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The problem of discriminating between many quantum channels with certainty is analyzed un-
der the assumption of prior knowledge of algebraic relations among possible channels. It is shown,
by explicit construction of a novel family of quantum algorithms, that when the set of possible
channels faithfully represents a finite subgroup of SU(2) (e.g., Cn, D2n, A4, S4, A5) the recently-
developed techniques of quantum signal processing can be modified to constitute subroutines for
quantum hypothesis testing. These algorithms, for group quantum hypothesis testing (G-QHT),
intuitively encode discrete properties of the channel set in SU(2) and improve query complexity
at least quadratically in n, the size of the channel set and group, compared to näıve repetition of
binary hypothesis testing. Intriguingly, performance is completely defined by explicit group homo-
morphisms; these in turn inform simple constraints on polynomials embedded in unitary matrices.
These constructions demonstrate a flexible technique for mapping questions in quantum inference
to the well-understood subfields of functional approximation and discrete algebra. Extensions to
larger groups and noisy settings are discussed, as well as paths by which improved protocols for
quantum hypothesis testing against structured channel sets have application in the transmission of
reference frames, proofs of security in quantum cryptography, and algorithms for property testing.

I. INTRODUCTION

Hypothesis testing is a fundamental statistical method
with wide application in classical and quantum contexts.
Seminal work [1] has led to a deep information-theoretic
understanding of binary hypothesis testing for quan-
tum states, but only quite recently have analogous lower
bounds been proven for error in discrimination among
quantum channels [2]. This forty-year gap between ma-
ture theories for quantum hypothesis testing (QHT), re-
alized as quantum state and channel discrimination re-
spectively, follows from the far richer structure of the
latter problem. I.e., general quantum channel discrimi-
nation protocols may be adaptive, entanglement-assisted,
and use auxiliary qubits; moreover, the concomitant opti-
mizations over (possibly adaptive) preparations and mea-
surements are computationally expensive.

It is known that sharpening the problem of quantum
channel discrimination to narrower settings can drasti-
cally alter algorithmic efficiency, the requirement of en-
tanglement, the requirement of auxiliary qubits, and the
ease of both theoretical and computational analysis [3–
5]. This work considers one such narrower statement of
QHT for discriminating quantum channels.

A. Problem statement

We state our problem as a game. Consider a party
with access to a small (single-qubit) quantum computer;
she is able to apply unitary operations of her choice to
this qubit, measure this qubit in chosen bases, and store
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the resulting classical data for as long as she likes, possi-
bly using this information to instruct future actions. She
is furthermore permitted query access to an oracle whose
result is the application of a single-qubit unitary quan-
tum channel Ei. This channel is from a publicly known
set S (hereafter the query set) of n distinct unitary chan-
nels. Queries consistently apply Ei, and i is unknown.

Problem I.1. An S-QHT Problem is any instance
wherein a party given access to Ei for unknown i ∈ [n] is
tasked with the following: in as few queries as possible de-
termine, with certainty, the hidden index i. The minimal
expected query complexity the party is able to achieve is
denoted qs and is taken over an assumption of equal pri-
ors on {E`}`∈[n] = S, a set of distinct single-qubit unitary
quantum channels.

The prefix S in Problem I.1 denotes QHT with respect
to a set of quantum channels. This work examines only
specific subsets of S-QHT games. Moreover, this work
considers a specific resource model, described informally
at the beginning of this section and depicted in Figure 1.

As described in Subsection I B, näıve upper and lower
bounds on qs, even for general S, can be computed with-
out difficulty, although the gap between these bounds is
in general large, i.e., exponential in the instance size |S|
[5]. A primary interest is thus to derive a set of properties
on the set S for which a lower bound for qs dependent on
the structure of S can be both (1) proven and (2) asymp-
totically achieved by a quantum algorithm exploiting the
structure of S to generate a strategy for playing an in-
stance of S-QHT (Problem I.1).

This work provides one such sufficient condition on
S. These constraints not only enable proof of query
complexity lower bounds and constructions of algorithms
achieving these bounds, but permit the cross-application
of diverse methods in abstract algebra and functional ap-
proximation theory to quantum information and infer-
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ence. This work considers the specific constraint that
S additionally faithfully represents a finite subgroup
G < SU(2) (i.e., it is a representation of a finite subgroup
of the group of single-qubit unitary transformations).

Definition I.1. A channel set S is said to faithfully
represent a finite group G if the elements of S have the
form {Ug}g∈G such that, respecting some natural product
operation for elements in S, UgUh = Ugh for g, h ∈ G,
and moreover that the group homomorphism g 7→ Ug is
injective, ensuring |S| = |G|.

A variant of S-QHT incorporating the condition dis-
cussed above is denoted by G-QHT (Problem I.2). While
this work considers groups G < SU(2), this game natu-
rally extends to finite representations embedded in any
Hilbert space.

Problem I.2. An instance of Problem I.1 with the addi-
tional constraint that S faithfully represents a finite group
G is an instance of a G-QHT problem or G-QHT game.

Before discussing this new game further, it is worth-
while to understand previous results in unitary quantum
channel discrimination, to which these games have non-
trivial relation. These results support why one should
expect that the family of sets S which obeys the prop-
erties of Lemma I.1 is rich enough to furnish non-trivial
instances of QHT, and why even in a limited resource
model algorithms to solve G-QHT efficiently exist.

B. Prior work

The problem of binary quantum channel discrimina-
tion is well-understood under the assumption that the set
of possible channels, i.e., the query set, denoted S, com-
prises only unitary channels. Foundational work by Aćın
[3] asserts that there is always some finite upper bound1

on qs for achieving perfect discrimination for any finite
S with distinct, known, unitary elements. Moreover it
is known that in the binary case, under the assumption
that the discriminating party may apply unitary opera-
tions of their choice, neither entanglement nor auxiliary
systems nor adaptive protocols are required to achieve
optimal query complexity [4, 5].

For binary discrimination among pairs of general quan-
tum channels, necessary and sufficient conditions are
known for the achievability of perfect quantum channel
discrimination in terms of the channel’s respective Choi
matrices [2]. Moreover, various general lower bounds are
known for the symmetric error of discrimination (given
a fixed number of channel uses) for binary and multiple

1 This furnishes a loose upper bound for multiple unitary channel
discrimination as well; one performs perfect discrimination on
pairs of elements in S, eliminating channels one by one; this is
the standard reduction to binary QHT.

quantum channel discrimination, as well as some condi-
tions on the set S, e.g., teleportation-covariance (teleco-
variance) and geometric uniform symmetry (GUS) under
which these bounds can be improved upon and, in the
former, more restrictive setting of telecovariance, asymp-
totically achieved [2, 6]. Such simplifying conditions have
also been studied in the multiple unitary channel case for
group covarianct query sets for non-adaptive quantum
strategies [7].

While it is known that entanglement (and in fact
any resource in a convex resource theory like quantum
mechanics [8, 9]) can be useful in quantum hypothe-
sis testing among non-unitary channels, the performance
of entanglement-free or low-entanglement strategies for
multiple quantum channel discrimination remains largely
unstudied, even in its simplest, unitary form. Namely,
while intriguing examples for methods of discrimination
among large sets of unitary operators where the use of
entanglement improves query complexity have been given
[5], the necessity of entanglement is not known. More-
over, the power afforded to quantum hypothesis testing
strategies for quantum channels using entanglement and
which are also adaptive has been shown to be non-trivial
in the case of non-unitary channels, where even adaptive-
ness alone may assist algorithmic performance [10, 11].

Many of the techniques referenced above are agnostic
to the structure of S; however, the notion that the struc-
ture of the query set should inform the structure of op-
timal procedures to differentiate members of S is an old
and clever idea, and indeed can provide optimal hypoth-
esis testing protocols for query sets comprising quantum
states which are group covariant [12]. It is as a general-
ization of this setting to quantum channels that Problem
I.2 (G-QHT) finds its form. Moreover, the study of dis-
crete and especially non-abelian algebraic objects in the
context of quantum information is not new, and under-
lies many open problems, e.g., the dihedral hidden sub-
group problem [13] and its reductions to various lattice
problems [14], as well as the symmetric hidden subgroup
problem and its reductions to graph isomorphism [15].

Multiple hypothesis testing for quantum channels
is not merely of independent quantum-information-
theoretic interest either, but has found use in designing
protocols for the optimal transmission of reference frames
[16] (i.e., when the query set is a compact group and the
aim is estimation of a fixed unitary transformation). Dis-
cretized versions of this problem also naturally connect
to the study of group frames and SIC-POVMs [17, 18],
e.g., as discussed in Lemma VI.1.

While left as an open extension to this work, applica-
tion of methods for quantum hypothesis testing against
quantum channels where the n-th channel application de-
pends non-trivially on the previous n − 1 applications,
i.e., memory channels [19] also have application to proofs
of the general impossibility of quantum bit-commitment
[20], and are of interest in quantum cryptography.

In what follows we more concretely define our algorith-
mic resource model, provide an example of why it might
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be expected that the question of achievability within
the exponential gap between the näıve upper and lower
bounds on query complexity for multiple quantum hy-
pothesis testing is richly structured, and finally give an
outline for the methods of proof employed in analyzing
this structure.

C. Our approach

The statement of G-QHT (Problem I.2) together with
the serial adaptive query model depicted in Figure 1
raises the question of whether this model is (1) inter-
esting, (2) non-trivial, and (3) tractable to analyze; this
section addresses these questions.

The player challenged in G-QHT to determine the hid-
den index i of the queried channel Ei is afforded pre-
cious few quantum resources. Stating it another way,
the player is forced to devise quantum strategies in the
serial adaptive query model. In this model, pictured in
Figure 1, the player may only intersperse their oracle
queries with measurements and unitary operations de-
pending on previous measurements. Serially, the querent
learns progressively more about the hidden index i, adap-
tively modifying her approach. Under the assumption of
a small quantum computer and a reasonable classical one,
this is the most general approach she may take, assuming
all measurements are projective and she wishes to deter-
mine i with certainty. Furthermore, in this model, query
complexity is a reasonable metric by which to judge al-
gorithmic performance.

In addition to the serial adaptive query model, we
can quickly chart algorithmic schemes for instances of
G-QHT where the querent is afforded a larger quantum
computer. In this case, the possibility for multiple-qubit2

unitaries and collective measurements gives rise to a va-
riety of series, parallel, and mixed strategies, which may
be adaptive or non-adaptive. The relative discriminating
power of these models for specific instances of QHT and
specific query sets is not wholly understood. An informal
depiction of some of these models is give in Figure 2.

As the querent in the course of playing the G-QHT
game is allowed to store reasonable amounts of classical
information, all that is asked of a successful quantum al-
gorithm for G-QHT in the serial adaptive query model is
that it is able to decide the hidden index i according to
some efficiently computable function on any of its prob-
able binary qubit measurement outputs. This statement
is made concrete in Definition I.2.

Definition I.2. A quantum algorithm in the serial adap-
tive query model is said to decide on a query set S of
distinct unitary quantum channels of size n in qs queries
if there exists, for all i ∈ [n] a computable deterministic

2 One could of course also imagine access to qudits, or indeed
stranger Hilbert spaces.

function f : {0, 1}m → [n] that returns the hidden index
i with certainty, on all probable (i.e., non-zero probabil-
ity outcomes of) m projective single-qubit measurements
{Λ`}`∈[m] resulting from the action of Ei in a serial adap-
tive protocol defined by the quantum algorithm that uses
qs oracle queries. This definition can be suitably modified
replacing S with G, a faithful representation of the group
G in a specified Hilbert space.

While we will soon be interested in the efficiency of
a single-qubit serial adaptive query model algorithm in
deciding a set S which faithfully represents a finite sub-
group G < SU(2), and indeed whether, for these special
sets, query-complexity-optimal, entanglement-free, serial
adaptive protocols similar to those constructed in [4] are
possible to construct, it is worthwhile to look at a sim-
ple, concrete instance of our game, and the function f it
induces according to Definition I.2.

We introduce a minimal instance of G-QHT which, in
addition to demonstrating why the näıve upper bounds
on query complexity discussed in Subsection I B are in
general not tight, also captures some of the intuitive mo-
tivations for the major results of this work for more com-
plicated query sets. The following example has the added
benefit of (1) requiring no explicit mention of quantum
signal processing (QSP, [21]) (Section II) in its construc-
tion and proof of optimality, and (2) providing some intu-
ition for why QSP is natural to call on to solve the short-
comings that emerge in applying the strategy of Lemma
I.1 to more general query sets.

Lemma I.1. For natural numbers n there exists a quan-
tum algorithm in the serial adaptive query model that per-
fectly decides any channel set S that faithfully represents
a cyclic subgroup C2n < SU(2), and which requires 2n−1
oracle queries.

Proof. For C2n , group elements are identifiable with bi-
nary strings of length n of which there are 2n, namely
labeling according to the angle of rotation in the Bloch
sphere in units of 21−nπ such that the queried channel ro-
tates about a known fixed axis by this angle. Concretely,
up to overall unitary transformation the query set is

S = {Rx(m · π/2n−1)}, m ∈ [2n]. (1)

Any decision protocol using one qubit for readout can
provide at most one bit of information as to the n-bit
label for the queried group element.3 We read from least
(LSB) to most (MSB) significant bit by the following
algorithm:

1. Prepare |0〉. Query the channel 2n−1 times and
measure in the standard basis, reading the LSB.

3 Note that these don’t need to bits in the label of the queried
channel, but rather some set of bits which, at the conclusion of
the algorithm, can be taken by the function f to the hidden index
i deterministically.
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Ei U1,1 Ei U1,2 Ei U1,n1 Ei

Ei U2,1 Ei U2,2 Ei U2,n2 Ei

Ei Um,1 Ei Um,2 Ei Um,nm Ei

FIG. 1. A general circuit to perform QHT in the serial adaptive query model. The unitary operators Ui,j for i ∈ [nj ], j ∈ [m] may
depend on previous single-qubit projective measurements Λk for k < j, for j ∈ [m], communicated by stored classical bit strings
of reasonable finite length (represented by arrows). Each row in the figure is a quantum circuit applied to a qubit prepared
from classical information depending only on the results of previous measurements. The serial nature of the discrimination
protocol to determine the unknown channel is evident; when the protocol terminates a known classical function is computed
on the set of measurement results (here, a bit-string of length m), equivalently Λk for k ∈ [m], to infer the hidden channel.
Other models one can consider are discussed in Figure 2.

(a) serial

(c) mixed(b) parallel

FIG. 2. Simplified illustrations of different models for quantum circuits performing QHT. Depicted are (a) serial adaptive, (b)
parallel, and (c) mixed strategies. Given query access to a finite number of applications of the unknown quantum channel (red,
outlined), in the figure 6 applications, the querent is conferred the ability to perform unitary operations (blue, non-outlined) of
her choice. Blue operations shown are arbitrarily structured and for demonstrative purposes only. For serial adaptive strategies,
(a), dashed boxes indicate regions between which only classical information is transmitted (i.e., measurement results). In (b) and
(c) entanglement, auxiliary qubits, and collective measurements can, in general, improve the performance of QHT algorithms.
Preparations and measurements are not explicitly shown.

2. Dependent on the measurement in the previous
step the possible query set S′ has description

{Rx(m · π/2n−2 + π/2n−1)} if measured |1〉
{Rx(m · π/2n−2)} if measured |0〉,

for m ∈ [2n−1]. The latter is a representation of
the cyclic group of order 2n−1. The former, if each
query is preceded by a unitary U = Rx(−π/2n), is
also a representation of this cyclic group.

Set U = Rx(−b · π/2n−1), where |b〉 was measured
in the previous step.

3. Apply U before each of 2n−2 channel applications
to bit-shift the label of the queried group element.
Repeat algorithm for a cyclic group of size 2n−1.

For the cyclic group of order 2, consisting of the identity
channel and a π-rotation, the decision protocol is obvi-
ous. By recursion, the total decision protocol has query

complexity 2n−1 + 2n−2 + · · · + 1 = 2n − 1. Optimality
follows from the optimality of phase estimation. �

The methods used in the proof of Lemma I.1 illustrate
an important concept: if the query set S is highly struc-
tured, binary measurement results can effectively corre-
spond to halving the size of the remaining search space
(or equivalently excluding, with one measurement, half
of the possible channels). Here, compared to the upper
bound given by the standard reduction to binary QHT,
we see a square root improvement in the instance size
|C2n |. Additionally, the function f from the statement of
Definition I.2 simply reads the adaptive output measure-
ments as a binary string and returns the corresponding
integer (the channel’s hidden index).

The reason that the simple method of Lemma I.1 works
is because even powers of channel elements are not only
subsets but subgroups of C2n , and specifically 2n−1 pow-
ers of group elements are rotations by angles in {0, π},
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FIG. 3. Subroutine of decision protocol on C8. For the cyclic
group of order 2n, any map g 7→ g2m

for m < n generates a
cyclic subgroup of order 2n−m. Consequently, as the cyclic
group of order 2 has an obvious discrimination strategy, the
method in Lemma I.1 can recursively determine membership
of the hidden element in cosets of cyclic subgroups of C2n .
Equivalently, the querent performs binary search, i.e., using
2n−1 queries, she can determine membership of the hidden
element in the red (image) or blue (complement of the image)
subset as pictured for the case n = 3, assuming she can solve
the n = 2 case.

which give perfectly orthogonal and thus perfectly dis-
tinguishable states when acting on special known initial
pure states. The adaptive protocol permits the querent
to recurse and learn the hidden index by asking individ-
ual questions of coset membership for prime-power order
normal subgroups.

For cyclic groups of general order, however, this
method fails. For odd-order cyclic groups, for instance,
sets of integral powers of group elements do not neces-
sarily form non-trivial subgroups by simple consequences
of Lagrange’s theorem. The question of bisecting the
search space must thus be resolved by other methods; it
is precisely the flexibility of QSP that will permit the re-
covery of algorithms of the same flavor as Lemma I.1 for
more general groups. That is, to permit the construction
of quantum algorithms that act deterministically on not
merely subgroups but arbitrarily chosen subsets of the
query set.

D. Paper outline and summary of results

The main body of this work describes methods for per-
fectly deciding sets of quantum channels (equivalently
query sets) which faithfully represent finite subgroups
G < SU(2) in order of increasing complexity of the fi-
nite group considered. This culminates in Theorem I.1.

Theorem I.1. [Simplified] There exist quantum algo-
rithms in the serial adaptive query model which perfectly
decide on all finite subgroups G of SU(2), with the excep-
tion of the simple non-abelian group A5, and which do
so with asymptotically optimal query complexity. These
algorithms each closely track with a single generic al-
gorithm (Algorithm 1), and their individual structure
closely tracks the structure of the considered group.

This work is organized such that algorithms for decid-
ing simpler finite groups can, where applicable, be used
as subroutines for algorithms deciding more complicated
groups whose subgroup decomposition is non-trivial. It is
this bootstrapped approach that provides novel sufficient
conditions under which the open question in Subsection
I B can be resolved in the serial adaptive query model.

We begin with an overview of the two mathematical
techniques that underlie the main results of the paper.
Namely, in Section II we review statements of the main
theorems of quantum signal processing, their guarantees,
and interpretations. Relatedly, we give a protocol (Algo-
rithm 1) that players of a simplified version of the G-QHT
game (Problem I.2) defined in Subsection I A may use to
achieve perfect decision protocols. The theorems of QSP
(and consequently solutions to the simplified game pro-
posed in Problem II.1) rely on the existence and efficient
computability of polynomials over real variables under
simple constraints, the properties of which are discussed
in Section III.

With both of the mathematical techniques established
in Sections II and III, the paper proceeds to discuss con-
crete groups systematically. The statement of Problem
I.2 as mentioned is simplified to Problem II.1, whose so-
lution using the methods of QSP depends solely on the
answer to questions in functional approximation. For
each concrete algorithm corresponding to deciding each
finite subgroup G < SU(2) in Section IV, we perform
reductions to decisions on normal subgroups of G where
possible, and restate decision algorithms on G as multi-
ple correlated instances of Algorithm 1. Specifically, we
assert that Algorithm 1 and its performance guarantees
are integral to the analysis of each algorithm given in
Section IV.

Algorithm 1 connects decisions on G to problems in
functional approximation which, referring back to the
guarantees of Section III, determine the query complex-
ity of the algorithm deciding on G. This connection is
made explicit in Problems III.1 and IV.1.

We provide a diagram of the order in which we ad-
dress decisions on specific finite subgroups (Figure 4) as
well as relations between all problems introduced in this
work (Figure 5). In turn, the relations between algo-
rithms and problems are summarized in the statement
of Algorithm 1 in conjunction with its accompanying re-
marks (Remarks II.1, II.2), toward a coherent framework
for hypothesis testing on discrete query sets.

For generalizations to larger Hilbert spaces, near-
unitary channels, and groups not embeddable in SU(2),
the reader is directed to Section V. Additionally, Section
VI gives a list of open problems in the same vein as the
results presented in this work, suggestions for the shape
of their resolution, and instances (e.g., Remark VI.1) in
which the methods derived here can be directly applied
to physical problems.
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R-QHT P-QHT

C2n Cpn Cp Cn D2n A4 S4

?
A5

FIG. 4. The linear flow of this work: deciding on increasingly rich sets of finite subgroups of SU(2). The diagram indicates
the order in which instances of G-QHT are solved throughout Section IV, beginning with cyclic groups and working toward
the dihedral and platonic groups; solid arrows indicate increasing complexity of the decision group, while dotted lines indicate
where a reduction to an algorithm deciding on the latter group is particularly simple. R-QHT (Problem II.1) and P-QHT
(Problems III.1 and IV.1) are developed in parallel to decision protocols on cyclic groups, and are joined for decisions on prime
order groups by Theorem IV.1. Applying similar methods to A5 is left to future work.

S-QHT

G-QHT

P-QHT

R-QHT

FIG. 5. Inclusion relations among problems formally defined
in this work. Four major problems discussed: S-QHT (Prob-
lem I.1), G-QHT (Problem I.2), R-QHT (Problem II.1), and
P-QHT (Problems III.1 and IV.1), referring to set, group,
rotation, and polynomial quantum hypothesis testing respec-
tively. Each region in the inclusion diagram contains non-
trivial instances.

II. OVERVIEW OF QUANTUM SIGNAL
PROCESSING

We have defined the G-QHT problem (Problem I.2) as
well as the form that any algorithm in the serial adap-
tive query model solving this problem must take. We
have not, however, provided a method for analyzing such
algorithms. For certain groups, e.g., C2n as covered in
Lemma I.1, we can come up with methods inspired by
classical algorithms; this intuition breaks down for more
complicated groups. In this section we introduce tech-
niques toward addressing this breakdown.

G-QHT might be naturally thought of as a sensing
problem: given an unknown g, application of the chan-
nel Ug (respecting a representation) might be physically
explained as the result of probing a system: the action
of the quantum channel contains some information about
the system. Successive queries increase knowledge of the

hidden parameter g of the group action. Naturally, the
ideal method for extracting information from the queried
channel varies with the structure ofG. Taking inspiration
from algorithms for quantum sensing in the serial query
model, we thus might naturally consider the flexible, re-
cently developed techniques of quantum signal processing
(QSP) [21–24].

QSP is a powerful quantum algorithmic primitive to
implement matrix polynomials on quantum computers
under only mild constraints [21]. Analysis of QSP has
enabled intuitive constructions for asymptotically opti-
mal algorithms in a range of settings from Hamiltonian
simulation [23] to the quantum linear system problem [25]
in [21, 26, 27]. For our purposes, however, we will need
only to consider the guarantees of the form of QSP pro-
tocols, succinctly stated in the following two theorems.
Before this we briefly address an issue of notation.

Definition II.1. In this work the convention when re-
ferring to the Pauli operators is

σx =

(
0 1

1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0

0 −1

)
, (2)

and moreover we will often refer to a linear combination
of such operators following the convention

σξ ≡ σx cos ξ + σy sin ξ, (3)

where this construction will often be used in the context of
defining a rotation about a fixed axis on the Bloch sphere,
namely

Rξ(θ) ≡ exp{−i(θ/2)σξ}, (4)

where this is distinct from the convention of [21]. If the
index is Latin instead of Greek, e.g., Rx(θ), then it is
meant exp{−i(θ/2)σx}: rotation about the x̂ vector.

Theorem II.1. In [21]. Let k ∈ N; there exists Φ ∈
Rk+1 such that for all x ∈ [−1, 1]

eiφ0σz

k∏
j=1

(
W (x) eiφjσz

)
= P (x) iQ(x)

√
1− x2

iQ∗(x)
√

1− x2 P ∗(x),

 , (5)
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iff P,Q ∈ C[x] satisfy the following properties:

1. deg(P ) = k and deg(Q) = k − 1.

2. P has the same parity as k modulo 2, while Q has
the opposite parity.

3. For all x ∈ [−1, 1], P and Q satisfy P (x)P ∗(x) +
(1− x2)Q(x)Q∗(x) = 1.

Theorem II.1 asserts that QSP protocols, which involve
interleaving rotations about orthogonal axes (one of these
rotations by a fixed, unknown angle, and the other by an
unfixed, known angle) result in unitary operators whose
elements are polynomials of the unknown rotation an-
gle. These polynomials are under constraints necessary
and sufficient to ensure the resulting operator is unitary.
While the constraints of Theorem II.1 are non-intuitive
for one wishing to solve the reverse problem (i.e., go from
polynomial to a unitary operator in which the polynomial
is embedded), the following theorem addresses precisely
this concern.

Theorem II.2. In [21]. Let k in Z+ and let P ′, Q′ ∈
R[x]; there exists some P,Q ∈ C[x] satisfying the require-
ments of Theorem II.1 such that P ′ = R(P ), Q′ = R(Q)
iff P ′, Q′ satisfy the first two requirements of Theorem
II.1 and additionally P ′(x)2 + (1− x2)Q′(x)2 ≤ 1.

The proof of this statement follows constructively from
a provably efficient (e.g., polynomial in k) algorithm to
build the missing complex parts of P,Q.

In Theorem II.2 the operator W (x), the signal being
processed, will be analogous to the quantum channel Ei
we wish to discriminate in G-QHT. That said, the utility
of these theorems is not immediately clear: the form of
W (x) (rotation about a known, fixed axis) is far simpler
than the members of the query set considered in G-QHT
for arbitrary finite subgroups of SU(2).

In the interest of making progress, we can thus modify
the statement of Problem I.2 such that QSP stands a fair
chance of providing a solution. Specifically we can write
out the generic form of a QSP-based algorithm that per-
fectly decides any finite set S = {Rx(θ`)}`∈[n] ∈ [−π, π)n

under the map Rx(θ`) = exp{−iθ`/2σx}. Note that here
S need not be a group under composition. This modified
version of the G-QHT game is discussed in Problem II.1.

Problem II.1. The rotation QHT problem ( R-QHT
problem) is a simplified version of the G-QHT prob-
lem (Problem I.2) with the following structure. Given
query access to a single-qubit quantum channel from
among a finite set S where each channel has again the
form Rξ(θi) = exp{−i(θi/2)(cos ξσx + sin ξσy))} for dis-
tinct, known θi and known rotation axis ξ, determine
the queried channel with certainty in the serial adaptive
query model.

Note that R-QHT problems are not a subset of G-QHT
problems, save in the case that the set of angles {θ`} are
all distinct integral multiples of 2π/n for positive integral
n (i.e., S represents a cyclic group).

As the rotation operators discussed in the R-QHT
problem satisfy the form expected of the W (x) opera-
tor in QSP, the methods of QSP suggest a neat prescrip-
tion for a quantum algorithm (Algorithm 1) with classi-
cal subroutines such that the output is a solution for the
R-QHT problem. We discuss assumptions on the input,
output, and structure of Algorithm 1 in Remark II.1, give
definitions for its classical subroutines in Definition II.2,
and further remark on where the non-trivial aspects of
Algorithm 1 lie in Remark II.2.

Remark II.1. We present a series of data structures
which together define both an instance of the R-QHT
problem (Problem II.1) and its solution, toward a con-
crete algorithm (Algorithm 1).

• Input: Any instance of R-QHT presupposes access
to classical information in the form of a list of dis-
tinct angles {θ` ∈ [0, 2π]}, ` ∈ [n]. R-QHT also pre-
supposes access to a quantum oracle which, when
called, applies a quantum channel channel Rξ(θi)
for fixed i about some known fixed axis ξ.

• Output: In the serial adaptive query model on
qubits, a projective measurement is an evaluation
of a probabilistic binary function on possible hid-
den indices j ∈ [n] for the applied channel. An
R-QHT algorithm’s output is one of these indices,
where success is dictated by high probability4 of or
certainty in returning the proper hidden index i.

• Assumptions: The result of the evaluation of
a set of these functions (corresponding to m bi-
nary measurements), fj : [n] 7→ {0, 1}, j ∈ [m]
on the hidden index i of the queried channel, is
a composite function g : i 7→ {0, 1}m defined as
g(i) = f1(i)f2(i) · · · fm(i).

If this function is injective for all j ∈ [n] then
the algorithm generating the fj solves R-QHT.5

Equivalently the algorithm computes a series of m
equivalence relations on the set of rotation angles
{θ`}, ` ∈ [n] such that every element is uniquely de-
fined by its membership under these m bisections.

Definition II.2. A quantum algorithm solving the R-
QHT problem (Problem II.1) is referred to simply as an
R-QHT algorithm, where solves indicates that it satisfies
the input, output, and structural assumptions presented
in Remark II.1.

In addition, toward an explicit description of one such
R-QHT algorithm (Algorithm 1), we define four classical
sub-algorithms whose application together constitutes the
classical subroutine of Algorithm 1).

4 In the noiseless case, we consider only deterministic algorithms.
5 This is a non-trivial condition to satisfy, but in most instances

can be thought of as assigning a binary tree’s labels to each of
m channels. This is the subject of Remark II.2.
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• genBisection: Given a group representation G
and a (possibly empty) set of evaluations of pre-
vious binary functions fj : Sj → {0, 1} for Sj ⊆
Sj−1 ⊆ · · · ⊆ S1 ⊆ G, returns a description of
fj+1 : Sj+1 → {0, 1} where Sj+1 ⊆ Sj is a subset
of Sj on which fj is constant.

The choice of fj+1 is not arbitrary but instead de-
pends heavily on the embedding of G in a larger
continuous group. Examples for methods of choos-
ing these fj can be found in the concrete algorithms
of Section IV. Further discussion of the properties
of these functions is also covered in Remark II.2.

Note that in Algorithm 1, the description of fj+1

can be used to compute fj+1(i) on the hidden index,
oblivious to the hidden index.

• genRealPoly: Given a description of fj, defined
on some subset of group elements Sj ∈ G, where
each s ∈ Sj is parameterized by some distinct
real parameter θ` ∈ [0, 2π] for ` ∈ |Sj |, returns
the minimal degree real polynomial pj satisfying
|pj(arccos θ`)| = fj(s[θ`]) for all θ`, and where
|pj(θ)| ≤ 1 for θ ∈ [0, 2π]. In addition pj is of
definite parity on [−1, 1].

Methods for computing constrained interpolating
polynomials are numerous and well-studied, com-
prising the discussion of Section III.

• genComplexPoly: Given a real polynomial pj satis-
fying the constraints of the output of genRealPoly,
returns a pair of complex polynomials (Pj , Qj)
on [−1, 1], each of definite parity and satisfying
Pj(x)2 + (1− x2)Qj(x)2 = 1 for x ∈ [−1, 1]. More-
over R(Pj) = P ′j = pj and R(Qj) = 0. One imple-
mentation is given in [21].

• genPhases: Given two polynomials (Pj , Qj)
satisfying the constraints on the output of
genComplexPoly, returns a set of phase angles
Φj ∈ Rk+1 satisfying Theorem II.1.

This subroutine also returns a classical description
of two quantum states, ψj , ψ

′
j, the former an initial

state and the latter a state with respect to which a
projective measurement is performed to compute fj
on the hidden index, i.e., fj(i). These states are ef-
ficiently computable and project out pj, equivalently
〈ψ′j |UΦj

|ψj〉 = pj, where UΦj
is the QSP unitary

generated by Φj.

Methods for computing these phase factors are nu-
merous [21, 26, 28]; all affirm that this computation
is efficient and stable, using existing techniques in
classical optimization.

• We denote by Mψj
(|ψ〉) the measurement project-

ing |ψ〉 onto {M0,M1} = {|ψj〉〈ψj |, I − |ψj〉〈ψj |},
returning b upon measurement of Mb.

Algorithm 1: A generic algorithm for solving
R-QHT

Assumptions : Input and output satisfying
assumptions of Remark II.1

Input : A quantum channel oracle Ei for
hidden index i; description of n
channels {E`}`∈[n].

Output : The hidden channel index i.

for j ← 1 to m do

Classical subroutine (see Def. II.2):

fj ← genBisection(G, {f<j(i)})
pj ← genRealPoly(fj)

(Pj , Qj)← genComplexPoly(pj)

(Φj , ψj , ψ
′
j)← genPhases(Pj , Qj)

Quantum subroutine:

|ψ〉 ← |ψj〉 Initialize quantum state

for k ← 1 to nj do
|ψ〉 ← Rξ(θi) |ψ〉 Apply oracle for unknown i
|ψ〉 ← Uk |ψ〉 Apply QSP unitary exp{iφkσξ⊥}

end

fj(i)←Mψ′
j
(|ψ〉) Send {|ψ′j〉 , |ψ′⊥j 〉} 7→ {0, 1}

end

i← g(i) = f1(i)f2(i) · · · fm(i) Invert g by Remark II.1

Return i

Remark II.2. The difficulty in Algorithm 1 stems from
selection of the proper functions fj : Sj → {0, 1} for sub-
sets Sj ⊆ S of the query set of fixed-axis rotations (equiv-
alently computing genBisection in Definition II.2).

As each fj takes values on Sj in {0, 1}, they can be
thought of as labels dividing or bisecting the query set;
the result of QSP is to make the quantum computation of
these fj on the hidden index i deterministic. A series of
these fj thus form the levels of a binary tree whose bisec-
tion condition is the result of a projective measurement
onto {|ψ′j〉 , |ψ′⊥j 〉}. We discuss the desired properties of
this binary decision tree; these principles foreshadow the
properties discussed in Theorem IV.1.

• An efficiently searchable binary tree should be bal-
anced; different channels should have binary labels
according to the tree which differ as early as possi-
ble, equivalently each fj should divide the remaining
query set roughly in half.

• The discrete fj objects are accessed by interpolat-
ing polynomials in a continuous embedding space,
and as the minimal degree of such polynomials cor-
respond to algorithmic performance, we desire that
the fj subdivide the search space into subsets which
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have a larger average6 distance between elements in
the natural metric of this space. Equivalently proxi-
mate elements in the binary tree are also proximate
in the embedding space.

• Each leaf of the binary decision tree must corre-
spond to no more than one channel. If each (prob-
able with respect to measurement) leaf corresponds
exactly to one channel, then g in II.1 is not only
injective but bijective.

• The fj must have definite parity in the continuous
embedding space, here SU(2); this parity constraint,
requisite for the use of QSP, follows from properties
of SU(2).

Algorithm 1 and its supporting remarks show that, at
least for a special set of channels, our hopes of computing
successive equivalence relations on subsets of S to iter-
atively determine the hidden query element rest on the
construction of low-degree constrained polynomials over
real variables.

Moreover, as stated in Remark II.2, most of the dif-
ficulty of this algorithm resides in designing the bi-
nary functions fj . The sequence of equivalence relations
f1, f2, · · · , fm, which together uniquely define the hidden
index i, need to be properly chosen such that (1) the de-
grees of their polynomial interpolations are not too large,
and (2) that the concatenation of their evaluations is in-
vertible on every i; luckily these conditions are not so
complicated to achieve in practice.

E.g., we can see one such set of fj in observing the
‘QSP-free’ decision algorithm for C2n in Lemma I.1,
namely fj(i) = i (mod 2j) for j ∈ [n]. Evidently in this
simplest case the family of fj define precisely a binary
search on the hidden channel index (and consequently
the equator of the Bloch sphere under the map i 7→ Ei).
What remains to be shown is the generalization of such
a search.

It turns out that Algorithm 1 can indeed be extended
to more interesting channel sets than single-axis rota-
tions (i.e., that we can lift R-QHT problems to G-QHT
problems). However, before investigating the flexibility
of Algorithm 1 as a subroutine, we first briefly address
methods in constrained polynomial interpolation. This
analysis, in addition to closing the loop on the R-QHT
problem and its query complexity, will demonstrate the
methods by which the optimal query complexity of R-
QHT is computed, and provide a foundation for general-
izing to G-QHT.

6 This is purposefully left ambiguous at this moment; we wish to
lower the required derivative of the interpolating polynomial.

III. CONSTRAINED POLYNOMIAL
INTERPOLATION

In the previous section we reduced the solution of Prob-
lem II.1, a simplified version of G-QHT, to the existence
of interpolating polynomials over real intervals. More-
over we asserted that, despite the restrictive form of the
queried channel W (x) considered in QSP, the guarantees
of Theorem II.1 were still strong enough to enable dis-
crimination among channel sets whose structure is richer
than rotations about a fixed axis. This section considers
one concrete interest of a party playing R-QHT: how can
a computationally limited classical party compute Φ for
a QSP algorithm such that the resulting matrix polyno-
mials induce measurements obeying the prescriptions of
Algorithm 1.

This is a problem of constrained polynomial interpo-
lation. More generally, the field of functional approx-
imation, in which this problem lives, is well-understood
[29–34] given its practical instantiations in classical signal
processing and relevance to foundational questions in real
analysis. We quote the following results in constrained
polynomial approximation and present their synthesis as
a new theorem guaranteeing desired properties for the
algorithms that will be constructed in Section IV for
specific finite groups. Additionally, these results provide
quantitative bounds on the query complexity of solutions
to the R-QHT problem discussed previously.

We present a further sharpening of R-QHT (Problem
II.1); this new problem, P-QHT, is similar to R-QHT but
provides a new quantitative condition on the performance
of an algorithm solving R-QHT.

Problem III.1. The polynomial QHT problem, or P-
QHT problem, answers the following question. Given an
instance of the R-QHT problem (Problem II.1), which
implicitly defines a set of angles {θ`}, what is an upper
bound on the sum of degrees of the set of polynomials {pj}
which interpolate binary functions7 f1, f2, · · · , fm satisfy
Remark II.2. This upper bound depends only on {θ`}.

Toward analyzing the minimal degree of such interpo-
lating polynomials as desired in Problem III.1, we give a
series of older results from works in constrained interpo-
lation.

Theorem III.1. In [30] Let Ξ = {xi : x1 < x2 < · · · <
xn} a set from the real interval [a, b] and P the set of
polynomials. For all ε > 0 and for each f ∈ C0[a, b], the
continuous functions on [a, b], there exists p ∈ P such
that the following conditions are satisfied:

1. p is interpolating: p(xi) = f(xi) ∀xi.

7 Note that for our purposes it is often not important to distin-
guish between {`} the set of indices and {θ`} the set of angles.
While the degree of the interpolating polynomial depends on
these angles, this dependence can be simplified by promises on
separations between neighboring θ`.
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FIG. 6. Binary search as enacted by Algorithm 1. Algorithm 1 takes binary functions fj on subsets of S0, specifically

S
f<j(s)

j , and produces a quantum algorithm that maps elements s on which fj takes value {0, 1} to orthogonal quantum states

{|ψf<j(s)

j 〉 , |ψf<j(s)⊥
j 〉} respectively. Measurement in this basis determines the new query set, S

f<j+1(s)

j+1 , and the process is
repeated until each leaf of the binary tree contains at most one quantum channel. The notation s here is overloaded, indicating
both the quantum channel and the continuous parameter defining the channel. For extension of this concept from R-QHT to
G-QHT see Remark IV.3

2. The polynomial p approximates f on [a, b],

max
x∈[a,b]

|p(x)− f(x)| ≤ ε.

3. The polynomial p obeys the additional constraint

max
x∈[a,b]

|p(x)| = max
x∈[a,b]

|f(x)|.

Theorem III.2. In [35] Let ν index an increasing se-
quence of finite dimensional approximation subspaces Nν
in C(T ), for T a topological space, whose union N is
dense in C(T ). If T is compact Hausdorff then the degree
of approximation with Lagrange (function value) interpo-
latory side conditions Eν(f,A) is related to the degree of
the unrestricted approximation Eν(f) by the inequality

lim sup
ν→∞

Eν(f,A)

Eν(f)
≤ 2 ∀f ∈ C(T )\N,

where the constant 2 cannot be decreased in general, and
is the best possible in the uniform approximation of (1)
entire periodic functions by trigonometric polynomials
and (2) entire functions on any closed finite interval by
algebraic polynomials.

Corollary III.2.1. In the context of constrained polyno-
mial interpolation the statement of Theorem III.2 can be
made less general as follows: Given a real interval [a, b]
and a real polynomial f of degree d which interpolates a
function g on [a, b] at d distinct points in [a, b], the min-
imal degree of a polynomial which interpolates g at these
same points and has norm strictly less than ‖g‖ on [a, b]
is bounded above by 2d as d goes to infinity and moreover
this bound cannot be decreased in general.

Theorem III.3. In [31] Let n ∈ Z+ and let xj = cos θj
where θ1 < θ2 < · · · < θn ∈ [0, 2π] and the minimum sep-
aration between adjacent θj (on the unit circle) is given

by δ > 0. Given any real function f ∈ C([−1, 1]) there
exists a polynomial p such that the following conditions
hold:

1. p is interpolating: p(xj) = f(xj) ∀xj.

2. The polynomial p is of degree 2m ≤ c/δ where c > 0
is some absolute constant.

3. The following inequality holds where the infimum is
taken over the space of all polynomials q of degree
at most 2m and k is a constant independent of f
and n:

max
x∈[−1,1]

|f(x)− p(x)| ≤ k inf
q∈P

(
max

x∈[−1,1]
|f(x)− q(x)|

)
Theorem III.4. Let Ξ = {xj}j∈[n] where xj = cos θj
and where θ1 < θ2 < · · · < θn ∈ [0, 2π] such that the
minimum separation between adjacent θj (on the unit
circle) is given by δ > 0. Then given any real function
f ∈ C([−1, 1]) there exists a polynomial p such that the
following conditions hold:

1. p is interpolating: i.e., p(xj) = f(xj) ∀xj.

2. The polynomial p is of degree m = O(1/δ).

3. The polynomial p satisfies the following inequality

max
x∈[−1,1]

|p(x)| = max
x∈[−1,1]

|f(x)|.

Proof. The existence of this polynomial is assured by
Theorem III.1, the scaling of degree of the unconstrained
(uniformly approximating) polynomial is given by Theo-
rem III.4, and that the constrained polynomial’s degree
does not grow too large with respect to the unconstrained
polynomial’s is given by Theorem III.2. �
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Finally, we present a lemma which permits us to apply
all of the above results in the context, mandated by QSP,
that the constrained interpolating polynomials used have
definite parity.

Lemma III.1. If there exists a polynomial of degree n
interpolating a set of points which has (the point set) def-
inite parity, and the polynomial is of fixed norm, then
there exists a polynomial of degree m ≤ n which still in-
terpolates the points and which has the same parity as the
points. Proof follows by re-expressing the polynomial as
a sum of terms with definite parity and observing that the
component of parity matching those of the interpolation
points still satisfies the desired properties.

The results of this series of theorems, and particularly
the assurances of Theorem III.4, permit us to justify the
idealized claims of the classical program discussed in Al-
gorithm 1, at least for cyclic groups. I.e., given that
the quantum channels considered can be (at least for the
case that G is cyclic) distinguished by their eigenvalues,
the methods of QSP and the assurances of Theorem III.4
together imply that their exist computationally cheap,
flexible quantum algorithms whose measurement results
are themselves deterministic functions on the discrete set
of possible channels.

With respect to a resolution of Problem III.1, this sec-
tion has provided a key observation: the minimal degree
of the interpolating polynomial on a set of angles {θ`}, as
in the R-QHT, problem is linear in both the number of
interpolation points and max`,k 1/|θ` − θk|, the minimal
separation between (distinct) queried angles.

Once the interpolating polynomials pj are computed,
the path to generating QSP angles Φj is well under-
stood and computationally efficient (i.e., polynomial in
the degree of the interpolating polynomial). There are
many ways to perform such a computation, both an-
alytically [21] and by numerically stable computations
[26]. Moreover, the interpolating polynomials can be
computed in any number of ways, usually relating to a
modified Remez-type algorithm [36, 37].

IV. DECISION PROTOCOLS ON FINITE
SUBGROUPS OF SU(2)

We now close the loop on our simplification of G-QHT
in Problem I.2 to R-QHT in Problem II.1 and finally,
through Algorithm 1 to a problem in polynomial inter-
polation where the degree of these polynomials relates
directly (by the results of Problem III.1) to the query
complexity of the solution to R-QHT. In this section we
finally address the more general problem of G-QHT for
small groups G.

For each finite subgroup G < SU(2), we provide con-
structive proof that there exists a series of binary func-
tions f1, f2, · · · , fm and a series of protocols to access
sets of rotations about known, fixed axes for which the

polynomials that interpolate each fj can be explicitly de-
scribed, computed, and characterized in terms of degree.
Once this degree is known, the expected query complex-
ity of these algorithms follows by the results of Section
III. Before this, however, we extend the statement of P-
QHT (Problem III.1), which as stated applied only to
sets of rotations about a fixed axis, to sets which obey
more general structure.

Problem IV.1. The P-QHT problem (Problem III.1)
can be extended given the following prescription on a so-
lution form. We begin with the standard statement of G-
QHT: given query access to one quantum channel among
a faithful representation of a finite group G < SU(2) de-
termine the optimal query complexity of an adaptive se-
rial query model algorithm that determines the hidden
index of the queried channel with certainty.

Importantly, however, for P-QHT to provide a solu-
tion, one must be able to transform the query set in a
special way; this reduction follows from the conditions
given below:

1. There must exist a series of protocols, given query
access to a channel set S, for generating compound
queries8 (see Definition IV.1) whose structure is
(1) precisely a set of rotations by known angles
around a fixed axis (i.e., inputs to the R-QHT prob-
lem satisfying Remark II.1), or (2) a subset of a
finite group G′ for which a decision algorithm is
already known.

2. In the case of (1) as given above there must exist
a solution for P-QHT (Problem III.1) for the new
query set. There must also exist some additional
assumption, specific to the structure of S, that per-
mits the compound query map used to be invertible.
This is accomplished in different ways for different
groups, e.g., under the assumption that the repre-
sented group is a semi-direct product, as in Theo-
rem IV.2.

Definition IV.1. A compound query with respect to a
quantum channel E : A → B is a quantum circuit C :
A → B which uses a finite number of copies of E as
well as a finite number of additional unitary operators
independent of E.

Compound queries are often used by quantum algo-
rithms (e.g., Algorithm 1) in place of bare queries, i.e.,
simply Ei. Usually, useful compound query circuits do
not act injectively on the query set.

Remark IV.1. The extended statement of the P-QHT
problem (Problem IV.1) exists to answer the following

8 In simple terms one may think of these as small quantum circuits
which employ a small number of queries to the original oracle,
and may be used as subroutines replacing oracle calls for a pro-
tocol expecting queries of a different form. Multiple physical
queries can form one compound query.
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question: how far can Algorithm 1 be taken beyond its
role as a solution to R-QHT?

Consequently each of the algorithms discussed in this
section is, in truth, simply (1) a procedure for reduction
to R-QHT, followed by (2) application of Algorithm 1.
When reduction is made to deciding a simpler group, the
application of Algorithm 1 is hidden behind algebraic ab-
straction.

We go through the finite list of distinct families of fi-
nite subgroups of SU(2) in order of increasing complexity,
recovering instances of Problem IV.1 as stated above. As
a road-map we provide the following lemma, which com-
pletely characterizes the finite subgroups of SU(2). A
diagram of the path of these reductions was given in Fig-
ure 4.

Lemma IV.1. The finite subgroups of SU(2) are in bi-
jection with the finite subgroups of SO(3) under the stan-
dard double covering SU(2) → SO(3). These finite sub-
groups are thus completely described by five families: (1)
The cyclic groups of order n, Cn, n ∈ Z+. (2) The di-
hedral groups of order 2n, D2n, n ∈ Z+. (3) The alter-
nating group on four elements, A4. (4) The symmetric
group on four elements, S4. (5) The alternating group
on five elements A5.

A. Cyclic groups

Before lifting the methods of Lemma I.1 from C2n to
general cyclic groups we provide a few lemmas.

Lemma IV.2. The cyclic group of order n is isomorphic
to the direct product of cyclic groups

Cn ∼= Cpr11 × Cpr22 × · · · × Cprss ,

iff the unique prime decomposition of n is

n =

s∏
i=1

prii , (6)

for distinct primes pi. I.e., Cn is isomorphic to a di-
rect product of cyclic groups of prime-power order for all
maximal prime powers dividing n. This is one statement
of the Chinese remainder theorem.

We proceed to analyze decisions on Cn by a series of
reductions to decisions on the more restricted (albeit in-
finite) family of cyclic groups of prime order.

Lemma IV.3. If there exists a family of algorithms F =
{ACp

} that each perfectly decide Cp for all primes p then
there exists an algorithm ACn

that perfectly decides Cn
for n ∈ N, and which is asymptotically optimal in query
complexity if the algorithms in F are also optimal.

Proof. Any positive integer n has a unique decomposition
into a product of unique primes as given in (6), where ri

is the multiplicity of the i-th smallest prime dividing n,
pi, and s is the largest index for which pi divides n at
least once.

Assuming the existence of a deterministic algorithm
ACpi

that can perfectly decide Cpi , elements of the group
Cn are decided according to the following protocol:

1. If the multiplicity ri of pi in n is one, in the place
of the query usually made by the protocol ACpi

,

query the oracle n/pi times. This compound query
may be conjugated by a known unitary to achieve
the representation that Api expects.

2. If the multiplicity of pi in n (ri) is greater than
one, the same method presented in the Lemma I.1
is applied to compound queries of order n/prii to
read off successive bits (this time in base pi) of ri,
using the assumed subroutine for deciding ACpi

.

Compound queries allow access to prime-power-order
cyclic subgroups of Cn whose decision algorithms are
strictly simpler and reducible to decisions on Cp for p
prime. �

We proceed by considering a result concerning the
smallest non-trivial cyclic group, C3, with which to play
G-QHT. This can be thought of as a base case for our
eventual reduction from decision protocols on large cyclic
groups to smaller ones.

Discriminating between quantum channels represent-
ing C3 has some precedent in prior work: such chan-
nels are precisely those which can generate the Peres-
Wootters states [38, 39] or equivalently Mercedes-Benz
frames [40, 41] (for their threefold symmetry).

Lemma IV.4. There exists an algorithm AC3 that per-
fectly decides C3 (or rotations about a fixed axis on the
Bloch sphere by one angle among the three angle set
{0, 2π/3, 4π/3}) using at most 6 oracle queries. This al-
gorithm is said to solve the three angle problem.

Proof. Without loss of generality the group C3

is represented by the set of quantum channels
{R0(0), R0(2π/3), R0(4π/3)}. Consider the QSP se-
quence defined by QSP phase list Φ = {0,−α, α, 0} using
the convention of Theorem II.1, i.e., the product

UΦ = Rx(θ)Rz(α)Rx(θ)Rz(−α)Rx(θ), (7)

for any angle θ. It is not hard to explicitly compute the
top left component of this unitary operator, and specif-
ically for the special angle α = arccos(cos θ/[1 − cos θ]),
which is real whenever π/3 ≤ θ ≤ 5π/3, the top left com-
ponent of this unitary 〈0|UΦ|0〉 is 0. Consequently with
three queries to the oracle, and α = arccos(−1/3), the
transition probability |0〉 7→ |0〉 is 1 if θ = 0 and 0 if θ ∈
{2π/3, 4π/3}. Consequently three additional queries are
enough, possibly replacing Rx(θ) with Rx(θ)Rx(−2π/3)
in (7), to completely and perfectly determine the hidden
angle. Over equal priors the expected query complexity
of this technique is 5.
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Alternatively in the language of Theorem II.1, we in-
tend that the top left element of UΦ, under the map
cos θ/2 7→ x, has the form

f1(x) =
4

3
x (x− 1/2)(x+ 1/2),

which is a polynomial9 that takes modulus 1 at x = −1
and x = 1, has definite parity, and takes value 0 at x =
±1/2. This, along with f1(x) under the map θ 7→ θ−2π/3
produces a pair of binary measurements for which the
map10 S 7→ M is injective where M is the set of binary
measurements.

{〈+|UΦ|+〉 , 〈+|U ′Φ|+〉} =


{1, 0} θ = 0

{0, 1} θ = 2π/3

{0, 0} θ = 4π/3,

where U ′Φ is the aforementioned pre-rotation replacing
Rx(θ) with Rx(θ)Rx(−2π/3) or equivalently θ 7→ θ −
2π/3. A visual depiction of this algorithm is given in
Figure 8, and a table relating this Lemma’s construction
directly to Algorithm 1 is given in Table I. �

The functional intuition of protocols deciding on repre-
sentations of cyclic groups is depicted in Figure 8. As dis-
cussed previously, QSP protocols take equiangular rota-
tions about different axes in equator of the Bloch sphere
(see Figure 7), interleave them with rotations about or-
thogonal axes on the Bloch sphere, and give efficient
methods for forcing the corresponding matrix elements of
the final, composite rotation to be desired trigonometic
polynomials in the unknown rotation angle. Figure 8
demonstrates that polynomials which have modulus 0 or
1 at specific angles result in deterministic protocols for
dividing the search space. The work remaining is to sys-
tematize sub-protocols of this form to generate efficient
decision protocols on the entire query set.

Finally we can provide a proof for perfect decision pro-
tocols on all prime order cyclic groups, and in fact this
shows an even stronger result as the same method goes
through for cyclic groups of any odd order. However,
given the results of Lemma IV.3, QSP is only a neces-
sary tool in the prime-order case, when compound queries
provide no helpful simplifications.

Theorem IV.1. There exists a family of determinis-
tic algorithms F = {ACp

} for all primes p, where ACp

perfectly decides Cp, with asymptotically optimal query
complexity.

9 Note that (4/3)(x − 1/2)(x + 1/2) also satisfies constraints re-
quired by QSP, and indeed this lemma can be shown using only
4 maximum (10/3 expected) oracle queries, though the resulting
protocol is less geometrically obvious.

10 S is overloaded here: both channel elements and the continuous
real parameter θ characterizing these elements. Note also that
this map can be written as a binary tree as in Figure 6.

|+〉

|−〉

a

c

b

a2 a3

a

a2 a3

a

a2 a3

a

(a)

(b)

FIG. 7. Geometric (a) and algebraic (b) depictions of the
proof of Lemma IV.4. Unitary representations of C3 in SU(2)
are, without loss of generality, equivalent to a set of rotations
which cycles states (a, b, c) as shown on the Bloch sphere in
(a). Moving away from the Bloch sphere, any sequence of
quantum channel discrimination protocols whose binary PVM
output differs on subsets of quantum channels representing
C3 (e.g., partitions C3 elements into red and blue subsets as
pictured, and as proven in Lemma IV.4), also determines the
queried quantum channel perfectly. The partitions indicated
in (b) are generated by polynomials given in Figure 8.

Proof. The proof follows from the existence of a family of
polynomials f1, f2, · · · , fm whose moduli take values in
{0, 1} on a finite set of subsets {Sj} for j ∈ [m] of the set
of p possible phases S0 induced by queries to the oracle,
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Index Query map pj |ψj〉 |ψ′j〉

j = 1 Ei 7→ Ei (4x3 − x)/3 |+〉 |±〉 7→ {0, 1}

j = 2 Ei 7→ EiRx(−2π/3) (4x3 − x)/3 |+〉 |±〉 7→ {0, 1}

{f1(Ei), f2(Ei)} =


{0, 1} 7→ Rx(0)

{1, 0} 7→ Rx(2π/3)

{1, 1} 7→ Rx(4π/3)

(Inverse map)

TABLE I. The use of Algorithm 1 as a subroutine for solving the three angle problem (Lemma IV.4) in tabular form. As pj for
j ∈ [m] completely define both fj and the corresponding QSP-derived objects given in Definition II.2, they provide a minimal
explicit demonstration of the use of Algorithm 1. Included are quantum states for preparation, |ψj〉, and measurement, |ψ′j〉,
as well as the compound query map (Definition IV.1), where Algorithm 1 is fed compound queries. Finally, an inverse map is
given to recover the hidden channel.

namely

S0 =

{
cos

(
πn

p

)
, n ∈ [p]

}
,

such that that the successive subsets S0 ⊇ S1 ⊇ · · · ⊇ Sm
have the following11 properties:

• Bisecting: The order of Sj+1 should satisfy that
|Sj+1| ≤ (1/c)|Sj | for some fixed constant c =
O(1).

• Density reducing: The minimum separation be-
tween elements of Sj+1 on which the modulus of the
interpolating polynomial fj+1 takes distinct values
should increase exponentially in j.

• Totally deciding: Constructing a family of inter-
polating polynomials pj whose moduli take values
in the set {0, 1} on Sj is equivalent to computing
a family of binary functions fj on Cp; the evalua-
tion of these binary functions on the hidden channel
corresponding to g ∈ Cn should uniquely identify
g. I.e., this map g 7→ {0, 1}m should be injective
(see Figure 6).

• Parity preserving: The elements of Sj should be
of definite parity for all j; this parity is shared by
all pj .

If all of these conditions are satisfied by some judicious
sequence of Sj the result follows if the number of such
non-trivial subsets of S, given by m, is asymptotically
log p and the degree of the polynomial pj goes as O(p/cj)
in which case the entire protocol has query complexity
linear in p.

The existence of these interpolating polynomials is
guaranteed by the results of Section III, while their
asymptotic query complexity follows directly from ex-
ponentially increasing promised gaps between elements

11 Also described in Remark II.2 and Figure 6.

of Sj . For a given group Cp these subsets Sj have the
explicit, measurement dependent, form

S0 = S0

S0
j = {sk ∈ Sj−1, fj−1(sk) = 0}

S1
j = {sk ∈ Sj−1, fj−1(sk) = 1}

where the new Sj ’s upper index indicates the measure-
ment result of the QSP sequence dividing the search
space, and is subsequently dropped as this iterative di-
vision continues. The functions fj are defined as poly-
nomials which interpolate any binary function on the set
Sj−1 which alternates maximally with definite parity on
[−1, 1] (fj will share this parity). These functions have
explicit description, e.g., when given some subset Sj of
size 2n+ 1, indexing by ` for increasing s` in [−1, 1].

fj(x`) =

{
1
2 [1 + (−1)`] 1 ≤ ` ≤ n
1
2 [1 + (−1)`−1] n+ 1 ≤ ` ≤ 2n+ 1.

This evidently preserves parity and confers the right
properties on successive subsets. In plain terms this is
a binary search whose constituent sub-searches grow ex-
ponentially cheaper in query complexity, and whose base
case is handled by Lemma IV.4. �

Finally, by the previous results we can make a state-
ment for all cyclic groups, and proceed to richer sub-
groups of SU(2).

Corollary IV.1.1. For all n ∈ N, there exists a deter-
ministic algorithm ACn

which perfectly decides Cn, with
asymptotically optimal query complexity. This follows di-
rectly from Lemma IV.3 and Theorem IV.1.

B. Dihedral groups

We consider the dihedral groups of order 2n; it is not
too difficult to see that each bit-string label for an ele-
ment g ∈ D2n requires exactly one more bit to uniquely
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FIG. 8. Quantum response function employed in the proof of
Lemma IV.4 (a), and its shifted version (b). On the left is
the polynomial, in cos (θ/2), which is generated as the top left
component of the single-qubit unitary UΦ corresponding to
the angles Φ indicated in the first QSP subroutine of Lemma
IV.4. On the right is the same protocol using a pre-rotation
by 2π/3, permitting a unique binary labeling of each channel
after two measurements.

describe the element, corresponding to membership of g
in one of two cosets of the normal cyclic subgroup Cn/Dn.
We show that this bit can be recovered in one additional
measurement, and that our protocol is thus optimal as-
suming the optimality of the protocol which decides Cn.

Theorem IV.2. Assuming existence of an algorithm

ACn
that perfectly decides Cn there exists an algorithm

AD2n
that calls ACn

as a sub-routine and perfectly de-
cides D2n, the dihedral group of order 2n, with one addi-
tional oracle query. A depiction of the overarching idea
of this algorithm is given in Figure 9.

Proof. Without loss of generality AD2n has oracle access
to a channel in a representation of D2n whose cyclic sub-
group Cn in SU(2) has representation:

{Rz(m · 2π/n)}, m ∈ [n]. (8)

The SU(2) embedding of D2n that contains our embed-
ding of Cn as a subgroup is generated by a generator of
this Cn, σ, and another group element, τ , which without
loss of generality has representation Rx(π). The standard
presentation of D2n is

D2n ≡ {σ, τ | σn = τ2 = τστσ = e}, (9)

The lemma follows if there exists a simple protocol to,
given query access to an unknown element g ∈ D2n, de-
termine membership of the queried element g among the
two cosets of Cn < D2n.

Assume U(g) is the unitary operation corresponding to
the group element g embedded in SU(2) as stated. Then

HU(〈σ〉)H |0〉 = |0〉 (10)

HU(τ)U(〈σ〉)H |0〉 = |1〉 , (11)

where H is the Hadamard gate and U(〈σ〉) represents
some unitary operation within the subgroup 〈σ〉 gener-
ated by σ. Intuitively, H rotates |0〉 to another state
insensitive to the action of the cyclic index 2 subgroup of
D2n. This follows from the lack of irreducible represen-
tations of Cn in SU(2).

If |0〉 is measured thenACn
can be applied as normal to

future queries, respecting the embedding of the subgroup
〈σ〉. Otherwise any query made to the oracle U(g) is
prefaced by Rx(π), reducing to a decision on Cn. Only
one additional query is needed by AD2n

to decide D2n (a
group with twice the size). �

C. Platonic groups

Finally we address protocols for the finite subgroups of
SU(2) that do not fit into countably infinite families, and
exhibit a richer non-abelian structure than the dihedral
group. These are often referred to as the platonic groups
due to their appearance in the study of symmetry groups
of platonic solids. Before discussing protocols for decid-
ing A4, S4 and A5 we define two basic group theoretic
concepts that will aid in their construction.

Definition IV.2. (Cycle decomposition). Let S be a
finite set, e.g., the integers {1, 2, · · · , n}, and σ a permu-
tation S → S. The cycle decomposition of σ expresses
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Index Query map pj |ψj〉 |ψ′j〉

j = 1 Ei 7→ Rξ(−π/2)EiRξ(π/2) x |+〉 |±〉 7→ {0, 1}
...

...
...

...
...

{f1(Ei), f2(Ei)} =

{
{0, · · · } 7→ e ∗ C?

n

{1, · · · } 7→ τ ∗ C?
n

(Inverse map)

TABLE II. The use of Algorithm 1 as a subroutine for deciding on dihedral groups D2n (Theorem IV.2) in tabular form. The
table proceeds until reduction to Cn is achieved (i.e., after the first query); this query rotates to the basis in which σ (the
generator of Cn / D2n) acts trivially on {|±〉}. Once coset membership in the maximal cyclic subgroup of the queried element
is known, it can be inverted and applied to form compound queries that reduce the query set to Cn, given in Corollary IV.1.1.
Here C?

n is an unknown power of σ.
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a
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a7
a
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ba4 ba5
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FIG. 9. Two presentations of Cayley graphs for the cyclic
group of order 7 and the dihedral group of order 14. The
observation that the cyclic group admits no irreducible repre-
sentations in SU(2) allows the perfect determination, in one
additional query, of coset membership for the maximal cyclic
subgroup of D2n, partitioning the red and blue sets.

σ as a product of disjoint cycles. For instance, if S has
size 4 and the action of σ swaps pairs 1, 2 and 3, 4, then
the cycle decomposition of σ is denoted (1, 2)(3, 4), where
the order of tuples is not uniquely defined.

Definition IV.3. (Cycle type). Let S be a finite set, for
instance the integers {1, 2, · · · , n}, and σ a permutation
S → S. The cycle type12 of σ is a tuple indicating the
number of cycles of each given length in the cycle decom-
position of σ. E.g., for the example given in Definition
IV.2, the cycle decomposition (1, 2)(3, 4) has cycle type
(0, 2, 0, 0), indicating two length-two cycles.

Note that the set of all possible cycle types is in
bijection with unordered partitions of the integers in
{1, 2, · · · , n}: i.e., for cycle type tuple c, the sum of cj · j
for j ∈ [n] is simply n.

12 The cycle type is sometimes defined as a tuple of the lengths of
each cycle in the cycle decomposition, rather than the number
of cycles of each given length.

Theorem IV.3. There exists a deterministic algorithm
AA4

that perfectly decides A4 with asymptotically optimal
query complexity. This algorithm is additionally given in
Table III.

Proof. The elements of A4 can be classified according to
their cycle type as permutations on four elements. For
A4 these types are (1, 0, 1, 0), (0, 2, 0, 0) and (4, 0, 0, 0)
(the last being the identity permutation).

Cubes of any element in A4 have cycle type (0, 2, 0, 0)
or (4, 0, 0, 0) only, meaning that if the queried element
g is already in one of three representations for the D4

normal subgroup of A4 then running the D4 algorithm
on cubes of physical query elements gives the correct an-
swer, and otherwise acts as if the queried element were
the identity. This element can be determined in at most
three compound queries deterministically, measuring in
three mutually unbiased bases on the Bloch sphere, cor-
responding to the eigenstates of each of the generators of
the chosen D4 subgroup.

Given that A4 ≡ D4oC3, all elements g can be written
in the form kh where h is drawn from a chosen normal
D4 subgroup of the representation of A4 and k is from
a realized C3 subgroup. By pre-applying powers of a
generator of one of these C3 subgroups, the D4 algorithm
on cubes of queries will consistently compute the binary
function of membership of the queried element g in a
particular coset of the normal D4 / A4. Assuming equal
priors, such an algorithm is expected to13 terminate in
14.5 queries. �

Definition IV.4. We give a name to a particular sub-
routine presented in Theorem IV.3, whose use is indi-
cated in Table III.

The function correctCoset takes as input the evalua-
tion of the three binary measurements given in Theorem

13 The explicit calculation is (1/4) ·6+(1/4) ·12+(1/4) ·18+(1/4) ·
22 = 29/2 for the 3 + 3 + 3 non-trivial elements of the cosets of
the normal D4 followed by 3 trivial elements.
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IV.3 to determine which element of the D4 normal sub-
group of A4 enters into the chosen semi-direct product
D4 oC3 and returns the representation of the inverse of
this element.

Theorem IV.4. There exists a deterministic algorithm
AS4

which perfectly decides S4, with asymptotically opti-
mal query complexity.

Proof. Squares of elements in S4 necessarily fall in the
alternating group A4, though this mapping is not al-
ways invertible. It is invertible, however, when the
queried element g in S4 has the cycle type (1, 0, 1, 0).
For any element in S4 there exists an element h of cy-
cle type (2, 1, 0, 0) for which the product gh is of cy-
cle type (1, 0, 1, 0). Consequently there exists an algo-
rithm that, for every element h of cycle type (2, 1, 0, 0),
of which there are six, pre-applies h to queries (and re-
peats this process to generate squares of this query el-
ement, ghgh = (gh)2) and runs the A4 algorithm on
this compound query, which recovers perfectly in finitely
many queries the hidden element g when the image (gh)2

has cycle type (1, 0, 1, 0). Namely there exists a sub-
routine which determines coset membership for cosets of
the normal A4 / S4, and proceeds by reduction to deci-
sion on A4. This protocol is expected to terminate in 34
queries.14 �

We note that the two protocols given above make no
reference to the mechanisms of QSP, but are instead com-
pletely algebraic in form, exploiting the simple canonical
subgroup towers of A4 and S4 to reduce decisions on rep-
resentations of these groups to those on their normal sub-
groups. It is the small size of these non-abelian groups
in particular which, unfortunately, bring the following
remark. Resolving this problem is left open as stated in
Section VI.

Remark IV.2. The alternating group on five elements
has, unfortunately, no simple reduction to an algorithm
of the previous, smaller groups, in part because A5 is the
smallest simple non-abelian group, and thus permits no
non-trivial decompositions in terms of a canonical tower
of subgroups.

Before concluding this section we give an overview (Re-
mark IV.3) of the major technique which has permitted
the extension of algorithms solving R-QHT (i.e., Algo-
rithm 1) to those solving G-QHT.

Remark IV.3. Extending the recursive bisection de-
picted in Figure 6, which in turn demonstrates the meth-
ods of Algorithm 1, to representations of non-cyclic

14 Again this number is arrived at by explicitly writing a table of
elements of S4 and running them through the protocol as given
until it terminates.

groups follows, in each instance described in this section,
from the following sketched protocol.

For each finite group presented in Section IV, we must
provide (1) a small quantum circuit to produce compound
queries (Definition IV.1) satisfying the input assump-
tions of Algorithm 1, (2) apply Algorithm 1 and keep
track of its minimal required query complexity, and fi-
nally (3) verify the satisfaction of conditions under which
the compound query map is invertible (e.g., as in Remark
II.2), these conditions remaining unchanged despite the
introduction of compound queries.

Whether this protocol is possible to perform for gen-
eral groups is an open question, and indeed the methods
of this section relied on the fact that the finite groups in-
vestigated were non-simple and often semi-direct products
of abelian groups.

V. EXTENDING QHT PROTOCOLS TO
LARGER GROUPS AND NOISY SETTINGS

It is natural to consider generalizations to the setting in
which the results of Section IV were derived. This section
concerns itself with two: (1) the inclusion of noise and
(2) extension to larger finite groups.

A. Noisy channels and noisy quantum gates

The algorithms of Section IV relied on the fact that
compound queries to the oracle could, under the assump-
tion of access to unitary channels, make perfect use of the
algebraic relations which were a priori known among the
query set. These relations led to effective query access
to simpler query sets for whom the optimal hypothesis
testing algorithm was known. Naturally, however, real-
istic quantum computers and quantum channels exhibit
noise, and one might be concerned about two different
sources of error as summarized below.

1. The queried elements Ug may not perfectly satisfy
the conditions imposed on a faithful representation
of G, but may instead only approximately satisfy
them, i.e.,

UgUh ≈ε Ugh ∀g, h ∈ G,

where the approximate equality is with respect to
some reasonable norm, here the diamond norm.
Alternatively one can consider that the channels
themselves are only near-unitary, i.e., that U ′g ≈ε
Ug for all g ∈ G where the norm is again reasonable.
Such a channel might be given by its operator-sum
representation

Ug ≡
∫
h

fg(h)Uh dµ(h),

where fg(h) is some probability density function de-
fined suitably on elements of SU(2) which is peaked
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Index Query map pj |ψj〉 |ψ′j〉

j = 1 Ei 7→ (Ei)3 x |+〉 |±〉 7→ {0, 1}

j = 2 Ei 7→ Rx(π/2)(Ei)3Rx(−π/2) x |+〉 |±〉 7→ {0, 1}

j = 3 Ei 7→ Rx′(π/2)(Ei)3Rx′(−π/2) x |+〉 |±〉 7→ {0, 1}

j = 4 Ei 7→ EicorrectCoset(f<4(Ei)) (4x3 − x)/3 |+〉 |±〉 7→ {0, 1}

j = 5 Ei 7→ Rx′′(2π/3)EicorrectCoset(f<4(Ei)) (4x3 − x)/3 |+〉 |±〉 7→ {0, 1}

{f1(Ei), f2(Ei), f3(Ei), · · · } =


{0, 0, 0, · · · } 7→ De

4 ∗ C?
3

{1, 1, 0, · · · } 7→ Da
4 ∗ C?

3

{1, 0, 1, · · · } 7→ Db
4 ∗ C?

3

{0, 1, 1, · · · } 7→ Dab
4 ∗ C?

3

(Inverse map)

TABLE III. The use of Algorithm 1 as a subroutine for deciding on A4 as in Theorem IV.3 in tabular form. As pj for j ∈ [m]
completely define both fj and the corresponding QSP-derived objects given in Definition II.2, they provide a minimal explicit
demonstration of the use of Algorithm 1. The pj given here have also had their QSP angles explicitly given in Lemma IV.4.
Here Dg

4 ∗ C?
3 indicates a group element in the semi-direct product defining A4 which is the product of g, an element of the

chosen D4 normal subgroup in terms of generators {a, b} and an unknown element of the chosen C3 subgroup. Axes x, x′ are
chosen such that these rotations generate the chosen D4 subgroup, and x′′ the axis of rotation for the chosen C3.

about g to induce an operator whose diamond norm
with Ug is suitably small. Here µ is some suitable
measure over SU(2).

2. The unitary operators applied by the querent may,
in general, also not be perfect. This is the state-
ment that the rotations normally applied in a QSP
sequence as per the statement of Algorithm 1 may
again only satisfy U ′j ≈ε Uj for all indices j in the
QSP sequence. We denote by U ′j the applied uni-
tary and by Uj the intended unitary.

We consider the first instance, namely the physically
realistic scenario that the ideal query set S is not the
sampled query set, but instead that physical queries may
be slightly perturbed from ideal queries. I.e., the phys-
ical queries {E ′i} are such that the diamond distance
‖Ei − E ′i‖� ≤ ε for some small ε > 0. In this case, which
encompasses all small perturbations, methods analogous
to the ‘peeling lemma’ in [2], permit us to bound our new
error in discrimination.

Lemma V.1. Fixing an initial state ρj the trace distance
‖ρ− ρ′‖ between the serial quantum channel discrimina-
tion protocol defined by the interspersed unitaries {Ui,j}
acting on ρj where the queried channel set is {Ei} versus
{E ′i} is bounded above by nj‖Em − E ′m‖� ≤ njε.

Proof. In the case that the QSP sequences used are length
2, we show the result, and show that the method gener-
alizes to length nj sequences. The distance ‖ρ− ρ′‖ can

be reëxpressed and bounded above according to

‖U2 ◦ Em ◦ U1 ◦ Em(ρj)− U2 ◦ E ′m ◦ U1 ◦ E ′m(ρj)‖
≤ ‖Em ◦ U1 ◦ Em(ρj)− E ′m ◦ U1 ◦ E ′m(ρj)‖
≤ ‖Em ◦ U1 ◦ Em(ρj)− Em ◦ U1 ◦ E ′m(ρj)‖

+ ‖E ′m ◦ U1 ◦ Em(ρj)− E ′m ◦ U1 ◦ E ′m(ρj)‖
≤ ‖Em(ρj)− E ′m(ρj)‖

+ ‖Em[U1 ◦ E ′(ρj)]− E ′m[U1 ◦ E ′m(ρj)]‖
≤ 2‖Em − E ′m‖�,

where the inequalities, in order from top to bottom, fol-
low from (1) the monotonicity of the trace distance, (2)
the triangle inequality, (3) monotonicity with respect to
the CPTP map E ′m ◦ U1, and (4) that the diamond dis-
tance dominates the trace distance on any particular ini-
tial state. This result can be iterated for arbitrarily many
channel applications where the coefficient on the diamond
distance goes as nj where nj is the discrimination algo-
rithm’s j-th subpart’s query complexity. �

For the second instance, where the querent’s own uni-
tary operations are only close to the ideal operations,
an analogous argument to that used in [42] permits us
to bound error to a multiple of the per-gate error ε
(usually computed in terms of a trace distance between
the intended and applied channel) where this multiple
is proportional to the QSP sequence’s length. Conse-
quently under reasonable assumptions of noise in both
the queried channel and the locally applied unitary op-
erators, the methods presented in the previous section
do no worse than expected, accruing error linearly in se-
quence length for reasonable norms.
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B. Extensions to larger groups

The methods of Section IV use compound queries (e.g.,
positive integer powers of queries), defined in Problem
IV.1, to access representations of subgroups of G. It is
thus of interest to determine when one is to expect that
(1) subsets of m-th powers of group elements generate
proper subgroups, and (2) what information can be ex-
tracted under the assumption of the ability to decide on
said subgroups. We state a series of related lemmas re-
garding these questions, assuming a basic understanding
of group theory.

The following two lemmas in particular discuss suffi-
cient conditions under which a known normal subgroup
of G permits query access to compound queries that re-
side in said normal subgroup. These lemmas capture the
underlying mechanism of the protocols given previously
for deciding D2n and A4.

Lemma V.2. If a finite group G admits a normal sub-
group N of index m then the subset of m-th powers of G,
equivalently Sm = {gm1 , gm2 , · · · , gmn } for all n elements
of G generates a proper subgroup G′ ≤ N < G.

Proof. Proof follows from recognizing that elements of
the form gmi are in the kernel of the group homomorphism
G → G/N and thus 〈Sm〉 is a (possibly non-proper)
subgroup of the normal subgroup N of G, equivalently
〈Sm〉 ≤ N < G. �

Lemma V.3. If a finite group G admits a normal sub-
group N of index m then the subset of m-th powers of
G, i.e., the group generated by Sm as in Lemma V.2, is
contained within the intersection of all index m normal
subgroups of G. Proof again follows by the isomorphism
theorems.

Furthermore we give a lemma that describes the un-
derlying behavior of the protocol given previously for de-
ciding on S4 (Theorem IV.3). It is the statement of this
lemma, as well as the two preceding it, that precludes a
solution for deciding on A5, which admits no non-trivial
normal subgroups.

Lemma V.4. If the m-power map g 7→ gm applied to
elements of G generates a proper subgroup G′ < G, and
there exists a group element h ∈ G such that for some
subset S of G the map s 7→ (sh)m is invertible for all
s ∈ S, and there exists a quantum protocol for deciding
G′, then there exists a quantum protocol for deciding the
query set G′ ∪ S.

Proof. Constructing compound queries of m-th powers
of physical queries allows access (at m times the query
complexity) to a representation of G′. The statement of
the lemma with respect to the set S says merely that
pre-application of h ∈ G before each query s is, under
the map given, invertible, and thus unique identification
of s is also possible with knowledge of h. �

The statements given in the lemmas above do not de-
pend on particularly complicated notions in group the-
ory; instead, we have simply asked which simple opera-
tions can be performed in our limited resource model to
faithfully simplify the query set. In most instances, these
simplifications correspond to the existence of normal sub-
groups (equivalently kernels of group homomorphisms).
For statements beyond those given here, especially those
concerning the conditions under which the assumptions
of Lemma V.4 hold beyond S4, we define a selection of
open problems in Section VI.

The procedure outlined in Lemma V.4 is also not the
most general one; indeed, compound queries can be built
from general products of known unitary operations (some
of which may coincide with the query set) and possibly
multiple copies the queried channel. Conditions under
which such a map is invertible relate intimately to the
study of characters in representation theory, and provide
exciting avenues for improved protocols for larger finite
groups, e.g., G < SU(n). Moreover, when considering
larger Hilbert spaces, in analogy to the algorithms decid-
ing on the dihedral groupsD2n, the family of finite groups
which permit no irreducible representation in said larger
Hilbert space grows richer, and correspondingly decisions
on groups which are semi-direct products grow easier.
Thus, while extension to larger Hilbert spaces may not re-
solve the discussion of efficient decision algorithms on all
larger groups in the serial adaptive query model, it may
reasonably result in interesting quantitative statements
on the entanglement or auxiliary system size necessary
to achieve efficient (query-complexity-wise) discrimina-
tion dependent on the nature of the represented group.

VI. DISCUSSION AND CONCLUSIONS

In this work we have provided a constructive approach
for achieving efficient quantum multiple hypothesis test-
ing for query sets whose algebra faithfully represents a
finite subgroup of SU(2). The nature of this construc-
tion centers on the use of Algorithm 1, a quantum algo-
rithm for solving the simpler R-QHT problem (Problem
II.1), as a subroutine along with methods for exploit-
ing known algebraic structure of the query set to enable
reductions to R-QHT. This reduction is summarized in
Remark IV.3.

Concretely, when the represented group G is either
abelian or both non-abelian and non-simple the proto-
cols we construct achieve optimal query complexity with-
out the use of auxiliary systems or entanglement; this
statement is equivalent to a statement about the minimal
degree of constrained interpolating polynomials, and re-
solves an open question in [5], as well as generalizes an old
result in [12] to quantum channels. Moreover, the bridge
that Algorithm 1 and its derivate algorithms demonstrate
between quantum information and functional approxima-
tion theory indicates a rich variety of novel instantiations
of the basic ideas of QSP [21, 23].
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In addition to achieving efficient quantum channel dis-
crimination for a family of channel sets in a serial adap-
tive query model, we show that our protocols can be
aborted early while still accomplishing useful tasks; this
follows simply from the nature of the binary search dis-
cussed in Remark II.2. For instance, the reductions pro-
vided throughout Section IV are directly realizable as
coset membership testing procedures in general, or pe-
riod finding for the case of cyclic groups.

In the following remarks and problem definitions, we
provide one more direct application of the methods dis-
cussed in this work to a problem in quantum communi-
cation.

Remark VI.1. As mentioned in [16, 20], efficient pro-
tocols for the estimation of unitary processes have use in
the transmission of reference frames as well as various
proofs of insecurity for device-independent protocols for
quantum bit-commitment.

We give one example for how this work can be ap-
plied to a discretized version (e.g., group frames [17, 18],
which share close relation with SIC-POVMs) of reference
frame-sharing (Problem VI.1 and Lemma VI.1).

Problem VI.1. Consider two separated parties, Alice
and Bob; each is able to (1) perform single-qubit unitaries
and (2) transmit qubits noiselessly to the other party. Al-
ice and Bob agree on a shared z-axis but are rotated with
respect to each other by some unknown angle θ about this
axis. Moreover, the possible θ lie within a discrete set Θ
of size n, known to both parties.

Alice and Bob can come to agreement on the unknown
angle θ with certainty in a finite length interactive pro-
tocol; this protocol is denoted dual QSP due to its simi-
larities with standard QSP [21–24], and is said to solve
the dual QSP problem.

Lemma VI.1. There exists a finite length interactive in-
teractive protocol by which two parties playing the game
defined in Problem VI.1 can win with certainty and with
asymptotically optimal round number (under the restric-
tion of sending single qubits).

Proof. Proof proceeds by direct construction. Beginning
with some initial state |ψ0〉, Alice applies to it a rotation
about her local x axis, namely exp (iφ0σx), and sends
this qubit to Bob. Bob applies a rotation about his local
x-axis by another specified angle φ1, or equivalently ac-
cording to Alice (if she knew the angle θ) Bob appears to
apply exp (iφ1[cos θσx + sin θσy]) = UB exp (iφ1σx)U−1

B
where UB = exp (−i[θ/2]σz).

In other words, Alice and Bob can, according to some
previously agreed upon prescription of real angles Φ =
{φ0, φ1, · · · , φm}, collaboratively compute the unitary op-

erator15

UΦ = eiφmσx · · ·e−i[θ/2]σzeiφ3σxei[θ/2]σzeiφ2σx

e−i[θ/2]σzeiφ1σxei[θ/2]σzeiφ0σx . (12)

Moreover, following the final application of exp (iφmσx)
and measurement against |ψ1〉, Alice can sample from the
Bernoulli distribution defined by the transition probabil-
ity p = |〈ψ1|UΦ|ψ0〉|2.

The construction above is almost a vanilla QSP se-
quence. It is not so difficult to see that if Alice
and Bob additionally apply the rotation exp{±i[π/2]σx}
respectively, locally, after their φj rotation for j ∈
{1, 2, · · · ,m}, the collaborative sequence instead be-
comes

UΦ′ = eiφmσx · · ·ei[θ/2]σzeiφ3σxei[θ/2]σzeiφ2σx

ei[θ/2]σzeiφ1σxei[θ/2]σzeiφ0σx , (13)

which is of the form of a standard QSP sequence. Con-
sequently we see concrete connection between dual QSP
and standard QSP: i.e., a redefinition of QSP phase an-
gles.

Given a standard QSP strategy, defined by an angular
sequence Φ, there exists an angular sequence Φ′ follow-
ing the prescription given above such that the dual QSP
sequence defined by Φ′ acts identically given access to
parties of relative angular displacement θ as the sequence
defined by Φ acts given query access to an equiangular
rotation exp (−i[θ/2]σz) in the setting of standard QSP.

Consequently a protocol solving Problem VI.1 follows
directly from a protocol solving Problem II.1 under the
prescription (following Algorithm 1) defined by Φ′j,k =

Φj,k + π for k ∈ {1, · · · , nj} and Φ′j,0 = Φj,0. �

Remark VI.2. We can analyze the performance of the
protocol given in Lemma VI.1 in two ways: (1) in com-
parison näıve repetition of binary hypothesis testing and
(2) in comparison to phase estimation, the continuous
analogue of the problem statement.

• The results of [5] assert that the query complex-
ity for distinguishing two distinct unitary opera-
tors U, V scales as O(1/Θ[U†V ]) where Θ[W ] is the
length of the smallest arc containing all the eigen-
values of W on the unit circle in the complex plane.

When phrased as a decision on a representation16

of Cn, eliminating one possible quantum channel
at a time gives a query complexity that scales as
O(n2) (as O(n) such discrimination procedures are
required, each costing O(n) queries). As shown in

15 Here assuming that m is even, i.e., that the protocol ends with
Alice receiving the qubit.

16 This merely connects n in a reasonable, i.e., reciprocal, functional
map to a factor defining the difficulty of discrimination, in which
the stated quadratic improvement is always possible.
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the constructions leading to Corollary IV.1.1, how-
ever, decisions on Cn and consequently also dis-
crete reference-frame sharing, have query complex-
ity scaling as O(n) (up to logarithmic factors) cour-
tesy of the implicit binary search in Algorithm 1.

• A feature of Lemma VI.1 is that it yields a de-
terministic quantum algorithm. If one only wishes
to determine the relative rotation with high confi-
dence, one can use phase estimation and achieve
the same O(n) query complexity scaling [43] using
O(log n + log (1/ε)) qubits for confidence ε. This
also matches the performance of the estimation pro-
cedure in [16]. Thus while estimative methods per-
form similarly in the cyclic group case to G-QHT-
derived methods, the methodology of Lemma VI.1 is
tailored to the statement of discrete reference-frame
sharing, can be done serially, and can be extended
to richer finite groups.

The methods of Lemma VI.1 suggest a useful tech-
nique; namely, whenever a suitable sensing problem can
be (1) discretized and (2) made coherent, the ability to,
by a simple quantum process, induce a phase on, e.g., a
single qubit, allows all of the mechanisms built in earlier
sections to be directly applied with concomitant state-
ments about query complexity or round complexity17 op-
timality.

Beyond direct applicability to discrete versions of prob-
lems defined in prior work (e.g., reference frame sharing),
several fundamental open problems remain whose solu-
tion might lie in methods related to those discussed in
this work; we outline a few of them below.

• Decisions on the subgroup tower: In anal-
ogy to the protocol given for deciding the dihe-
dral group in Subsection IV B, are there families
of larger groups G′ whose lack of irreducible repre-
sentation in the natural Hilbert space of multiple
qubits ([C2]⊗n) or qudits (Cd) permits groups G
whose canonical subgroup tower includes G′ to be
decided by reduction to decisions on G′? What are
sufficient conditions under which protocols deciding
G can, even inefficiently, be reduced to protocols
for deciding normal subgroups of G? Small exam-
ples of this phenomenon are given in the lemmas of

Subsection V B.

• Optimal G-QHT with bounded entangle-
ment: Given the procedure in the above part,
does there exist a quantifiable trade-off between
the serial and parallel query model query complex-
ities required for deciding groups G given access
to Hilbert spaces in which no representation of G
is irreducible? If entanglement is required for opti-
mal QHT algorithms on large or highly non-abelian
query sets, are there methods to quantify the re-
quired minimum entanglement?

• Quantum property testing: Do there exist par-
tial discrimination protocols, e.g., beyond those
provided for deciding coset membership, which de-
cide other interesting properties of the group rep-
resented by the query set while not totally deciding
on the group?

• Estimating compact group elements: Can the
performance of quantum channel estimation pro-
tocols for compact groups G, e.g., as in [16], be
suitably recovered by employing a method similar
to those of this work to systematically divide the
search space up to within a specified error? Un-
der what assumptions about the compact group is
this decision-to-estimation conversion in the serial
adaptive query model still efficient?

To summarize, major avenues for extending this work
lie in (1) natural generalizations to higher dimensional
Hilbert spaces and (2) characterizations of richer finite
groups which find natural representations in higher di-
mensional Hilbert spaces. Improvements in methods to
address these questions have implications in quantum al-
gorithms for problems in discrete algebra, and this sub-
field in turn has potential application, following transla-
tion of G-QHT-like problems to novel contexts (e.g., as
in Lemma VI.1), to useful quantum algorithms for cryp-
tography, communication, and sensing.
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