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Spin ensembles coupled to optical cavities provide a powerful platform for engineering synthetic
quantum matter. Recently, we demonstrated that cavity mediated infinite range interactions can
induce fast scrambling in a Heisenberg XXZ spin chain (Phys. Rev. Research 2, 043399 (2020)).
In this work, we analyze the kaleidoscope of quantum phases that emerge in this system from the
interplay of these interactions. Employing both analytical spin-wave theory as well as numerical
DMRG calculations, we find that there is a large parameter regime where the continuous U(1)
symmetry of this model is spontaneously broken and the ground state of the system exhibits XY
order. This kind of symmetry breaking and the consequent long range order is forbidden for short
range interacting systems by the Mermin-Wagner theorem. Intriguingly, we find that the XY
order can be induced by even an infinitesimally weak infinite range interaction. Furthermore, we
demonstrate that in the U(1) symmetry broken phase, the half chain entanglement entropy violates
the area law logarithmically. Finally, we discuss a proposal to verify our predictions in state-of-the-
art quantum emulators.

I. INTRODUCTION

In recent years, the rapid advancements in cavity QED
technologies have propelled extensive investigations of
emergent phenomena in quantum many-body systems
with cavity induced long range interactions [1–10].
These systems provide a promising platform for realizing
quantum spin liquids [11], supersolids [12–14], exotic
superconductors [15–17], charge density waves [18],
quantum many-body scars [19], time crystals [20–22],
chaotic dynamical phases [23, 24], and even topological
states of matter [25, 26]. Moreover, cavity mediated
interactions can be harnessed to explore many-body
chaos [27–31] and dynamical quantum phase transitions
[32, 33].

In a recent paper, we have demonstrated that a one
dimensional Ising spin chain coupled to a single mode
cavity can exhibit fast scrambling; this highly chaotic
dynamics originates from the interplay of short and
long range interactions [34]. Concurrently, other groups
have also shown that competing short and long range
interactions can induce fast scrambling [35, 36]. In this
context, it is worth noting that even though scrambling
is an inherently non-equilibrium phenomenon, several
fast scrambling many-body models host a rich array of
quantum phases at equilibrium [37–42]. This observation
naturally leads to the following question: what are the
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ground state phases of this new class of cavity induced
fast scramblers?

In this paper, we address this question by investigating
the quantum phases of an one-dimensional spin chain
composed of two ingredients — a nearest neighbor
XXZ interaction and an infinite range XX interaction.
A schematic representation of our model is shown in
Fig. 1. As shown in section V, this model describes a
Heisenberg XXZ spin chain coupled to a single mode
cavity in the “bad cavity” limit. By employing an an-
alytical spin-wave analysis as well as numerical density
matrix renormalization group (DMRG) computations,
we demonstrate that this system exhibits three different
phases: (a) a long-range ordered Ising ferromagnetic
phase, (b) a quasi-long range ordered critical phase,
and (c) a long-range ordered U(1) symmetry breaking
XY phase. While the first two phases can be realized
in the short range interacting Heisenberg model, the
cavity induced interaction leads to the realization of
the third phase. We demonstrate that these phases
can be distinguished by their entanglement entropy;
in particular, phases (b) and (c) violate the area law
logarithmically and can be associated with an effective
central charge. The effective central charge distinguishes
phase (b) from phase (c).

This paper is organized as follows. In section II, we
introduce our model and describe its ground states in two
well known limits. In section III, we employ spin wave
analysis to derive the phase diagram of this system. In
section IV, we supplement the spin wave analysis with
DMRG calculations on finite size chains. We discuss a
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FIG. 1. Schematic representation of the model: The
model in Eq. (1) is characterized by a nearest neighbor XXZ
coupling and an infinite range XX coupling. This model de-
scribes a XXZ spin chain coupled to a single mode cavity.

potential experimental realization of our model in section
V and conclude this paper in section VI with a summary
of our findings.

II. MODEL

We study a one dimensional spin chain with N sites
described by the Hamiltonian:

H = −1

4

N−1∑
i=1

(
σzi σ

z
i+1 + α(σxi σ

x
i+1 + σyi σ

y
i+1)

)
+

J

4N

N−1∑
i=1

∑
j>i

(
σxi σ

x
j + σyi σ

y
j

)
(1)

where σγi is the standard Pauli matrix at lattice site i.
We have rescaled the infinite range interaction by 1/N
to ensure extensivity of the total energy.

We note that this model is characterized by a U(1)×Z2

symmetry. The U(1) symmetry transformation operator

is MU = exp
(
−iθ

∑
j σ

z
j

)
, and it originates from the

conservation of the total z-Magnetization. The breaking
of this continuous symmetry implies that 〈S+

j 〉 6= 0

(where S+
j = (σx + iσy)/2) and the system is in the XY

phase [43, 44]. On the other hand, the Z2 symmetry
transformation operator is

∏
j iσ

x
j (or

∏
j iσ

y
j ), and it

denotes a global rotation by π about the x (or y) axis.
The chain is in the Ising ferromagnetic phase when the

Z2 symmetry is broken and 〈σzj 〉 6= 0.

When J → 0, the model reduces to the Heisenberg
XXZ model and it is the exactly solvable by the Bethe
ansatz [45, 46]. In this case there are two possible
phases: the Ising ferromagnetic phase (when α < 1) and
a quasi-long range ordered critical phase, known as the
Tomonaga-Luttinger Liquid (TLL) (when α ≥ 1) [47].
We note that the Mermin-Wagner theorem forbids the
existence of a truly long range ordered phase with only
short range interactions [48, 49].

The ground state of this system can also be exactly
determined in the J →∞ limit, when the model reduces
to mean-field solvable Lipkin-Meshkov-Glick (LMG)
model [50–52]. In this case, the ground state of the
system is in the XY phase [53]. In the next section, we
explore the phase diagram of this model when J is finite.
This is precisely the regime, where the model is non-
integrable and its out-of-equilibrium dynamics is chaotic.

III. SPIN WAVE ANALYSIS

In this section, we employ spin-wave analysis to
explore the phase diagram of the model. It is well
known that the ground state spontaneously breaks
the Z2 symmetry, when α → 0 and J → 0. In
order to determine the phase boundary of this Ising fer-
romagnetic (FM) state, we define the vacuum state to be:

|ψ〉FM = | ↑↑↑↑ . . . ↑↑↑↑〉, (2)

and apply the Holstein-Primakoff transforma-
tion to map the spin excitations to bosons:

S−j = 1
2 (σxj − iσyj ) =

(√
1− a†jaj

)
aj ;S

+
j =

1
2 (σxj + iσyj ) = a†j

(√
1− a†jaj

)
;Szj = ( 1

2 − a†jaj)

[54]. In the weak excitation regime, 〈a†a〉 � 1, and the
Hamiltonian describing these spin waves is given by:

HFM =
∑
i

(
(a†iai + a†i+1ai+1)− α(a†iai+1 + a†i+1ai)

)
+

J

N

∑
i

∑
j>i

(
a†iaj + a†jai)

)
(3)

Assuming periodic boundary conditions, we can express
the spin-wave Hamiltonian can be in the following form:

HFM =
∑
k

ωka
†
kak, (4)

where

ωk = 1− α cos(k) +
J

N

N/2∑
r=1

cos

(
2πk

N
r

)
, (5)
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where we have set the lattice constant to be 1.

If min[ωk] > 0, then the ground state of HFM is the
vacuum state |0〉, such that

ak|0〉 = 0 ∀ k. (6)

In this case the ground state of our model is the
z-polarized state described in Eq. 2. On the other hand,
when min[ωk] < 0, then the system is no longer in the
weak excitation regime and the spin-wave approximation
outlined above breaks down. Thus, the z-polarized state
is not the correct choice for the quantum ground state in
this regime, and the system exhibits instability towards
XY ordering. From these considerations, it is clear
that the ground state is ferromagnetic when α = 1 (for
J ≥ 0), and α = 1 + J/2 (for J ≤ 0).

The Holstein-Primakoff transformation can also be em-
ployed to study the stability of the U(1)-symmetry break-
ing phase. In this case, we define the vacuum state to be
spin polarized along the +x direction:

|ψ〉XY = | →→→→ . . .→→→→〉, (7)

The Holstein-Primakoff mapping in this case is Sxi =

( 1
2 − a

†
iai); S

y
i ≈ a†i + ai; S

z
i ≈ (a†i − ai)/i. The Hamil-

tonian describing the spin-wave excitations in this case
is:

Hsw =

N/2∑
k=−N/2

ωk(a†kak + a−ka
†
−k) + µk(a†ka

†
−k + aka−k);

(8)
where,

ωk = (α− J

2
)− 1 + α

2
cos

(
2πk

N

)
+

J

2N

N/2∑
r=1

cos

(
2πk

N
r

)
(9)

µk =
1− α

2
cos

(
2πk

N

)
− J

2N

N/2∑
r=1

cos

(
2πk

N
r

)
(10)

where ak = 1√
N

∑
j exp(i2πjk/N)aj . Hsw can be diago-

nalized by a Bogoliubov transformation [55]. In this case,
the Bogoliubov quasiparticles are composed of both par-
ticles and holes and the ground state of the spin chain
has spin excitations. The density of these excitations is
given by:

〈a†iai〉 = lim
N→∞

1

2N

∑
k 6=0

([1− µ2
k/ω

2
k]−1/2 − 1)

=
1

4π

∫ π

−π
dq
(

[1− µ(q)2/ω(q)2]−1/2 − 1
)

=
1

4π

∫ π

−π
dq I(q) (11)

By expanding the integrand around q = 0, we find
that I(q) ∝ 1/

√
(J − αq2)(1− α+ (q2 − J)/2), and

I(q) ∝ 1/|q|, when J = 0. This implies that in the

absence of the infinite range interactions, 〈a†iai〉 ∼ ln(N)
and the long range order is destroyed in the thermody-
namic limit; in this case, the system is in the quasi-long
range ordered Tomonaga Luttinger Liquid (TLL) phase.

On the other hand, 〈a†iai〉 does not diverge and U(1)
symmetry breaking occurs (S+

j ∝ eiθ0), when J 6= 0.
This symmetry breaking and the suppression of the TLL
phase originates from the mean-field nature of this model
in the presence of infinite range interactions. Our results
are summarized in Fig. 2(b) (right panel). We note that
while a mean-field analysis can correctly determine the
phase boundary for the FM state, it would incorrectly
identify the TLL phase as the U(1)-symmetry breaking
phase in the J = 0 regime. In the next section, we com-
pliment our spin wave analysis results with numerical
density matrix renormalization group calculation of the
ground state phase diagram.

IV. DENSITY MATRIX RENORMALIZATION
GROUP SIMULATIONS

The DMRG is a powerful tool to diagnose the
equilibrium phases and out-of-equilibrium dynamics of
one-dimensional and quasi-one-dimensional quantum
systems [56–58]. We now proceed to to determine the
phase diagram of our model using the DMRG algorithm.
In this method, we employ a matrix product state
ansatz to represent the ground state [59, 60], and ensure
that the algorithm converges globally with a truncation
error less than 10−6. The short range part of the
Hamiltonian (the XXZ Heisenberg Model) has already
been extensively studied with this method [57]. For the
long range part, we represent HLMG as a sum of matrix
product operators; this choice avoids systematic errors
introduced by other schemes [61]. Our codes are mainly
based on tensors.net library [62].

The ground state entanglement entropy, provides a
powerful tool to numerically diagnose the phases of long
range interacting systems [63–71]. In particular, the Z2-
symmetry broken ferromagnetic phase is characterized by
an area law entanglement entropy, while ground states
with XY -like order exhibit violation of the area law. We
compute the entanglement entropy, S, defined as:

S = TrρB log(ρB), (12)

where ρB is the reduced density matrix of the right
(left) half of the chain, and it is obtained by tracing
over the degrees of freedom of the left (right) half of the
chain. As shown in Fig. 2(a) (left panel), S = 0, when
the spins are z-polarized and the spin chain is in the
ferromagnetic phase. On the other hand, the entropy is
finite, when the ground state is XY -like.
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FIG. 2. (a) Ground State Entanglement Entropy: The entanglement entropy, S is 0, when the spins are polarized along
the z-direction and the correlations are ferromagnetic in nature. The entanglement entropy violates the area law logarithmically,
when the correlations are XY -like. The left panel shows the density plot for the half chain entanglement entropy, defined in
Eq. 12 for a 100 site chain. The right panel shows the dependence of the entanglement entropy on the system size, when
the correlations are XY -like. (b) Phase Diagram : The left panel shows the phase diagram obtained from the effective
central charge, c (defined in Eq. 13). The density plot for c reveals three phases: (1) A ferromagnetic phase characterized
by c = 0 (2) the critical TLL characterized by c = 1 and (3) A true U(1) spontaneous symmetry breaking (SSB) long range
ordered phase characterized by c > 1. The right panel shows the phase diagram obtained from spin wave analysis. The phase
diagram obtained from both approaches match qualitatively. As mentioned in the main text, a purely mean-field analysis would
misidentify the TLL phase as the U(1) SSB phase.

It is evident from Fig. 2(a) (right panel) that in the
XY -like phase, the entanglement entropy violates the
area law logarithmically. Employing an analogy with
critical systems [72, 73], we can define an effective
central charge, c using the following relation:

S =
c

6
log(L) (13)

The central charge, c is 0 for the Ising ferromagnetic
phase and it is 1 for the TLL phase. Furthermore, in the

long range ordered U(1) symmetry breaking XY phase,
c > 1 [43, 61, 74]. We note that the transition from the
TLL phase to the XY phase is a continuous Berezinskii-
Kosterlitz-Thouless transition [43]. Thus, c changes con-
tinuously when J changes, and the area law is violated
logarithmically in both phases. As shown in Fig. 2(b)
(left panel), we find that the cavity mediated long range
interactions can lead to the spontaneous breaking of a
continuous U(1) symmetry for a large parameter regime.
Furthermore, our results demonstrate that even an in-
finitesimally weak coupling between the short range in-
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teracting spin chain and the optical cavity is sufficient to
induce long range XY order in the spin chain, thereby
providing a route to circumvent the Mermin-Wagner the-
orem.

V. PROPOSED EXPERIMENTAL
REALIZATION

As mentioned in the introduction, coupling a Heisen-
berg XXZ spin chain to a single mode cavity provides
a natural route to realize our model. The Heisenberg
Hamiltonian can be engineered using Rydberg atoms
[75–77], ultracold atomic gases [78–81], and trapped ions
[82]. In this section, we explicitly derive the effective spin
Hamiltonian that arises when this scenario is realized.

The evolution of the density matrix of the system, ρ̂
in the rotating frame of the atomic transition frequency
can be described by the master equation:

dρ̂

dt
= −i[ĤSL, ρ̂] + Lc[ρ̂], (14)

where

ĤSL = ∆câ
+â+HXXZ + g

N∑
i=1

(â+σ̂−i + âσ̂+
i ). (15)

Here ∆c is the detuning of the cavity mode frequency
from the atomic transition frequency in the rotating
frame, g is the coupling between the atomic spins and
the cavity field, HXXZ is the Heisenberg Hamiltonian
described by:

ĤXXZ = −1

4

N−1∑
i=1

(
Jzσ

z
i σ

z
i+1 + Jxx(σxi σ

x
i+1 + σyi σ

y
i+1)

)
,

(16)
and the photon loss from the cavity at a rate κ is given
by the Lindblad term:

Lc[ρ̂] =
κ

2
(2âρ̂â+ − â+âρ̂− ρ̂â+â). (17)

By adiabatically eliminating the cavity mode in the
bad cavity limit (κ � g), we obtain a master equation
for the reduced density matrix ρ̂s of the spin chain,

dρ̂s
dt

= −i[Ĥeff , ρ̂s] + LΓ[ρ̂s], (18)

where the effective Hamiltonian is given by:

Ĥeff =
4g2∆c

4∆2
c + κ2

∑
i,j

σ̂+
i σ̂
−
j +HXXZ , (19)

and

LΓ[ρ̂s] =
2g2κ

4∆2
c + κ2

∑
i,j

(2σ̂−i ρ̂sσ̂
+
j − σ̂

+
i σ̂
−
j ρ̂s − ρ̂sσ̂

+
i σ̂
−
j ).

(20)

We conclude that the evolution of the spin chain
is almost unitary when ∆c � κ/2; in this limit, the
effective many-body model describing the system is

given by Eq. 1, with J
N ≈

4g2

∆cJz
and α = Jxx

Jz
.

Interestingly, a highly tunable nearest-neighbor
Heisenberg spin model has recently been realized with
ultracold bosonic 7Li atoms loaded in an optical lattice
[79]. In particular, near the Mott regime, the dynamics
of this system is effectively described by HXXZ defined
in Eq. 16, where Jxx ∼ 50 Hz and Jz/Jxx can be tuned
between ∼ −1.8 and ∼ 1.6. Furthermore, the infinite
range interacting part of the Hamiltonian has also been
emulated with cold atomic ensembles, where g ∼ 10
kHz and ∆c ∼ 50 MHz [33]. These results clearly
demonstrate that the parameter regime of J

N ∼ 0.16
appears well within the reach of on-going realistic
experiments, thereby enabling the possibility of verifying
our predictions in the near future.

VI. SUMMARY AND OUTLOOK

In this paper, we have examined the ground state
phases of a Heisenberg spin chain with competing short
and long range interactions. We have clearly demon-
strated that cavity mediated infinite range interactions
can lead to the spontaneous breaking of the continuous
U(1) symmetry and a consequent logarithmic violation
of the area law. We have argued that the U(1) symmetry
breaking XY phase can be identified by examining the
effective central charge of the ground state. Finally, we
have outlined a proposal to realize our model in coupled
cavity-quantum gas systems.

There are several future directions of this work.
Firstly, it would be interesting to extend our study
to spin-1 particles, and examine whether topological
Haldane-like phases can arise in these systems. Fur-
thermore, we can explore dynamical quantum phase
transitions in these systems. Another promising direc-
tion would be to investigate the quantum phases and
out-of-equilibrium dynamics of this model in various two
dimensional geometries. Finally, we can also analyze
the properties of this spin chain, when it is subjected to
periodic driving.
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