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Numerical simulations are frequently required for quantum scattering problems and often face
difficulties with finite grids and unwanted, unphysical reflections. For decades, improved complex
absorbing potentials (CAPs) have been sought. Today, the rise of ultracold physics makes a solution
essential as CAP errors increase at lower energies. We present a novel method that provides a phys-
ical, semiclassical picture of how to improve CAPs based on the behavior of classical trajectories.
The method does not rely on the mathematical formalism often required by existing methods and
reduces the error associated with CAP-based calculation of the low-energy scattering wavefunctions
by up to several orders of magnitude relative to the standard Woods-Saxon approach, as demon-
strated via the distorted-wave Born approximation. This indicates the method may be applied to
the numerical simulation of collisions in the ultracold regime.

Simulations of a wide variety of open systems [1] from
chemical reactions [2] to cold and ultracold collisions [3–
5] rely on complex absorbing potentials (optical poten-
tials or CAPs). Although CAPs are designed to absorb
the wavefunction in a region of position space, they are
known to cause unphysical reflection effects in which low-
energy components of the wavepacket move counter to
the expected direction and are not fully absorbed. This
reflection problem has plagued quantum scattering and
wavepacket propagation simulations for the past thirty
years [6–9]) and is especially troublesome today in cold
and ultracold systems given the proportion of low-energy
components of wavepackets [3]. A solution to this prob-
lem would enable the study of ultracold collisions cur-
rently beyond reach due to the errors and computational
intensity associated with existing CAPs.
A multitude of CAPs have been developed, including

Woods-Saxon [10–12], linear negative imaginary [9, 13],
negative complex [7, 14, 15], energy-dependent [16–19],
channel-dependent [20], parametrized and optimized [18,
20–24], multi-hump imaginary [25], and wavefunction-
Ansatz-based [26–28]. These methods are beneficial to
specific systems, but face difficulties in the simulation of
highly multidimensional low-energy systems. Absorption
of the long-wavelength wave functions associated with
low-energy systems often entails simulation of a broad
range of position space via a large basis state or many
grid points. Yet, the range of position space that can be
simulated is limited due to the “curse of dimensionality”
in which the size of the Hilbert space grows exponentially
with the number of degrees of freedom.
Our approach takes these concerns into account. The

method does not rely on mathematical formalism. In-
stead, it provides a physical understanding of how to
improve CAPs based on classical trajectories and is
straightforward to implement.
Since reflection is greater at lower energies, we care-

fully accelerate the particles with a negative real poten-
tial with corrections before they reach the imaginary po-
tential. This reduces reflection while avoiding the need
for added grid points. To prevent reflection from the hy-
brid potential, we add a term that ensures full absorption
of particles with the lowest energy under study. There-
fore, the method “reels in” and traps particles in the
complex absorbing potential.

Our method relies on the disparate behavior of quan-
tum and classical particles in a CAP. Quantum parti-
cles artificially reflect due to impedance mismatch if ei-
ther the real or the imaginary part of the CAP changes
too quickly relative to the particle’s wavelength (i.e.
“quantum reflection” occurs when the Wentzel-Kramers-
Brillouin approximation fails even if the energy is above
any potential barriers [29–31]). In the same potential,
classical particles do not reflect. This suggests unphys-
ical reflection from CAPs is reduced if quantum trajec-
tories are made to behave more classically. We use this
insight to reduce error in CAP simulations with semiclas-
sical mechanics, which represent wavefunctions in terms
of a sum over classical trajectories, as follows.

Semiclassically corrected complex absorbing potential.
We first reduce reflection from the imaginary, absorbing
part of the CAP. Since reflection from this part of the
CAP occurs due to impedance mismatch between the
CAP and the particle, reflection is expected to be great-
est when the CAP is sharp relative to the particle, i.e.,
when the particle has low momentum. Error is reduced
by speeding up the low-momentum components of the
wavepacket by slowly turning on a negative, real, smooth
potential to the CAP [7, 14]. The ideal real potential
does not itself cause any reflection, such that quantum
and classical trajectories behave equivalently. We find
an attractive Coulomb potential correction fits the bill,
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as shown below:

VCoul. corr.(x) = Vexp(x) · VCoul.(x),

Vexp(x) =
V0

1 + e−α(x−x0)
,

VCoul.(x) =
1

(x− xC)
,

(1)

where Vexp is an exponential switching function of depth
V0, width α, and position x0, and VCoul is a Coulomb
potential of position xC . To avoid introduction of a
singularity, the Coulomb potential VCoul. is situated be-
yond the upper limit of the position space domain at
xC ≥ xmax.
The positions xC and x0 are chosen to lie just beyond

and just before the imaginary potential to define a narrow
speed-up area near the absorbing region. An intermedi-
ate value is used for the width parameter α so that the
Coulomb potential switches on slowly while the overall
correction remains negligible in the interaction region.
One way to select the depth V0 is to determine the bad-
lands condition [29, 30, 32–34], which ensures the accu-
racy of the semiclassical approximation, in the absorbing
region. This provides a way to verify the Coulomb po-
tential yields the required acceleration while reducing the
need for convergence calculations.
The three-dimensional Coulomb potential is shown to

yield the same behavior classically and quantum mechan-
ically through consideration of its Hamiltonian [35]

H =
p
2

2m
+
Ze2

r
, (2)

where p is the momentum, Z is the atomic charge, e is
the electron charge, and r is the distance between the
colliding particles. This Hamiltonian can be mapped to
the Hamiltonian of a system of harmonic oscillators

H =

4
∑

i=1

(

P 2
i

8m
− EX2

i

)

+ Ze2, (3)

via extension of Cartesian space (x,p) to four dimen-
sions and regularization with the Kustaanheimo-Stiefel
transformation [36]

r =

√

√

√

√

4
∑

i=1

x2i =
4

∑

i=1

X2
i , Pi =

∑

j=1,4

pj
∂xj
∂Xi

, dτ =
dt

r

(4)

x1 = X2
1 −X2

2 , x2 = 2X1X2, (5)

x3 = X2
3 −X2

4 , x4 = 2X3X4, (6)

where t and τ are the time and pseudo-time respec-
tively [35]. Since the quantum pseudo-time propagator
is semiclassically exact for harmonic oscillators, and the
Coulomb potential and the system of harmonic oscilla-
tors are equivalent, the Coulomb potential is accurately
treated with the semiclassical pseudo-time propagator as

well. This propagator depends only on quantities derived
from classical trajectories such that the quantum and
classical results are equivalent, and therefore reflection-
free, at all energies [35, 37, 38].
We then address reflection from the switching potential

Vexp(x) that, unlike the Coulomb potential, is not guar-
anteed to be reflection-free. If the gradient of the switch-
ing function with respect to the position is too great rel-
ative to the particle wavelength, impedance mismatch
arises from the real part of the potential that corresponds
to the switching function, which leads to reflection from
the real part of the potential. A traditional way to get
rid of this error would be to broaden the switching func-
tion, but this would increase the amount of position space
needed to simulate the CAP, which would in turn increase
the cost of the simulation. Instead, we correct the CAP
locally by adding a term that ensures that semiclassical
and quantum amplitudes are equal at a given energy of
interest E.
Specifically, an adaptation of the strategy used by

Maitra and Heller [39] is used to make the WKB wave-
function an exact solution of the Schrödinger equation:

0 =
(

− ~
2

2m

d2

d2x
+ Vcorr. CAP(x,E)

+ VWKB corr. (x,E)− E
)

ψ±

WKB(x). (7)

Here Vcorr. CAP is the Coulomb-corrected CAP of the
form

Vcorr. CAP (x) = Vuncorr. CAP (x) + VCoul. corr. (x) , (8)

where Vuncorr. CAP is the uncorrected CAP, VCoul. corr.

is the Coulomb correction Eq. 1, and VWKB corr. is the
“WKB correction” determined as follows:

VWKB corr. (x,E) = −~
2

m

[

5

32m

(

V ′
corr. CAP (x)

E − Vcorr. CAP (x)

)2

+
V ′′
corr. CAP (x)

8m (E − Vcorr. CAP (x))

]

. (9)

Note the scattering potential VPES is not included in
the WKB corrections, as reflection from this potential
is physical and only artificial reflection from the CAP
should be eliminated. Although these perturbations
can cause small reflections at energies other than E, they
ensure the solution faces no impedance mismatch from ei-
ther the real or imaginary potential at the specific energy
of concern given the reflection-free nature of the semiclas-
sical WKB solution, as discussed below.
We consider the WKB solution for a general potential

energy surface V [40–43] as

ψ±

WKB(x) =
1

√

|p(x,E)|
exp

(

± i

~

∫ q

dx′ p(x′, E)

)

(10)

where p
(

x,E
)

=
√

2m
(

E − V (x)
)

, x, m and E are the

momentum, position, reduced mass, and energy, respec-
tively. The WKB solution is given by two classical quan-
tities: the square root of the classical probability density
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provides the prefactor and the classical action provides
the argument of the exponent. As in the Coulomb case,
since the WKB solution depends only on the classical
trajectories that do not reflect, it cannot reflect in the
absence of a barrier.
This approach offers a way to interpret CAP methods

physically. In one dimension, where the Coulomb po-
tential is not reflection-free, wavefunctions are nonethe-
less accurately modelled with semiclassical WKB wave-
functions at long range; the WKB assumptions only fail
within a finite distance from the center of the Coulomb
potential [30, 44]. On the surface, the WKB corrections
have similar form to those based on complex smooth ex-
terior scaling [16, 17, 19] and Jost functions [45–47]. Yet,
they differ significantly in that here corrections rely on
classical trajectories. Physically, the corrections ensure
wavefunctions behave classically (and therefore do not
reflect) in the absorbing region of the potential, which
promotes unit transmission through the CAP at that en-
ergy.
Distorted Wave Born Approximation. Now we con-

sider the addition of the semiclassical corrections to
a common form of complex absorbing potential, the
Woods-Saxon potential [12], which is defined as follows:

Vuncorr. CAP(x) = i
(

Vd −
Vd

1 + e
(x−xm)

xw

)

(11)

In order to demonstrate how well the corrections reduce
reflection, we employ potential parameters Vd, xm, and
xw, which control the depth, position, and width, re-
spectively. We choose parameters that artificially yield a
CAP with a sharp onset and a small absorbing region to
encourage much reflection at low energy as a benchmark.
The parameters of the Coulomb correction are chosen so
that the particles speed up before they reach the imag-
inary potential, thus reflecting negligibly. Here a broad
Coulomb potential correction is employed; however, the
length of the CAP region could be further reduced pro-
vided it sufficiently accelerates the particle away from
the WKB correction region. The aforementioned bad-
lands condition [29, 30, 32–34] may provide a way to
quantify how much the Coulomb correction can reduce
the required length of the simulated grid in CAP-based
calculations. The WKB correction parameters are set at
the lowest required energy, where the most reflection is
expected. The resulting uncorrected and corrected CAPs
are shown in Fig. 1).
We first investigate the reflection from the corrected

CAP in a free particle collision of reduced mass m =
1 a.u., since in that system the only reflection is artificial
as there is no physical reflection from the system poten-
tial energy surface VPES = 0. The method is then applied
to a realistic system to demonstrate the method’s appli-
cability to ultracold collisions. We determine the degree
of transmission in a neutral potassium-potassium colli-
sion, modelled by the the Morse potential:

VPES(x) = De (1− exp (a(x− xe)))
2 −De, (12)

where De = 0.0200725 a.u. is the dissociation energy
[48, 49], xe = 7.47576 a.u. is the equilibrium inter-atomic

distance [50], a =
√

4mE2
ZPE/(2De) is the Morse po-

tential parameter, EZPE = 0.000209592 a.u. is the zero-
point energy [50], and m = 35635.9 a.u. is the reduced
mass.
To evaluate the degree of reflection from the CAP at

each energy, the proportion of the scattered wavefunction
(the reflection coefficient R (E′)) is calculated according
to the expression:

R(E′) =
σrefl(E

′)

σtrans(E′) + σrefl(E
′)
, (13)

where σrefl(E
′) is the reflection probability and

σtrans(E
′) = 1 is the transmission probability. Since the

WKB solution exactly solves the Schrödinger equation
when WKB corrections are used and by assumption the
difference between the WKB-corrected potential and the
original potential is small, the distorted wave Born ap-
proximation is used to evaluate the scattering cross sec-
tion perturbatively as follows [39, 51–53]:

σrefl(E
′) =

m2

~2

∣

∣

∣

∣

∣

∫ ∞

−∞

dxU(x,E,E′)
e(2i/~)

∫
x dx′ p(x′)

p(x)

∣

∣

∣

∣

∣

2

,

(14)

where here the momentum p is approximated as
√
2mE

for energies
∣

∣E − V (x)
∣

∣ < 10−9 a.u. to avoid numeri-
cal instability. Here the perturbation U (x,E,E′) trans-
forms the Hamiltonian exactly solved by the WKB wave-
function at energy E into the Hamiltonian of the po-
tential under study at energy E′. We calculate the
reflection coefficient for three different CAPs: the un-
corrected CAP Vuncorr. CAP, the WKB corrected CAP
Vuncorr. CAP + VWKB corr. (similar to refs. [16, 46]), and
the fully corrected CAP Vcorr.CAP. For realistic scattering
systems, we determine the degree of artificial reflections
from the CAPs via calculation of the error in the trans-
mission coefficient 1−R(E′) relative that of the physical
scattering potential VPES. We evaluate the reflection co-
efficient at low energy, where reflection is expected to be
highest, and over several magnitudes of energy, given the
energy uncertainty inherent in wavepacket dynamics.
As expected, the corrected CAP successfully reduced

reflection by several orders of magnitude at low ener-
gies relative to the uncorrected CAP in the absence of
real, physical reflection, as illustrated in Fig. 2. At the
lowest energy considered E′ = E, the uncorrected CAP
reflected nearly all the wavefunction and the WKB cor-
rections completely eliminated reflection. The addition
of Coulomb potential corrections reduced reflection by an
order of magnitude relative to WKB corrections alone at
all energies tested.
The form of the reflection coefficient of the WKB cor-

rected CAPs (blue solid line with triangles and orange
solid line with circles) can be understood with a physi-
cal picture that relates classical and quantum behaviors.
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FIG. 1. Left: Real (orange solid line) and imaginary (blue dashed line) parts of the uncorrected Woods-Saxon complex
absorbing potential Vuncorr. CAP Eq. 11 for parameters Vd = 0.0145 a.u., xm = 2000 a.u., and xw = 8.0 a.u.. Right: Real
(orange solid line) and imaginary (blue dashed line) parts of the corrected complex absorbing potential Vcorr. CAP Eq. 8 with
WKB corrections VWKB corr. Eq. 9 (magnified in inset) defined at energy E = 10−6 a.u. (≡ 316 millikelvin). Here we used
V0 = 1.0 a.u., α = 0.005 a.u., x0 = 2000 a.u., and xC = 4100 a.u..

 0

 0.2

 0.4

 0.6

 0.8

 1

10-6 10-3 100 103

R
ef

le
ct

io
n 

C
oe

ffi
ci

en
t

Energy (a.u.)

Uncorrected
WKB Corrected

WKB Corrected + Coulomb

FIG. 2. The corrected CAP Eq. 8 (orange solid line with
circles) significantly reduced reflection for the free particle
collision as compared to the uncorrected CAP Eq. 11 (gray
dashed line) and the WKB corrected CAP Eq. 9 (blue solid
line with triangles) defined at energy E = 10−6 a.u. (equiva-
lent to 316 millikelvin, marked with arrow). Quadrature was
performed in the position space region x ∈ [0, 4000] a.u. with
216 equal grid points.

At the energy of the WKB corrections, the particle be-
haves classically, and there is no reflection. As the energy
increases, the corrections are no longer exact and quan-
tum reflection reemerges until reflection reaches a max-
imum. Finally, reflection decreases again as the system
approaches the classical limit.

The corrections also significantly improved the accu-
racy of the calculated transmission coefficient for the real-
istic model of a low-energy collision shown in Fig. 3. The
WKB corrections eliminated error at the lowest energy
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FIG. 3. For the benchmark ultracold collision calculation
Eq. 12, the corrected CAP Eq. 8 (orange solid line with circles,
V0 = 1. a.u., α = 0.5 a.u., x0 = 200. a.u., xC = 410. a.u.)
determined the transmission coefficient with higher accu-
racy than the uncorrected CAP Eq. 11 (gray dashed line,
Vd = 0.0145 a.u., xm = 375. a.u., and xw = 0.1 a.u.) and
the WKB-corrected CAP Eq. 9 (blue solid line with trian-
gles, fixed at energy E = 10−11 a.u. ≈ 3.16 microkelvin
as indicated by an arrow). Quadrature was performed for
212 equally spaced grid points in the position space region
x ∈ [0, 400] a.u..

under consideration (10−11 a.u. ≈ 3.16 microkelvin), and
the addition of the Coulomb correction further reduced
error to near zero at all energies under study.

Conclusion. This novel semiclassical method reduces
the error associated with artificial reflections in CAPs by
orders of magnitude at low energy. Using a physical pic-
ture of reeling in low-momentum particles and eliminat-
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ing reflection at the lowest energy of interest was found
to be more accurate than the WKB approach alone. This
result indicates the method may be used to simulate real
systems such as ultracold collisions, where existing solu-
tions are inaccurate and/or expensive. Since this CAP
absorbs the wavefunction over a broad range of energy,
it may prove to be useful for absorbing multidimensional
wavepackets, which reach the CAP wall with widely dif-
ferent proportions of the total energy. The method also
decreases the amount of position space that must be sim-
ulated with the use of local corrections, which would be
especially beneficial in highly multidimensional systems
that face the curse of dimensionality. This indicates the
method shows promise for simulation of systems previ-

ously beyond reach.
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