-body interactions201

mediated by the TLS. More immediately, it is imperative to first understand how the dressed operators act on the202

composite Hilbert space of the dressed states of the Jaynes-Cummings Hamiltonian.203

B. Behavior of the dressed operators204

As previously discussed, direct transformation of the bosonic and TLS operators a and σ− does not yield easily205

interpretable closed-form expressions for the dressed operators ã and σ̃−. Despite this, one may still determine the206

action of the dressed operators on the eigenstates written in Eq. (5) by transforming both the states and operators207

to the original basis where the action of the bare operators is known. Given the unitary transformation Eq. (9), the208

state |Ψ〉 transforms according to209

|Ψ〉S = e−S |Ψ〉 , (17)
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where the subscript identifies a state transformed with respect to the generating function S = −ΛI−. In order to210

work out transformations of the states explicitly, it is helpful to first cast the unitary operator U = eS in an alternate211

form via Taylor expansion and subsequent resummation. In particular, it may be shown that212

e±S = cos(θ)∓ 1√
N

sin(θ)I−, (18)

where θ is the mixing angle defined in Eq. (15). Then the basis states {|n, g〉 , |n, e〉} transform as213

|n, g〉S = |n,−〉 = cos(θ) |n, g〉 − sin(θ) |n− 1, e〉

|n− 1, e〉S = |n,+〉 = sin(θ) |n, g〉+ cos(θ) |n− 1, e〉 ,
(19)

where we have made explicit the equivalence between the transformed states and the well-known eigenstates of the214

Jaynes-Cummings Hamiltonian introduced in Eq. (5). As expected, then, the unitary operator U† maps the bare215

basis states onto the set of eigenstates {|n, g〉S , |n, e〉S}. It is important to note that the ground state is included216

within the set {|n,−〉} which corresponds to the “lower branch” of the Jaynes-Cummings ladder for ∆ ≥ 0+ (θ > 0)217

and to the “upper branch” for ∆ ≤ 0− (θ < 0), where superscripts indicate the direction of approach for the case218

∆ = 0. We note, however, that the choice of which branch includes the ground state is arbitrary, and the roles of219

|n,−〉 and |n,+〉 may be reversed by adding an overall minus sign to S or, equivalently, swapping U and U† in the220

convention adopted for the similarity transform Eq. (10). Nonetheless, a choice has been made in identifying |0,−〉221

with the ground state and, because the n = 0 manifold consists of only one state, |0,+〉 does not represent a physical222

state of the system.223

Turning now to the action of the dressed operators, one may show that for a general operator O,224

Õ |n,m〉S = e−SO |n,m〉 = (O |n,m〉)S , (20)

where m = {g, e}. Accordingly, the action of the operator Õ in the basis of transformed states |n,m〉S is exactly225

analogous the action of O in the original basis spanned by the Fock states |n,m〉. The action of the dressed operators226

on the conventionally labeled states |n,±〉, however, is more subtle as here n indicates the excitation manifold or,227

equivalently, the total number of combined bosonic and TLS excitations rather than the number of dressed bosonic228

excitations alone as in the labeling |n,m〉S . We emphasize that these subtleties are solely a consequence of notation229

and are of little physical importance, and as a result it is often simpler to work with the more physically apparent230

notation |n,m〉S labeling Fock states in the dressed boson/TLS basis. Still the action of the dressed operators on the231

states |n,±〉 may be easily worked out through combination of Eqs. (19−20), with results summarized for reference232

in Table I and Fig. 2.233

Although the description of the dressed operators thus far has been exact for general system parameters, it is234

instructive to again contrast two important parameter regimes of the Jaynes-Cummings model: resonant coupling235

(|λ| � 1) and dispersive coupling (|λ| � 1). As previously discussed, in the former case the mixing angle θ approaches236

±π/4 and the eigenvectors of Eq. (19) are maximally mixed superpositions of bosonic cavity and atomic excitations.237

Consequently, the dressed bosonic and TLS operators induce transitions between the hybridized light-matter eigen-238

states which comprise the Jaynes-Cummings ladder, as shown in Fig. 2. In contrast, the dispersive regime is most239



10

|n,−〉 = |n, g〉S |n,+〉 = |n− 1, e〉S
ã

√
n |n− 1,−〉

√
n− 1 |n− 1,+〉

ã†
√
n+ 1 |n+ 1,−〉

√
n |n+ 1,+〉

ã†ã n |n,−〉 (n− 1) |n,+〉
σ̃− 0 |n− 1,−〉
σ̃+ |n+ 1,+〉 0
σ̃z − |n,−〉 |n,+〉

σ̃+σ̃− 0 |n,+〉
σ̃−σ̃+ |n,−〉 0
N n |n,−〉 n |n,+〉

TABLE I. Behavior of the dressed operators acting on the Jaynes-Cummings ladder states |n,±〉.

easily analyzed by first recognizing that Taylor expansion of the rightmost side of Eq. (15) yields Λ ≈ λ and there-240

fore the unitary transformation operator may be approximated as U = e−ΛI− ≈ e−λI− . Approximate forms of the241

transformed operators are then obtained through Schrieffer-Wolff perturbation theory for |λ| � 1 [58, 60], leading to242

ã = a− λσ− +O(λ2)

σ̃− = σ− − λaσz +O(λ2),
(21)

where terms second-order in λ are small and may be neglected. Here, the bosonic operators ã† and ã create and243

destroy photons weakly dressed by the TLS. Likewise, the perturbed operators σ̃+ and σ̃− include the expected244

action of raising or lowering the bare TLS and additionally inherit a small photonic contribution conditioned on the245

state of the bare TLS via σz.246

We emphasize that the exact behavior of the dressed operators described here generalizes the Schrieffer-Wolff247

approach and is exact to infinite order in λ. Consequently, the transformed operators ã and σ̃− form an appropriate248

operator basis regardless of the parameter regime, and their action on the transformed states is independent of whether249

the system is resonantly or dispersively coupled. However, the underlying character of the transformed operators and250

states changes as a function of system parameters, most easily seen by relating the transformed operators and states251

back to those describing the uncoupled system as shown above. For example, it is clear that the bosonic operators ã252

and ã† describe either creation and annihilation of polaritons or photons depending on the value of the mixing angle θ253

(or equivalently, λ). As a result, the dressed operator description of the Jaynes-Cummings Hamiltonian is appropriate254

independent of the parameter regime under consideration. Still, it is crucially important to maintain an understanding255

of the parameter-dependent underlying physical character of the excitations described by the transformed operators256

and states. This will hold especially true in Section III where it will be shown that the physical interpretation of257

the distinct quantum phases of a two-site JCH model requires knowledge of the underlying nature of the transformed258

states across parameter space.259

C. Revealing the hidden many-body nature of the Jaynes-Cummings Hamiltonian260

Paired with the results of the previous section, the Hamiltonian of Eq. (16) provides a complete description of the261

Jaynes-Cummings Hamiltonian in the dressed operator basis. In its present form, the second term clearly endows the262
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FIG. 2. Action of the dressed operators on the Jaynes-Cummings ladder. Upon diagonalization, the Jaynes-Cummings Hamil-
tonian may be repackaged into a positive and negative branch, the former comprising the states |n,−〉 and the latter |n,+〉.
The dressed bosonic operators ã† and ã induce transitions between states of the same branch, raising and lowering the total
number of excitations by one, respectively. In contrast, the dressed psuedospin operators σ̃+ and σ̃− facilitate transitions
between the two branches. Similar to the bare pseudospin operators σ+ and σ− acting on the states |e〉 and |g〉, respectively,
applying σ̃± to a state denoted by the same sign returns zero.

system with a nonlinear dependence on the total number of excitations, reminiscent of the Kerr-like, two-body bosonic263

interactions of the Bose-Hubbard model in Eq. (6). The goal of this section is to make this analogy more apparent by264

casting Eq. (16) in a form which accentuates the underlying many-body bosonic interactions. One route for achieving265

this involves Taylor expansion of Eq. (16) about small values of λ and truncating at finite order [58]. Alternatively,266

identical results are attained by direct Schrieffer-Wolff transformation of the Jaynes-Cummings Hamiltonian in its267

original representation, whereby the unitary operator U = e−ΛI− is replaced by its approximate form U ≈ e−λI− for268

|λ| � 1 [58, 60] and all transformations are carried out to finite order, as in Eq. (21). However, the two described269

strategies are only applicable in the dispersive limit, and it is therefore the purpose of this section to leverage the270

exact solution of Eq. (16) toward a non-perturbative method equally applicable in both the dispersive and resonant271

coupling regimes.272

Focusing on the nonlinear portion of Eq. (16) alone, it is useful to define the function273

f(x) =
√

1 + 4λ2x (22)

such that the dressed operator representation of the Jaynes-Cummings may be written as274

H = ~ωc
(
N − 1

2

)
+

~
2

∆f(N)σ̃z. (23)

Using the identity σ̃z = σ̃+σ̃− − σ̃−σ̃+ and defining the projection operator P±n = |n,±〉 〈n,±|, the product f(N)σ̃z275
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may be further reexpressed as276

f(N)σ̃z = −P0 +
∑
n=1

f(n)(P+
n − P−n ). (24)

As shown in Appendix A, one may Taylor expand f(n) about n = n0 and recast in terms of dressed operators to find277

f(N)σ̃z =

∞∑
r=0

r∑
m=0

(
1/2

r

)(
r

m

)
(2λ)2rf(n0)1−2r(−n0)r−m

×
m∑
k=0

(ã†)k(ã)k
[{
m+ 1

k + 1

}
σ̃+σ̃− −

{
m

k

}
σ̃−σ̃+

]
,

(25)

where
{
n
k

}
are Stirling numbers of the second kind. Taking care to adjust upper and lower bounds as needed, the278

three sums appearing in Eq. (25) may be reordered such that the total Hamiltonian becomes279

H = ~ωc
(
N − 1

2

)
+

∞∑
k=0

1

k!

[
C+
k σ̃

+σ̃− + C−k σ̃
−σ̃+

]
(ã†)k(ã)k, (26)

where the coefficients of the k-body terms include the remaining sums over m and r in Eq. (25). After partial280

resummation and further manipulation (see Appendix A), it may be shown that these k-body interaction coefficients281

are given by282

C−k /~ = −∆

2

k∑
p=0

(
k

p

)
(−1)k+p

√
1 + 4λ2p

C+
k /~ =

∆

2

k∑
p=0

(
k

p

)
(−1)k+p

√
1 + 4λ2(p+ 1).

(27)

Together, Eqs. (26 – 27) form an exact bosonic many-body representation of the Jaynes-Cummings Hamiltonian and283

constitute one of the primary results of this manuscript. Critically, this final form of the Hamiltonian is independent284

of the expansion point n0. We note that285

1

k!
(ã†)k(ã)k |n,−〉 =

(
n

k

)
|n,−〉

1

k!
(ã†)k(ã)k |n,+〉 =

(
n− 1

k

)
|n,+〉

(28)

and thus each k-body term scales as C±k multiplied by a combinatorial factor. When applied to the eigenstates |n,±〉,286

the infinite sum of k-body interactions may be evaluated, resulting in the closed form287

∞∑
k=0

1

k!
C±k (ã†)k(ã)k |n,±〉 = ±~

2
∆
√

1 + 4λ2n |n,±〉 , (29)

thus verifying that the dressed operator many-body form of the Jaynes-Cummings Hamiltonian in Eq. (26) returns288

the well known eigenvalues in Eq. (4).289

Critical to the usefulness of Eq. (26) is a clear partitioning of the Hilbert space into two branches, each spanned290
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by either set of states |n− 1, e〉S = |n,+〉 or |n, g〉S = |n,−〉. Because the two branches are uncoupled, one may291

consider each subspace independently. As previously discussed, it is the latter set which includes the global ground292

state |0, g〉S = |0,−〉, and we thus focus our analysis on the “negative” branch, noting that much of the discussion293

follows similarly for the “positive” branch with the caveat that, there, the state |0, e〉S = |1,+〉 effectively serves as294

the ground state within the subspace spanned by |n,+〉. We reemphasize, however, that the states |n,−〉 are the295

lower energy eigenstates of each excitation number manifold for ∆ ≥ 0+ (θ > 0) only, and the eigenstates |n,−〉296

exceed |n,+〉 in energy for ∆ ≤ 0− (θ < 0). As a result, one may access the entirety of the Jaynes-Cummings ladder297

for the resonant coupling case simply by choosing to approach ∆ = 0 either from the positive or negative direction,298

yielding θ = π/4 or θ = −π/4, respectfully. We will find that this freedom allows for a mathematical description of299

either repulsive or attractive many-body interactions within the subspace of states |n,−〉 depending on the sign of θ.300

Separately, in the dispersive regime, the negative branch comprises perturbed photonic excitations with the weakly301

dressed TLS in its unexcited state.302

Before proceeding with a closer analysis of the coefficients C±k , it is important to note that the effects of environ-303

mental coupling have, up to this point, not been considered. As a result, the many-body terms of Eq. (26) seemingly304

play an important role for all C±k 6= 0 and, as illustrated in Fig. (1b), perfect photon blockade is achieved as long as305

g 6= 0. In an experimental setting, however, coupling to the environment broadens the levels of the Jaynes-Cummings306

ladder such that photon blockade is impaired when the dominant rate of dissipation Γ = max{κ, γ} exceeds the light-307

matter coupling strength g, where κ and γ denote the cavity and atomic linewidth, respectively. As a consequence,308

strong effective many-body interactions are realizable only in the strong coupling regime (i.e., g > Γ), as the impact309

of each k-body term depends not on C±k alone, but rather on the ratio C±k /~Γ. Although the effects of environmental310

coupling will not be explicitly considered in the present work, given the discussion above it is convenient to consider all311

parameters in units of Γ as it determines the appropriate time scale for a specific realization of the Jaynes-Cummings312

Hamiltonian, allowing for a general discussion agnostic of the particulars of each experimental platform.313

While Eqs. (26–27) provide an exact bosonic many-body representation of the Jaynes-Cummings Hamiltonian314

for general system parameters, the infinite sum over competing k-body terms obscures simple interpretation. It is315

therefore advantageous to closely analyze several limiting cases to gain insight into the contributions of the hierarchy316

of many-body terms appearing in Eq. (26). In the following, we restrict analysis to the few excitation limit and317

investigate both the dispersive and resonant coupling regimes independently. We note that the few excitation limit is318

not only a mathematically instructive, but also experimentally realizable in cavity and circuit QED systems [28, 29, 68].319

We then conclude the current section with a brief discussion of the more general n excitation case.320

1. The few excitation limit: n ≤ 2321

We begin by examining the Hamiltonian in Eq. (26) in the limit where the total number of excitations is fixed to322

two or fewer. In this scenario, the normally ordered terms (ã†)k(ã†)k do not contribute for k > 3 for the negative323

branch and k > 2 for the positive branch. Consequently, the n ≤ 2 limit allows for analysis of the Hamiltonian in the324

scenario where the highest order contributing many-body interactions correspond to two-body terms, leading to the325
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effective Hamiltonian326

Heff
n≤2 =σ̃+σ̃−

[
(~ωc + C+

1 )ã†ã+
1

2
~ωc + C+

0

]
+σ̃−σ̃+

[
(~ωc + C−1 )ã†ã+

C−2
2
ã†ã†ãã− 1

2
~ωc + C−0

]
,

(30)

where the first and second lines correspond to the effective Hamiltonian projected onto the positive and negative327

branches, respectively, and328

C−0 /~ = −∆

2

C−1 /~ = −∆

2
(−1 +

√
1 + 4λ2)

C−2 /~ = +
∆

2
(−1 + 2

√
1 + 4λ2 −

√
1 + 8λ2)

C+
0 /~ = +

∆

2
(
√

1 + 4λ2)

C+
1 /~ = +

∆

2
(−
√

1 + 4λ2 +
√

1 + 8λ2)

(31)

are the explicit forms of the interaction coefficients. In all cases, the above coefficients are written in such a way that329

the factor in parenthesis is positive for all values of λ and therefore the overall sign of the coefficient is indicated330

explicitly in the prefactor. Notably, the overall sign of the coefficients C±i depends upon the sign of the detuning ∆.331

Two-body bosonic interaction terms appear only for the negative branch as the positive branch consists of states with332

the dressed TLS in its excited state, and limiting the total number of excitations to two or fewer therefore ensures at333

most one dressed photonic excitation.334

Focusing only on the negative branch, the Hamiltonian may be written within this subspace as335

H
eff(−)
n≤2 = (~ωc + C−1 )N +

C−2
2
N(N − 1)− 1

2
~ωc + C−0 , (32)

where we have used the fact that N and ã†ã are identical for the negative branch. This effective Hamiltonian is, up336

to an overall energy shift, identical in form to the on-site terms of the Bose-Hubbard model [37],337

HBH,on-site = −µN +
U

2
N(N − 1), (33)

where the on-site interaction strength U is determined by C−2 and N describes the number of dressed bosonic excita-338

tions. Despite the fact that the linear energy ~ωc +C−1 is strictly positive for realistic parameters and thus naturally339

describes a system with µ < 0, we note that one may transform to a rotating frame via the unitary operator e−iωcã
†ãt

340

such that C−1 , which is negative for ∆ ≥ 0+, becomes analogous to the chemical potential. As discussed in Section341

II B, the dressed operators ã† and ã describe creation and annihilation of bosonic excitations whose character varies342

from polaritonic (|λ| � 1) to photonic (|λ| � 1) depending on the choice of g and ∆. Furthermore, as the overall343

sign of C−2 is determined by the sign of ∆, the interaction energy U can be either positive or negative. The for-344

mer case results in an effective polariton-polariton (or photon-photon) repulsion, whereas the latter corresponds to345

polariton-polariton (or photon-photon) attraction.346
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FIG. 3. (a) Sign and magnitude of the two-body coefficient C−2 as a function of ∆ and g. For practical purposes, all parameters
are normalized to Γ which sets the relevant frequency scale for the particular experimental platform in consideration. Regardless
of the parameter regime, C−2 always takes the same sign as ∆. As discussed in the main text, C−2 is discontinuous at ∆ = 0
and may take on a positive or negative values depending on the direction of approach. For all g, C−2 is maximized for resonant
coupling (|λ| � 1), and is comparably smaller for dispersive coupling (|λ| � 1), requiring g/Γ & |1/2λ3| to achieve strong
photon-photon interactions (|C−2 /~Γ| & 1). The dashed line indicates λ = ±0.1, typically considered the onset of the dispersive
regime. (b) Sign and magnitude of the three-body coefficient C−3 as a function of ∆ and g, all normalized to Γ. C−3 displays a
qualitatively similar trend to C−2 , taking on a maximal magnitude at ∆ = 0 and falling off rapidly for decreasing |λ|. For all g
and ∆, |C−3 | < |C

−
2 | and, in contrast to C−2 , the sign of C−3 is opposite to that of ∆.

Fig. 3a shows the absolute value of C−2 as a function of system parameters g and ∆, all relative to a fictitious347

dissipation rate Γ which sets the relevant energy scale pertaining to a particular experimental platform, as discussed348

previously. As expected, the scaling of the two-body interaction is largest for resonant coupling where the bosonic349

modes and TLS maximally mix. Evaluating C−2 for the perfectly resonant case leads to350

C−2 /~ = ±(2−
√

2)g, (resonant) (34)

where the sign of C−2 is determined by the direction in which ∆ = 0 is approached and it is assumed that g ≥ 0. Then351

for resonant coupling, C−2 scales linearly with g and strong two-body interactions (|C−2 | & ~Γ) are achieved for352

g/Γ & 1/(2−
√

2), (35)
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a slightly higher threshold than strong coupling.353

In the dispersive regime, C−k depends nonlinearly on λ and, as a result, spans many orders of magnitude for constant354

∆ depending upon the value of g. Expanding C−2 about small values of λ leads to the result355

C−2 /~ ≈ 2λ3g, (dispersive) (36)

indicating that the fall off of two-body interactions for decreasing g is dependent on how far into the dispersive regime356

the system is tuned. To realize strong two-body interactions (i.e., |C−2 /~Γ| & 1) in the dispersive coupling regime,357

exceptionally large values of g/Γ must be attained such that the condition358

g/Γ & |1/2λ3| (37)

is satisfied, a limit which has been approached in circuit QED platforms (for λ ∼ 0.1), reaching values of g/Γ in the359

several hundreds [62]. Eq. (37) may be thought of as a higher order generalization of the strong-dispersive regime360

[82, 83], defined by the condition g/Γ & |1/λ| (for |λ| . 0.1) which characterizes the portion of parameter space in361

which the first order frequency shift C±1 exceeds ~Γ in magnitude.362

While boson-boson interactions are most easily attained in the case of resonant coupling, it is in the dispersive363

parameter regime in which the bosonic many-body interactions take on a photonic nature. As we shall see in Sec.364

III where the present analysis is extended to a two-site Jaynes-Cummings-Hubbard system, it is photonic two-body365

interactions in the dispersive regime, rather than polaritonic two-body interactions on resonance, which will most366

clearly provide a route for analog quantum simulation of Bose-Hubbard physics.367

2. The few excitation limit: n ≤ 3368

The Hamiltonian in Eq. (30) is exact for n ≤ 2. Consideration of states with n = 3 requires inclusion of three-body369

terms, leading to the effective Hamiltonian370

Heff
n≤3 = Heff

n≤2 + σ̃+σ̃−
[
C+

2

2
ã†ã†ãã

]
+ σ̃−σ̃+

[
C−3
2
ã†ã†ã†ããã

]
,

(38)

where371

C−3 /~ = −∆

2
(−1 + 3

√
1 + 4λ2 − 3

√
1 + 8λ2 +

√
1 + 12λ2)

C+
2 /~ = −∆

2
(−
√

1 + 4λ2 + 2
√

1 + 8λ2 −
√

1 + 12λ2)

(39)

describe the strength of three-body (two-body) interactions within the negative (positive) branch of the Jaynes-372

Cummings ladder. Similar to the the n ≤ 2 case, three-body terms do not appear for the positive branch as the373

states considered allow for up to two bosonic excitations. We note that the trends followed by the positive branch for374

n ≤ 3 are similar to those of the negative branch for n ≤ 2 (with signs reversed), and therefore will not be explicitly375
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discussed.376

Fig. 3b shows the magnitude of C−3 as a function of ∆ and g, again relative to the maximal dissipative rate377

Γ = max{κ, γ}. Notably, C−2 and C−3 differ by an overall sign with the latter of smaller magnitude for all parameters.378

Otherwise the two follow a similar trend, albeit with C−3 declining much more rapidly with decreasing g. Following the379

analysis of the two-body interaction strength C−2 , it is helpful to derive expressions for C−3 for the cases of resonant380

and dispersive coupling. For the former, evaluating C−3 for ∆ = 0 leads to381

C−3 = ∓(3− 3
√

2 +
√

3)g (resonant), (40)

where, similar to Eq. (34), the sign of C−3 is dependent on the direction in which ∆ = 0 is approached and the overall382

expression is proportional to g, here with a smaller prefactor such that |C−2 | > |C
−
3 |.383

In contrast, evaluating C−3 for small values of λ via Taylor expansion yields384

C−3 ≈ −12λ5g (dispersive), (41)

similar to the result Eq. (36) yet scaling at fifth order in λ rather than third. Consequently, C−3 falls off much more385

rapidly than C−2 in the dispersive regime, indicating that the strength of three-body interactions are small relative to386

their two-body counterparts and may therefore be discarded for small enough λ. For all g and ∆, C−2 and C−3 are387

of opposite sign and therefore counteract one another in systems with at least three excitations, with positive and388

negative valued interactions describing repulsion and attraction, respectively.389

3. Nature of the many-body coefficients for arbitrary n390

Following the preceding analysis of the parameter dependent strength of two- and three-body interactions in the391

few excitation limit, extension to the general n excitation limit is straightforward. Focusing again on the negative392

branch, it is convenient to independently analyze the form of the k-body coefficient C−k for the cases of resonant and393

dispersive coupling. It is worth emphasizing again that for any finite n, each k-body term will only contribute if394

k ≤ n, and the sum in Eq. (26) therefore always terminates. However, the n → ∞ limit of the Jaynes-Cummings395

Hamiltonian is important to analyze as the eigenspectrum becomes approximately linear, inhibiting photon blockade396

for large values of n [77, 78]. Evaluating the general form of C−k for ∆ = 0 (see Eq. (27)), we find397

C−k = ±(−1)k

[
k∑
p=1

(
k

p

)
(−1)p+1√p

]
g (resonant), (42)

where the upper and lower signs corresponds to the limit ∆ → 0± and θ = ±π/4. Therefore the linear relationship398

with g previously found for C−2 and C−3 is general for all k. Furthermore, the factor in parentheses is positive and399

convergent for all k. The overall sign of the coefficients C−k therefore alternate in k, a trend which can be shown more400

generally from Eq. (27) without specializing to the case of resonant coupling. In the limit of very large k, the above401

sum asymptotically trends toward the closed expression [84] C−k = (−1)kg/
√
π ln(k) and thus vanishes in the limit402

k →∞.403
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FIG. 4. Top panels: sign and magnitude of the k-body coefficient C−k normalized to ~g for (a) resonant and (b) dispersive
coupling, plotted for discrete values of k. Red circles correspond to a negative value, blue a positive value, and gray a value
of zero, with black interpolating lines shown as a guide. (a) Resonant coupling is characterized by a relatively slow fall off in
magnitude of C−k for increasing k, asymptotically approaching the value g/

√
π ln(k) for very large k and vanishing for k →∞.

(b) In contrast, |C−2 | falls off very rapidly for dispersive coupling, allowing for truncation of the sum over k-body interactions
at a small, finite value of k according to the accuracy desired. The three lines show this trend for distinct values of λ, with
smaller λ displaying a faster fall off. (c) The region of parameter space for which |C−k /~Γ| > 0.1, with each colored region
corresponding to a particular value of k. As seen explicitly for C−2 and C−3 in Fig. 3, each coefficient follows a similar trend,
with areas of highest (lowest) magnitude coinciding with |λ| � 1 (|λ| � 1). For increasing k, the subset of parameter space in
which the threshold |C−k /~Γ| > 0.1 is met tightens, with each region corresponding to order k encompassing the smaller region
corresponding to k+ 1. The maximal value k = 20 was chosen for simplicity, with higher values of k continuing the same trend.
(d) The evolution of |C−k /~Γ| from resonant to dispersive coupling, shown as a function of ∆/Γ for constant coupling strength
tuned to the onset of strong coupling g/Γ = 1 (white dashed line in panel (c)). Red and blue lines display the alternating
sign of C−k . All large k coefficients experience a similar, rapid fall-off as ∆ is increased from the resonant case. In comparison,
smaller k coefficients decrease in magnitude more slowly. A “fan out” effect is observed as the detuning trends toward ∆ = 10g,
corresponding to the onset of dispersive coupling (i.e., λ = 0.1). In contrast, all coefficients take on values comparable in
magnitude for ∆ = 0.

For the case of dispersive coupling (|λ| � 1), C−k may be written as404

C−k /~ ≈ −k!

(
1/2

k

)
(2λ)2k−1g (dispersive), (43)

where only the lowest order term in λ has been retained. In deriving this expression,
√

1 + 4λ2p was evaluated using405

a binomial expansion which, strictly speaking, is convergent only for p ≤ k < |1/4λ2|, setting an upper bound of406

|λ| <
√

1/4k for which Eq. (43) is valid.407
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Panels (a) and (b) of Fig. 4 contrast the behavior of C−k for resonant (Eq. (42)) and dispersive (Eq. (43)) coupling.408

As stated previously, the sign of C−k alternates in k independent of parameter regime, indicated by the color of the409

markers. In particular, blue (red) markers represent coefficients which are positive (negative) for ∆ ≥ 0+, with signs410

inverted for ∆ ≤ 0−. For dispersive coupling, the relative strength of |C−k /~Γ| falls off rapidly due to the λ2k−1
411

dependence in Eq. (43) and, as a result, the sum in Eq. (26) may be truncated at some cutoff order kmax dependent412

upon the coupling strength g, dispersive parameter λ, and the desired accuracy. For kmax = 2, Eq. (26) becomes413

an approximate analog to the on-site portion of the Bose-Hubbard Hamiltonian in Eq. (33). In contrast, perfectly414

resonant coupling is characterized by many-body coefficients C−k which fall off slowly in k and, consequently, the sum415

in Eq. (26) cannot be truncated unless only a finite number of excitations n are considered.416

For all k, the trend followed by the coefficients C−k as a function of g and ∆ resembles that of C−2 and C−3 shown417

in Fig. 3, differing only in the rapidity with which the magnitude of C−k falls off as ∆ trends away from zero.418

Fig. 4c illustrates the relative magnitude of various coefficients C−k across all parameter space, with colored sections419

corresponding to regions where |C−k /~Γ| ≥ 0.1. Note that this threshold is somewhat arbitrary and therefore should420

not be taken as an exact measure of the importance of each term, as this is dependent upon the particular system421

and context under study. Still, the relative importance of higher order k-body interactions is clearly evident both422

for perfect resonant coupling (∆ = 0) and for near-resonant coupling (|λ| � 1). This is further illustrated by Fig. 4423

showing the magnitude of the many-body coefficients C−k (relative to ~Γ) at the onset of strong coupling, g/Γ = 1,424

indicated by a white dotted line in Fig. 4c. Similar to panels (a) and (b), blue (red) lines indicate a positive (negative)425

value of C−k for ∆ ≥ 0+, with signs reverse for ∆ ≤ 0−.426

Finally, we note that the presented many-body form of the Jaynes-Cummings Hamiltonian must become approx-427

imately linear in the limit n → ∞, inhibiting photon blockade entirely. This behavior of the Jaynes-Cummings428

Hamiltonian is well-known [37, 77, 78] and can most easily be seen by analyzing the difference En+1,± − En,± (see429

Eq. (4)) in the large n limit. In the form Eq. (26), however, this limiting behavior is not at all obvious, particularly430

for resonant coupling, as the contributions of the individual, normally ordered k-body products (ã†)k(ã†)k/k! return431

the binomial coefficient
(
n
k

)
when acted on a dressed Fock state and therefore diverge for n → ∞. Despite this, Eq.432

(29) shows that the k-body interactions sum together to produce the correct eigenvalues and, as a result,433

lim
n→∞

∞∑
k=0

1

k!
C±k (ã†)k(ã)k(|n+ 1,±〉 − |n,±〉) = 0. (44)

More qualitatively, this behavior is understood as a consequence of the alternating sign of the many-body coefficients434

C±k , causing all odd k-body interactions to counteract those with even k. As a result, the individual nonlinear435

interactions together conspire to give a purely linear spectrum, in alignment with the known behavior of the Jaynes-436

Cummings ladder in the large n limit.437

III. EXTENSION TO A TWO SITE JAYNES-CUMMINGS-HUBBARD SYSTEM AND ANALYSIS OF438

ITS QUANTUM PHASES439

The results of the previous section hint at a similarity between the on-site portion of the Bose-Hubbard and Jaynes-440

Cummings Hamiltonians – the former containing bosonic two-body interactions, and the latter k-body interactions up441
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to some order kmax dependent upon the ratio λ = g/∆ and maximum number of excitations considered. Because only442

a single site was under study, the most interesting aspects of the Bose-Hubbard model, e.g., the superfluid to insulating443

quantum phase transition, were not discussed. The purpose of the present section is to revisit this comparison for the444

simplest extension possible: a two-site system. We note that qualitative and quantitative analogies between the Bose-445

Hubbard and Jaynes-Cummings-Hubbard (JCH) models are numerous in the literature [33, 35, 37–39, 44–57] and, as446

such, we refer to these other works for a mathematically rigorous analysis of the quantum phase transition admitted447

by the JCH model for both a finite [33, 47] and infinite [37, 39, 50, 85] number of sites. Here, our aim is to illustrate448

the unique and complementary perspective afforded by the many-body form of the Jaynes-Cummings Hamiltonian449

presented in Eq. (26). Furthermore, we hope that the analysis and discussion contained herein can provide guidance450

for analog quantum simulators which aim to simulate many-body bosonic Hamiltonians using Jaynes-Cummings451

nonlinearities. Lastly, we remark that because the presented analysis in this section pertains to systems with a finite452

number of sites and excitations, we use the terminology Mott-insulator-like (MI-like) and superfluid-like (SF-like) to453

distinguish from true Mott-insulating and superfluid states as conventionally defined in the thermodynamic limit.454

A. Comparison between the Jaynes-Cummings-Hubbard and Bose-Hubbard models455

The two-site Bose-Hubbard model is given by456

HBH =
∑
i=1,2

H
(i)
BH,on-site +HBH,hop

H
(i)
BH,on-site = −µb†i bi +

U

2
b†i b
†
i bibi

HBH,hop = J(b†1b2 + b1b
†
2).

(45)

Here, b and b† are bosonic annihilation and creation operators, J the hopping rate between the two sites labeled457

i = 1, 2, and U and µ are the on-site interaction strength and chemical potential, here assumed to be identical for458

both sites for simplicity. It is well known that the Bose-Hubbard Hamiltonian admits a quantum phase transition459

facilitated by tuning the ratio J/U at zero temperature [41, 86]. For J � U , the system is said to be in a superfluid460

phase, characterized by a large variance in single site particle number and a delocalized many-body ground state of461

the form462

|ΨSF〉 ∝

∑
i=1,2

(∓)ib†i

n

|0〉 , (46)

where n is the total number of particles in the ground state (fixed through choice of µ) and the upper (lower) sign463

corresponds to J > 0 (J < 0). For simplicity, the convention J > 0 will be assumed for the remainder of this464

manuscript. In the opposite limit J � U , the repulsive interaction dominates site-to-site tunneling and single site465

particle number fluctuations are suppressed as a result. Consequently, the ground state becomes the localized MI-like466
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state,467

|ΨMI〉 ∝
∏
i=1,2

(
b†i

)n/2
|0〉 . (47)

Similar to Eq. (45), the two-site JCH model may be written as468

HJCH =
∑
i=1,2

H
(i)
JC +Hhop

H
(i)
JC = ~ωca†iai +

1

2
~ωaσzi + ~gi(a†iσ

−
i + aiσ

−
i )

Hhop = J(a†1a2 + a1a
†
2),

(48)

where on-site parameters ωc, ωa, and g have been taken to be identical for both sites for simplicity. Here, Hhop469

describes pure photonic hopping between sites – such terms arise in arrays of cavities, for example, due to the overlap470

between the evanescent fields of adjacent cavities [34, 38, 87, 88].471

The parallel structure of Eq. (45) and Eq. (48) underscores an obvious connection between the Bose-Hubbard472

and JCH models: both contain identical bosonic tunneling terms and similar on-site interactions, with the only473

distinguishing features appearing as the source of nonlinearity in H(i)
BH,on-site and H

(i)
JC, the former naturally including474

bosonic two-body terms, and the latter comprising an additional degree of freedom in the form of a TLS which475

ultimately mediates effective photon-photon interactions. Still, qualitative comparison between the two is merited476

and previous works have shown the JCH model to admit a superfluid-to-insulator-like quantum phase transition similar477

to that of the Bose-Hubbard model [33, 36–39, 44–47], albeit with some key differences. For one, while the quantum478

phases of the Bose-Hubbard model are realized at opposing limits of the ratio J/U , the JCH model involves three479

distinct tunable parameters (J , ∆, g) and, consequently, multiple pathways exist for tuning across a phase transition480

[33, 37, 39, 50]. In addition, the very nature of the interacting bosonic excitations are themselves dependent upon the481

parameter regime, leading to a photonic-to-polaritonic transition which accompanies the superfluid-to-insulator-like482

transition in the JCH model [33, 36], behavior which is absent in the Bose-Hubbard case. Finally, as noted previously,483

the JCH Hamiltonian becomes approximately linear in the limit of large n, while the Bose-Hubbard model maintains484

nonlinearity for all n. These distinguishing features have received qualitative recognition in the literature, yet have485

not been formally analyzed in the context of dressed operators where bosonic many-body interactions are brought486

to the forefront, as in Eq. (26). The findings of the previous section therefore compel a close reexamination of the487

differences between the JCH and Bose-Hubbard models, and consequences thereof, using the techniques of unitary488

transformation.489

Following the procedure of Section IIA, we begin analysis by transforming Eq. (48) into the dressed basis. Here,490

we apply the transformation operator U = eS1+S2 where the generator Si is defined as491

Si = −Λ(Ni)I
(i)
− , (49)

where I(i)
− and Λ(Ni) = θ(Ni)/

√
Ni are defined exactly as before (see Eqs. (8) and (15)) with the subscript i inserted492

where appropriate to label quantities which differ between sites. For example, here Ni represents the total number493

operator at site i alone, and the total number of excitations in the system is therefore given by N = N1 + N2. It is494
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important to emphasize that the generators S1 and S2 commute and the operator U may therefore be rewritten as495

a product of unitary operators U = U1U2 where U1 = eS1 and U2 = eS2 . Critically, Ui commutes with all operators496

associated solely with the opposite site and, as a result, transformation of the on-site contributions to the JCH497

proceeds exactly as in Section IIA. The two-site JCH Hamiltonian may therefore be written as498

HJCH = J(a†1a2 + a1a
†
2) +

∑
i=1,2

~ωc
(
Ni −

1

2

)

+
∑
i=1,2

∞∑
k=0

1

k!

[
C+
k σ̃

+
i σ̃
−
i + C−k σ̃

−
i σ̃

+
i

]
(ã†i )

k(ãi)
k,

(50)

where notation has been maintained from the previous section such that the coefficients C±k are defined by Eq. (27)499

and500

ãi = U†aiU

σ̃−i = U†σ−i U
(51)

are the transformed operators describing annihilation of the dressed excitations at site i. We remark that Eq. (50)501

is similar in form to the effective Hamiltonian presented in Ref. [36] [89]. There, on-site contributions to the JCH502

model are written for the case ∆ = 0 in terms of branch-dependent polaritonic operators obeying neither bosonic503

nor psuedo-spin commutation relations. The form presented here is therefore unique in that the dressed operators504

describe the true quasiparticle excitations at each site, maintaining the appropriate commutation relations, and all505

many-body interactions are described without use of excitation number dependent coefficients for general g and ∆.506

Because Hhop = J(a†1a2 +a1a
†
2) describes an exchange of purely photonic quanta, writing this explicitly in terms of507

dressed operators for general system parameters yields an infinite set of terms which are not obviously expressible in508

a closed form. Up to first order in Λ alone, transformation of Hhop yields terms corresponding to polariton hopping509

J(ã†1ã2+ã1ã
†
2), linear cross-site interactions JΛ(N1)(ã†2σ̃

−
1 +ã2σ̃

+
1 )+JΛ(N2)(ã†1σ̃

−
2 +ã1σ̃

+
2 ), and, in addition – because510

the hopping term preserves the total number of excitations N1 +N2 but not the number of excitations at each site Ni511

– a number of nonlinear terms which vanish in the dispersive regime (where Λ(Ni) ≈ λ) but become important near512

resonant coupling. Matters are further complicated at second order in Λ, primarily due to a cascade of additional513

two-site terms which do not commute with Ni. As a result, there is little to be gained by attempting to write Hhop in514

terms of dressed operators for general system parameters as the physics of the site to site hopping is most apparent515

in the bare photonic basis, and it is advantageous to instead consider several limiting cases independently.516

B. Dispersive coupling: |λ| � 1517

As previously discussed in Section IIC, when projected onto the negative branch the on-site terms of the JCH model518

directly mirror those of Bose-Hubbard model for dispersive coupling due to a sharp drop off in the coefficients C−k for519

increasing k. Neglecting terms second order and higher in λ, the full two-site JCH Hamiltonian may be expressed as520
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HJCH ≈ P−1 P
−
2

[ ∑
i=1,2

(
~Ω−0 ã

†
i ãi +

U−eff
2
ã†i ã
†
i ãiãi

)
+ J(ã†1ã2 + ã1ã

†
2) + 2E−0

]

+ P+
1 P

+
2

[ ∑
i=1,2

(
~Ω+

0 ã
†
i ãi +

U+
eff
2
ã†i ã
†
i ãiãi

)
+ J(ã†1ã2 + ã1ã

†
2) + 2E+

0

]

+ P+
1 P
−
2

[
~Ω+

0 ã
†
1ã1 +

U+
eff
2
ã†1ã
†
1ã1ã1 + ~Ω−0 ã

†
2ã2 +

U−eff
2
ã†2ã
†
2ã2ã2 + J(ã†1ã2 + ã1ã

†
2) + E+

0 + E−0

]

+ P−1 P
+
2

[
~Ω−0 ã

†
1ã1 +

U−eff
2
ã†1ã
†
1ã1ã1 + ~Ω+

0 ã
†
2ã2 +

U+
eff
2
ã†2ã
†
2ã2ã2 + J(ã†1ã2 + ã1ã

†
2) + E+

0 + E−0

]
+ Jλ(ã†1σ̃

−
2 + ã1σ̃

+
2 ) + Jλ(ã†2σ̃

−
1 + ã2σ̃

+
1 ),

(52)

where Ω±0 = ωc + C±1 /~ denotes an effective resonant energy, U±eff = C±2 an effective interaction strength, E±0 =521

C±0 ± ~ωc/2 a constant energy shift, and P±i = σ̃±i σ̃
∓
i the projector onto the positive (upper sign) or negative (lower522

sign) branch of the ith site.523

In writing Eq. (52), the on-site terms were cast into the dressed basis using the techniques of Section IIC, while the524

hopping Hamiltonian Hhop was reexpressed in terms of dressed operators using the transformed form of the relations525

Eq. (21). Thus, using the techniques presented here, we have made the analogy between the two-site JCH and Bose-526

Hubbard models for |λ| � 1 as explicit as possible – Eq. (52) illustrates that, in the dispersive limit, the two-site JCH527

describes physical behavior which mirrors the Bose-Hubbard model independently within each of its four branches.528

Interestingly, these four branches allow for realization of either a symmetric (∝ P±P±) or an asymmetric (∝ P±P∓)529

Bose-Hubbard type system. Unlike the single Jaynes-Cummings Hamiltonian, however, transitions between the530

various branches are allowed due to the cross-site boson-TLS couplings induced by transformation of Hhop. This531

effect was previously noted and analyzed in Refs. [33] and [39], there described in the context of polariton operators532

as an interconversion between + and − polariton types. Due to their scaling with |λ| � 1, these terms only weakly533

contribute in comparison to the dressed bosonic hopping term J(ã†1ã2 + ã1ã
†
2) for arbitrary J . This fact is not534

unsurprising as, in the dispersive regime, the dressed bosonic operators are photon-like. As a result, the purely535

photonic hopping term Hhop is well-approximated by a photon-like dressed bosonic hopping and, consequently, the536

influence of the last two terms of Eq. (52) may be either approximated using second-order perturbation theory or,537

depending on the value of λ and the accuracy desired, entirely neglected.538

It is clear from a qualitative argument alone that the Hamiltonian in Eq. (52) admits an insulator-to-superfluid-like539

transition analogous to that of the Bose-Hubbard model largely unaltered by the final two inter-branch terms. As540

previously discussed in Section IIC, C±2 (and, by extension, U±eff) can be either positive or negative depending on the541

sign of ∆, yielding effective photon-photon repulsion in the former case and attraction in the latter. For the following542

argument, let us specialize to ∆ > 0 such that U−eff > 0. Focusing on the branch corresponding to the projector P−1 P
−
2543

and recalling that C−2 /~ ≈ 2λ3g in the dispersive regime, the limit J/U−eff � 1 (equivalent to J/~g � 2λ3 in terms544

of basic system parameters) yields a localized, MI-like n particle ground state identical to Eq. (47). In the opposite545

limit J/U−eff � 1 (or identically, J/~g � 2λ3), the influence of the inter-branch terms is felt only at second order546

perturbation theory in λ. For λ � 1, the n particle ground state becomes identical to the delocalized, SF-like state547
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in Eq. (46).548

C. The n ≤ 2 limit549

As evidenced in Section IIC, another useful strategy for theoretical analysis involves truncating the composite550

Hilbert space by restricting the total number of excitations to a finite, maximal value. This approach is particularly551

relevant for comparison with the Bose-Hubbard model, where the chemical potential µ naturally determines the552

total number of particles in the many-body ground state [90]. Fixing to a particular excitation number in the JCH553

Hamiltonian therefore facilitates a straightforward comparison. Furthermore, truncating the Hilbert space allows for554

closer inspection of the resonant coupling regime which, as previously discussed, is challenging to analyze for general555

n due to the difficulty of casting Hhop in terms of dressed operators for general system parameters. For simplicity, we556

specialize to the case of n ≤ 2. As shown in Section IIC, this limit results in an exact analogy between the on-site557

terms of the Bose-Hubbard model and the negative branch of the many-body representation of the Jaynes-Cummings558

model for both resonant and dispersive coupling. In addition, we restrict to the case ∆ ≥ 0 (or, equivalently, λ ≥ 0)559

such that effective repulsion (Ueff > 0) is realized for the negative branch excitations.560

It is convenient to first reexpress the two-site JCH Hamiltonian in terms of projectors onto the positive and negative561

branch at each site:562

HJCH =
∑

s1,s2,s′1,s
′
2

|s′1, s′2〉 〈s′1, s′2|H |s1, s2〉 〈s1, s2| . (53)

Here, each si is summed over the values + and−, the first and second entry of each bra/ket indicate the state of the TLS563

at the first and second sites, and the subscript “JCH” has been dropped from the various matrix elements for simplicity.564

For convenience, we define the notation Hs1s2 to represent to subspace spanned by the states {|m1,m2, s1, s2〉}, where565

the four indices denote, in order, the eigenvalues of ã†1ã1, ã
†
2ã2, σ̃z1 , and σ̃z2 . Note that here we are adopting notation566

for the states which is slightly modified from Section II, as the first index no longer corresponds to the total number567

of excitations at the ith site but rather the number of quanta in the dressed bosonic mode alone. This simplification568

is made both to avoid confusion with the prefactors returned by dressed operators (see Table I), but also because N1569

and N2 are no longer independently conserved quantities and therefore their notational utility is diminished.570

Drawing upon the discussion of the Jaynes-Cummings Hamiltonian in Section IIC, it is the subspace H−− which571

includes the vacuum state. Consequently, our analysis will focus on the many-body physics within this subspace.572

As previously shown for the case of dispersive coupling, the two site JCH Hamiltonian differs from the single site573

Jaynes-Cummings Hamiltonian in that inter-branch transitions can occur due to nonzero off-diagonal elements of Eq.574

(53) contributed by the purely photonic hopping term. In order to simplify discussion of these matrix elements in the575

present formalism, we introduce the notation576

H̄ ≡ 〈−,−|H |−,−〉 (54)
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FIG. 5. (a) The top panel shows the one and two excitation effective hopping strengths J(1)
eff and J(2)

eff while the bottom panel
displays the value of the three unique linear (M1, M2, M3) and nonlinear (K1, K2) transition amplitudes M1, M2, M3, K1

and K2. All are plotted as a function of λ and normalized to the bare photonic hopping rate J . Notably, the first set of
parameters J(i)

eff describe the amplitude of intra-branch transitions within the subspace H−−, while the second set describes
the amplitudes of inter -branch transitions between the subspace H−− and its complement H+− ∪ H−+ ∪ H++ via cross-site
light-matter interactions in the dressed representation. In the dispersive limit, all inter-branch transition amplitudes become
small and the effective hopping strengths tend toward J . In the opposite regime, J(1)

eff and J(2)
eff differ by scalar prefactors and the

coefficientsMi and Ki become comparable to J , leading to appreciable dissimilarity with the two-site Bose-Hubbard model. (b)
Illustration of the two-site JCH Hamiltonian HJCH in the dispersive (top panel) and resonant (bottom panel) coupling regimes.
For the truncated space of two or fewer total excitations, each panel represents a 13× 13 matrix comprising the four branches
shown along each diagonal and denoted by the state of each dressed TLS. Note that in place of “−−” is the 6 × 6 matrix
H̄, defined via the projection of the two-site JCH onto the target subspace H−−. In general, the ten nonvanishing matrix
elements of Vs1s2 yield five unique values given by the coefficients Mi and Ki defined in Eq. (60). In the dispersive regime,
HJCH becomes approximately block diagonal in the dressed basis as Mi/J � 1 and Ki/J � 1 and inter-branch transitions
become negligible. As a result, H̄ becomes an appropriate effective Hamiltonian and analogy to the Bose-Hubbard model is
realized. In the resonant regime, inter-branch transitions become important and, consequently, direct correspondence with the
Bose-Hubbard model collapses.

to denote the block of HJCH which contributes to dynamics confined within the target subspace H−−. Similarly, let577

Vs1s2 ≡ 〈s1, s2|H |−,−〉 (55)

denote the set of matrix elements describing allowed transitions from H−− to its complement H+− ∪ H−+ ∪ H++.578

Because HJCH is Hermitian, for every allowed transition from H−− to Hs1s2 , there exists a transition of equal579

probability describing the inverse process described by the matrix elements of V †s1s2 .580

Constraining the full Hilbert space to two or fewer excitations, the projection of H onto the subspace H−− may be581
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expressed in the block-diagonal form582

H̄ =


H̄n=0 0 0

0 H̄n=1 0

0 0 H̄n=2

 , (56)

where H̄n is a square matrix of dimension 2n corresponding to the subspace of n excitations, containing diagonal and583

off-diagonal entries given by the on-site and hopping terms of Eq. (50), respectively. Because the JCH conserves the584

total number of excitations, transitions between states of different total particle number n are not allowed, hence the585

block-diagonal form of Eq. (56). Discarding the vacuum energy H̄n=0 = 2C−0 − ~ωc, the single and double excitation586

blocks of H̄ may be written in the form587

H̄n=1 =

~Ω0 J
(1)
eff

J
(1)
eff ~Ω0



H̄n=2 =


2~Ω0 + Ueff 0

√
2J

(2)
eff

0 2~Ω0 + Ueff
√

2J
(2)
eff√

2J
(2)
eff

√
2J

(2)
eff 2~Ω0

 .
(57)

Here, the effective on-site resonant energy and interaction strength are Ω0 = ωc+C−1 /~ and Ueff = C−2 , where negative588

sign superscripts have been removed from Ω0 and Ueff relative to Eq. (52) for simplicity. In addition, the effective589

hopping strengths are defined by590

J
(1)
eff = J cos2 θ(1)

J
(2)
eff = J cos θ(1)

[
cos θ(1) cos θ(2) + sin θ(1) sin θ(2)/

√
2
]
,

(58)

where θ(N) is the mixing angle previously defined in Eq. (15) and the vector space is ordered as {|10〉 , |01〉} for n = 1591

and {|20〉 , |02〉 , |11〉} for n = 2. Both J (1)
eff and J (2)

eff are proportional to the bare hopping rate J , with multiplicative592

factors that are positive for all λ. We emphasize again that Eq. (57) does not fully describe the dynamics of the593

two-site JCH, even for the limit n ≤ 2, due to possible transitions to and from the target subspace H−− described by594

Vs1s2 . Still, it is useful to first examine the similarities between Eq. (57) and the Bose-Hubbard model in isolation.595

Making as explicit a comparison as possible, projecting the Bose-Hubbard Hamiltonian onto the subspace n ≤ 2 leads596

to597

HBH,n=1 =

−µ J

J −µ



HBH,n=2 =


−2µ+ U 0

√
2J

0 −2µ+ U
√

2J
√

2J
√

2J −2µ

 .
(59)

Though nearly identical in form to Eq. (57), a few key differences must be highlighted. First, the one and two598
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excitation manifolds of the two-site JCH are characterized by different tunneling strengths J (1)
eff and J

(2)
eff which599

identically approach J in the dispersive limit, but plateau to different values for the resonant case (see Fig. 5a,600

top panel). Second, as already emphasized, underlying the two-site JCH is a larger range of independently tunable601

parameters (ωc, ∆, g, J) compared to the two-site Bose-Hubbard model which is characterized by µ, U and J alone.602

At the level of the effective parameters in Eq. (57), however, it is important to be mindful – particularly for the603

purpose of quantum simulation of Bose-Hubbard models with JCH systems – that tuning Ueff while holding Jeff604

constant, for example, requires explicit understanding of how these effective parameters depend upon the base system605

parameters (e.g., ∆, g) as demonstrated here. Likewise, changing g while holding ∆ constant can impact not only606

the effective repulsion strength Ueff, as expected, but also the effective two excitation tunneling strength J (2)
eff . Thus,607

the analytic forms for these parameters is not of just theoretical, but also experimental interest.608

To better illustrate the nontrivial relationship between the effective parameters (Ueff and J
(2)
eff ) and their base609

parameter counterparts (g and J), Fig. 6a displays the ratio J (2)
eff /Ueff as a function of λ and J/~g. In computing610

these values, the cavity resonant frequency and light-matter coupling strength were fixed at ωc/Γ = 103 and g/Γ = 1611

while ∆ and J were allowed to vary. Notably, the limits J (2)
eff /Ueff � 1 and J

(2)
eff /Ueff � 1, relevant for realization612

of MI-like and SF-like phases, are reached not just through choice of J/~g but also λ. Fig. 5b therefore serves to613

illustrate the complexity in navigating the comparably larger parameter space of the JCH model for realization of614

behavior analogous to the Bose-Hubbard model, while also serving as a useful guide for achieving a particular effective615

parameter regime of interest.616

In isolation, Eqs. (57) and (59) define Hamiltonians closely mirroring one another and thus describe analogous617

physical behavior. However, a more honest comparison must take into account the matrix elements of Vs1s2 . In618

total, there are ten unique transitions (twenty including the reverse processes described by V †s1s2), all of which may619

be divided into two categories: linear cross-site bosonic-TLS couplings and more complicated nonlinear interactions620

involving both on-site and cross-site exchange of quanta. Symmetry of the two sites dictates that each transition is621

accompanied by a parity reversed pair. All twenty allowed transitions may therefore be summarized by the outcoupling622

coefficients623

M1 ≡ 〈0, 0|V+− |0, 1〉 = 〈0, 0|V−+ |1, 0〉

M2 ≡ 〈0, 1|V+− |0, 2〉 = 〈1, 0|V−+ |2, 0〉

M3 ≡ 〈1, 0|V+− |1, 1〉 = 〈0, 1|V−+ |1, 1〉

K1 ≡ 〈0, 1|V+− |2, 0〉 = 〈1, 0|V−+ |0, 2〉

K2 ≡ 〈0, 0|V++ |2, 0〉 = 〈0, 0|V++ |0, 2〉

(60)

and their Hermitian conjugates, where Mi denotes a linear cross-site interaction (i.e., exchange of a single quantum)624

and Ki labels a nonlinear transition (i.e., exchange of multiple quanta). All are similar in form to the effective hopping625

strength J (i)
eff – proportional to J but otherwise dependent only on the mixing angle θ or, equivalently, λ = g/∆, via626

products of trigonometric functions. All are odd functions of λ aside from K2 which is even. For explicit analytic627

forms of each coefficient, see Appendix B.628

As shown in the bottom panel of Fig. 5a, the magnitude of the coefficients Mi and Ki depend drastically on λ and,629

as a result, the transition rate out of the subspace H−− differs between the dispersive and resonant coupling regimes.630
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In the former case, the various outcouplings may be approximated to lowest order as631

M1 ≈M3 ≈ λJ

M2 ≈
√

2λJ,
(61)

where the nonlinear transition amplitudes K1 ≈ O(λ3) and K2 ≈ O(λ4) are comparatively small and may therefore632

be neglected. This result is in agreement with the more general Hamiltonian of Eq. (52). As previously established,633

tunneling within the subspace H−− clearly dominates outcoupling for λ � 1 and, to first approximation, Eq. (56)634

serves as an appropriate effective Hamiltonian without consideration of outcouplings. It is interesting to note, however,635

that the outcouplings which contribute most meaningfully – namely, M1, M2 and M3 – all resemble single excitation636

losses from the perspective of the dressed bosons. This suggests the possibility for a non-perturbative treatment via637

projective methods, ultimately leading to a repackaging at the level of effective dissipation rates and energy shifts638

which renormalize the matrix elements of Eq. (56) [69]. This approach would not qualitatively alter the parallel639

structure with the Bose-Hubbard model, however, so we leave the described strategy as a possible future avenue for640

analyses where quantitative agreement is desired.641

In contrast with the dispersive case, resonant coupling is characterized by nonvanishing linear and nonlinear tran-642

sition amplitudes which plateau to values of order J . In the limit Ueff � J , these contributions are unimportant as643

Mi,Ki < J for all λ and the system is therefore dominated by on-site interactions, leading to a MI-like, two particle644

ground state comprising polaritonic excitations. In the opposite limit Ueff � J , however, Eq. (57) fails to capture645

the entirety of the dynamics due to the importance of inter-branch transitions, as illustrated in Fig. 5c.646

D. The n = 2 ground state: quantum phases in the dispersive and resonant coupling regimes647

To better understand the turn on of these inter-branch transitions and their impact on the quantum phase transition648

admitted by the two-site JCH, we numerically compute the two-particle ground state as a function of J/~g and λ taking649

into account both intra- and inter-branch dynamics of Eq. (50). In general, this ground state is a superposition of the650

eight possible two excitation states {|2, 0,−,−〉, |0, 2,−,−〉, |1, 1,−,−〉, |1, 0,+,−〉, |0, 1,+,−〉, |1, 0,−,+〉, |0, 1,−,+〉,651

|0, 0,+,+〉}, gaining contributions not only from the target subspace H−− but also its complement. Similar to Fig.652

5b, all calculations were carried out for the fixed values ωc/Γ = 103 and g/Γ = 1, allowing ∆ and J to independently653

vary. Following Ref. [33], we use the variance in particle number at the ith site, var(Ni), as an order parameter. The654

computed variance for the two particle ground state is shown in Fig. 6b as a function of J/~g and λ.655

Comparing Figs. 6a and 6b, it is clear that the variance tracks the value of J (2)
eff /Ueff, as would be expected in the656

Bose-Hubbard model, with regions of vanishing variance (i.e., MI-like) corresponding to J (2)
eff /Ueff � 1 and regions657

which plateau to var(Ni) = 0.5 (i.e., SF-like) where J (2)
eff /Ueff � 1. In the dispersive regime, the onset of the SF-like658

phase occurs at increasingly smaller values of J/~g as λ is decreased. This phenomenon is easily understood through659

appeal to the analytic correspondence Ueff = C−2 and reference to previously derived results. In particular, in Section660

II C it was shown that C−2 /~ ≈ 2λ3g in the dispersive regime. Then simultaneously maintaining a constant photon-661

photon interaction strength (C−2 ) while increasing ∆ (i.e., decreasing λ) requires a relative increase in g, pushing the662

regime where photon-photon interactions dominate over photonic hopping toward smaller values of J/~g as as the663
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FIG. 6. (a) Ratio of the analytically derived effective two excitation hopping rate J(2)
eff and dressed boson-boson interaction

strength Ueff as a function of λ and J/~g. (b) Variance of the total number of excitations at site i as a function of λ and
J/~g. Due to symmetry there is no distinction in the variance at site one or two. This quantity serves as a useful order
parameter for finite lattice systems, with var(Ni) vanishing for a MI-like state but taking a finite value for a SF-like state,
reaching var(Ni) = 0.5 for an ideal n = 2 SF-like state. Clearly, panel (b) suggests the possibility for both an insulating and
superfluid phase in either the dispersive or resonant regimes independently. Comparing to panel (a), regions of J(2)

eff /Ueff � 1

and J(2)
eff /Ueff � 1 correlate nearly perfectly with regions of vanishing and nonvanishing variance, respectively, with J(2)

eff /Ueff ∼ 1
demarcating the boundary. (c–f) Overlap of the two-particle ground state |Ψ0〉 with the idealized (c) dressed MI-, (d) photonic
MI-, (e) dressed SF- and (f) photonic SF-like states, defined in Eq. (62), as a function of λ and J/~g. Depending on the value
of λ, the dressed states take on a either a photonic (λ� 1) or polaritonic (λ� 1) character. Consequently, there is noticeable
agreement between top and bottom panels for λ � 1. In the dispersive regime, tuning from small to large values of J/~g
facilitates a transition from a photonic MI-like phase to a photonic SF-like phase. In the resonant coupling regime, tuning
J/~g results in three distinct phases, with a polaritonic MI-like state occuring for Jeff/~g � 1, a polaritonic SF-like state for
Jeff/~g ∼ 1, and a photonic SF-like state Jeff/~g � 1.

system moves further into dispersive coupling. Oppositely, on resonance, it was found that C−2 /~ = (2−
√

2)g. Then664

Ueff is equivalent to g up to some scalar prefactor and the phase transition will occur at roughly the same value of665

J/~g for all λ� 1.666

It is important to reemphasize that Ni commutes with the unitary transformation operator U = eS1+S2 , and thus667

Fig. 6b may equally well be interpreted as the variance in the total number of bare or dressed photonic and atomic668

excitations. Given this, it is notable that the “phase boundary” is qualitatively demarcated by the J (2)
eff /Ueff = 1 line,669

entirely dependent on effective parameters appearing in the dressed basis. This agreement therefore indicates not670

only that the effective parameters J (2)
eff and Ueff analytically derived here are the appropriate JCH model counterparts671

of the Bose-Hubbard parameters J and U , but also that the dressed operator basis provides the most approrpriate672

representation for understanding the many-body phenomena of the JCH.673

Because the order parameter var(Ni) does not distinguish between excitations which are photonic in nature and
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those which are polaritonic, Fig. 6b provides little insight into the physical makeup of the excitations composing the

two-particle ground state. For instance, the black, var(Ni) = 0 region of Fig. 6b clearly suggests that the system is

in an insulating-like state, characterized by a constant number of quanta at each site. It does not, however, provide

any information about whether these excitations are fundamentally photonic or polaritonic. In order to gain a deeper

understanding of the ground state, we compute its squared overlap with the four distinct states

|Ψ̃MI〉 = ã†1ã
†
2 |0〉 (62a)

|ΨMI〉 = a†1a
†
2 |0〉 (62b)

|Ψ̃SF〉 =
1

2
√

2
(ã†1 − ã

†
2)2 |0〉 (62c)

|ΨSF〉 =
1

2
√

2
(a†1 − a

†
2)2 |0〉 , (62d)

which denote MI-like (a,b) and SF-like (c,d) states in both the bare and dressed excitation bases via action of the

appropriate creation operators on the vacuum state |0〉 = |0, 0, g, g〉 = |0, 0,−,−〉. The explicit forms of these states

may be written down as follows

|Ψ̃MI〉 = |1, 1〉 ⊗ |−,−〉 (63a)

|ΨMI〉 = |1, 1〉 ⊗ |g, g〉 (63b)

|Ψ̃SF〉 =
1

2
(|2, 0〉+ |0, 2〉 −

√
2 |1, 1〉)⊗ |−,−〉 (63c)

|ΨSF〉 =
1

2
(|2, 0〉+ |0, 2〉 −

√
2 |1, 1〉)⊗ |g, g〉 , (63d)

where untilded (tilded) states are expressed in the bare (dressed) basis. Figs. 6c and 6e show the squared projection of674

the computed ground state onto the dressed MI-like and SF-like states, while Figs. 6d and 6f show the corresponding675

projections onto their bare photonic counterparts. Focusing first on the dispersive regime (i.e., roughly the bottom676

third of each plot), comparison of the upper and lower panels agrees with theoretical intuition – for λ � 1, the677

dressed basis is a merely perturbed version of the bare basis due to the weak light-matter mode mixing and, as a678

result, there is little distinction between the bare and dressed photons. Using Fig. 6a as a visual guide, regions where679

Jeff/Ueff � 1 correspond to near unity overlap with the photonic MI-like state |ΨMI〉 while regions of Jeff/Ueff � 1680

perfectly conform to the photonic SF-like state |ΨSF〉. The phase boundary occurs roughly at Jeff/Ueff ≈ 1, further681

establishing the utility of the analytic mapping between basic system parameters and the effective Bose-Hubbard like682

parameters presented here. Thus, the quantum phase transition as J/~g is tuned for constant λ� 1 behaves exactly683

as predicted in Sec. III C.684

In the resonant coupling regime (roughly the top third of each plot), the physical character of bare and dressed685

excitations fundamentally differ as θ ≈ π/4 and the operators ã†i and ãi therefore describe creation and annihilation686

of polaritons. This divergence in physical character between dressed and bare excitations is evident in Figs. 6c–6f687

as top and bottom panels bear little resemblance for λ� 1. Interestingly, the ground state overlap with the dressed688

MI-, dressed SF-, and photonic SF-like states all display regions of near-unity as J/~g is tuned, indicating a much689

more complicated phase transition in comparison to the dispersive case. Referring again to Fig. 6a, regions where the690

polariton-polariton repulsion strength Ueff dominates the effective tunneling strength J (2)
eff coincide with a polaritonic691
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MI-like ground state |Ψ̃MI〉, as expected. In the far-opposite regime, where the effective tunneling dominates, it692

is evident that the dressed MI-like and SF-like states fail to accurately capture the character of the ground state.693

Instead, it is the photonic SF-like state |ΨSF〉 which characterizes the ground state in the regime J/~g � 1, λ � 1.694

To understand this phenomenon, it is helpful to consider the original, untransformed form of the JCH Hamiltonian in695

Eq. (48) where the cross-site tunneling appears in terms of purely photonic operators. For J � ~g, the on-site light-696

matter interactions contribute only perturbatively and may be neglected at first approximation. In this limit, then,697

the dressed operators no longer describe the fundamental excitations of the system and purely photonic character698

underlies the resulting SF-like ground state.699

Remarkably, Fig. 6e indicates that a third phase, consistent with a polaritonic superfluid, appears between the700

regions coinciding with a polaritonic Mott-insulator and photonic superfluid for λ� 1. The existence of such a phase701

in the JCH model has been both theoretically [46] and experimentally [53] examined in the literature, and may be702

explained as follows: as the ratio between the photonic hopping strength and light-matter coupling rate is tuned703

from its far limit J/~g � 1 (leading to localized polaritonic excitations) to its counterpart J/~g � 1 (resulting in704

delocalized photonic excitations), the system passes through an intermediate region J/~g ∼ 1 where J is large enough705

such that the cross-site cavity-TLS couplings M2 and M3 become appreciable, yet not so large that the photonic706

hopping completely dominates light-matter interactions and the atomic degrees of freedom are eliminated. The707

result is a two particle ground state which assumes a near-unity overlap with the polaritonic SF-like state, reaching708

| 〈Ψ̃SF|Ψ0〉 |2 ≈ 0.95 at its peak. It is interesting to note that in this parameter regime, the dynamics are not entirely709

restrained to the subspace H−− as was the case for dispersive coupling. Yet, the ground state is well-characterized by710

|Ψ̃SF〉 which is composed of the three individual states |2, 0,−,−〉, |0, 2,−,−〉, and |1, 1,−,−〉, which collectively span711

the two excitation manifold of H−−. Inspection of the excited states illustrates that this is not the case in general,712

indicating that quantum interference between the inter-branch transitions likely plays an important role in the system713

dynamics near the ground state energy.714

We conclude our analysis by making a few remarks on additional phenomena of the JCH model not explored715

here. The preceding calculations are restricted to the case ∆ > 0 which, as discussed in Section IIC, corresponds to716

repulsive on-site boson-boson interactions. Not included in the present analysis is the ∆ < 0 limit of the two-site JCH,717

where attractive on-site boson-boson interactions are realized and, consequently, multiple photon (or polariton) bound718

states may be formed. We defer discussion of these effects to existing literature on this subject (see, for example,719

Refs. [91] and [92] for theoretical analyses pertaining to JCH systems and Refs. [93] and [94] for related studies in720

atomic Rydberg platforms), and leave an in-depth analysis through the lens of the bosonic many-body form of the721

JCH model presented here as an interesting potential future avenue. Separately, dispersive coupling offers additional722

possibilities not explicitly discussed here, such as the realization of XY spin models by either (i) mapping polariton723

operators onto psuedo spin operators in the Mott regime [33, 39] or, alternatively, (ii) explicit separation of photonic724

and atomic degrees of freedom and realization of photon mediated spin-spin like interactions between the weakly725

dressed atoms [95, 96]. Here, the former approach is equivalent to consideration of Eq. (52) in the hardcore limit726

U±eff → ∞, while the latter involves inclusion of terms proportional to σ̃+
1 σ̃
−
2 + σ̃−1 σ̃

+
2 which appear at second order727

in λ in Eq. (52) and play a particularly important role in the low energy dynamics of the atomic dispersive limit728

(|λ| � 1 with ∆ < 0). Finally, we remark that the analysis presented here involves specialization to a single branch of729

the Jaynes-Cummings eigenspectrum, and its extension to two-sites, to facilitate comparison with the Bose-Hubbard730
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model. As seen throughout this work, this analogy is imperfect in part due to the additional psuedo-spin degrees731

of freedom absent in the Bose-Hubbard model. Extension of our methods to incorporate the full Hilbert space (i.e.,732

all possible dressed-emitter states) presents a future avenue for potential realization of related quantum many-body733

models, such as the two-component Bose-Hubbard Hamiltonian [39, 97–101] and those describing Bose-Bose mixtures734

[102]. Thus the results presented here not only provide a direct route for comparison between the two-site JCH and735

Bose-Hubbard models, but also demonstrate a more general utility as a potential aid for theoretical discovery and736

experimental realization of other quantum Hamiltonians of interest for analog quantum simulation using cavity and737

circuit QED platforms.738

IV. CONCLUSION739

Systems of interacting photons are among the most promising experimental platforms for studying quantum many-740

body phenomena. As photons do not naturally interact with each other, however, a nonlinear element, such as an741

atom, quantum dot, or superconducting qubit, is required to mediate effective photon-photon interactions. Here,742

we have presented a comprehensive theoretical study of the effective many-body interactions underlying the Jaynes-743

Cummings model, the prototypical description of light-matter coupling in cavity and circuit QED systems. This was744

achieved through techniques of unitary transformation, ultimately resulting in a reexpression of the Jaynes-Cummings745

Hamiltonian in terms of dressed bosonic and psuedo-spin operators. Upon non-perturbative expansion of its diagonal746

form, we have shown that the resulting dressed operator representation of the Jaynes-Cummings Hamiltonian includes747

an infinite sum of bosonic k-body interactions partitioned into two distinct branches. We have demonstrated that748

this many-body representation facilitates a close inspection of the parameter-dependent analogy between the Jaynes-749

Cummings Hamiltonian and the on-site portion of the Bose-Hubbard model. While prior studies have qualitatively750

compared the two – even going so far as to define an effective Hubbard-like interaction strength Ueff for the Jaynes-751

Cummings Hamiltonian [35, 36, 39] – our approach is unique in that the resulting many-body form is exact for both752

resonant and dispersive regimes for an arbitrary number of excitations. Furthermore, our results provide a novel753

interpretation of the breakdown in this analogy for resonant coupling, occurring due to the emergent role of higher754

effective k-body interactions which suppress the influence of the two-body terms. These findings thus not only serve755

as a unique lens for comparison with the onsite interactions of the Bose-Hubbard model, but also provide a theoretical756

avenue for explicit study of large effective k-body interactions facilitated by the Jaynes-Cummings interaction for757

potential realization of exotic quantum behavior not realizable in conventional quantum systems [103, 104].758

In addition, we have extended our analysis to the two-site Jaynes-Cummings-Hubbard (JCH) model and have759

demonstrated that, in the dispersive coupling regime, unitary transformation to the dressed operator representation760

allows for a near exact realization of the two-site Bose-Hubbard model, complete with explicit, analytic forms for all761

effective parameters. To better understand the resonant coupling case, we then restricted to a total of two excitations762

or fewer, derived an explicit form for the dressed state representation of the two-site JCH, and identified the block763

of matrix elements which map to Bose-Hubbard-like dynamics, deriving effective two excitation hopping (J (2)
eff ) and764

effective two-body interaction (Ueff) strengths in the process. Drawing upon this theoretical foundation, we have765

illustrated that, for resonant coupling, the turn on of inter-branch transitions induced by cross-site dressed light-766

matter couplings is ultimately the downfall of analogy with the two-site Bose-Hubbard model. We then concluded767
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with an analysis of the quantum phases of the two-site JCH model for n = 2 excitations, illustrating the possibility768

for either a photonic (dispersive coupling) or polaritonic (resonant coupling) MI-like state for J (2)
eff /Ueff � 1, while769

J
(2)
eff /Ueff � 1 uniformly leads to a photonic SF-like state. Finally, we identified the possibility for a third quantum770

phase near J (2)
eff /Ueff ∼ 1 for resonant coupling, corresponding to a polaritonic SF-like state. While these four unique771

quantum phases have been identified in the literature previously [36–38, 46], the dressed operator picture developed772

here provides an explicit analytic mapping between the parameters of the JCH model and those of the effective many-773

body representation through which its quantum phases are easily understood, resulting in a clear, all-encompassing774

exposition of the various parameter regimes and their association with the quantum phases of the JCH model. The775

present work thus demonstrates the general utility of the dressed many-body description of the Jaynes-Cummings776

model and its extensions to a lattice, opening avenues for further exploration of quantum many-body phenomena777

realizable in coupled light-matter systems.778
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Appendix A: Derivation of the many-body coefficients C±k784

The purpose of this appendix is to expand upon the steps taken in arriving at Eqs. (26–27). As mentioned in the785

main text, a crucial step involves Taylor expanding f(n) not about small λ as is typical for studies in the dispersive786

regime [58, 60], but about n = n0 where n0 is an undetermined constant chosen to be sufficiently large such that the787

convergence condition n0 > (n− 1/4λ2)/2 is satisfied. Carrying out this expansion leads to788

f(n) =

∞∑
r=0

( 1
2

r

)
(2λ)2rf(n0)1−2r(n− n0)r

=

∞∑
r=0

r∑
m=0

( 1
2

r

)(
r

m

)
(2λ)2rf(n0)1−2r(−n0)r−mnm,

(A1)

where the binomial theorem was used in going from the first to second line. Reexpressing in terms of operators using789

Eq. (24),790

f(N)σ̃z =

∞∑
r=0

r∑
m=0

( 1
2

r

)(
r

m

)
(2λ)2rf(n0)1−2r(−n0)r−m

×
[
(ã ã†)kσ̃+σ̃− + (ã†ã)mσ̃−σ̃+

]
,

(A2)
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where the commutator [ã, ã†] = 1 has been used in rewriting the projected number operator Nσ+σ− = ã†ã + 1 as791

ã ã†. The above relation can be further rewritten using the identity [105]792

(ã†ã)m =

m∑
k=0

{
m

k

}
(ã†)k(ã)k, (A3)

where the coefficients
{
m
k

}
are Stirling numbers of the second kind, related to the binomial coefficients via793

{
m

k

}
=

1

k!

k∑
p=0

(
k

p

)
(−1)p−kpm (A4)

Similarly, through combination of Eq. (A3) and the binomial theorem, the following identity may be derived:794

(ã ã†)m =

m∑
k=0

{
m+ 1

k + 1

}
(ã†)k(ã)k. (A5)

Then Eq. (A2), using the above identities, may be written in the form given by Eq. (25), restated here for clarity:795

f(N)σ̃z =
∑
r=0

r∑
m=0

( 1
2

r

)(
r

m

)
(2λ)2rf(n0)1−2r(−n0)r−m

×
m∑
k=0

(ã†)k(ã)k
[{
m+ 1

k + 1

}
σ̃+σ̃− −

{
m

k

}
σ̃−σ̃+

]
.

(A6)

As currently written, the above expression is nearly in the desired form, containing terms proportional to the normally-796

ordered product (ã†)k(ã)k describing effective k-body bosonic interactions. In order to write a Hamiltonian as a sum797

over these interactions, the three nested sums of Eq. (A6) must be reordered such that all k-body terms can be798

factored. Noting that the indices obey 0 ≤ k ≤ m ≤ r ≤ ∞, the ordering of the nested sums may be reversed by799

rewriting the upper and lower bounds, leading to Eq. (26) of the main text:800

H = ~ωc
(
N − 1

2

)
+

∞∑
k=0

1

k!

[
C+
k σ̃+σ̃− + C−k σ̃−σ̃+

]
(ã†)k(ã)k, (A7)

where801

C−k
k!

= −~
2

∆

∞∑
m=k

{
m

k

}
(−n0)−mf(n0)

∞∑
r=m

( 1
2

r

)(
r

m

)
βr

C+
k

k!
=

~
2

∆

∞∑
m=k

{
m+ 1

k + 1

}
(−n0)−mf(n0)

∞∑
r=m

( 1
2

r

)(
r

m

)
βr,

(A8)
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and β = −4λ2n0/f(n0)2. The above expressions may be simplified through explicit evaluation of the sum over m802

using properties of the generalized binomial coefficients. In particular, it can be shown that803

∞∑
r=m

( 1
2

r

)(
r

m

)
βr =

( 1
2

r

)
βm(1 + β)

1
2−m

=

( 1
2

r

)
(4λ2)m(−n0)m/f(n0).

(A9)

Focusing on C−k , evaluating the sum over m gives804

C−k
k!

= −~
2

∆

∞∑
m=k

{
m

k

}( 1
2

m

)
(4λ2)m

= − ~
2k!

∆

k∑
p=0

(
k

p

)
(−1)p−k

∞∑
m=0

( 1
2

m

)
(4λ2p)m

(A10)

where the identity in Eq. (A4) has been applied and the two sums reordered. Evaluating the rightmost sum (and805

ignoring issues of convergence as the double sum, taken together, must be convergent) yields the desired result806

C−k = −~
2

∆

k∑
p=0

(
k

p

)
(−1)p+k

√
1 + 4λ2p, (A11)

which is identical to the form of C−k Eq. (27). The derivation of C+
k follows in an analogous fashion and is therefore807

not made explicit here.808

Finally, we verify the form of C−k through explicit action of the sum over all k-body terms on the a generic basis809

state |n,−〉. The methods here may again be trivially extended to verify C+
k through action on the positive branch810

|n,+〉. Using the properties of bosonic creation and annihilation operators,811

HMB|n,−〉 =

∞∑
k=0

1

k!
C−k (ã†)k(ã)k|n,−〉

=

n∑
k=0

(
n

k

)
C−k |n,−〉.

(A12)

Substituting the definition for C−k and reordering the two resulting sums, again taking care to change the bounds as812

needed, yields,813

HMB|n,−〉 = −~
2

∆

n∑
p=0

(−1)p
√

1 + 4λ2p

×
n∑
k=p

(
n

k

)(
k

p

)
(−1)k|n,−〉.

(A13)
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Applying the identity814

n∑
k=p

(
n

k

)(
k

p

)
(−1)k = (−1)nδnp, (A14)

the above relation becomes815

HMB|n,−〉 = −~
2

∆
√

1 + 4λ2n|n,−〉, (A15)

thus verifying that the form of the Jaynes-Cummings Hamiltonian given in Eq. (26) returns the known eigenvalues816

for the negative branch states |n,−〉.817

Appendix B: Explicit forms for Mi and Ki, and block-matrix form of HJCH818

The following lists the explicit analytic forms for the coefficients Mi and Ki, each of which describes the amplitude819

of an allowed transition from the Hilbert space H−− to its complement as well as its inverse process:820

M1 = J cos θ(1) sin θ(1)

M2 = J sin θ(1)
[√

2 cos θ(1) cos θ(2) + sin θ(1) sin θ(2)
]

M3 = J cos θ(1)
[√

2 cos θ(1) sin θ(2)− sin θ(1) cos θ(2)
]

K1 = J cos θ(1)
[√

2 sin θ(1) cos θ(2)− cos θ(1) sin θ(2)
]

K2 = J sin θ(1)
[√

2 sin θ(1) cos θ(2)− cos θ(1) sin θ(2)
]
,

(B1)

where θ(n) = (1/2) tan−1(2λ
√
n) In the limit n ≤ 2, the two-site Jaynes-Cummings-Hubbard Hamiltonian may be821

written in block-matrix form as822

HJCH =



H̄ V †+,− V †−,+ V †+,+

V+,−

V−,+ T

V+,+


(B2)
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where823

H̄ =



Egnd 0 0 0 0 0

0 ~Ω0 + Egnd J
(1)
eff 0 0 0

0 J
(1)
eff ~Ω0 + Egnd 0 0 0

0 0 0 2~Ω0 + Ueff + Egnd 0
√

2J
(2)
eff

0 0 0 0 2~Ω0 + Ueff + Egnd
√

2J
(2)
eff

0 0 0
√

2J
(2)
eff

√
2J

(2)
eff 2~Ω0 + Egnd


, (B3)

defines the block withinH−− and Egnd = −~ωc+2C−0 . Separately, the lower-right block T is the 7×7 matrix describing824

possible transitions within its complementH+−∪H−+∪H++. The transitions between these two subspaces are defined825

by826

V+,− =


0 0 M1 0 0 0

0 0 0 0 0 M3

0 0 0 K1 M2 0

 , (B4)

827

V−,+ =


0 M1 0 0 0 0

0 0 0 M2 K1 0

0 0 0 0 0 M3

 , (B5)

and828

V−,+ =
[
0 0 0 K2 K2 0

]
(B6)

define all possible transitions between H−− and its complement. As we have specialized to n ≤ 2, the upper-left829

block of Eq. (B2) contains six basis states, ordered as |−,−〉 ⊗ {|0, 0〉 , |1, 0〉 , |0, 1〉 , |2, 0〉 , |0, 2〉 , |1, 1〉}. Likewise, the830

subspaces H+,− and H−,+ are spanned by three states each, ordered as |+,−〉 ⊗ {|0, 0〉 , |1, 0〉 , |0, 1〉} and |−,+〉 ⊗831

{|0, 0〉 , |1, 0〉 , |0, 1〉}, respectively. The subspace H+,+ contains just the state |+,+〉 ⊗ |0, 0〉.832

While not important to our analysis in the main text, for reference the explicit form of T is833

T =



T11 0 0 T14 0 0 0

0 T22 T23 0 T25 0 T27

0 T32 T33 0 0 T36 0

T41 0 0 T44 0 0 0

0 T52 0 0 T55 T56 0

0 0 T63 0 T65 T66 T67

0 T72 0 0 0 T76 T77


, (B7)
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with diagonal entries defined as834

T11 = T44 = C+
0 + C−0 = −C−1

T22 = T66 = ~ωc + C+
1 + C+

0 + C−1 = ~ωc + C+
1 − C

−
1

T33 = T55 = ~ωc + C−1 + C+
0 + C−0 = ~ωc

T77 = ~ωc + 2C+
0

,

(B8)

where we have simplified on the right-hand side where possible using the explicit forms for C±k in Eq. (31). Likewise,835

the nonzero off-diagonal matrix elements are given by836

T14 = T41 = J sin2 θ(1)

T23 = T32 = T56 = T65 = J cos θ(1)
[
cos θ(1) cos θ(2) +

√
2 sin θ(1) sin θ(2)

]
T25 = T52 = T36 = T63 = J sin θ(1)

[√
2 cos θ(1) sin θ(2)− cos θ(1) sin θ(2)

]
T27 = T67 = J sin θ(1)

[
cos θ(1) cos θ(2) +

√
2 sin θ(1) sin θ(2)

]
(B9)
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