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The correspondence principle suggests that quantum systems grow classical when large. Classical
systems cannot violate Bell inequalities. Yet agents given substantial control can violate Bell in-
equalities proven for large-scale systems. We consider agents who have little control, implementing
only general operations suited to macroscopic experimentalists: preparing small-scale entanglement
and measuring macroscopic properties while suffering from noise. That experimentalists so restricted
can violate a Bell inequality appears unlikely, in light of earlier literature. Yet we prove a Bell in-
equality that such an agent can violate, even if experimental errors have variances that scale as
the system size. A violation implies nonclassicality, given limitations on particles’ interactions. A
product of singlets violates the inequality; experimental tests are feasible for photons, solid-state
systems, atoms, and trapped ions. Consistently with known results, violations of our Bell inequality
cannot disprove local hidden-variables theories. By rejecting the disproof goal, we show, one can
certify nonclassical correlations under reasonable experimental assumptions.

Can large systems exhibit nonclassical behaviors such
as entanglement? The correspondence principle suggests
not. Yet experiments are pushing the quantum-classical
boundary to larger scales [1–7]: Double-slit experiments
have revealed interference of organic molecules’ wave
functions [4]. A micron-long mechanical oscillator’s
quantum state has been squeezed [5]. Many-particle sys-
tems have given rise to nonlocal correlations [8–10].
Nonlocal correlations are detected with Bell tests. In a

Bell test, systems are prepared, separated, and measured
in each of many trials. The outcome statistics may vio-
late a Bell inequality. If they do, they cannot be modeled
with classical physics, in the absence of loopholes.
Bell inequalities have been proved for settings that in-

volve large scales (e.g., [9–29]); see [30, 31] for reviews and
Supplementary Note A for a detailed comparison with
our results. We adopt a different approach, consider-
ing which operations a macroscopic experimentalist can
perform easily: preparing small-scale entanglement and
measuring large-scale properties, in our model. Whether
such a weak experimentalist can violate a Bell inequality,
even in the absence of noise, is unclear a priori. Indeed,
our experimentalist can violate neither Bell’s 1964 in-
equality [32, 33], nor any previously proved macroscopic
Bell inequality to which our main result does not re-
duce [9–28].1 Nevertheless, we prove a macroscopic Bell
inequality that can be violated with these operations,
even in the presence of noise. The key is the macroscopic
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1 Navascués et al. prove a macroscopic Bell inequality that gov-
erns a similarly restricted experimentalist [29]. However, [29]
does not address noise, with respect to which our result is robust.
See Supplementary Note A for a detailed comparison of [29] with
our result.

Bell parameter’s nonlinearity in the probability distribu-
tions over measurement outcomes.

Our inequality is violated by macroscopic measure-
ments of, e.g., a product of N > 1 singlets. Such a state
has been prepared in a wide range of platforms, includ-
ing photons [34], solid-state systems [35], atoms [36, 37],
and trapped ions [38]. A photonic experiment is under-
way [39]. A violation of the inequality implies nonlocality
if microscopic subsystems are prepared approximately in-
dependently. Similarly, independence of pairs of particles
is assumed in [33, 40, 41], though it may be difficult to
guarantee.

This independence requirement prevents violations of
our inequality from disproving local hidden-variables the-
ories (LHVTs), as no experimentalist restricted like ours
can [33, 40, 41]. By forfeiting the goal of a disproof,
we show, one can certify entanglement under reasonable
experimental assumptions. This certification is device-
independent, requiring no knowledge of the state or ex-
perimental apparatuses, apart from the aforementioned
independence. Furthermore, our inequality is robust with
respect to errors, including a lack of subsystem indepen-
dence, whose variances scale as N . Additionally, with
our strategy, similar macroscopic Bell inequalities can be
derived for macroscopic systems that satisfy different in-
dependence assumptions.

Aside from being easily testable with platforms known
to produce Bell pairs, our inequality can illuminate
whether poorly characterized systems harbor entangle-
ment. Such tests pose greater challenges but offer greater
potential payoffs. Possible applications include Posner
molecules [42–45], tabletop experiments that simulate
cosmological systems [46], and high-intensity beams.

The rest of this paper is organized as follows. We in-
troduce the setup in Sec. I. Section II contains the main
results: We present and prove the Bell inequality for
macroscopic measurements, using the covariance formu-
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lation of a microscopic Bell inequality [47]. Section III
contains a discussion: We compare quantum correlations
and global classical correlations as resources for violating
our inequality, show how to combat experimental noise,
reconcile violations of the inequality with the correspon-
dence principle [33, 40, 41], recast the Bell inequality as a
nonlocal game, discuss a potential application to Posner
molecules [42–45], and detail opportunities.

I. SETUP

Consider an experimentalist Alice who has a system
A and an experimentalist Bob who has a disjoint system
B. Each system consists of N microscopic subsystems,
indexed with i. The ith subsystem of A can interact with
the ith subsystem of B but with no other subsystems.
Our setup resembles that in [33].
Alice can measure her system with settings x = 0, 1,

and Bob can measure his system with settings y = 0, 1.
Each measurement yields an outcome in [0, 1].2 The ex-
perimentalist observes the sum of the microscopic out-
comes, the value of a macroscopic random variable. Mea-
suring A with setting x yields the macroscopic random
variable Ax. By is defined analogously.
We will often illustrate with two beams of photons.

The polarization of each photon in beam A is entangled
with the polarization of a photon in beam B and vice
versa. Such beams can be produced through spontaneous
parametric down-conversion (SPDC) [48]: A laser beam
strikes a nonlinear crystal. Upon absorbing a photon, the
crystal emits two photons entangled in the polarization
domain: 1√

2
(|H,V〉+ eiα|V,H〉). Horizontal and vertical

polarizations are denoted by |H〉 and |V〉. The relative
phase depends on some α ∈ R. The photons enter differ-
ent beams. Each experimentalist measures his/her beam
by passing it through a polarizer, then measuring the
intensity. The measurement setting (Alice’s x or Bob’s
y) determines the polarizer’s angle. A photon passing
through the polarizer yields a 1 outcome. The inten-
sity measurement counts the 1s. Supplementary Note B
addresses concerns about the feasibility of realizing our
model experimentally. Supplementary Note C details the
photon example.
The randomness in the Ax’s and By’s is of three types:

(i) Quantum randomness: If the systems are quantum,
outcomes are sampled according to the Born rule
during wave-function collapse.

(ii) Local classical randomness: Randomness may taint
the preparation of each AB pair of subsystems.
In the SPDC example, different photons enter

2 In the strategies presented explicitly in this paper, every mea-
surement outcome equals 0 or 1. But the macroscopic Bell in-
equality holds more generally.

the crystal at different locations. Suppose that
the crystal’s birefringence varies over short length
scales. Different photon pairs will acquire different
relative phases eiα [48].

(iii) Global classical randomness: Global parameters
that affect all the particle pairs can vary from trial
to trial. In the photon example, Alice and Bob
can switch on the laser; measure their postpolarizer
intensities several times, performing several trials,
during a time T ; and then switch the laser off. The
laser’s intensity affects the Ax’s and By’s and may
fluctuate from trial to trial.

Quantum randomness and global classical randomness
can violate our macroscopic Bell inequality. Assuming
a cap on the amount of global classical randomness,
we conclude that violations imply nonclassicality. Lo-
cal classical randomness can conceal violations achievable
by quantum systems ideally. Local classical randomness
also produces limited correlations, which we bound in
our macroscopic Bell inequality. We quantify classical
randomness with a noise variable r below.
Systems A and B satisfy two assumptions:

(a) A and B do not interact with each other while be-
ing measured. Neither system receives information
about the setting with which the other system is
measured.

(b) Global classical correlations are limited, as quanti-
fied in Ineq. (2).

Assumption (a) is standard across Bell inequalities. In
the photon example, the beams satisfy (a) if spatially
separated while passing through the polarizers and un-
dergoing intensity measurements.
Assumption (b) is the usual assumption that parame-

ters do not fluctuate too much between trials, due to a
separation of time scales. Consider the photon example
in item (ii) above. Let t denote the time required to mea-
sure the intensity, to perform one trial. The trial time
must be much shorter than the time over which the global
parameters drift (e.g., the laser intensity drifts): t ≫ T .
The greater the time scales’ separation, the closer the sys-
tem comes to satisfying assumption (b). Assumption (b)
has appeared in other studies of nonclassical correlations
in macroscopic systems (e.g., [33, 41]).
Assumptions (a) and (b) are the conditions under

which a Bell inequality is provable for the operations
that a macroscopic experimentalist is expected to be
able to perform: correlating small systems and measur-
ing macroscopic observables.3 If the experimentalist can

3 Why these operations? Preparing macroscopic entanglement is
difficult; hence the restriction to microscopic preparation con-
trol. Given microscopic preparation control, if the experimen-
talist could measure microscopic observables, s/he could test the
microscopic Bell inequality; a macroscopic Bell inequality would
be irrelevant.
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perform different operations, different assumptions will
be natural, and our macroscopic Bell test may be ex-
tended (Sec. III).
We fortify our Bell test by allowing for small global

correlations and limited measurement precision. Both
errors are collected in one parameter, defined as follows.
In the absence of errors, Ax and By equal ideal random
variables A′

x and B′
y. Each ideal variable equals a sum

of independent random variables. We model the discrep-
ancies between ideal and actual with random variables r,
as in

Ax = A′
x + rAx

. (1)

Our macroscopic Bell inequality is robust with respect to
errors of bounded variance:

Var (rAx
) ≤ ǫN, (2)

wherein ǫ > 0. Errors rBy
are defined analogously. They

obey Ineq. (2) with the same ǫ. Strategies for mitigating
errors are discussed in Sec. III.
Our macroscopic Bell inequality depends on the covari-

ances of the Ax’s and By’s. The covariance of random
variables X and Y is defined as

Cov (X,Y ) := E([X − E (X)][Y − E (Y )]), (3)

wherein E (X) denotes the expectation value of X . One
useful combination of covariances, we define as the
macroscopic Bell parameter :4

B(A0, A1, B0, B1) :=
4

N
[Cov (A0, B0) + Cov (A0, B1)

+ Cov (A1, B0)− Cov (A1, B1)].
(4)

II. MAIN RESULTS

We present the nonlinear macroscopic Bell inequality
and sketch the proof, detailed in Suppl. Note D. Then,
we show how to violate the inequality using quantum
systems.

Theorem 1 (Nonlinear Bell inequality for macroscopic
measurements). Let systems A and B, and measurement
settings x and y, be as in Sec. I. Assume that the systems
are classical. The macroscopic random variables satisfy
the macroscopic Bell inequality

B(A0, A1, B0, B1) ≤ 16/7 + 16ǫ+ 32
√
ǫ. (5)

4 Calculating B requires knowledge of N , the number of particles
in each experimentalist’s system. N might not be measurable
precisely. But knowing N even to within

√
N suffices: Taylor-

approximating yields 1
N+

√
N

= 1
N

(

1− 1√
N

)

. The correction

is of size 1√
N

≪ 1. Furthermore, uncertainty about N may be

incorporated into a noise model with which a macroscopic Bell
inequality can be derived (Suppl. Note C).

Proof. Here, we prove the theorem when ǫ = 0, when
the observed macroscopic random variables Ax and By

equal the ideal A′
x and B′

y. The full proof is similar but
requires an error analysis (Suppl. Note D).

Let a
(i)
x denote the value reported by the ith A particle

after A is measured with setting x. A′
x and B′

y equal
sums of the microscopic variables:

A′
x =

N
∑

i=1

a(i)x , and B′
x =

N
∑

i=1

b(i)x . (6)

Because a
(i)
0 and b

(i)
0 are independent of the other vari-

ables,

Cov (A′
0, B

′
0) =

N
∑

i=1

Cov
(

a
(i)
0 , b

(i)
0

)

. (7)

Analogous equalities govern the other macroscopic-
random-variable covariances.
Let us bound the covariances amongst the a

(i)
x ’s

and b
(i)
y ’s. We use the covariance formulation of the

Bell-Clauser-Horne-Shimony-Holt (Bell-CHSH) inequal-
ity (see [47, 49] and Suppl. Note E),5

Cov
(

a
(i)
0 , b

(i)
0

)

+Cov
(

a
(i)
0 , b

(i)
1

)

+Cov
(

a
(i)
1 , b

(i)
0

)

− Cov
(

a
(i)
1 , b

(i)
1

)

≤ 4/7. (8)

Combining Eq. (7) and Ineq. (8) with the definition of
B(A′

x, A
′
y, B

′
x, B

′
y) [Eq. (4)] gives

B(A′
0, A

′
1, B

′
0, B

′
1) =

4

N

N
∑

i=1

[

Cov
(

a
(i)
0 , b

(i)
0

)

(9)

+ Cov
(

a
(i)
0 , b

(i)
1

)

+Cov
(

a
(i)
1 , b

(i)
0

)

− Cov
(

a
(i)
1 , b

(i)
1

) ]

≤ 16/7. (10)

We now show that a quantum system can produce cor-
relations that violate Ineq. (5). The system consists of
singlets.

Theorem 2. There exist an N -particle quantum system
and a measurement strategy, subject to the restrictions in
Sec. I, whose outcome statistics violate the nonlinear Bell

5 In the original statement of Ineq. (8), the right-hand side (RHS)

equals 16/7. The reason is, in [47], a
(i)
x , b

(i)
y ∈ [−1, 1]. We assume

that each variable ∈ [0, 1], so we deform the original result in two
steps. First, we translate [−1, 1] to [0, 2]. Translations preserve
covariances. Second, we rescale [0, 2] to [0, 1]. The rescaling
halves each a and b, quartering products ab, the covariances,
and the 16/7 in Ineq. (8). The resulting 4/7 is multiplied by a 4
in Ineq. (9), returning to 16/7.
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inequality for macroscopic measurements. The system
and strategy achieve

B(A0, A1, B0, B1) = 2
√
2 (11)

in the ideal (ǫ = 0) case and

B(A0, A1, B0, B1) ≥ 2
√
2− 16ǫ− 32

√
ǫ (12)

in the presence of noise bounded as in Ineq. (2).

Proof. As in the proof of Theorem 1, we prove the result
in the ideal case here. Supplementary Note F contains
the error analysis. Let each of A and B consist of N
qubits. Let the ith qubit of A and the ith qubit of B
form a singlet, for all i: |Ψ−〉 := 1√

2
(|01〉 − |10〉). We

denote the 1 and −1 eigenstates of the Pauli z-operator
σz by |0〉 and |1〉. Let x and y be the measurement
settings in the conventional CHSH test ([49], reviewed in
Suppl. Note E). If the measurement of a particle yields 1,
the particle effectively reports 1; and if the measurement
yields −1, the particle reports 0.
Measuring the ith particle pair yields outcomes that

satisfy

E

(

a
(i)
0

)

= E

(

a
(i)
1

)

= E

(

b
(i)
0

)

= E

(

b
(i)
1

)

=
1

2
. (13)

As shown in Suppl. Note F,

E

(

a
(i)
0 b

(i)
0

)

+ E

(

a
(i)
0 b

(i)
1

)

(14)

+ E

(

a
(i)
1 b

(i)
0

)

− E

(

a
(i)
1 b

(i)
1

)

= 2 sin2(3π/8)− 1

2
.

Combining these two equations yields

Cov
(

a
(i)
0 , b

(i)
0

)

+Cov
(

a
(i)
0 , b

(i)
1

)

(15)

+ Cov
(

a
(i)
1 , b

(i)
0

)

− Cov
(

a
(i)
1 , b

(i)
1

)

= 2 sin2(3π/8)− 1.

= 1/
√
2. (16)

Following the proof of Theorem 1, we compute

B(A′
0, A

′
1, B

′
0, B

′
1) (17)

=
4

N

∑

i

[

Cov
(

a
(i)
0 , b

(i)
0

)

+Cov
(

a
(i)
0 , b

(i)
1

)

+Cov
(

a
(i)
1 , b

(i)
0

)

− Cov
(

a
(i)
1 , b

(i)
1

) ]

(18)

= 2
√
2. (19)

III. DISCUSSION

Six points merit analysis. First, we discuss the equiv-
alence of local quantum correlations and global classical
correlations as resources for violating the macroscopic

Bell inequality. Second, we suggest strategies for mit-
igating experimental errors. Third, we reconcile our
macroscopic-Bell-inequality violation with the principle
of macroscopic locality, which states that macroscopic
systems should behave classically [33, 40, 41]. Fourth,
we recast our macroscopic Bell inequality in terms of a
nonlocal game. Fifth, we discuss a potential application
to the Posner model of quantum cognition [42–45]. Sixth,
we detail opportunities engendered by this work.
Violating the macroscopic Bell inequality with

classical global correlations: Violating the in-
equality (5) is a quantum information-processing (QI-
processing) task. Entanglement fuels some QI-
processing tasks equivalently to certain classical re-
sources (e.g., [50]). In violating the macroscopic Bell in-
equality, entanglement within independent particle pairs
serves equivalently to global classical correlations. We
prove this claim in Suppl. Note G. This result elucidates
entanglement’s power in QI processing.
Two strategies for mitigating experimental im-

perfections: Imperfections generate local classical (ii)
and global classical (iii) randomness, discussed in Sec. I.
Local classical randomness can conceal quantum vio-
lations of the macroscopic Bell inequality, making the
macroscopic Bell parameter B (4) appear smaller than
it should. Global classical randomness can lead classical
systems to violate the inequality. These effects can be
mitigated in two ways.
First, we can reduce the effects of local classical ran-

domness on B by modeling noise more precisely than
in Sec. I. A macroscopic Bell inequality tighter than
Ineq. (5) may be derived. We illustrate in Suppl. Note C,
with noise that acts on the microscopic random vari-

ables a
(i)
x and b

(i)
y independently. Second, we can mit-

igate global classical randomness by reinitializing global
parameters between trials. In the photon example, the
laser can be reset between measurements.
Reconciliation with the principle of macro-

scopic locality: Macroscopic locality has been pro-
posed as an axiom for distinguishing quantum theory
from other nonclassical probabilistic theories [33, 40, 41]
(see [51, 52] for a more restrictive proposal). Suppose
that macroscopic properties of N independent quantum
particles are measured with precision ∼

√
N . The out-

comes are random variables that obey a probability dis-
tribution P . A LHVT can account for P , according to
the principle of macroscopic locality.
The violation of our macroscopic Bell inequality would

appear to violate the principle of macroscopic local-
ity. But experimentalists cannot guarantee the ab-
sence of fluctuating global parameters, no matter how
tightly they control the temperature, laser intensity, etc.
Some unknown global parameter could underlie the Bell-
inequality violation, due to the inequality’s nonlinearity
(Suppl. Note A 2). This parameter would be a classi-
cal, and so local, hidden variable. Hence violating our
macroscopic Bell inequality does not disprove LHVTs.
Rather, a violation signals nonlocal correlations under
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reasonable, if not airtight, assumptions about the exper-
iment (Sec. I).

Nonlocal game: The macroscopic Bell inequality
gives rise to a nonlocal game. Nonlocal games quan-
tify what quantum resources can achieve that classical
resources cannot. The CHSH game is based on the Bell-
CHSH inequality ([49, 53, 54] and Suppl. Note E): Play-
ers Alice and Bob agree on a strategy; share a resource,
which might be classical or quantum; receive questions x
and y from a verifier; operate on their particles locally;
and reply with answers ax and by. If the questions and
answers satisfy x ∧ y = a + b (mod 2), the players win.
Players given quantum resources can win more often than
classical players can.

Our macroscopic game (Suppl. Note H) resembles the
CHSH game but differs in several ways: N Alices and
N Bobs play. The verifier aggregates the Alices’ and
Bobs’ responses, but the verifier’s detector has limited
resolution. The aggregate responses are assessed with
a criterion similar to the CHSH win condition. After
many rounds of the game, the verifier scores the player’s
performance. The score involves no averaging over all
possible question pairs xy. Players who share pairwise
entanglement (such that each Alice shares entanglement
with only one Bob and vice versa) can score higher than
classical players.

Toy application to Posner molecules: Fisher has
proposed a mechanism by which entanglement might en-
hance coordinated neuron firing [42]. Phosphorus nuclear
spins, he argues, can retain coherence for long times when
in Posner molecules Ca9(PO4)6 [55–61]. (We call Pos-
ner molecules “Posners” for short.) He has argued that
Posners might share entanglement. Fisher’s work has in-
spired developments in quantum computation [44, 62],
chemistry [43, 61], and many-body physics [63–65]. The
experimental characterization of Posners has begun. If
long-term coherence is observed, entanglement in Pos-
ners should be tested for.

How could it be? Posners tumble randomly in their
room-temperature fluids. In Fisher’s model, Posners can
undergo the quantum-computational operations detailed
in [44], not the measurements performed in conventional
Bell tests. Fisher sketched an inspirational start to an
entanglement test in [45]. Concretizing the test as a
nonlocal game was proposed in [44]. We initiate the con-
cretization in Suppl. Note I. Our Posner Bell test requires
microscopic control but proves that Posners can violate a
Bell inequality, in principle, in Fisher’s model. Observing
such a violation would require more experimental effort
than violating our inequality with photons. But a Posner
violation would signal never-before-seen physics: entan-
glement amongst biomolecules.

Opportunities: This work establishes six avenues of
research. First, violations of our inequality can be ob-
served experimentally. Potential platforms include pho-
tons [34], solid-state systems [35], atoms [36, 37], and
trapped ions [38]. A photonic experiment is now un-
derway [39]. These systems could be conscripted rela-

tively easily but are known to generate nonclassical cor-
relations. More ambitiously, one could test our macro-
scopic Bell inequality with systems whose nonclassicality
needs characterization. Examples include the cosmic mi-
crowave background (CMB) and Posner molecules. De-
tecting entanglement in the CMB faces difficulties: Some
of the modes expected to share entanglement have such
suppressed amplitudes, they cannot be measured [66].
Analogs of cosmological systems, however, can be real-
ized in tabletop experiments [46]. Such an experiment’s
evolution can be paused. Consider pausing the evolu-
tion before, or engineering the evolution to avoid, the
suppression. From our Bell test, one might infer about
entanglement in the CMB. A Posner application would
require the elimination of microscopic control from the
Bell test in Suppl. Note I, opportunity two.

Third, our macroscopic Bell inequality may be gen-
eralized to systems that violate the independence re-
quirement in Sec. I. Examples include squeezed states,
as have been realized with, e.g., atomic ensembles and
SPDC [67, 68]. The assumptions in Sec. I would need
to modified to accommodate the new setup. If an ex-
perimental system violated the new inequality while sat-
isfying the appropriate assumptions, one could conclude
that the system was nonclassical. We illustrate such a
modification and violation in Suppl. Note C, with a pho-
tonic system. Tailoring our results to a high-intensity
pump appears likely to enable experimentalists to wit-
ness entanglement in systems that violate a common co-
incidence assumption: Bell tests tend to require low in-
tensities, so that only one particle reaches each detec-
tor per time window [69]. The coincidence of a parti-
cle’s arriving at detector A and a particle’s arriving at
detector B implies that these particles should be an-
alyzed jointly. High-intensity pumps violate the one-
particle-per-time-window coincidence assumption. Tai-
loring Suppl. Note C, using Gaussian statistics, ap-
pears likely to expand Bell tests to an unexplored, high-
intensity regime.

Fourth, which macroscopic Bell parameters B can
probabilistic theories beyond quantum theory realize?
Other theories can support correlations unrealizable in
quantum theory [70, 71]. These opportunities can help
distinguish quantum theory from alternative physics
while illuminating the quantum-to-classical transition.

Fifth, our macroscopic Bell parameter is nonlinear
in the probabilities of possible measurements’ outcomes
(Suppl. Note A 2). We have proved that a nonlinear
operation—photodetection—can violate the inequality.
Can Gaussian operations [72]? The answer may illumi-
nate the macroscopic Bell inequality’s limits.

Sixth, certain Bell inequalities have applications to
self-testing [73]. A maximal violation of such an inequal-
ity implies that the quantum state had a particular form.
Whether covariance Bell inequalities can be used in self-
testing merits investigation.
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