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We investigate the Bose-Hubbard chain in the presence of nearest-neighbor pairing. The pairing
term gives rise to an unusual gapped Z2 Ising phase that has number fluctuation but no off-diagonal
long range order. This phase has a strongly correlated many-body doubly degenerate ground state
which is effectively a gap-protected macroscopic qubit. In the strongly interacting limit, the system
can be mapped onto an anisotropic transverse spin chain, which in turn can be mapped to the
better-known fermionic sister of the paired Bose-Hubbard chain: the Kitaev chain which hosts zero-
energy Majorana bound states. While corresponding phases in the fermionic and bosonic systems
have starkly different wavefunctions, they share identical energy spectra. We describe a possible
cold-atom realization of the paired Bose-Hubbard model in a biased zig-zag optical lattice with
reservoir-induced pairing, opening a possible route towards experimental Kitaev chain spectroscopy.

While p-wave fermionic pairing is a subject of intense
ongoing investigations, analogous bosonic phenomena are
less well explored. Here we pose and address a variety
of questions regarding pairing in spinless 1D bosonic sys-
tems: What new phases emerge due to pairing? What
are the effects of interactions? What parallels exist to
1D fermionic counterparts? The fermionic Kitaev chain
hosts gapped topological phases and mid-gap Majorana
states; do bosonic systems exhibit related features?

The Bose-Hubbard model offers fertile ground to ex-
plore these questions; its rich phase diagram has been
characterized for decades [1–5], sustaining a productive
interplay between theory and experiment since the ad-
vent of direct realizations using ultracold atoms in op-
tical lattices [3, 6]. The phase diagram hosts a gapless
superfluid phase exhibiting number fluctuations and con-
densation as well as multiple gapped Mott phases. A
commonly employed mapping between site occupations
and spins serves a fruitful source of physical intuition
and a connection to models of magnetism. The descrip-
tion reduces to a spin-1/2 system in the limit of strong
interactions where the occupation number on each site
can only fluctuate between particular numbers n0 and
n0 + 1 [2, 5, 7–11]. Here, we focus on a homogeneous
1D chain of bosons hopping between neighboring lattice
sites with tunneling strength w and an on-site interaction
U . The chemical potential µ is determined by the total
number of bosons. The additional crucial ingredient is a
pairing contribution that creates and annihilates pairs of
bosons on neighboring sites with strength ∆. This chain
is described by the Hamiltonian

H = HBH +H∆ (1)

HBH = −w
∑
〈ij〉

(b†i bj + h.c.) +
∑
i

(
U

2
n̂i(n̂i − 1)− µn̂i),

H∆ = −∆
∑
〈ij〉

(b†i b
†
j + h.c.).

Here 〈ij〉 denotes a sum over nearest neighbor sites, b†i

FIG. 1. Phases of the paired Bose-Hubbard model. a) Su-
perfluid and Mott phases for large U and ∆ = 0. b) The
pseudospin Bloch sphere, with Mott phases at the poles and
superfluid phases breaking the associated U(1) symmetry. c)
Finite ∆ creates a new phase that breaks this symmetry down
to Z2. Energy spectra, shown for a few representative points,
are identical to those of the fermionic Kitaev chain.

(bi) is the creation (annihilation) operator for a boson on

site i, and n̂i = b†i bi is the number operator. The effect
of the pairing term, ∆, on 1D Bose-Hubbard physics is
the main subject of this work.

Combining established insights stemming from boson-
to-spin and spin-to-fermion maps in one-dimension, we
demonstrate that pairing gives rise to remarkable new
features in strongly interacting Bose-Hubbard chains.



2

Most prominently, as depicted in Fig. 1, we find that pair-
ing reduces the U(1) symmetry of the unpaired system
to an Ising symmetry, leading to a unique Z2 symmetry-
broken phase. As with the usual condensate, which cor-
responds to the U(1) symmetry-broken phase, this phase
exhibits number fluctuations on each site. However, it is
gapped and lacks the Goldstone modes associated with
an ordinary superfluid. Moreover, its ground state is
doubly degenerate, reflecting two very different superpo-
sitions of bosonic occupation on every site. Effectively,
this subspace forms a gap-protected macroscopic qubit.
We note a close relation to non-Abelian Majorana bound
state physics: while this Z2 phase is not a topological
phase that hosts such states, the two phases can be con-
nected via a specific non-local mapping. Furthermore,
since the energy spectrum of the HamiltonianH is identi-
cal to that of the fermionic Kitaev chain, a Bose-Hubbard
realization would enable experimental measurement of
the spectrum for the entire phase diagram. In what fol-
lows, we present our analyses of these features, beginning
for concreteness by briefly describing a possible realiza-
tion.

Experimental access to the paired Bose-Hubbard
model is most naturally attained using controlled sys-
tems of photons or bosonic atoms. Such systems have
attracted theoretical interest due to the close relation-
ship to the Kitaev chain: proposals and investigations
include employing photonic modes as analogues to Ma-
jorana states [12–14], and ultracold fermions [15–18] and
bosons [19] for the realization of anyonic modes. In the
context of cold atoms, experimental access to the bosonic
Kitaev chain analogue is more straightforward than in
the original fermionic case: an optical lattice configured
as a biased zigzag chain offers a possible natural experi-
mental realization of the Hamiltonian H in Eq. 1. Fig. 2
diagrams a section of such a potential, which can be cre-
ated in a four-beam monochromatic optical lattice with
a controllable relative phase between the beams. An ap-
propriate choice of phases yields an array of quasi-1D zig-
zag ladders having a tunable chemical potential offset µ0

between the legs. We define the higher-energy leg as our
system of interest and the lower-energy leg as the “reser-
voir chain.” In a tight-binding picture, the hopping term
w is achieved through tunneling along the upper chain.
The pairing term ∆ can effectively be obtained by the
quartic bosonic process V b†i b

†
jbkRblR of having a pair of

bosons hopping from two sites k and l in the reservoir
onto two sites i and j on the chain of interest. The effec-
tive term thus would depend on the expectation value of
the pair annihilation process 〈bkRblR〉. The remarkable
feature of this staggered chain setting is that it enables us
to propose a scheme wherein the dominant effect of such
two-body processes corresponds to our proposed nearest-
neighbor pair creation/annihilation term. In particular,
one can achieve such effective pairing by setting µ0 = Ur
where Ur is the interaction energy of two bosons on the

FIG. 2. Potential optical lattice realization of the paired 1D
BH model. a: Array of zigzag ladder potentials created by
four-beam optical lattice with tunable interbeam phase. Hop-
ping and pairing terms in a single ladder (boxed) are schemat-
ically indicated. Here the lower leg of each ladder is the
“reservoir chain.” b: Schematic of off-resonant single-particle
interchain hopping. c: Schematic of resonant pair hopping.

reservoir chain. At this offset, single-particle tunneling
between the legs of the ladder is non-resonant, and reso-
nant pair tunneling to or from a single site on the reser-
voir chain dominates. Similar resonant or near-resonant
chemical potential offsets in optical lattices have been
theoretically and experimentally demonstrated to enable
control of superexchange dynamics, realization of spin
Hamiltonians based on bosonic pairing, and simulation of
gauge theories [20–24]. To maintain constant pairing ∆
and an associated phase which we arbitrarily set to 0, the
tunneling rate within the reservoir chain should be set at
a value sufficient to stabilize superfluidity. Asymmetrical
interchain hopping rates can be tuned by adjusting the
lattice phase. In this scheme, the pair annihilation pro-
cess 〈bkRblR〉 would translate to k = l, and superfluidity
in the reservoir would pin and enhance its expectation
value. We note that this scheme differs from the ones of-
fered in prior work, is based upon already-demonstrated
experimental techniques, and opens up a new window on
bosonic Z2 phases and Majorana spectroscopy.

Now we show that approaches commonly employed to
analyze the standard Bose-Hubbard chain can provide
insight into the effects of the additional pairing term.
We focus on the regime of U and µ such that the aver-
age density on each site lies between n0 and n0 + 1. For
larger enough interaction strength, w/U � 1, the Hilbert
space can be restricted to the number-basis states |n0〉
and |n0 +1〉 at each site. The most energetically relevant
excluded states, |n0 − 1〉 and |n0 + 2〉, would contribute
corrections of order of w2/U . Following truncation, the
bosonic chain can be mapped to an XY (pseudo-)spin-
1/2 chain in a transverse field [2, 7, 11, 20, 21]. The
truncated Hilbert space may be represented by the spin-
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1/2 states, |n0 + 1〉 = | ↑〉 and |n0〉 = | ↓〉, the eigen-
states of the operator sz having eigenvalues ±1/2. The
tunneling term in the Bose-Hubbard Hamiltonian can be
identified with raising and lowering spin-1/2 operators,

s+ and s−, such that b†i bj → (n0 + 1)s+
i s
−
j . The in-

teraction and the potential energy terms are diagonal in
the number basis at each site, and the boson number
operator, n̂i, can be expressed in terms of the spin-1/2
matrix sz: n̂→ n0 + 1/2 + sz. In the truncated spin-1/2
Hilbert space, the one-dimensional version of the paired
Bose-Hubbard Hamiltonian of Eq. 1 takes the form

HS = −
∑
〈ij〉

(
Jxs

x
i s
x
j + Jys

y
i s
y
j

)
−
∑
i

hszi , (2)

where we have the identifications Jx ↔ 2(n0 +1)(w+∆),
Jy ↔ 2(n0 + 1)(w − ∆), and h ↔ µ − Un0. As shown
in Fig. 1a and 1b, in the standard case without pairing,
Mott states having integer boson filling n0 and n0 + 1
correspond to gapped phases in which spins are polar-
ized along the ±ẑ directions, while the gapless superfluid
phase at intermediate fillings corresponds to a ferromag-
netic state which spontaneously breaks U(1) symmetry.

The presence of the pairing term renders the XY cou-
plings anisotropic, indicative of the aforementioned re-
duction of the gapless U(1) phase to a gapped phase of
the Ising Z2 universality class. In order to study this ef-
fect of the pairing term, it is useful to recall features of the
standard unpaired case, where ∆ = 0 and Jx = Jy ≡ J .
The U(1) symmetry associated with particle number can
be seen in Eq. 1 by noting its invariance under the
transformation b† → b†eiφ, b → be−iφ. The superfluid
phase associated with the breaking of this symmetry ex-
ists even beyond the spin-1/2 limit where w/U � 1; for
large enough tunneling, it includes occupation numbers
beyond the n0 and n0 + 1 Mott lobes. In the spin-1/2
limit described by Eq. 2, a large enough transverse field
strength h, or equivalently, deviation of the chemical po-
tential µ from the value Un0, tips the system into the n0

or n0 + 1 Mott states, depending on the sign of the field.
For field strengths lower than this critical value, the sys-
tem is in the superfluid state. At a mean-field level, which
is more appropriate for higher dimensions but provides
good insights into the phases for any dimension, this
behavior can be captured by replacing the pseudospin
on each site with an expectation value parametrized by
〈Si〉 = 1

2 (sin θ cosφ, sin θ sinφ, cos θ). The Hamiltonian
of Eq. 2 then takes the form of a spin on each site in
an effective magnetic field, Hmf = −Si · Bmf , where for
a chain, Bmf = (J sin θ cosφ, J sin θ sinφ, h). The equi-
librium configuration of the pseudospin corresponds to
minimizing the associated energy, yielding cos θ = h/J
and no constraints on the value of φ. In the Mott phase,
the pseudospins are completely polarized along the z di-
rection, i.e. 〈szi 〉 = ±1/2, allowing the identification of
µ± = Un0±2w(n0 +1), the values of the chemical poten-
tial at the boundaries of the Mott states having n0 and

n0 +1 bosons per site. In the superfluid phase, the mean-
field ground state comprises a superposition on each site:

|ψ〉i = cos θ|n0〉i + eiϕ sin θ|n0 + 1〉i. (3)

Spontaneous U(1) symmetry breaking entails making a
choice of the continuous parameter ϕ, giving rise to a
gapless Goldstone mode in the excitation spectrum.

Compared with this unpaired Bose-Hubbard chain, in
which number fluctuations on a given site are due to near-
est neighbor hopping, the pairing term in Eq. 1 allows for
the insertion and depletion of bosons in pairs at neighbor-
ing sites. The system no longer respects the invariance
under b† → b†eiφ, b→ be−iφ associated with number con-
servation. The only exception is for the choices φ = 0, π,
reflecting pariwise processes as opposed to those of sin-
gle bosons. Thus, in the presence of the pairing term,
U(1) symmetry is reduced to Z2 Ising symmetry. In the
spin-chain limit of Eq. 2, the reduction to the Ising sym-
metry is reflected in the identification ∆↔ Jx−Jy. The
inequality of Jx and Jy leads to the reduction to Ising
symmetry; for Jx > Jy, the ferromagnetic coupling fa-
vors ordering along the eigenstates of the Pauli spin σx

on each site and for Jx < Jy along σy. In terms of spin
symmetry properties, one can see that Eq. 2 is invariant
under the transformation sxi → −sxi ; syi → −siy; szi → szi .

Repeating the mean-field argument above in the pres-
ence of pairing establishes salient features of the Z2

phase. Energy minimization is no longer independent of
φ due to the presence of the non-vanishing ∆ term. For
Jx > Jy, the phase is pinned to values φ = 0, π, while
for Jx < Jy, it is pinned to φ = π/2, 3π/2. In these two
cases, the average density, captured by the expectation
value 〈szi 〉, now varies as cos θ = h/Jx and cos θ = h/Jy,
respectively. Hence, once more, the system enters into
the regular n0 (θ = π/2) or n0 +1(θ = 0) Mott phases for
large enough effective field. However, for couplings that
allow a solution in the range 0 < θ < π/2 , the symmetry-
broken Z2 phase is different from the usual condensate
phase. On the one hand, it too exhibits number fluctu-
ations such as those depicted in Eq. 3. On the other,
the pairing term pins the phase such that no continuous
symmetry is broken. As seen from the mean-field wave-
function, depending on the relative magnitudes of the
anisotropic couplings, the phase φ is pinned to one of two
possible values that are consistent with eigenstates of sx

or sy, respectively, translating to two macroscopically dif-
ferent ground state wavefunctions for the bosonic chain.
Furthermore, the absence of U(1) symmetry breaking im-
plies the absence of a low-lying Goldstone mode; the sys-
tem is gapped.

Thus, a remarkable feature of this bosonic Z2 phase is
that its correlated many-body ground state is doubly de-
generate and protected by a gap. As a simple example,
in the limit of equal hopping and pairing, ∆ = w, the
system is exactly in the transverse Ising limit Jy = 0. If
the system is now set to half filling, h = µ − Un0 = 0,
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then the mean-field states described above become the
exact ground states with all spins either pointing along
+x or −x. In terms of bosons, every site has equal su-
perposition of n0 and n0 + 1 bosons and the degeneracy
corresponds to all sites having a symmetric or antisym-
metric superposition.

Having discussed the possible Z2 phases of the paired
Bose-Hubbard chain and their ground state properties,
we proceed to describe the entire energy spectrum in
the regime of interest. To this end, the transverse XY
spin chain of Eq. 2 can be diagonalized via the standard
Jordan-Wigner transformation [2, 25, 26], as has also
been pointed out for lattice bosons in double well poten-
tials [27]. Here, the spin operators on a given site j along
the chain are expressed in terms of fermionic creation
and annihilation operators (f†, f) through the transfor-

mation sxj = f†j fj − 1/2, s+
j = f†j e

−iπ
∑

l<j Nl , where Nl
is the fermion occupation number on site l. The spin
chain Hamiltonian, in terms of the fermions, transforms
to a one-dimensional tight-binding representation of a
p-wave superconductor, known as the Kitaev chain [28–
31], whose chief feature is that it supports topologically
robust isolated Majorana fermionic bound states. The
Kitaev chain consists of spinless fermions experiencing
nearest neighbor hopping w̃ and pairing ∆̃, and is de-
scribed by the Hamiltonian

HF =

N−1∑
j=1

[
− w̃

(
f†j fj+1 + f†j+1fj

)
(4)

+ ∆̃
(
fjfj+1 + f†j+1f

†
j

) ]
− µ̃

N∑
j=1

(
f†j fj −

1

2

)
.

In terms of the original Bose-Hubbard parameters, we
can identify w̃ = w(n0 +1) and ∆̃ = −∆(n0 +1). The ef-
fective magnetic field experienced by the transverse spin
chain translates to µ̃ = µ − Un0, namely, an effective
chemical potential for fermions.

As can be seen by comparing the fermionic Hamilto-
nian above with the paired bosonic Hamiltonian of Eq.1,
hopping and pairing terms in one system directly trans-
late to those in the other. While the two systems are
very similar in form, the nature of the phases and states
they exhibit are radically different. The Z2 aspect, while
common to both, reflects local order in the bosonic sys-
tem and topological order in the fermionic system. The
bosonic Z2 phase discussed above corresponds to a topo-
logical phase in the fermionic chain that supports Majo-
rana bound states at its ends. The ground state degener-
acy is common to both systems, and in the fermionic case,
corresponds to the pair of Majorana end bound states
forming a Dirac fermionic state that can either be occu-
pied or unoccupied. The Z2 degree of freedom is thus
associated with electron parity. Spontaneous symmetry
breaking in the topological phase corresponds to picking
odd or even parity, or a specific superposition. The Mott-

insulating phase in the bosonic system translates in the
fermionic system to a topologically trivial non-degenerate
phase having no isolated Majorana bound states.

It is important to note that the zero-energy state in the
bosonic system does not enjoy the topological protection
for which the fermionic Kitaev system is known. While
it is susceptible to local perturbations similar to those
encountered in nanomagnets endowed with local order,
it is protected by an energy gap. The transformations
to map states between the two systems are well-known.
For instance, the fermionic creation operator operator in
Eq. 4 can be expressed in terms of the spin operators
in Eq. 2 as f†n = −2i[

∏n−1
i=1 (−2szi )]s

+
n . The beauty of

the transformation is that it allows evaluating the ac-
tual generalized version of the mean-field groundstate in
Eq. 3 to the entire parameter range as well as a slew
of expectation values and correlators related to on-site
boson occupation.

Despite the complexity in mapping, the fermionic sys-
tem described by Eq. 4 provides immediate insights on
the bosonic one of Eq. 1. Not only is the ground state
double degeneracy common to the symmetry-broken Z2

phases in both, as expected of basis-independent proper-
ties, the full energy spectrum is identical across the en-
tire range of parameters. Specifically, diagonalizing the
quadratic fermionic Hamiltonian by transforming into
momentum space gives the energy dispersion

Ek = ±
√

(2w̃ cos k + µ̃)2 + 4∆̃2 sin2 k. (5)

The dispersion is gapped across the range of parame-
ters, except for the lines i) µ̃ = 2w̃, ii) µ̃ = −2w̃ and
iii) ∆̃ = 0, |µ̃| < 2w̃. Along these lines, the dispersion
vanishes at specific momenta; the lines demarcate phase
boundaries between different gapped phases. In terms of
paired boson physics, the line along ∆̃ = 0 corresponds to
the standard superfluid-Mott insulator phase diagram in
the limit of large interaction for a given hopping strength
w. As depicted in Fig.1, Phases I and II correspond to
the doubly-degenerate Z2 phases. Phases III and IV cor-
respond to the bosonic Mott phases and their topologi-
cally trivial fermionic counterparts. For any given point
in the phase diagram, Eq. 5 provides the energy disper-
sion, which can be easily modified to a discrete spectrum
for finite-sized systems. The momentum modes, while
corresponding to free fermions, are highly non-trivial in
terms of bosons due to the non-local mapping between
the two bases. The energy spectrum, however, is com-
mon to both. Furthermore, in the Z2 phases, the two
degenerate states populate the center of the gap. Finite
size effects are expected to split this degeneracy.

Returning to experimental realizations, we note that
all major ingredients of the proposed scheme have already
been demonstrated in cold atom experiments: tunable
hopping, interaction-induced resonant tunneling, and of
course tight-binding Hamiltonians [6, 21]. The standard
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Bose-Hubbard model has been a particularly fruitful fo-
cus for cold atom experimental work: since the initial
realization of the superfluid-Mott insulator phase transi-
tion with ultracold rubidium in an optical lattice [6], a
wide variety of experiments have probed aspects ranging
from compressibility [32] to string ordering [33]. A cold-
atom manifestation of the paired Bose-Hubbard model
would build upon these and related developments of ad-
vanced characterization techniques such as spectroscopic
probes [34–36]. For revealing the Kitaev chain spectrum,
modulation spectroscopy of atoms in optical lattices
would be a natural approach. Bragg spectroscopy can
reveal energy-quasimomentum relations [37, 38], com-
plemented with new techniques based on position-space
Bloch oscillations [39, 40] and exotic drives [41]. In prin-
ciple, wavefunction features of the Z2 phase highlighted
in this work could be observed in interferometric signa-
tures in time-of-flight images of a multiple-chain sample.

In summary, we have investigated the physics of Bose-
Hubbard chains with nearest-neighbor pairing, motivated
by a possible experimental realization using an interac-
tion anti-blockade in zig-zag optical lattices. Physical
insights into the resulting features are revealed by map-
ping to an anisotropic XY spin chain and from there to
a fermionic chain. The model exhibits unusual gapped
Z2 phases and a spectrum identical to that of the Ki-
taev chain, including doubly-degenerate zero-energy Ma-
jorana bound states. Future work suggested by these
results could include considerations of larger spin, higher
dimensions, and inhomogeneities, as well as the explo-
ration of possible connections to XY lattice models
of fractionalization in gapless U(1) versus gapped ZN
phases [42].
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