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Optical microcavities and metallic nanostructures have been shown to significantly modulate the
dynamics and spectroscopic response of molecular systems. We present a study of the nonlinear
optics of a model consisting of N anharmonic multilevel systems (e.g., Morse oscillators) undergoing
collective strong coupling with a resonant infrared microcavity. We find that, under experimentally
accessible conditions, molecular systems in microcavities may have nonlinear phenomena signifi-
cantly intensified due to the high quality of polariton resonances and the enhanced microcavity
electromagnetic energy density relative to free space. Particularly large enhancement of multipho-
ton absorption happens when multipolariton states are resonant with bare molecule multiphoton
transitions. In particular, our model predicts two-photon absorption cross section enhancements
by several orders of magnitude relative to free space when the Rabi splitting ΩR is approximately
equal to the molecular anharmonic shift 2∆. Our results provide rough upper bounds to resonant
nonlinear response enhancement factors as relaxation to dark states is treated phenomenologically.
Notably, ensembles of two-level systems undergoing strong coupling with a cavity (described by
the Tavis-Cummings model) show no such optical nonlinearity enhancements, highlighting the rich
phenomenology afforded by multilevel anharmonic systems. Similar conclusions are expected to
hold for excitonic systems that share features with our model (e.g., molecular dyes with accessible
S0 → S1 → S2 transitions) and strongly interact with a UV-visible cavity.

1. INTRODUCTION

Light-induced nonequilibrium phenomena is a topic
of great contemporary interest due to its relevance to
the energy, biochemical, and material sciences. Nonlin-
ear spectroscopy provides tools for probing and control-
ling nonequilibrium quantum dynamics [1, 2] driven by
external radiation. Applications of nonlinear optics to
chemistry include investigations of the dynamics of en-
ergy and charge transport in light-harvesting complexes
[3, 4], organic electronics [5], and other excitonic systems
[6]. Nonlinear optical processes are also basic to vari-
ous developing technologies including all-optical devices
[7, 8], quantum information processors [9, 10], and en-
hanced sensors [11].

Unfortunately, the nonlinearities of molecular sys-
tems are generally weak [12]. Recently, hybrid mate-
rials consisting of a molecular ensemble hosted by a
photonic (or plasmonic) device (e.g., optical microcav-
ities and metallic nanostructures) have been explored
as potential sources of magnified nonlinear optical re-
sponse [13–16]. Under accessible experimental condi-
tions (room temperature and atmospheric pressure) the
light-matter interaction in photonic materials can be-
come strong enough that excited states corresponding
to superposition of (collective) material polarization and
cavity excitations emerge [16–20]. The corresponding hy-
brid quasiparticles (modes) are commonly denoted by
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(cavity)-polaritons[21]. They show controllable coher-
ence and relaxation dynamics that allow modulation of
various physicochemical properties. Molecular phenom-
ena significantly influenced by strong light-matter inter-
actions include: energy transfer[22–24], charge and exci-
ton transport [25–27], and chemical kinetics [28–31].

FIG. 1. Left: Planar microcavity consisting of two highly
reflective mirrors filled with a molecular ensemble (e.g.,
W(CO)6 in solution) with sufficiently large collective oscilla-
tor strength that hybrid polaritonic states are formed. Right:
Mechanism for enhancement of two-photon absorption by an
ensemble of Morse oscillators (represented by the various il-
lustrative Morse potentials) under strong coupling with an
optical cavity. An external field resonant with the lower-
polariton (LP) drives the hybrid cavity and excites two-LP
states which can be tuned to be near-resonant with the an-
harmonically shifted doubly-excited molecular states forming
the totally-symmetric 2S state. This polariton-mediated ab-
sorption channel allows enhancement of several orders of mag-
nitude of the molecular two-photon absorption cross-section.

Recent experiments [32–41] have surveyed the non-
linear optics of polaritonic systems to gain further in-
sight into the relaxation kinetics and optical response
of strongly coupled devices. In Refs. [36–38, 42], the
transient response and relaxation to equilibrium of vibra-
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tional polaritons (those arising from the strong coupling
of molecular infrared polarization with a resonant mi-
crocavity) were investigated with pump-probe and two-
dimensional infrared spectroscopy. These studies demon-
strated how vibrational anharmonicity is manifested in
the pump-probe polariton response [43]. However, the
observed time-resolved spectra were sensitive to vari-
ous system-dependent effects arising from the small Rabi
splittings of the studied materials, and significant static
and dynamical disorder which induces ultrafast polariton
decay into the weakly-coupled (dark) molecular modes.

In this work, we focus on universal (system-
independent) features of molecular polariton nonlinear
optics. Our aim is to provide qualitative and quanti-
tative insight on the potential to achieve giant optical
nonlinearities with molecular polaritons in the collective
regime (which is the case in most experiments) with a
large number of molecules in a microcavity (nonlinear
optical effects of single-molecule polaritonic systems have
been studied within a non-adiabatic model of the dynam-
ical Casimir effect in Ref. [44], as well as in vibrational
polariton spectra in Ref. [45]).

In Sec. 2, we describe our model, provide an analytical
expression for the nonlinear optical susceptibility of an
ideal molecular ensemble under strong interaction with a
microcavity (the full derivation is in Appendix B), and
discuss its main features. In Sec. 3, we compare the free
space and the polariton-mediated two-photon absorption
(TPA) rates, and show that, especially when overtone po-
lariton transitions are resonant with multiphoton molec-
ular transitions, nonlinearity enhancements of several or-
ders of magnitude may be achieved with currently avail-
able optical cavities (Fig. 1) as a result of three main
effects: increased electromagnetic energy density in the
optical microcavity relative to free space [13, 46], creation
of new optical resonances, and strong coupling induced
suppression of lineshape broadening [47]. A discussion
of our main results and conclusions are given in Sec. 4.
The appendices contain the derivations of the molecular
nonlinear susceptibility, and rate of nonlinear absorption
in free space and under strong coupling with an optical
microcavity.

2. MOLECULAR NONLINEAR RESPONSE

2.1. Effective Hamiltonian

The physical system of interest consists of a molecular
ensemble containing N molecules uniformly distributed
in a region enclosed by two highly-reflective planar mir-
rors separated by a distance Lc of the order of the wave-
length of a specific material infrared excitation (Lc is
usually between 0.1 and 20 µm) [48–50]. This setup cor-
responds to a Fabry-Perot (FP) microcavity [13, 46] filled
with a homogeneous molecular system. Our description
of the molecular subsystem will include explicitly only
the modes which are nearly-resonant with the optical

cavity. The effects of all other molecular degrees of free-
dom will be treated phenomenologically by introduction
of damping to the molecular polarization (see below).

We suppose that the interaction between the cav-

ity field and the molecular polarization
∑N
i=1 〈1i|pi|0i〉

(where pi is the effective dipole operator of the ith
molecule and 0i and 1i denotes states where the ith
molecule is in the ground and first excited-state, respec-
tively, whereas all other molecules are in the ground-
state) is significantly stronger than the coupling of ei-
ther subsystem to external (bath) degrees of freedom,
but still only a tenth or less of the bare vibrational and
cavity frequencies (so considerations exclusive to ultra-
strong coupling can be ignored [51–53]).

The total Hamiltonian of the composite material is
given by HT (t) = HL(t) + HM + HLM, where HL(t)
and HM are the bare cavity (driven by an external time-
dependent field) and molecular Hamiltonians and HLM

contains the interaction between the cavity EM field and
matter. The cavity Hamiltonian is given by:

HL(t) =
∑
k

~ωkb
†
kbk

+ i~
√
κ

2

∑
k

{[
bLkin(t)

]†
bk − b†kb

L
kin(t)

}
, (1)

where this effective Hamiltonian can be obtained from
input-output theory [54–56] which describes the interac-
tion of the optical cavity with left input and right output
flux operators bLkin(t) and bRkout(t), respectively (A), and
we include only a single cavity band and EM field po-
larization (as the cavity band gaps are much larger than
the cavity and molecular linewidths, due to the small-
ness of the cavity’s longitudinal length Lc, and electric
field polarization conversion gives a tiny perturbation
on the results presented here especially as we consider
isotropic molecular ensembles [57]). The frequency of
the mode with (in-plane) wave-vector k = (kx, ky) is

ωk = c
√
k2 +m2π2/L2

c/n (m ∈ Z is the index of the
cavity band; n is the index of refraction of the cavity
interior; hereafter n = 1), and bk is its annihilation
operator. The cavity leakage (decay) rate is κ. The
Heisenberg equations of motion generated by Eq. 1 are
turned into the Heisenberg-Langevin equations when the
replacement ωk → ω̃k ≡ ωk − iκ/2 is performed (A).

The bare vibrational dynamics is generated by the
Hamiltonian HM given by

HM =

N∑
i=1

~ω0a
†
iai − ~∆

N∑
i=1

a†ia
†
iaiai, (2)

where the vibrational creation and annihilation opera-

tors of the ith molecule are a†i and ai, respectively. The
fundamental frequency of each molecule is ω0, and the
anharmonic coupling is ∆ > 0. We neglect intermolec-
ular interactions as they are too weak relative to light-
matter coupling (the situation could be different in other
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situations, e.g., molecular crystals and liquid-solid inter-
faces [21, 58]). We treat the relaxation of the molecular
subsystem phenomenologically by converting the Heisen-
berg equations of motion (EOMs) of molecular opera-
tors into Heisenberg-Langevin EOMs via the substitution
ω0 → ω̃0 = ω0 − iγm/2, where γm is the bare molecule
fundamental transition (homogeneous) linewidth.

The light-matter interaction is treated with the multi-
polar gauge [59] in the long-wavelength limit within the
rotating wave approximation[55] (see next paragraph for
a discussion of these and other approximations):

HLM =−
∑
k

N∑
i=1

(
gika

†
i bk + ḡikaib

†
k

)
+HP2 , (3)

where gjk = µj ·Ecjk is the coupling constant for the inter-

action between the jth molecular vibration (with effec-
tive transition dipole moment µj) and the cavity mode k,
with mode profile evaluated at the position rj of the jth

molecule, i.e., Ecjk = i
√
~ωk/(2ε0Vc)e

ik·rj sin(mπzj/Lz)

(ε0 is the electrical permittivity of free space, Vc is the
cavity quantization volume and zj is the position of the
molecule along the cavity longitudinal axis), f̄ denotes
the complex conjugate of f , and HP2 is the molecular
self-polarization energy [59]. Although this term ensures
the existence of a ground-state for the composite system
[60] and it becomes essential for an appropriate treatment
of a system with total light-matter interaction energy ap-
proaching or surpassing the bare cavity and molecular
frequencies [61], HP2 can be neglected under the strong
coupling conditions assumed here. Therefore, we will dis-
regard this term onward.

The length scale over which the cavity mode profile
varies substantially (of order 0.1-20 µm) is much larger
than typical molecular diameters (of order 0.5 − 5nm).
Thus, under strong coupling, the k ≈ 0 cavity modes in-
teract coherently with material polarization consisting of
a macroscopic number of molecules. This notion forms
the basis for neglecting spatial, orientational and ener-
getic dispersion of the molecular excitations, since fluc-
tuations of these quantities are necessarily weak effects
compared to the collective light-matter interactions from
which polaritons emerge. Fluctuations about the mean
values of the molecular transition frequency and dipole
moment can lead to dephasing-induced polariton decay
[62, 63], weak-coupling of light to states which are dark
according to Eq. 3, as well as polariton [64, 65] and
dark-state localization [64, 66]. Since we are not con-
cerned with transport phenomena, we will not include
them in our model, although Sec. 4 qualitatively ana-
lyzes their implications to our main results. Despite ne-
glecting these effects, we highlight that our input-output
treatment of the material and photonic components natu-
rally accounts for polariton dissipation via cavity leakage
and molecular homogeneous dephasing [43, 54, 55, 67].
In Eq. 3, we also assumed validity of the so-called
rotating-wave-approximation (RWA): only light-matter
interactions preserving the total number of cavity and

molecular excitations are retained. This approximation

is justified since
√∑N

i=1 |gik|2 � ω0, ∀ k. In par-

ticular, we model systems where the collective light-
matter interaction (typically given as g

√
N , where g is

the long wavelength limit of the single-molecule light-
matter interaction coupling constant) is less than 10%
of the bare molecule and cavity excitation energies, but
still larger than the energy scale associated to the dissi-
pative interactions between the molecule or cavity with
their respective environment. Under these conditions,
the off-resonant corrections to the RWA are negligible.
[51, 68, 69].

We aim to investigate the nonlinear response of the
hybrid system to an input radiation field with k ∈ R2

centered at k0 ≈ 0, with a small width δk. The fre-
quency ωk0

is nearly resonant with the bare molecule
fundamental frequency ω0. Therefore, we shall retain
only a single cavity-mode corresponding to k0 ≈ 0. This
assumes there is no variation in the polariton nonlinear
response with respect to changes of magnitude |δk| in the
incident wave-vector k0.

Based on the above, we simplify HL(t) and HLM and
employ the following effective Hamiltonian for the hybrid
cavity-matter system

HT (t) =~ωcb†b+

N∑
i=1

~ω0a
†
iai − ~∆

N∑
i=1

a†ia
†
iaiai

−
N∑
i=1

µ
(
Ec0a

†
i b+ Ēc0b

†ai

)
− i~

√
κ

2

{[
bLin(t)

]†
b− b†bLin(t)

}
, (4)

where ωc ≡ ωk0 , b = bk0 , bLk0in
= bLin, and µEc0 ≡ gjk0 =

iµ
√

~ωc/(2ε0Vc).

2.2. Nonlinear molecular polarization under strong
light-matter coupling

The optical response of a hybrid microcavity can be
investigated by measuring the transmission, reflection
or absorption spectrum of light input into the system.
For instance, transmission and reflection spectra can be
obtained by applying the input-output relations to the
steady-state cavity field b(t) =

∑
ω>0 b(ω)e−iωt. Because

the cavity is weakly-coupled to the external fields, the ex-
pectation value 〈b(t)〉 admits a perturbative expansion in

powers of the input amplitude 〈b(t)〉 =
∑∞
p=1 〈b(t)〉

(2p−1)
,

where 〈b(t)〉(2p−1) = O
[
|bLin|2p−1

]
(only odd powers of

the input field appear in the cavity response because
the material is assumed homogeneous and symmetric
with respect to spatial inversion [1, 12]). The mate-

rial polarization P (t) = µ
∑N
i=1 ai(t) is strongly coupled

to the optical cavity. Therefore, molecular observables
also admit a perturbative expansion in powers of

∣∣bLin∣∣.
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FIG. 2. Pictorial representation of nonlinear optical measure-
ments performed on the polaritonic system described in the
main text. The frequencies ωu, ωw and ωv correspond to those
of photons incident on a cavity strongly coupled to a material
system, whereas ωs is the frequency of photons emitted by the
device. The arrows correspond to particular examples of tran-
sitions that can be induced by the external electromagnetic
field. The set of all possible allowed transitions is included in
the computation of χ(3) given in 7.

Note that the empty cavity is a linear system, and thus,
the source of the nonlinear part of 〈b(t)〉 is the molec-

ular subsystem (specifically, the source of 〈b(t)〉(3) is

〈P (t)〉(3) =
∑N
i=1 µ 〈ai(t)〉

(3)
; see B). Therefore, 〈P (t)〉(3)

directly determines the amplitude of the nonlinear opti-
cal response of a strongly coupled system as measured by
the output transmitted and reflected light.

Neglecting quantum fluctuations of the input field,

bin(t) is a complex number that we express as:

bin(t) = i
∑
ω>0

√
P(ω)

~ω
eiθin(ω)e−iωt, (5)

where P(ω) is the power of the free space mode with
frequency ω driving the cavity, and θin(ω) is its phase
(A).

It follows (B) that the third-order polarization in the

frequency domain 〈P 〉(3) (ωs) can be written in terms of
the input electric fields as follows

〈P 〉(3) (ωs) =
∑

ωu,ωv,ωw

χ(3)(−ωs;ωv,−ωw, ωu)E
(+)
in (ωv)×

E
(−)
in (ωw)E

(+)
in (ωu) + h.c., (6)

where ωs > 0 is the signal frequency, the brackets denote
expectation values, the driving frequencies ωu, ωv, ωw are

all positive, the input fields E
(+)
in (ωu) are directly pro-

portional to the bin(ωu) (see A), and χ(3) is the nonlinear
molecular susceptibility [12] under strong light-matter in-
teraction conditions (Fig. 2). The ratio between χ(3) and

the bare molecular system nonlinear susceptibility χ
(3)
0

provides an external-field independent measure of strong
light-matter coupling effects on the optical nonlinearities
of an arbitrary molecular system.

To obtain χ(3) for the system described by Eq. 4, we
solve perturbatively the Heisenberg-Langevin equations
of motion (EOM) for the molecular polarization to third-
order in the driving field bLin [70, 71]. The EOMs for the
cavity and material polarization expectation values ad-
mit relatively simple solutions since the initial condition
(ground-state) and the time-evolution of the Heisenberg
operators (generated by Eq. 4 with natural frequencies
ω0 and ωc replaced by complex frequencies with nega-
tive imaginary parts due to the coupling of each degree
of freedom to a corresponding Markovian bath) ensures
that pure-state factorization of normal-ordered operator
products holds throughout the derivation [1, 70–72]. The
result is (B):

χ(3)(−ωs;ωv,−ωw, ωu) =Nµ(2~∆)Gmm(ωs)Ḡmm(ωw)Γmm,mm(ωu + ωv)Gmm(ωu)Gmm(ωv)×[
µ

√
2F
π
G(0)
pp (ωv)

~κ
2

][
µ

√
2F
π

~κ
2
Ḡ(0)
pp (ωw)

][
µ
~κ
2

√
2F
π
G(0)
pp (ωu)

]
δωs,ωv−ωw+ωu , (7)

where F is the cavity finesse (the electromagnetic field in-
tensity in a resonant cavity is stronger than in free space
by the factor 2F/π, or alternatively, F = Q/m, where
m is the aforementioned band index, and Q = ωc/κ is
the quality factor; A and Ref. [46]), and Gmm(ω) is the
Fourier transform (FT) of the retarded single-molecule

propagator

Gmm(ω) =
1

~ω − ~ω0 + i~γm/2− |µE0|2N
~ω−~ωc+iκ/2

. (8)

Note the real part of the poles of Gmm(ω) are the funda-
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mental polariton resonance frequencies

ωLP =
ωc + ω0

2
−
√

(ωc − ω0)2 + Ω2
R

2
, (9)

ωUP =
ωc + ω0

2
+

√
(ωc − ω0)2 + Ω2

R

2
. (10)

where ΩR = 2|µEc0|
√
N/~ is the Rabi frequency (split-

ting). The imaginary parts of the polariton poles
in Gmm(ω) correspond to their (linear) absorption
linewidths. Under weak-coupling conditions, we can ne-

glect the cavity-induced self-energy |µE0|2N
~ω−~ωc+iκ/2 to ob-

tain the bare molecule propagator G
(0)
mm(ω) = 1/(~ω −

~ω0 + i~γm/2). Similarly, the photon-photon correlator
Gpp(ω) has resonances at the polariton frequencies, as is
clear from its explicit form:

Gpp(ω) =
1

~ω − ~ωc + i~κ/2− |µEc0|2N
~ω−~ω0+i~γm/2

. (11)

In the weak-coupling limit, Gpp(ω) approaches the empty

cavity frequency-domain propagator G
(0)
pp (ω) = 1/(~ω −

~ωc + i~κ/2).
The function Γmm,mm(ωu+ωv) is the two-particle elas-

tic scattering matrix element given by:

Γmm,mm(ω) =
(~ω − 2~ω̃0)(~ω − ~ω̃0 − ~ω̃c)

[
(~ω − 2~ω̃0)(~ω − 2~ω̃c)− 4g2N

]
D(ω)

, (12)

where D(ω) is a 4th-order polynomial of ω given by:

D(ω) =D(0)(ω)− 2g2N(~ω − 2~ω̃0)(~ω − 2~ω̃0 + 2~∆)

− 2g2(N − 1)(~ω − 2~ω̃0 + 2~∆)(~ω − 2~ω̃c)
− 2g2(~ω − 2~ω̃c)(~ω − 2~ω̃0), (13)

where g = |µEc0| is the single-molecule light-matter cou-
pling and D(0)(ω) = (~ω−~ω̃c−~ω̃0)(~ω−2~ω̃0+2~∆)×
(~ω − 2~ω̃c)(~ω − 2~ω̃0).

The roots ofD(ω) correspond to the bright two-particle
resonances of the hybrid system, as can be verified by
comparison to the eigenvalues of the doubly-excited block
of the Hamiltonian in Eq. 4 with bLin = 0. Specifically, if
we use a basis for doubly-excited totally-symmetric (with
respect to a permutation of the molecular labels) con-

sisting of states containing two cavity photons |20〉, a
totally-symmetric superposition of a single-molecule ex-
citation and a cavity photon |101m〉 = 1√

N
, a totally-

symmetric superposition where two different molecules

are excited |1m1m′〉m 6=m′ =
√

2
N(N−1)

∑
a>b |1a1b〉, and a

totally-symmetric superposition of doubly-excited molec-

ular states , |2m〉 = 1√
N

∑N
a=1 |2a〉, the two-particle

excited-state eigenvalues and eigenstates can be straight-
forwardly obtained by diagonalization of a 4 × 4 ma-
trix (see G for a thorough discussion and derivations).
In the resonant case where ωc = ω0, and assuming
g
√
N 6= ±2∆, we find the following approximate two-

particle eigenstates

|UP2〉 ≈
√

N

4N − 2
|20〉+

√
1

2
|101m〉+

√
N − 1

4N − 2
|1m1m′〉+

g

g
√

4N − 2 + 2∆
|2m〉 , (14)

|LP2〉 ≈
√

N

4N − 2
|20〉 −

√
1

2
|101m〉+

√
N − 1

4N − 2
|1m1m′〉+

g

g
√

4N − 2− 2∆
|2m〉 , (15)

|2S〉 ≈ |2m〉 −
g2

g2(2N − 1)− 2∆2

(√
N |20〉+

√
N − 1 |1m1m′〉

)
+

√
2g∆

g2(2N − 1)− 2∆2
|101m〉 , (16)

|LU〉 =

√
N − 1

2N − 1
|20〉 −

√
N

2N − 1
|1m1m′〉 , (17)

where the subscripts label the dominant character of each
state, e.g., the highest-frequency resonance is dominated
by the component with a doubly-excited UP mode while
the resonance with frequency ωLU corresponds to that

containing an LP,UP pair (see Fig. 3). In the large
N limit appropriate to almost all experimental studies
of light-matter strong coupling, the corresponding two-
particle energy eigenvalues are given by ωUP2 = 2ωUP +
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FIG. 3. Energy level diagram for a model sys-
tem with zero-detuning (ωc = ω0) and Rabi splitting
ΩR > anharmonicity 2∆, including only bright excitations
of the single and two-polariton manifolds (App. G).

O(g/
√
N), ωLU = 2ω0, ω2s = 2ω0 − 2∆ + O(∆/N), and

ωLP2
= 2ωLP +O(g/

√
N). These energies agree with the

real parts of the roots of D(ω) in the strong coupling
limit (Sec. 2).

Physically, Γmm(ωu + ωv) ∝ Gmm,mm(ωu, ωv) (App.

B), where Gmm,mm(ω) is the frequency-domain single-
molecule two-excitation propagator, i.e., the FT of the
probability amplitude that a molecule initially in its dou-
bly excited-state remains in the same state after time t.

Importantly, when N →∞, Eq. 12 becomes:

Γmm,mm(ω) ≈ Γ(0)
mm,mm(ω) ≡ ω − 2ω̃0

ω − 2ω̃0 + 2∆
, N →∞,

(18)

where Γ(0)(ω) is the bare single-molecule two-particle
(elastic) scattering matrix (see next subsection and App.
D). This result is expected, since Γmm,mm(t) describes
the time-dependent propagation of single-molecule dou-
bly excited-states under interaction with the optical cav-
ity, and as we show in App. G, the totally-symmetric

doubly-excited molecular state |2m〉 = 1√
N

∑N
i=1 |2i〉

(where |2i〉 is the state where the ith molecule is in the
2nd excited-state while the cavity and all other molecules
are in the ground-state) is only weakly-coupled to two-
polariton states via an interaction that is proportional to
the single-molecule light-matter coupling g. Therefore,
while polaritons play an essential role as intermediate
states for TPA by the molecular subsystem, Eq. 18 indi-
cates the dynamics of molecular doubly excited-states is
almost insensitive to their coupling to the cavity electro-
magnetic field in the ensemble strong coupling limit.

To gain further insight into the molecular nonlinear
polarization in the strong light-matter coupling regime,
we now compare Eq. 7 to the nonlinear susceptibility of
the bare molecules in free space (under the rotating-wave
approximation) given by

χ
(3)
0 (−ωs;ωv,−ωw, ωu) = Nµ(2~∆)µ3G(0)

mm(ωs)Ḡ
(0)
mm(ωw)Γ(0)

mm,mm(ωu + ωv)G
(0)
mm(ωv)G

(0)
mm(ωu)δωs,ωv−ωw+ωu . (19)

By contrasting Eqs. 19 and 7, we find that the
nonlinear optical response of a molecular system (e.g.,
solution [37, 73], polymer [74, 75], etc) in an opti-
cal microcavity is significantly distinct from that in
free space mainly because of: (i) near-resonant in-
tracavity field intensity enhancement [which renormal-
izes the induced molecular transition dipole moments

µ → µ̃(ω) = µ
√

2F/πi~
√
κ/2G

(0)
pp (ω)], and (ii) the

appearance of new (polariton) resonances correspond-
ing to hybrid superpositions of molecular polarization
and cavity modes. In other words, the molecular non-
linear response under strong coupling can be written
entirely in terms of cavity-renormalized single-particle

[G
(0)
mm(ω) → Gmm(ω)] and two-particle molecular re-

sponse functions [Γ
(0)
mm,mm(ω)→ Γmm,mm(ω)] which are

non-perturbatively dressed by the interaction with the
cavity field, as well as (ii) molecular transition dipoles
µ which are renormalized by factors that depend on

the cavity finesse F and the bare photon propagator
[µ→ µ̃(ω)].

The renormalization of the induced molecular dipoles
is a result of the well-known enhancement of the intra-
cavity electric field relative to free space [46, 76]. In the
weak coupling regime, a Purcell-like result follows where
the molecular nonlinear susceptibility in a microcavity
(Eq. 7) is simply related to that of the bare system (Eq.

19), χ(3) → χ
(3)
0 × intracavity field enhancement factors.

Fig. 4 illustrates the discussed features of the po-
laritonic nonlinear susceptibility functions by comparing
the real and imaginary parts of χ(3)(−ω;ω,−ω, ω) and

χ
(3)
0 (−ω;ω,−ω, ω) for a representative set of parameters

gathered from prior experiments performed under condi-
tions of infrared strong coupling (namely, a Fabry-Perot
cavity containing a W(CO)6 solution) [37, 42]. Specif-
ically, we used ω0 = 1983 cm−1, γm = 3 cm−1, κ =
6 cm−1,ΩR = 40 cm−1 and ∆ = 8cm−1 at both
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FIG. 4. Left (Right): Imaginary (Real) parts of

χ(3)(−ω;ω,−ω, ω) and χ
(3)
0 (−ω;ω,−ω, ω) for a system with

ω0 = 1983 cm−1, γm = 3 cm−1, κ = 6 cm−1,ΩR = 40 cm−1,
and ∆ = 8 cm−1. The dotted (grey) curve corresponds to re-
sults obtained for the bare molecular system, while the thick
(purple) corresponds to ωc − ω0 = 7 cm−1, the dot dashed
(orange) has ωc−ω0 = −7 cm−1 and the dashed (blue) curve
represents the case where ωc = ω0.

zero (ωc = ω0) and positive and negative detunings
ωc−ω0 = ±7 cm−1. This model has polariton frequencies
ωLP = 1963 cm−1, and ωUP = 2003 cm−1. Notably, Fig.
4 shows that: (a) the cavity-assisted nonlinear response
is maximized at the polariton frequencies (as expected
by virtue of the renormalization of the molecular and
photonic response functions due to the formation of po-
laritons), (b) the third-order susceptibility is consistently
stronger near ωLP relative to ωUP (as expected from the
fact that 2LP is more strongly perturbed by the doubly-
excited molecular states than the 2UP state), and (c)
the magnitude of the polaritonic nonlinear susceptibility
can be significantly stronger than the bare (due to the
renormalization of the molecular transition dipole mo-
ment in the cavity-mediated nonlinear response as dis-
cussed above.

However, by virtue of the cavity-matter strong
coupling, the nonlinear polarization contribution to
the energy absorbed by the molecular subsystem is
not directly proportional to the imaginary part of
χ(3)(−ω;ω,−ω, ω) (in contrast to the nonlinear absorp-
tion of bare molecules; see next section and App. E).
Therefore, we leave additional comments and a more de-
tailed numerical comparison of the real and imaginary
parts of Eqs. 7 and 19 as a function of cavity detuning
and Rabi splitting to App. F, and focus below on the
nonlinear absorption spectrum of the strongly coupled
material.

3. POLARITON-ENHANCED TWO-PHOTON
ABSORPTION

The steady-state rate of excitation (absorption spec-
trum) of a molecular system driven by the electromag-
netic field can be written as (App. E and C)

WT (ω) ≡ 2

~

[
Im 〈[E(ω)]

†
P (ω)〉

]
, (20)

where E(ω) is the frequency-domain representation of
the free space or cavity Heisenberg electric field operator.
For a molecular system in free space interacting weakly
with a classical monochromatic EM field with (positive-

frequency) amplitude E
(+)
in (ω), it follows that the photon

absorption rate (in the rotating-wave approximation) is
[1]

W0(ω) ≡2

~
Im
[
χ
(1)
0 (−ω;ω)

]
|E(+)

in (ω)|2

+
2

~
Im
[
χ
(3)
0 (−ω;ω,−ω, ω)

]
|E(+)

in (ω)|4 + ...

(21)

This expression is clearly invalid when the molecular en-
semble interacts strongly with a cavity, since in this in-
stance, the cavity field and the material electrical polar-
ization are correlated, and therefore 〈E(ω)P (ω)〉 cannot
(in general) be factorized into 〈E〉 (ω) 〈P 〉 (ω) (where E
refers to the cavity EM field). Nevertheless, the external
input field interacts weakly with the cavity, and the rate
of absorption by the strongly coupled molecular system
admits the following perturbative expansion in powers of
the input field amplitude

W (ω) =
2

~
Im

[
〈[Ec(ω)]

†
P (ω)〉

(2)
+ 〈[Ec(ω)]

†
P (ω)〉

(4)
]

+ ...

(22)

where Ec(ω) = Ec0b(ω). The contribution to the ab-
sorption spectrum dependent on the nonlinear response
of the molecular subsystem is given by WNL(ω) =
2
~ Im

[
〈E†c (ω)P (ω)〉(4)

]
. In App. C, we obtain WNL(ω)

by employing the Heisenberg-Langevin EOMs following
the same approach taken to obtain Eq. 7.

For simplicity, we restrict our analysis of the nonlin-
ear absorption spectrum to the zero-detuning case where
ωc = ω0. We also simplify WNL(ω) by using the follow-
ing conditions necessarily valid at strong coupling: ΩR �
~ηs ≡ ~(κ+γm), and ΩR � ~η ≡ ~κγm/(κ+γm). Under
these conditions, the nonlinear component of molecular
absorption under strong coupling with a cavity can be ex-

pressed as WNL(ω) =
∑4
α=1W

NLα(ω)
∣∣∣E(+)

in (ω)
∣∣∣4, where

WNL1(ω) ≈− 2ηκ

~

[
1

4(ω − ω0)2 + κ2
+

1

(ΩR/~)2

]
× Re

[√
2F
π
χ(3)(ω)

]
, (23)
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WNL2(ω) ≈ 4η

~
ω − ω0

4(ω − ω0)2 + κ2
Im

[√
2F
π
χ(3)(ω)

]
,

(24)

WNL3(ω) ≈ η 4∆2N

(ω − ω0)2 + γ2m/4

∣∣∣〈aiai〉(2) (2ω)
∣∣∣2

|E(+)
in (ω)|4

, (25)

WNL4(ω) ≈ −η (2ω − ω20)2∆N

(ΩR/2~)2

∣∣∣〈aiai〉(2) (2ω)
∣∣∣2

|E(+)
in (ω)|4

, (26)

where χ(3)(ω) ≡ χ(3)(−ω;ω,−ω, ω), ω20 ≡ 2ω0−2∆, and

〈aiai〉(2) (2ω) = −Γmm,mm(2ω)Gmm(ω)Gmm(ω)

×

[
µ

√
2F
π
G(0)
pp (ω)

~κ
2
E

(+)
in (ω)

]2
. (27)

The expression for the nonlinear absorption by
the molecular system under strong coupling
with a cavity is more complicated relative to

the bare system given by WNL
0 (ω)|E(+)

in (ω)|4 =
2
~ Im

[
χ
(3)
0 (−ω;ω,−ω, ω)

]
|E(+)

in (ω)|4. For example,

WNL(ω) shows dependence on both the real and imag-
inary parts of χ(3) (Eqs. 23 and 24) in addition to the
steady-state population of molecular doubly excited-

states PT2m(ω) =
∑N
i=1 | 〈aiai〉

(2)
(2ω)|2/2 (Eqs. 25 and

26). This additional complexity of nonlinear absorption
under strong coupling conditions is expected, since
while external fields acting on the bare system drives
transitions between three molecular states (ground, first
and second excited-state), at least seven energy levels
(Fig. 3) may play a role in the nonlinear response of a
material strongly coupled to an optical cavity.

Nevertheless, the main features of WNL(ω) can be ob-
tained from Eqs. 23−26. Specifically,

1. The nonlinear absorption intensity is largest when
the input field is nearly-resonant with either the
LP or UP, since this maximizes |Gmm(ω)|4 which
appears in all of Eqs. 23−26. Physically, the po-
lariton resonance condition for maximal photon ab-
sorption is a consequence of the optical filtering
performed by a microcavity (off-resonant external
fields are suppressed relative to the resonant). The
polariton optical filtering effect is clearly illustrated
in Fig. 5, where we observe significant features in
the nonlinear absorption spectrum only near the
polariton frequencies. We obtain additional insight
by zooming in at the two-photon absorption res-
onance (2ω = 2ω0 − 2∆) in Fig. 6, where we
find that, under strong coupling, the two-photon
absorption at the bare frequency becomes weaker
when ΩR−∆ increases, i.e., when the two-polariton
resonances 2ωLP and 2ωUP are detuned from the
bare molecular doubly-excited states.

2. While the main features of the bare system non-
linear absorption in Fig. 5 can be attributed to

ΩR = 45 cm-1

ΩR = 40 cm-1

ΩR = 35 cm-1

bare
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FIG. 5. Ratio of nonlinear absorption for a model system
with ω0 = ωc = 1983 cm−1, γm = κ = 3 cm−1,∆ = 8 cm−1,
and ΩR = 45, 40 and 35 cm−1 to the maximum of the bare
molecule nonlinear absorption. The bare system contains
a ground-state bleach and stimulated emission resonance at
ω0 = 1983 cm−1 with negative differential absorption, and a
much weaker (positive) two-photon absorption resonance at
ω0−∆ = 1975 cm−1, while the strongly coupled systems show
dispersive nonlinear absorption signals at frequencies around
the LP and UP corresponding to each of the listed coupling
strengths. These dispersive features emerge from ground-
state bleach/stimulated emission contributions to WNL, and
positive contributions corresponding to nonlinear absorption
at slightly shifted polariton frequencies induced by their weak
interaction with the bright molecular doubly excited-states.

ΩR = 45 cm-1

ΩR = 40 cm-1

ΩR = 35 cm-1
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FIG. 6. Ratio of two-photon absorption rate of two strongly
coupled (ω0 = ωc = 1983 cm−1, γm = κ = 3 cm−1,∆ =
8 cm−1, and ΩR = 45, 40 and 35 cm−1) systems relative to
that of the molecular ensemble in free space normalized by
the maximum of the latter.

ground-state bleach and stimulated emission (large
negative peak at ω = ω0 = 1983 cm−1) and two-
photon absorption (small, barely visible peak at
ω = ω0−∆ − see Fig. 6 for a clear view of this res-
onance), the polaritonic nonlinear absorption can-
not be as easily interpreted since the spectra shows
dispersive features at both LP and UP frequencies.
Although, the negative nonlinear absorption fea-
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tures can be ascribed to ground-state bleach and
stimulated emission at polariton frequencies, the
positive contributions to WNL(ω) arise by two-
photon absorption at frequencies slightly shifted
from the polaritonic. Both LP and UP positive-
nonlinear absorption peaks are red shifted. These
red shifts can be ascribed to the interaction be-
tween each polariton mode and the molecular dou-
bly excited-state. In the case of the LP, we can see
from Eq. 15 that a perturbative estimate of the en-
ergy of the |LP2〉 state indeed gives a two-LP state
with energy slightly smaller than 2ωLP. Conversely,
Eq. 14 predicts a negligible blue shift to the two-
UP state relative to the unperturbed system. Thus,
the origin of the red shift in the positive nonlinear
absorption peak observed near ωUP cannot be ex-
plained with the estimate in Eq. 14. However, this
equation does not consider dissipative effects due to
cavity leakage and bare molecule interaction with
the surrounding bath. These effects give rise to fi-
nite linewidths for the UP resonances, which in our
model, gives rise to the positive red shifted peaks
near ωUP. Note that, for the obtained parameters,
the UP nonlinear absorption signals become weaker
as 2ωUP−2ω0−2∆ increase, showing that spectral
overlap between the two-UP absorption transition
and the molecular two-photon absorption play an
essential role in the generation of the discussed sig-
nals.

The points discussed in this part are in contrast
to the observations of reduced Rabi splitting in
pump-probe measurements of vibrational polari-
tons [36, 37]. The latter are understood to arise
at relatively long times from polariton decay into
the reservoir of weakly coupled (dark) states. As
mentioned above (see also next section), we dis-
regard such incoherent effects in our model. This
explains the absence of Rabi splitting contraction
in our computations.

3. WNL3(ω) is the only component of WNL(ω) which
is positive for all values of the input frequency.
Therefore, it necessarily gives molecular excited-
state absorption contributions to WNL(ω). Fur-
ther evidence is given by the fact that WNL3(ω)
is proportional to the steady-state population of
molecules in the doubly-excited state, and thus,

WNL3(ω) ≈ 8η∆2

(ω − ω0)2 + γ2m/4

PT
2m(2ω)∣∣∣E(+)
in (ω)

∣∣∣4 . (28)

All other contributions to the nonlinear absorp-
tion can be either positive (when excited-state ab-
sorption processes dominate) or negative (when
ground-state bleach and stimulated emission pro-
cesses dominate [1]) depending on ω.

4. Based on the previous items, we expect the TPA
rate will be largely enhanced relative to free space

when the doubly-excited molecular states are ap-
proximately resonant with either one of the avail-
able two-polariton transitions (see Fig. 1), i.e.,

2ω0 − 2∆ = 2ωLP, ∆ > 0, or

2ω0 − 2∆ = 2ωUP, ∆ < 0, (29)

since in this case, all response functions showing
up in Eqs. 7 and 23−26 (namely, Gmm(ω), and
the scattering amplitude Γmm,mm(2ω)) become res-
onant at ω = ωLP (if ∆ > 0) or ω = ωUP (if ∆ < 0).
Physically, the polaritons provide the resonant op-
tical window to efficiently drive the transitions of
interest. In the studied case of zero cavity detun-
ing, the conditions described in Eq. 29 can be sum-
marized as the Rabi splitting being equal to the
anharmonic shift, that is, ΩR = ±2∆.

When the criteria in Eq. 29 are satisfied, we expect
strong enhancement of nonlinear absorption based
on the following argument: if the input field con-
sists of photons with ω = ω0 − ∆ and Eq. 29 is
satisfied, polaritons will be efficiently pumped, and
a fraction of those will subsequently decay by pop-
ulating molecular doubly-excited states. In other
words, when the two-polariton resonance condi-
tion is satisfied, the molecular doubly excited-states
provides an efficient sink for the energy stored in
two-polariton modes. This effect was indeed re-
ported in a recent experiment [42], where evidence
was given that (for systems with weak system-bath
interactions and slow molecular polarization de-
phasing) the second excited vibrational state was
preferentially populated over the first when the
pump (input) field was resonant with LP. This en-
hancement in nonlinear absorption is verified in
Fig. 7 for various cavity lengths, and is further
discussed below.

5. Conversely, in the limit where two-polariton states
are highly off-resonant with the molecular TPA
(|2∆ − ΩR| � 0), the nonlinear response substan-
tially weakens. This is illustrated by Fig. 6 which
shows that as the Rabi splitting (molecular den-
sity) gets larger, the two-photon absorption inten-
sity becomes suppressed relative to free space. In
this limit, the studied model approaches the Tavis-
Cummings (TC) model [77], where a collection of
two-level systems interact strongly with a single-
mode cavity. The nonlinear response given by this
system is known to become negligible in the large
N limit [78]. As we show in App. G, in the TC
model, the two-level system nonlinearity produces
a large N limit anharmonic shift proportional to
|µEc0|/

√
N .

Eqs. 14 − 17 provide some insight into why the
model studied deviates substantially from the TC
results when |2∆| approaches ΩR: under such near-
resonance condition, the state |2〉m (correspond-
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ing to a totally-symmetric combination of doubly-
excited molecules) interacts resonantly with either
LP2 or UP2 states. Therefore, molecular dou-
bly excited-states become an efficient channel for
the nonlinear decay of the corresponding (two)-
polariton energy. As long as the bare anharmonic
shift |2∆| is close to ΩR, it does not matter how
large N is. Conversely, in the TC model, the
molecules are represented as two-level systems, and
therefore, the mechanism discussed here is excluded
from consideration.

It follows, therefore, that the condition given in Eq.
29 allows the harnessing of the enhanced electro-
magnetic field of optical cavities to enhance TPA.

Points 3 and 4 are the main conclusions of our work.
We will now quantitatively illustrate that under exper-
imentally accessible conditions, it is possible to employ
cavity-strong coupling to substantially enhance the TPA
cross section of a resonant molecular system.

In Fig. 6, we present the infrared TPA spectrum
for a molecular system in free space (we take repre-
sentative parameters for W(CO)6 in solution [37, 42],
ω0 = 1983 cm−1,∆ = 8 cm−1, γ = 3 cm−1), and under
strong coupling with a microcavity (ωc = ω0, κ = γ) for
ΩR = 40 cm−1 and ΩR = 35 cm−1. The curves are nor-
malized by the maximum of the bare system TPA. Figure
6 shows the strong dependence of the TPA cross-section
on the light-matter interaction: when ΩR = 40 cm−1

(ΩR − 2∆ = 24 cm−1), the nonlinear absorption is sup-
pressed relative to that given by the bare system. How-
ever, a slight decrease of ΩR to 35 cm−1 leads to enhanced
TPA due to a stronger spectral overlap between the LP2

mode and the molecular doubly excited-state transition
from the ground-state.

In Fig. 7, we explore the great potential for obtain-
ing polariton-enhanced TPA with optical microcavities
of varying longitudinal lengths Lc, Lc/2 and Lc/4 (with
Lc = 10 µm, and cavity-mode indices m = 4,m = 2 and
m = 1, respectively, which would require cavity mirrors
with transmissivity |t|2 ≈ 0.01%). We assume the cav-
ities are resonant with the molecular fundamental tran-
sition, and the TPA condition ΩR = 2∆ = 16 cm−1 is
valid (the remaining bare molecule parameters are the
same as in Fig. 6). The two main conclusions from Fig.
7 are that: (a) the polariton-mediated TPA cross section
predicted by our model can be larger than the bare one
by close to 4 orders of magnitude for accessible parame-
ters, and (b) a decrease in cavity length leads to stronger
nonlinear signals, so that the cavity-mediated TPA will
be maximally efficient when the strongly coupled cavity
mode has the lowest possible longitudinal quantum num-
ber and mirrors with highest available reflectivity. These
conditions, in fact, maximize the intracavity electromag-
netic field enhancement relative to free space (see App.
A).

A similar increase in nonlinear response signal strength
with decreasing molecular concentration (Fig. 6) or cav-
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FIG. 7. Enhancement of TPA rate of strongly coupled sys-
tem when ΩR = 2∆, with ω0 = ωc, γ = 3 cm−1,∆ =
8 cm−1 for optical microcavities with different cavity lengths
(Lc, Lc/2, Lc/4) and corresponding decay rates.

ity longitudinal length (Fig. 7), was observed and quali-
tatively analyzed in a different context in Ref. [79].

4. DISCUSSION AND CONCLUSIONS

The computed enhanced polariton-mediated TPA pro-
vides an upper bound estimate to future measurements
of TPA under strong coupling conditions. Experiments
performed on analogous systems could give reduced en-
hancements relative to those presented here for at least
two reasons: (a) the intracavity enhancement factor (rep-
resented by the cavity finesse) varies spatially accord-
ing to the cavity mode profile (sin(πz/L) in the sim-
plest case), whereas we assumed that all molecules are
within a small region around an antinode of the cavity
field (so that the cavity field enhancement factor is max-
imal), and (b) inhomogeneous broadening of the molecu-
lar subsystem which allows for potentially fast polariton
relaxation into reservoir (dark) modes, as well as reduc-
tion in efficiently of polariton pumping due to photonic
intensity borrowing. Although we recognize the impor-
tance of these approximations, we disregard them in our
explorations, since the inhomogeneity of the cavity mode
profile is expected to change the nonlinear response prop-
erties by factors of order 1 (alternatively, spacers may be
introduced between the molecular system and the op-
tical cavity so that the molecules occupy only a small
region around the antinode of the cavity mode profile),
while (lower) polariton decay can be slowed down by in-
creasing the Rabi splitting and (or) lowering the temper-
ature. Moreover, polariton transitions are well-known to
be homogeneously broadened within their lifetimes [47],
and therefore, for molecular systems with significant in-
homogeneously broadened transitions, we expect polari-
ton lineshapes to be significantly narrower than that of
the bare system (given the polariton “hole-burning” ef-
fect [80] yielding subnatural linewidths). In this instance,
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the mechanism for polariton-mediated TPA presented in
our article would become even more efficient than in the
model considered here.

While our study focused on infrared polaritonics, we
note that the phenomenology observed in molecular vi-
brational and electronic strong coupling can be very
similar depending on the system. For instance, ultra-
fast pump-probe transmission recorded for a microcavity
strongly coupled to an organic semiconductor in Ref. [33]
showed qualitative features identical to the first reported
vibrational polariton pump-probe data [36]. The exciton-
biexciton ladder described in in Ref. [33] is also notable in
the studied context because the energy of the correspond-
ing biexciton is more than twice of the excitonic, which
would enable verification of the ∆ < 0 case of Eq. 29. In
fact, whenever electronic transitions are only weakly cou-
pled to high-frequency vibrational modes, and the elec-
tronic S1 → S2 (first to second excited-state) transition
is dipole-allowed and slightly red- or blue-shifted from
the S0 → S1 (ground to first excited-state), we expect
electronic TPA rates to have similarly appealing poten-
tial for enhancement in optical cavities under the strong
coupling regime as discussed in Sec. 3.

It is also notable that, although our model and ex-
pressions allow us to derive quantitative nonlinear prop-
erties of molecular systems described as three-level sys-
tem ensembles, the enhancement of molecular nonlinear
polarization by intracavity field effects and subnatural
polariton linewidths thoroughly discussed in Sec. 2.2
are universal features of the nonlinear susceptibilities of
molecular ensembles under strong coupling. In fact, our
work qualitatively corroborates recently reported nonlin-
ear response enhancement induced by strong coupling
of microcavities with organic semiconductor materials
[81, 82] whose effective Hamiltonian is not given by Eq.
4. Specifically, Barachati and coworkers [81] ascribed

third-harmonic generation efficiency gains under cavity
strong coupling to intracavity field energy density en-
hancement, whereas the recent Z-scan measurements re-
ported by Wang et al. [82] showed that polariton res-
onance effects were also essential to obtain increases in
the magnitude of the nonlinear index of refraction and
absorption.

In summary, we have derived and analyzed the nonlin-
ear optical susceptibility and TPA rates for a molecular
system under strong coupling with an infrared micro-
cavity. By contrasting the polaritonic response with
that of bare molecules in free space, we found that en-
hanced nonlinearities in the strong coupling regime may
emerge due to intracavity field enhancement, creation of
suitable optical resonances, and subnatural polaritonic
linewidths. Our results suggest an increase of several
orders of magnitude can potentially be achieved for the
polaritonic nonlinear optical response, especially, when a
multipolariton transition is resonant with a multiphonon
(or multi-electronic state) absorption of the molecular
system. Application of molecular polaritonics in two-
photon imaging [83], entangled photon spectroscopy [84]
and efficient generation of hot molecular excited-state
distributions via (polariton) ladder climbing [85–88] are
also envisioned with possible bypassing of deleterious
intramolecular vibrational relaxation.
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Appendix A: Basic definitions for empty microcavity

We employ input-output theory[54, 55] to describe the
open quantum system dynamics of a planar optical mi-
crocavity consisting of two highly-reflective symmetric
mirrors [13] separated by a distance Lc. The input radia-
tion is taken to have zero momentum along the transverse
direction to the cavity longitudinal axis. Since we work
in the limiting case where a single cavity mode interacts
with the material system, we only consider the free space
electromagnetic modes to the right and left of living in

a 1D space with length L sufficiently large for the cor-
responding field operators to satisfy periodic boundary
conditions.

We suppose the system is probed in transmission geom-
etry, where the incident light irradiates the “left” mirror
and the optical signal is generated by the photon flux
traversing the “right” mirror. The output photon flux is
given by

〈
[
bRout(t)

]†
bout(t)〉 , (A1)

where the output annihilation operator bout(t) is written
in terms of the “right” free space modes at a future time
t1 > t [54]:

bRout(t) =
i√
2π

∫ ∞
−∞

dω′bR1 (ω′)e−iω
′(t−t1), t1 > t (A2)

where bR1 (ω′) is the Heisenberg annihilation operator for
a photon with frequency ω′ in the free space to the right
of the optical cavity at t1. In the absence of any input
on the system from the right mirror, the input-output
relations allow us to directly relate the (right) output
EM power at time t with the state of the cavity at the
same moment. In particular[54, 55],

bRout(t) =

√
κ

2
b(t), (A3)

where b is the cavity mode annihilation operator and
κ is the total cavity leakage rate (including field decay
through both mirrors). The latter is proportional to the
mirrors transmission probability |t|2, as well as inversely
related to the cavity round-trip time τc = 2Lc/c, (Lc is
the cavity longitudinal length) [46], i.e.,

κ =
|t|2

τc
= |t|2 c

2Lc
. (A4)

In this work, we suppose the microcavity is driven by
a superposition of coherent state fields which are nearly-
resonant and weakly interact with the cavity (κ is much
smaller than the cavity photon frequency). The rotating-
wave approximation is employed throughout, as is cus-
tomary in an input-output treatment [55]. We suppose
the electric field of the external source which drives the
system is expressed as:

EL
in(t) =

∑
ω>0

[
E

(+)
in (ω)e−iωt + E

(−)
in (ω)eiωt

]
=
∑
ω>0

i

√
~ω

2ε0V

[
αin(ω)e−iωt − α†in(ω)eiωt

]
,

(A5)

where ε0 is the free space permittivity, V = SL is the
quantization volume of the l.h.s (or r.h.s.) free space,
and αin ∈ C is a coherent state amplitude characterizing
the phase and intensity of the input external field mode
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with frequency ω. The photon flux corresponding to each
frequency in A5 is given by |αin(ω)|2c/L1. The photon
input operator is thus 2

bLin(ω) = i

√
P(ω)

~ω
eiθin(ω), (A8)

where P(ω) = ~ω|αin(ω)|2c/L and θin(ω) is determined
by the relationship αin(ω) = |αin(ω)|eiθin(ω)

We conclude this section by reviewing some relation-
ships between the cavity electromagnetic field intensity
in the presence of steady driving, and the corresponding
free space intensity. This identification will be essential
for the comparison of the nonlinear optical response of a
hybrid cavity with that of the bare molecular material.

First, we recall that the mirrors of a good cavity have
nearly vanishing photon transmission probability |t|2 →
0. The cavity is usually characterized by (a) the total
photon leakage rate κ (Eq. A4) dependent on both geo-
metric parameters (e.g., the cavity length) and the qual-
ity of the mirrors (via its dependence on |t|2), and (b)

its finesse coefficient F = π
√
|r|/(1 − |r|) (where r is

the field reflection probability amplitude) [46], which de-
pends only on the quality of the mirrors. As we demon-
strate below, the finesse provides a simple measure of the
steady-state intracavity (resonant) electromagnetic field
intensity Ic enhancement compared to free space. In par-
ticular, at a cavity antinode, it follows that[46],

Ic ≈
2F
π
I0, (A9)

where I0 is the free space electromagnetic field intensity
[46]. In terms of the finesse, the cavity leakage rate κ can
be written as

κ =
πc

LcF
. (A10)

Alternatively, F is a given as a simple function of the

1 Here, we used the following expression for the mean photon flux

φin =
Sε0c

~ωT

∫ T/2

−T/2
〈
[
EL

in(t)
]†
EL

in(t)〉

=
∑
ω>0

|αin(ω)|2c/L (A6)

which is thus given in units of photon number per unit time.
2 Note that our input fields are obtained from superpositions of

coherent states of the electromagnetic field in the l.h.s. free space
defined by

bLin(t) =
i
√

2π

∫ ∞
−∞

dω′bL0 (ω′)e−iω′(t−t0) =
∑
ω

bLin(ω)e−iωt,

(A7)

where bL0 (ω′) is the annihilation operator of the left mode with
frequency ω′ evaluated at a time t0 < t. [54]

cavity quality factor Q = ωc/κ [46]:

F =
πc

Lcωc

ωc
κ

=
Q

m
, (A11)

where m ∈ Z is the longitudinal quantum number of
the cavity mode, and we used that the symmetric planar
cavity mode frequency corresponding to m is given by
ωc = cmπ/Lc.

We conclude this section by deriving the cavity elec-
tric field enhancement factor from input-output theory.
Consider an empty cavity driven by an external field
with power P(ω) = ~ω|αin(ω)|2c/L, where αin(ω) ∈ C.
Using the previously defined parametrization bLin(ω) =

i
√
P(ω)/~ωeiθin(ω) for the input field, it follows from

the input-output treatment of an empty driven cavity
that the steady-state positive-frequency component of
the empty cavity electric field (in the rotating-wave ap-

proximation) E
(+)
c (ω) is given by3:

E(+)
c (ω) = Ec0

√
κ

2

−ibLin(ω)

ω − ωc + iκ/2

= i

√
~ωc

2ε0SLc
|αin(ω)|

√
2c

κL

κ/2

ω − ωc + iκ/2
eiθin(ω)

≈
√

2F
π

κ/2

ω − ωc + iκ/2
E

(+)
in (ω). (A14)

where we used Ec0 = i
√

~ωc/2ε0SLc. In the last line we
employed ω = ωc + δ and the limit where δω/ωc → 0,
i.e., ω ≈ ωc. This approximation is consistent with
the weak-coupling and near-resonant assumptions of
input-output theory[54, 55], and is usually satisfied when
ω is resonant with polaritons in the strong coupling
limit (with Rabi splitting significantly weaker than the
relevant bare molecule and cavity frequencies).

Equation A14 demonstrates the well-known results
that under resonant driving (ω = ωc) (a) the cavity
electromagnetic field intensity is enhanced by a factor
of 2F/π (at cavity antinodes) compared to free space,
and (b) the cavity field is phase-shifted by −π/2 relative
to the phase of the external field.

3 This equation can be simply derived by using the Heisenberg
equations of motion for the driven cavity mode operator

(i~∂t − ~ω̃c)b(t) = −i~
√
κ

2
bLin(t)

=⇒ b(ω) = −i~
√
κ

2

bLin(ω)

~ω − ~ωc + iκ/2
, (A12)

=⇒ E
(+)
c (ω) = i

√
~ωc

2ε0SLc
b(ω) =

√
~ωc

2ε0SLc

√
κ

2

bLin(ω)

ω − ωc + iκ/2
,

(A13)

where we used ω̃c = ωc − iκ/2, and b(t) =
∑

ω b(ω)e−iωt.
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Appendix B: Nonlinear susceptibility of strongly
coupled molecular system

In this section, we derive the steady-state third-order
polarization induced by continuous-wave input fields act-
ing on a molecular system strongly-coupled to an optical
cavity as described in the main text. This polarization is
the source of the nonlinear optical signal discussed above.
The results obtained here are essential for the computa-
tion of the nonlinear molecular absorption under strong
light-matter coupling which is described in the next sec-
tion.

To obtain the material nonlinear polarization we solve
perturbatively the equations of motion (EOM) for the
expectation value of the molecular polarization operator
in terms of the driving input fields.

From the effective Hamiltonian introduced in the main
text (Eq. 4), we obtain the Heisenberg-Langevin EOM
for the expectation value of the cavity-photon annihila-
tion operator using i~∂tb(t) = [b(t), H]− i~κb(t)/2:(
i~

d

dt
− ~ω̃c

)
〈b(t)〉 = −i~

√
κ

2
bLin(t)− µĒc0

N∑
i=1

〈ai(t)〉 ,

(B1)

where the cavity leakage rate κ (derived within input-
output theory) was introduced by the replacement ωc →
ω̃c = ωc − iκ/2. Eq. B1 describes the time-dependent
response of the cavity to a collective molecular polariza-
tion and to the driving by the input field. Similarly, the
molecular response to the cavity electromagnetic field is
expressed by the analogous Heisenberg-Langevin EOMs
satisfied by the time-dependent single-molecule and col-
lective material polarizations:

(
i~

d

dt
− ~ω̃0

)
〈µai(t)〉 = −µ2Ec0 〈b(t)〉 − 2~∆µ 〈a†i (t)ai(t)ai(t)〉

= −µ2Ec0 〈b(t)〉 − 2~∆µ 〈a†i (t)〉 〈ai(t)ai(t)〉 , (B2)(
i~

d

dt
− ~ω̃0

)
〈µ

N∑
i=1

ai(t)〉 = −Nµ2Ec0 〈b(t)〉 − 2~∆µ 〈
N∑
i=1

a†i (t)ai(t)ai(t)〉

= −Nµ2Ec0 〈b(t)〉 − 2~∆µ

N∑
i=1

〈a†i (t)〉 〈ai(t)ai(t)〉 , (B3)

where ω̃0 = ω0 − iγm/2, and we obtained the final equa-
tions in each case using the factorization property of the
expectation value of normal-ordered (all annihilation op-
erators are to the right of the creation) correlation func-

tions which, for 〈a†(t)a(t)a(t)〉 is valid to O
(
|Ein|3

)
(see

e.g., Refs. [71, 72]). Hence, Eqs. B2 and B3 are valid to

O
(
|Ein|3

)
Each of the time-dependent expectation values appear-

ing in the Eqs. B1 and B3 admits an expansion in powers
of the input field 〈bLin〉 (since the cavity is only weakly-
coupled to the external modes). For instance, we can

write 〈ai(t)〉 =
∑
p 〈ai(t)〉

(p)
, where 〈ai(t)〉p = O

[(
bLin
)p]

.
Hereafter, we will employ the following frequency-domain
expansion of the expectation value of time-dependent op-
erators, e.g.,

〈O〉 (t) =
∑
ω

〈O〉 (ω)e−iωt =
∑
ω>0

〈O〉(+)
(ω)e−iωt

+ 〈O〉(−) (ω)eiωt. (B4)

Performing an expansion of both sides of Eqs. B1 and

B3 in powers of the input electric field amplitude we find
the third-order contribution to the cavity and molecu-
lar annihilation operator expectation values satisfy the
following coupled equations in the frequency domain:

〈b〉(3) (ω) = −
µĒc0

∑N
i=1 〈ai〉

(3)
(ω)

~ω − ~ω̃c
, , (B5)

(~ω − ~ω̃0)

N∑
i=1

〈µai〉(3) (ω) = −Nµ2Ec
0 〈b〉(3) (ω)

− 2~∆µ
∑
a,b

N∑
i=1

〈a†i 〉
(1)

(−ωa) 〈aiai〉(2) (ωb)

× δω,−ωa+ωb . (B6)

The positive frequency material third-order polarization

component with frequency ω is given by 〈P 〉(3) (ω) =

µ
∑N
i=1 〈ai〉

(3)
(ω). As shown above, it can be expressed

in terms of the photonic variable 〈b〉(3) (ω) and lower-
order molecular correlators. Inserting the formal solution
of Eq. B6 into Eq.B5, we find:
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〈b〉(3) (ω) = 2~∆µĒc0
∑
ωaωb

N∑
i=1

〈a†i 〉
(1)

(−ωa) 〈aiai〉(2) (ωb)

(~ω − ~ω̃c)(~ω − ~ω̃0)−N |µEc0|2
δω,−ωa+ωb , (B7)

4∑
i=1

µ 〈ai〉(3) (ω) = −2~∆µ
∑
ωaωb

N∑
i=1

~ω − ~ω̃c
(~ω − ~ω̃c)(~ω − ~ω̃0)−N |µEc0|2

〈a†i 〉
(1)

(−ωa) 〈aiai〉(2) (ωb)δω,−ωa+ωb . (B8)

The first-order molecular expectation values 〈µai(ωa)〉(1)
describe the linear polarization induced on each molecule.
By solving the coupled cavity-matter equations (Eqs. B1
and B3) to first-order in the input field, we can obtain the
linear molecular polarization in the strongly coupled de-
vice. In the frequency domain the equations to be solved
are:

〈b〉(1) (ω) =
−i~

√
κ
2 b

L
in(ω)

~ω − ~ω̃c
−
µĒc0

∑N
i=1 〈ai〉

(1)
(ω)

~ω − ~ω̃c
,

(B9)

(~ω − ~ω̃0)

N∑
i=1

〈ai〉(1) (ω) = −NµEc0 〈b〉
(1)

(ω). (B10)

The explicit solution for the linear polarization

〈P 〉(1) (ω) ≡
∑N
i=1 〈µai〉

(1)
(ω) induced by the input field

is given by:

〈P 〉(1) (ω) = i~
√
κ

2

Nµ2Ec0b
L
in(ω)

(~ω − ~ω̃c)(~ω − ~ω̃0)− |µEc0|
2
N

= NµGmm(ω)µ

[
Ec0G

(0)
pp (ω)i~

√
κ

2
bLin(ω)

]
,

(B11)

where G
(0)
pp (ω) = 1/(~ω − ~ω̃c) is the bare cavity photon

frequency-domain propagator, and Gmm(ω) is the single-
molecule response function renormalized due to the ma-
terial strong interaction with the optical cavity

Gmm(ω) =
1

~ω − ~ω̃0 −
|µEc0|2N
~ω−~ω̃c

. (B12)

Note the light-matter weak-coupling limit for the molec-

ular response function G
(0)
mm = 1/(~ω − ~ω̃0) can be

straightforwardly obtained from the above expression by
performing a power series expansion in terms of |µEc0|.
The linear response induced by the external field on the

cavity photon is similarly given by:

〈b〉(1) (ω) = −i~
√
κ

2

(~ω − ~ω̃0)bLin(ω)

(~ω − ~ω̃c)(~ω − ~ω̃0)− |µEc0|
2
N

= Gpp(ω)

[
−i~

√
κ

2
bLin(ω)

]
, (B13)

where Gpp(ω) is the frequency-domain representation of
the cavity photon retarded propagator under strong cou-
pling conditions

Gpp(ω) =
1

~ω − ~ω̃c −
|µEc0|2N
~ω−~ω̃0

. (B14)

Note that the hybrid cavity linear response field ampli-
tude given by Eq. B13 has the same form as that for
an empty cavity (A12). The bare cavity result is ob-
tained trivially by simply taking µ→ 0 in Eq. B13. The
following relationship between the cavity and molecular
polarization retarded Green functions will be useful later:

Gpp(ω) = G(0)
pp (ω)

Gmm(ω)

G
(0)
mm(ω)

(B15)

The last expectation value which we need to compute
in order to obtain the hybrid cavity third-order response

is 〈ai(t)ai(t)〉(2) (see Eq. B7). The time-dependence of
this function is coupled to the other totally-symmetric
(with respect to permutation of the molecular indices)

2-particle variables of the system, namely, 〈b(t)b(t)〉(2)
which describes the evolution of the two-cavity photon

state, 〈ai(t)b(t)〉(2) which probes the correlated propa-
gation of a photon and the ith molecule phonon, and

〈ai(t)aj(t)〉(2) , i 6= j, that describes propagation of vi-
brational excited-states in distinct molecules.

The system of Heisenberg-Langevin equations for the
bright two-particle variables mentioned above can be de-
rived using the operator equations of motion generated
by the Hamiltonian in Eq. (4) of the main text, to-
gether with the same replacements effected above ω0 →
ω0 − iγm/2, and ωc → ωc − iκ/2. It follows from the
input-output treatment [55] that under the assumptions
of Markovian molecular bath, and in the absence of an
input molecular polarization, the resulting two-particle
EOMs are given by:
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[
i~ d

dt
− 2 (~ω̃0 − ~∆)

]
〈ai(t)ai(t)〉(2) = −2µEc

0 〈ai(t)b(t)〉(2) , (B16)[
i~ d

dt
− (~ω̃c + ~ω̃0)

]
〈ai(t)b(t)〉(2) = −µEc

0 〈b(t)b(t)〉(2) − µĒc
0

N∑
j=1

〈ai(t)aj(t)〉(2) − i~
√
κ

2
bLin(t) 〈ai(t)〉(1) , (B17)

[
i~ d

dt
− 2~ω̃c

]
〈b(t)b(t)〉(2) = −µĒc

0

∑
i

〈ai(t)b(t)〉(2) − 2i~
√
κ

2
bin(t) 〈b(t)〉(1) , (B18)[

i~ d

dt
− 2~ω̃0

]
〈ai(t)aj(t)〉(2) = −µEc

0

[
〈ai(t)b(t)〉(2) + 〈aj(t)b(t)〉(2)

]
, j 6= i. (B19)

These equations show, as expected, that two-particle
states are driven by the input field only in the pres-
ence of non-vanishing first-order photonic or molecu-

lar polarization (represented by 〈b(t)〉(1) and 〈ai(t)〉(1)).
To solve this system in the frequency domain, we note
that the electromagnetic field interacts equally with each
molecule, and therefore, 〈ai(t)b(t)〉 = 〈aj(t)b(t)〉, for all
i, j ∈ {1, ..., N}. From the same argument, it also fol-
lows that the correlators 〈ai(t)aj(t)〉i 6=j , and 〈ai(t)ai(t)〉
are independent of the molecular indices. These consid-
erations imply that, while the system of two-particle eqs.
given above has (N+1)2 unknowns, only four of those are

independent. In order to proceed, we need 〈aiai〉(2) (ω)

which can be written as:

〈aiai〉(2) (ω) =
2(~ω − 2~ω̃0)

D(ω)
(µEc0)

2
f bbext(ω)

− 2(~ω − 2~ω̃c)(~ω − 2~ω̃0)

D(ω)
µEc0f

mb
ext (ω),

(B20)

where f bbext(ω) = −2i~
√

κ
2 〈b

L
inb

(1)〉(2) (ω) and fmbext (ω) =

−i~
√

κ
2 〈b

L
ina

(1)
i 〉

(2)
(ω), and D(ω) is a 4th-order poly-

nomial, with its roots corresponding to the bright res-
onances of the doubly-excited manifold of the system.
Denoting by D(0)(ω) the bare noninteracting 2-particle
resonances, D(0)(ω) = (~ω − ~ω̃c − ~ω̃0)(~ω − 2~ω̃0 +
2~∆)(~ω − 2~ω̃c)(~ω − 2~ω̃0), it follows that the inter-
acting complex two-particle energy eigenvalues are given
by the roots of D(ω) = D(0)(ω)−2g2N(~ω−2~ω̃0)(~ω−
2~ω̃0+2~∆)−2g2(N−1)(~ω−2~ω̃0+2~∆)(~ω−2~ω̃c)−
2g2(~ω − 2~ω̃c)(~ω − 2~ω̃0), where g2 = |µEc0|2 as in
the main text. We can also write Eq. B20 in terms of
retarded single and two-particle Green functions in the
frequency domain:

〈aiai〉(2) (ω) = −2i~
√
κ

2
Gmm,pp(ω) (µEc0)

2 〈bLinb(1)〉 (ω) + i~
√
κ

2
Gmm,mp(ω)µEc0 〈bLina

(1)
i 〉 (ω),

= −~2κ
2

∑
uv

[
2Gmm,pp(ωu + ωv)Gpp(ωu) +Gmm,mp(ωu + ωv)Gmm(ωu)G(0)

pp (ωu)
]

(µEc0)
2
bLin(ωv)b

L
in(ωu)δω,ωu+ωv

(B21)

where Gmm,pp(ω) corresponds to the Fourier transform of
the probability amplitude for a two-cavity photon state to
undergo a transition into a state where a given molecule
is doubly excited, and Gmm,mp(ω) is the transition am-
plitude into the doubly-excited state of a given molecule
from an initial state containing a photon and a single
vibrational excitation of the same molecule. These prop-

agators can be written explicitly as:

Gmm,pp(ω) =
2(~ω − 2~ω0 + i~γm)

D(ω)
, (B22)

Gmm,mp(ω) =
2(~ω − 2~ωc + i~κ)(~ω − 2~ω0 + i~γm)

D(ω)
.

(B23)

Using the relation introduced in Eq. B15, we rewrite the
two-particle molecular response as:
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〈aiai〉(2) (ω) =
1

2

∑
uv

{
2Gmm,pp(ωu + ωv)

[
G(0)
mm(ωu)

]−1 [
G(0)
pp (ωv)

]−1
+Gmm,mp(ωu + ωv)

[
G(0)
pp (ωv)

]−1}
×Gmm(ωu) (µEc0)

2

[
−i~

√
κ

2
G(0)
pp (ωv)b

L
in(ωv)

] [
−i~

√
κ

2
G(0)
pp (ωu)bLin(ωu)

]
δω,ωu+ωv . (B24)

By symmetrizing the summand of the previous equation, we obtain:

〈aiai〉(2) (ω) =
∑
uv

Γmm,mm(ωu + ωv)Gmm(ωu)Gmm(ωv)

[
−µEc0i~

√
κ

2
G(0)
pp (ωv)b

L
in(ωv)

] [
−µEc0i~

√
κ

2
G(0)
pp (ωu)bLin(ωu)

]
× δω,ωu+ωv , (B25)

where Γ is the two-particle scattering matrix, and
Γmm,mm is the amplitude for the elastic scattering of two
excitations in the same molecule. It may be written as:

Γmm,mm(ω) =
(~ω − 2~ω̃0)(~ω − ~ω̃0 − ~ω̃c)

[
(~ω − 2~ω̃0)(~ω − 2~ω̃c)− 4g2N

]
D(ωu + ωv)

.

(B26)

The nonlinear component of the molecular polarization

〈P (ωs)〉(3) = µ
∑N
i=1 〈ai(ωs)〉

(3)
can now be given the

explicit form:

〈P (ωs)〉(3) =
∑

ωuωvωw

2N~∆µ4Gmm(ωs)Ḡmm(ωw)Γmm,mm(ωu + ωv)Gmm(ωv)Gmm(ωu)×

G(0)
pp (ωv)Ḡ

(0)
pp (ωw)G(0)

pp (ωu)

(
~κ
2

√
2F
π

)3

E
(+)
in (ωv)E

(−)
in (ωw)E

(+)
in (ωu)δωs,ωv−ωw+ωu , (B27)

where we used −iEc0
√

κ
2 b

L
in(ω) ≈ κ

2

√
2F
π E

(+)
in (ω) (from

Eq. A14). From the above expression and the definition

of the molecular nonlinear susceptibility [12], we find

χ(3)(−ωs;ωv,−ωw, ωu) =2~∆NµGmm(ωs)Ḡmm(ωw)Γmm,mm(ωu + ωv)Gmm(ωu)Gmm(ωv)×[
µ

√
2F
π

~κ
2
G(0)
pp (ωv)

][
µ

√
2F
π

~κ
2
Ḡ(0)
pp (ωw)

][
µ

√
2F
π

~κ
2
G(0)
pp (ωu)

]
δωs,ωv−ωw+ωu . (B28)

Appendix C: Nonlinear absorption spectrum under
strong coupling

In this section, we compute the nonlinear part of the
absorption spectrum of an optical microcavity strongly
coupled to the molecular polarization. In particular, we

will calculate the nonlinear part (in the input electric
field amplitude) of the external field power dissipated by
the molecular system under steady-state conditions.

Mathematically, the steady-state regime is charac-
terized by a time-independent molecular excited-state
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population i.e., ∂t
∑N
i=1

[
a†i (t)ai(t)

]
= 0. Using the

Heisenberg-Langevin equation for
∑N
i=1 a

†
i (t)ai(t), we

find that steady-state implies:

0 = −i~γm
N∑
i=1

(a†iai)(t) + µ

(
Ēc

0b
†

N∑
i=1

ai − Ec
0

N∑
i=1

a†i b

)
(t),

=⇒
N∑
i=1

γm(a†iai)(t) = 2Im

(
N∑
i=1

µĒc
0

~
b†ai

)
(t) (C1)

The last equality expresses the balance between the
steady-state rate of molecular excited-state decay (l.h.s.)
and driving by the external field mediated by the cavity
(r.h.s). Hence, the photon absorption rate by the molec-
ular system can be written as:

W =
2

~
Im 〈E†cP 〉ss , (C2)

where E†c = Ēc0b
† and P are the (complex conjugate)

cavity electric field amplitude and collective molecular

polarization in steady-state, respectively. Both Ec and
P admit power series expansions in the external fields
(see Sec. B). The first non-vanishing nonlinear terms in
the series expansion of P scales cubically with the in-
put field bLin. Therefore, it follows that the nonlinear
response contribution to the photon absorption rate W
scales as |Ein|4. To obtain this quantity, we will solve the
coupled Heisenberg-Langevin EOMs for population and
coherence variables in the presence of driving by the ex-
ternal input fields. From now on, we will denote steady-
state quantities by the usual expectation value notation
without the subscript “ss”, as we will always work under
steady-state conditions. Moreover, we will disregard the
frequency dependence of all quantities until we obtain
the final expression for the nonlinear absorption. In this
section, we take the input field to be a monochromatic
beam, i.e., bin(ω′) = 0 for all ω′ 6= ω.

In steady-state, the cavity-molecular polarization co-
herence 〈E†cP 〉 satisfies

(~ω̃∗c − ~ω̃0) 〈E†cP 〉 = −µ2|Ec0|2
N 〈b†b〉 − N∑

ij=1

〈a†iaj〉

− 2~∆µ

N∑
i=1

〈E†ca
†
iaiai〉 − i~

√
κ

2
〈Ēc0

(
bLin
)†
P 〉 . (C3)

Because we only care about the O
(∣∣bLin∣∣4) absorption component, and pure-state factorization holds, it fol-

lows by the same argument employed in Sec. B that

〈b†a†iaiai〉 = 〈b†a†i 〉 〈aiai〉 . Thus,

(~ω̃∗c − ~ω̃0) 〈E†cP 〉
(4)

= −µ2|Ec0|2
N 〈b†b〉(4) − N∑

ij=1

〈a†iaj〉
(4)

− 2~∆µ

N∑
i=1

〈E†ca
†
i 〉

(2)
〈aiai〉(2) − i~

√
κ

2
Ēc0
(
bLin
)† 〈P 〉(3) ,

(C4)

where we also used that the input fields are classi-
cal states uncorrelated with the cavity. Our task is
now to express the steady-state cavity photon num-
ber Np = 〈b†b〉, total molecular excited-state popula-

tion Nm =
∑N
i=1 〈a

†
iai〉 and intermolecular coherences

〈a†iaj〉i 6=j in terms of the input field operators to the de-

sired orders. The steady-state cavity photon number sat-

isfies

N (4)
p = − 2

~κ
Im 〈E†cP 〉

(4) −
√

2

κ
Re 〈

(
bLin
)†
b〉

(4)

, (C5)

whereas the total molecular excited-stated population
and intermolecular coherences are given by:

N (4)
m =

2

~γm
Im 〈E†cP 〉

(4)
, (C6)

∑
i>j

N∑
j=1

(
〈a†iaj〉

(4)
+ 〈a†jai〉

(4)
)

=
2(N − 1)

~γm
Im 〈E†cP 〉

(4)
+

4∆

γm

N∑
ij=1

Im
[
〈a†ja

†
j〉

(2)
〈ajai〉(2)

]
, (C7)
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where to obtain the last line, we used Im
[
〈a†ja

†
j〉

(2)
〈ajaj〉(2)

]
= Im

[∣∣∣〈a†ja†j〉(2)∣∣∣2] = 0.

Using Eqs. 49-51, we find the intermediate result

NN (4)
p −

n∑
ij=1

〈a†iaj〉
(4)

= −2N

~η
Im 〈E†cP 〉

(4) −N
√

2

κ
Re 〈

(
bLin
)†
b〉

(4)

− 4∆

γm

N∑
ij=1

Im
[
〈a†ja

†
j〉

(2)
〈ajai〉(2)

]
, (C8)

where η−1 ≡ κ−1+η−1. We now have all of the quantities
required to obtain the rate of nonlinear absorption W . In

particular, it follows from inserting our last result in Eq.
C4 that

(~ω̃∗c − ~ω̃0) 〈E†cP 〉
(4)

=
Ω2
R

2~η
Im
[
〈E†cP 〉

(4)
]

+
Ω2
R

4

√
2

κ
Re
[(
bLin
)† 〈b〉(3)]+

Ω2
R∆

Nγm

N∑
ij=1

Im
[
〈a†ja

†
j〉 〈ajai〉

]

− 2~∆µ

N∑
i=1

〈aiai〉(2) 〈a†iE
†
c 〉

(2)
− i~

√
κ

2
Ēc0 〈bLin〉

† 〈P 〉(3) . (C9)

where we used ΩR = 2 |µEc0|
√
N . Let ηs = κ + γm,

WNL ≡ W (4) = 2
~ Im

(
〈E†cP 〉

(4)
)

and the r.h.s of Eq.

C9, we can eliminate Re
(
〈E†cP 〉

(4)
)

and solve for WNL

in terms of the input field variables. to obtain:

WNL =− 2η~ηs
2η [(~ωc − ~ω0)2 + (~ηs)2/4] + Ω2

Rηs/2

Ω2
R

4~

{√
2

κ
Re
[(
bLin
)† 〈b〉(3)]+

4∆(N − 1)

γm
Im
[
〈a†ja

†
j〉

(2)
〈ajai〉(2)j 6=i (2ω)

]}

+
2η~ηs

2η [(~ωc − ~ω0)2 + (~ηs)2/4] + Ω2
Rηs/2

{
2∆µNRe

[
〈aiai〉(2) 〈a†iE

†
c 〉

(2)
]

+

√
κ

2
Im
[
Ēc0 〈bLin〉

† 〈P 〉(3)
]}

+
2η~ηs(ωc − ω0)

2η [(~ωc − ~ω0)2 + (~ηs)2/4] + Ω2
Rηs/2

{
4∆µN

ηs
Im
[
〈aiai〉(2) 〈a†iE

†
c 〉
]

+

√
2κ

ηs
Re
[
Ēc0
(
bLin
)† 〈P 〉(3)]} ,

(C10)

where we used that Im
[
〈a†ja

†
j〉 〈ajai〉

]
= 0 when i = j.

Thus, our final expression for the total nonlinear absorp-

tion is given by:
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WNL(ω) =− ηΩ2
Rηs

2η [(~ωc − ~ω0)2 + (~ηs)2/4] + Ω2
Rηs/2

Re

[√
1

2κ

[
bLin(ω)

]† 〈b〉(3) (ω)

]

− ηΩ2
Rηs

2η [(~ωc − ~ω0)2 + (~ηs)2/4] + Ω2
Rηs/2

2∆(N − 1)

γm
Im
[
〈a†ja

†
j〉

(2)
(−2ω) 〈ajai〉(2)j 6=i (2ω)

]
+

2η(2~∆N)ηs
2η [(~ωc − ~ω0)2 + (~ηs)2/4] + Ω2

Rηs/2
Re
[
〈a†ia

†
i 〉

(2)
(−2ω) 〈µaiEc〉(2) (2ω)

]
+

ηηs
2η [(~ωc − ~ω0)2 + (~ηs)2/4] + Ω2

Rηs/2
Im
[
~
√

2κĒc0
[
bLin(ω)

]† 〈P 〉(3) (ω)
]

+
2η(~ωc − ~ω0)4∆N

2η [(~ωc − ~ω0)2 + (~ηs)2/4] + Ω2
Rηs/2

Im
[
〈aiai〉(2) (2ω) 〈µa†iE

†
c 〉

(2)
(−2ω)

]
+

2η(~ωc − ~ω0)
√

2κ

2η [(~ωc − ~ω0)2 + (~ηs)2/4] + Ω2
Rηs/2

Re
[
Ēc0
[
bLin(ω)

]† 〈P 〉(3) (ω)
]
. (C11)

Each of the above terms can be further simplified by us-
ing results obtained in Sec. B. For instance, the identities

〈b〉(3) (ω) = −Ēc0G
(0)
pp (ω) 〈P 〉(3) (ω) and iĒc0

[
bLin(ω)

]†
=

√
κ
2

√
2F
π E

(−)
in (ω) (see Eq. A14) can be employed to sim-

plify the first line of the last equation, while the 2nd, 3rd,
and 5th lines can be simplified using the following results
from Eqs. B16 and B19

〈aiaj〉(2)i 6=j (ω) = − µEc0
~ω − 2~ω̃0

[
〈ajb〉(2) (ω) + 〈aib〉(2) (ω)

]
, and

〈aib〉(2) (ω) = −~ω − 2~ω̃0 + 2~∆

µEc0
〈aiai〉(2) (ω), which imply that

=⇒ 〈aiaj〉(2)i 6=j (ω) =
(~ω − 2~ω0 + 2~∆ + i~γm)(~ω − 2~ω0 − i~γm)

(~ω − 2~ω0)2 + ~2γ2m
× 2 〈aiai〉(2) (ω). (C12)

1. Zero detuning

The physical content of the terms in Eq. C11 becomes
clearer in the zero-detuning case where ωc ≈ ω0, in which
case the last two lines of Eq. C11 vanish. Taking advan-
tage also that when the strong coupling condition is sat-

isfied ΩR � ~η and ΩR � ~ηs, the nonlinear absorption
can be written as a sum of four simple contributions

WNL(ω) =

4∑
α=1

WNLα(ω)
∣∣∣E(+)

in (ω)
∣∣∣4 , (C13)

where

WNL1(ω) ≈ −2ηκ

~

[
1

4(ω − ω0)2 + κ2
+

1

(ΩR/~)2

]
Re

[√
2F
π
χ(3)(ω)

]
, (C14)

WNL2(ω) ≈ 4η

~
ω − ω0

4(ω − ω0)2 + κ2
Im

[√
2F
π
χ(3)(ω)

]
, (C15)

WNL3(ω) ≈ η 4∆2N

(ω − ω0)2 + γ2m/4

∣∣∣〈aiai〉(2) (2ω)
∣∣∣2

|E(+)
in (ω)|4

, (C16)

WNL4(ω) ≈ −η (2ω − ω20)2∆N

(ΩR/2~)2

∣∣∣〈aiai〉(2) (2ω)
∣∣∣2

|E(+)
in (ω)|4

. (C17)
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Appendix D: Nonlinear susceptibility of bare
molecular system

In order to describe the free space nonlinear polar-
ization induced on a bare molecule ensemble driven by
external continuous-wave fields, we employ an effective
Hamiltonian that is similar to that used to model the
molecular system in an optical cavity. The main differ-
ence is that each molecule now interacts with several EM
modes (with vanishing momentum along the x, y direc-
tions) quantized with periodic boundary conditions. The

total Hamiltonian in the rotating-wave approximation is:

H =
∑
ω

~ωb†ωbω +

N∑
i=1

(
~ω0a

†
iai − ~∆a†ia

†
iaiai

)
− µ

N∑
i=1

∑
ω>0

(
E0ωa

†
i bωe

iωzi/c + Ē0ωaib
†
ωe
−iωzi/c

)
,

(D1)

where ω = ck, k = 2πm/L,m ∈ Z, and zi is the
projection of the position of molecule i on the field

direction of propagation, and E0ω = i
√

~ω
2ε0V

. The input

field which drives the material polarization is introduced
as a boundary condition to the electromagnetic mode
operators in the Heisenberg picture, i.e., the input field
satisfies the homogeneous part of the EM field equations.
We assume the E0ω are classical variables, as in the
computation performed with the optical cavity in the
previous sections.

The equation of motion for the expectation value of
the molecular polarization is given by:

(i~∂t − ~ω̃0) 〈µai(t)〉 = −2~∆µ 〈a†i (t)ai(t)ai(t)〉 − µ
2
∑
ω

E0ω 〈bω(t)〉 eiωzi/c. (D2)

Using pure state factorization [1, 71, 72], the equation of
motion for the third-order component of 〈ai(t)〉 is given
by:

(i~∂t − ~ω̃0) 〈ai(t)〉(3) = −2~∆ 〈a†i (t)〉
(1)
〈ai(t)ai(t)〉(2) .

(D3)

The time evolution of the relevant first and second-order
molecular expectation values are given by the solutions
of the equations

(i~∂t − ~ω̃0) 〈ai(t)〉(1) = −µ
∑
ω

Eωin(t), (D4)

(i~∂t − ~ω̃20) 〈ai(t)ai(t)〉(2) = −2µ
∑
ω

〈ai(t)〉(1)Eωin(t)e−iωzi/c,

(D5)

where we made the replacement Eωin(t) = E0ω 〈bω(t)〉.
Using the long wavelength limit, and thus disregarding
the spatial dispersion of the electromagnetic field (as in
the computations performed for a molecular system in
a cavity), the frequency-domain solutions of the prior
equations are:

〈ai〉(1) (ω) = −µ
∑
ωu

Eωuin

~ω − ~ω̃0
δωu,ω, (D6)

〈aiai〉(2) (ω) =
∑
u,v

2µ2EωuinEωv in

(~ωu + ~ωv − ~ω̃20)(~ωu − ~ω̃0)
δω,ωu+ωv ,

(D7)

where ~ω̃20 = ~ω20 − i~γm, and ~ω20 = 2~ω0 − 2~∆ is
the energy difference between the doubly-excited vibra-
tional state and the ground-state. These results can also
be written in terms of bare molecule single-particle and
two-particle retarded response functions in the frequency
domain:

〈ai〉(1) (ω) = −µG(0)
mm(ω)Eωin, (D8)

〈aiai〉(2) (ω) =µ2
∑
u,v

G(0)
mm,mm(ωu + ωv)G(0)

mm(ωu)

× EωuinEωv inδω,ωu+ωv , (D9)

where G
(0)
mm(ω) = 1/(~ω − ~ω̃0) and G

(0)
mm,mm(ω) =

2/(~ω − ~ω̃20) are the Fourier transform of the single-
particle and two-particle retarded molecular Green func-
tions, respectively. In the time domain, they measure
the probability amplitude that a single and a two-phonon
state exist for a time t after their creation. Note that the
last equation may also be written in terms of a vibration-

vibrational scattering matrix element Γ
(0)
mm,mm(ω) =

(~ω − 2~ω̃0)/(~ω − ~ω̃20) as follows

〈aiai〉(2) (ω) =µ2
∑
u,v

Γ(0)
mm,mm(ωu + ωv)G(0)

mm(ωu)G(0)
mm(ωv)

× EωuinEωv inδω,ωu+ωv . (D10)

Direct insertion of Eqs. D6 and D7 into the frequency-
domain representation of Eq. D3 gives the following so-
lution:
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〈ai〉(3) (ωs) =
∑
u,v,w

4µ3~∆EωuinĒωwinEωvin
(~ωs − ~ω̃0)(~ωw − ~ω̃∗0)(~ωu + ~ωv − ~ω̃20)(~ωu − ~ω̃0)

δωs,ωu+ωv−ωw . (D11)

In terms of the bare molecule Green functions and
phonon-phonon scattering amplitudes, the bare third-

order molecular nonlinear polarization P
(3)
0 (ωs) =

µ
∑N
i=1 〈ai(ωs)〉

(3)
can be written as

〈P 〉(3)0 (ωs) =
∑

ωuωvωw

2~∆Nµ4G(0)
mm(ωs)Ḡ

(0)
mm(ωw)Γ(0)

mm,mm(ωu + ωv)Gmm(ωv)Gmm(ωu)EωuinĒωwinEωvinδωs,ωu+ωv−ωw ,

(D12)

which implies the bare nonlinear susceptibility

χ
(3)
0 (−ωs;ωv,−ωw, ωu) = 2~∆Nµ4G(0)

mm(ωs)Ḡ
(0)
mm(ωw)Γ(0)

mm,mm(ωu + ωv)G
(0)
mm(ωv)G

(0)
mm(ωu)δωs,ωv−ωw+ωu . (D13)

Appendix E: Nonlinear absorption spectrum of bare
molecular system

The steady-state rate of photon absorption by the
molecular system in free space can be computed from
the Hamiltonian in Eq. D1. In particular, the steady-
state condition stipulates that in the presence of an ex-
ternal radiation field, the rate of excitation of the molec-
ular system is equal to its rate of decay, and therefore

∂t
∑N
i=1 〈a

†
i (t)ai(t)〉 = 0, where t is an arbitrary time dur-

ing which the system satisfies the condition given above.
Using Heisenberg-Langevin equations of motion for the

description of the response of the molecular system to the
external electromagnetic field we find that:

γm

N∑
i=1

〈a†i (t)ai(t)〉 =

N∑
i=1

∑
ω

Im

[
2µĒ0ω

~
〈b†ω(t)ai(t)〉

]
.

(E1)

The l.h.s of the above equality corresponds to energy

extracted from (or transferred to) the molecular system
by the bath, whereas the r.h.s describes the pumping of
the molecular system by the electromagnetic field. As-
suming the usual weak coupling condition to be valid
in free space, and taking the external field to be given
by a macroscopic coherent state with negligible quantum
fluctuations, it follows that the bare rate of photon ab-
sorption is given by:

W0 =
2

~
∑
ω

Im
[
Ēωin(t) 〈P (t)〉0

]
, (E2)

where 〈P (t)〉0 refers to the free space (weakly coupled
to the EM field) molecular polarization, i.e., 〈P (t)〉0 =

〈
∑N
i=1 µai(t)〉0. Thus, the nonlinear contribution to the

molecular absorption spectrum is given by:

WNL
0 =

2

~
Im
[
Ēin(tss) 〈P (tss)〉(3)0

]
, (E3)

where tss is sufficiently long that the system is in steady-
state. Equivalently, we can write

WNL
0 (ω) =

2

~
Im
∑
ωs

Ēωsin 〈P (ωs)〉(3)0

=
2

~
∑
ωs

∑
ωuωvωw

Im
[
χ
(3)
0 (−ωs;ωv,−ωw, ωu)ĒωsinEωuinĒωwinEωv in

]
δωs,ωv−ωw+ωu (E4)

The nonlinear absorption spectrum for photons with frequency ω is given by:

WNL
0 (ω) =

2|Eωin|4

~
Im
[
χ
(3)
0 (−ω;ω,−ω, ω)

]
. (E5)
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Using Eq. 19, we find the nonlinear rate of absorption of photons by the molecular system is given by:

WNL
0 (ω) = N

2

~
4~∆µ4

[(~ω − ~ω0)2 + ~2γ2m/4]
2

~γm(~ω0 − ~ω)

(2~ω − ~ω20)2 + ~2γ2m
|Eωin|4

+N
2

~
4~∆µ4

[(~ω − ~ω0)2 + ~2γ2m/4]
2

~γm(~ω20/2− ~ω)

(2~ω − ~ω20)2 + ~2γ2m
|Eωin|4. (E6)

Each of the two terms in the above rate of nonlinear ab-
sorption correspond to a distinct nonlinear absorption
resonance. This can be seen by noting that the first
term vanishes when ω = ω0, whereas the second van-
ishes when 2ω is resonant with the two-photon transi-

tion with frequency ω20 = 2ω0 − 2∆. When ∆/γm � 1,
the lineshapes corresponding to the two possible non-
linear absorption resonances are well separated, and we
can isolate the contribution to WNL

0 (ω) corresponding to
two-photon absorption:

WTPA
0 (ω) ≡ N 2

~
4~∆µ4

[(~ω − ~ω0)2 + ~2γ2m/4]
2

~γm(~ω0 − ~ω)

(2~ω − ~ω20)2 + ~2γ2m
|Eωin|4. (E7)

The textbook expression for the two-photon absorption
rate [12] follows from the last result by taking the limit
where ∆� γ, and by assuming only probe frequencies ω
around the TPA resonance at ω0 −∆ (so that no other
quantum transitions interference with the absorption) In
this case, it follows that4:

WTPA
0 (ω) ≈ 2πN

~
2µ4

(~ω − ~ω0)2
ρ2(2ω)|Eωin|4, (E9)

where ρ2(2ω) = − 1
π Im

[
G

(2)
mm,mm(2ω)

]
:

ρ2(2~ω) = − 1

π
Im

[
2

2~ω − ~ω20 + i~γ

]
=

1

π

2~γ
(2~ω − ~ω20)2 + ~2γ2

m

. (E10)

4 Specifically, letting ω = ω0 −∆− ε with ε→ 0 and γm/∆→ 0,
we have

~∆(~ω0 − ~ω)

[(~ω − ~ω0)2 + ~2γ2m/4]2
≈

~2∆2(1 + ε/∆)

[(~ω − ~ω0)2]2

≈
~2∆2

(~ω − ~ω0)2
(1 + ε/∆)

~2∆2(1 + ε/∆)2

=
1

(~ω − ~ω0)2
[1 +O(ε/∆)] . (E8)

Appendix F: Quantitative comparison of molecular
nonlinear susceptibility of bare and strongly coupled

systems

In this section, we provide an additional quantitative
discussion of the main features of the molecular non-
linear susceptibility under strong coupling with a cav-
ity. Our analysis will focus on the system with sus-
ceptibility curves given in Fig. 4,where we employ pa-
rameters corresponding to W(CO)6 molecules in hexane
[37] with ω0 = 1983 cm−1, γm = 3 cm−1,∆ = 8 cm−1

to illustrate and compare the real and imaginary parts
of the bare nonlinear susceptibility (Eq. D13) to that
obtained for the same system under strong coupling
with an optical cavity (Eq. B28) with κ = 6 cm−1,
ΩR = 40 cm−1, and the following cavity frequencies:
ωc = 1977 cm−1, 1983 cm−1, 1990 cm−1 [42, 43, 79].
All results assume a monochromatic input field with fre-
quency ω (thus, ωu = ωw = ωw = ω).

Fig. 4 shows that the bare and strongly coupled molec-
ular system display strikingly contrasting nonlinear po-
larization. The imaginary part of the bare nonlinear sus-
ceptibility shows absorptive lineshapes, whereas disper-
sive behavior can be observed for the polaritonic. The
opposite is true for the corresponding real parts. The ab-

sorptive lineshapes for Im
[
χ
(3)
0 (−ω;ω,−ω, ω)

]
centered

at ω0 and ω0 −∆ (see small bump of grey curve around
ω = 1975 cm−1) are expected since this function is
directly proportional to the nonlinear absorption rate
(Eq. E5) by the bare molecules. The weak resonance
at ω0 −∆ corresponds to two-photon absorption by the
molecular subsystem which absorb two input photons
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with ω = ω0 −∆ to generate a population of molecules
with energy ~ω = 2~ω0−2~∆ in the doubly-excited state,
whereas the resonance at ω0 results from stimulated emis-
sion by excited-state population and ground-state bleach
which contribute to the reduced nonlinear photon absorp-
tion probability at the fundamental frequency ω0 (thus
giving rise to the observed negative amplitude).

It is harder to interpret Im
[
χ(3)(−ω;ω,−ω, ω)

]
. As

discussed in Sec. C, by virtue of the cavity-matter
strong coupling, the nonlinear polarization contribu-
tion to the energy absorbed by the molecular sub-
system is not directly proportional to the imaginary
part of χ(3)(−ω;ω,−ω, ω). Nevertheless, the most ob-
vious features of the molecular nonlinear susceptibil-
ity under strong coupling are visible from Fig. 4.
For instance, the absorptive lineshapes displayed by
Re
[
χ(3)(−ω;ω,−ω, ω)

]
are all centered at the LP and the

UP frequencies for each of the studied systems. Stronger
nonlinear polarization always happens at ω = ωLP in
comparison to ω = ωUP. This happens because, while
for N � 1, the nonlinear response mediated by LP and
UP arises mainly from their interaction with molecular
doubly excited-states (see App. G), larger spectral over-
lap exists between the molecular two-photon transition
and the LP2 resonance (for the parameters here chosen).
As a result, energy or amplitude transfer between polari-
tons and molecular doubly excited-states is more efficient
when the LP is resonantly driven by the external field (see
detailed discussion and connection to experiments [42] in
Sections 3 and 4 of the main text).

Note also that, for the parameters chosen to obtain Fig.
4, the maxima of the nonlinear susceptibility obtained
for the molecular system inside and outside of an opti-
cal cavity are of the same order of magnitude. However,
we expect that if ΩR is modified so that two-polariton
states (LP2 in this example) become nearly-resonant with
molecular doubly excited-states, the molecular nonlinear
susceptibility under strong coupling will likely undergo
significant enhancement, since in this case, spectral over-
lap between LP2 and molecular doubly excited-states will
be large, and the latter will provide an efficient sink for
energy disposal by the former (this is not the case for any
of the scenarios shown in Fig. 4).

We conclude this section by presenting in Fig. 8 the
behavior of the strongly coupled molecular nonlinear sus-
ceptibility for ΩR = 20, 16, and 12 cm−1 for a sys-
tem with zero real and imaginary detuning (ωc = ω0 =
1983 cm−1 and κ = γ = 3 cm−1, respectively) and
∆ = 8 cm−1. Our expectation of an enhanced molec-
ular nonlinear susceptibility under strong coupling with
a moderate quality cavity is now verified. Figure 8 shows
that as ΩR − 2∆ → 0, the nonlinear polarization of the
molecular subsystem becomes larger, especially when the
two-LP frequency 2ω0 − ΩR approaches the TPA res-
onance at 2ω = 2ω0 − 2∆. We can observe enhance-
ment of both real and imaginary parts of χ(3) relative

to χ
(3)
0 by two orders of magnitude at ω = ω0 − 2∆

when the condition ΩR = 2∆ is satisfied. Note that
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FIG. 8. Left (Right): Imaginary (Real) parts of

χ(3)(−ω;ω,−ω, ω) and χ0(−ω;ω,−ω, ω) for a system with
equal cavity and molecular fundamental frequencies and
decay rates and varying Rabi splitting. The barely vis-
ible dotted (grey) curve corresponds to results obtained
for the bare molecular system, whereas the thick (purple),
dashed (blue), and dot dashed (orange) correspond to ΩR =
20, 16, and 12 cm−1, respectively.

Im
[
χ(3)(−ω;ω,−ω, ω)

]
has absorptive lineshapes at the

TPA transition. This feature suggests that the enhanced
signal at ω = ωLP is due to two-LP decay into molecular
doubly excited-states. This channel is discussed in detail
in Secs. 3 and 4 of the main manuscript.

Appendix G: Energy eigenvalues and eigenstates of
non-dissipative system

In this section, we obtain the optical spectrum of the
hybrid system discussed in the main manuscript. For
this purpose, we neglect the effects of dissipation, so that
the obtained transition frequencies are real. In fact, the
Hamiltonian of the hybrid system can be written in this
case as:

H =~ωcb†b+

N∑
i=1

~ω0a
†
iai − ~∆

N∑
i=1

a†ia
†
iaiai

−
N∑
i=1

~g
(
a†i b+ b†ai

)
, (G1)

where g is the single-molecule light-matter coupling con-
stant. two conservation laws follow from the effective
Hamiltonian given in the main text. First, the Hamil-
tonian is invariant under permutation of the molecules.
Thus, the eigenstates of H can be classified according to
the irreducible representation fo the permutation group
of N symbols (SN ), and time-dependent evolution only
allows transitions between states which belong to the
same irrep. Second, it follows from the RWA approxi-
mation to the light-matter interaction that the Hamilto-
nian evolution of the composite system preserves the total
number of excitations of the photonic and matter subsys-

tems M =
∑N
i=1 a

†
iai + b†b. Therefore, the eigenstates of

H may also be classified according to the total number
of excitations in the molecular and photonic subsystems.
For instance, the ground-state of the system (M = 0) has
all molecules in the ground-state, while the cavity field
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is in its vacuum state. The states with M = 1 contain
either a single excited vibration (|1i〉 where 1 ≤ i ≤ N),
or a single-photon (|10〉), etc.

Of the many irreps of SN , only the totally-symmetric
is relevant in our case. In the manifold of states with
M = 1, this feature is well-known: only the totally-
symmetric superposition of states with a single excited
molecule exchanges energy with the cavity field. The
non-totally-symmetric states are dark and thus provide
no contribution to the optical response of the hybrid sys-
tem (in the studied ideal model).

The lower and upper polariton states are denoted by
|LP〉 and |UP〉. They can be written in terms of the
local-mode basis states as follows:

|LP〉 = −sin(θ/2) |10〉+ cos(θ/2) |1S〉 , (G2)

|UP〉 = cos(θ/2) |10〉+ sin(θ/2) |1S〉 , (G3)

where 2θ = tan−1
[
2g
√
N/(ωc − ω0)

]
and |1S〉 =

N−1/2
∑N
i=1 |1i〉 is the molecular singly-excited bright

state, and we denote by g the single-molecule light-
matter coupling.

The bright subspace of the doubly-excited state (M =
2) manifold contains the four two-particle (hybrid) states
which are totally-symmetric under permutation of the
molecular labels. These states are the only which can be
accessed via two-photon transitions in our model (dark
modes are never accessed since they require molecular
permutational symmetry-breaking operators which are
disregarded in our treatment). They are given by:

|20〉 , |101m〉 =
1√
N

N∑
a=1

|101a〉 ,

|1m1m′〉m 6=m′ =

√
2

N(N − 1)

∑
a>b

|1a1b〉 ,

|2m〉 =
1√
N

N∑
a=1

|2a〉 . (G4)

Figure S1 illustrates how Hamiltonian evolution induces
transitions between these states. From this figure, we
can also see that these four states are the only which
can be accessed from a two-photon initial state. In the
subspace spanned by the priorly defined states, the total
Hamiltonian is given by:

HB
2 =


2~ωc ~g

√
2N 0 0

~g
√

2N ~ω0 + ~ωc ~g
√

2(N − 1) ~g
√

2

0 ~g
√

2(N − 1) 2~ω0 0

0 ~g
√

2 0 2~ω0 − 2~∆

 ,

(G5)

where the matrix was ordered in the same way as the
basis states in Eq. G4. From now on, we will focus
on the case where ωc ≈ ω0 since this gives the simplest
analytical results, and is also the most relevant.

If the molecular oscillators were two-level systems,
we would obtain the restriction of the Tavis-Cummings

Hamiltonian to the M = 2 Hamiltonian, which is given
by:

HB
2TC =

 2~ωc ~g
√

2N 0

~g
√

2N ~ω0 + ~ωc ~g
√

2(N − 1)

0 ~g
√

2(N − 1) 2~ω0

 .

(G6)

When ω0 = ωc, the TC eigenstates can be readily ob-
tained since the secular equation can be written in the
simple form:

(2ω0 − λ)
[
(2ω0 − λ)

2 − 2(N − 1)g2
]
− 2g2N(2ω0 − λ) = 0,

(G7)

which has solutions:

λTC
UP2

= 2ω0 + 2g
√
N − 1/2 ≈ 2ωUP −

g

2
√
N
, (G8)

λTC
LP2

= 2ω0 − 2g
√
N − 1/2 ≈ 2ωLP +

g

2
√
N
, (G9)

λTC
LU = 2ω0, (G10)

where the approximate expressions resulted from taking
the limit where N →∞. In terms of the bare states |20〉,
|101m〉 and |1m1m′〉, the eigenstates corresponding to the
above energies are given by:

|UPTC
2 〉 =

√
N

4N − 2
|20〉+

√
1

2
|101m〉+

√
N − 1

4N − 2
|1m1m′〉

(G11)

|LPTC
2 〉 =

√
N

4N − 2
|20〉 −

√
1

2
|101m〉+

√
N − 1

4N − 2
|1m1m′〉

(G12)

|LUTC〉 =

√
N − 1

2N − 1
|20〉 −

√
N

2N − 1
|1m1m′〉 . (G13)

Using these states along with the |2i〉 as the new basis
vectors for the totally-symmetric doubly-excited mani-
fold of the system allowing two excitations, the Hamil-
tonian matrix (with the row and column indices in the

order |LUTC〉 , |UPTC
2 〉 , |LPTC

2 〉 , |2i〉), acquires the simple
form:

HB
2 =


2~ω0 0 0 0

0 ~λTC
UP2

0 ~g
0 0 ~λTC

LP2
−~g

0 ~g −~g 2~ω0 − 2~∆

 , ~ωc = ~ω0.

(G14)

From this, we can see that the state |LUTC〉 is also an
eigenstate of the complete Hamiltonian, and that de-
spite its delocalization, the totally-symmetric doubly-
excited molecular state |2S〉 is only weakly-coupled to
polaritons (the corresponding coupling constant is given
by the single-molecule light-matter interaction energy
g). If we take the single-molecule light-matter cou-
pling to be very weak compared to the energy differences
λTC
UP2
− (2ω0− 2∆) = g

√
4N − 2 + 2∆ and λTC

LP2
− (2ω0−
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|20〉 |101m〉 |1m1m′〉

|2m〉

g
√

2N g
√

2(N − 1)

g
√

2

FIG. 9. Scheme representing the bright (totally-symmetric matter and cavity states) two-particles states which play a role in
the nonlinear spectroscopy of vibrational polaritons discussed here. Above each arrow connecting a pair of states we provide
the corresponding Hamiltonian matrix elements (coupling constants).

2∆) = −g
√

4N − 2 + 2∆, we can obtain reasonable ap-
proximate eigenstates and eigenvalues of HB

2 (N). This
will almost always be a valid assumption, even if 2∆ is
nearly equal to g

√
4N − 2, since the single-molecule-light

coupling constant g is generally too small compared to
the energy scale of vibrational motion, and there exists a

large number of (non-totally symmetric) molecular dou-
bly excited-states with energy 2ω0−2∆ that provides an
efficient decay channel for LP2 states. In other words, the
TC eigenstates will almost always be very good approxi-
mations to the eigenstates of HB

2 (N). The leading-order
perturbatively-corrected eigenvalues are given by:

ωUP2 ≈ 2ω0 + g
√

4N − 2 +
1

2

2g2

g
√

4N − 2 + 2∆
≈ 2ωUP −

g

2
√
N

+
1

2

2g2

g
√

4N − 2 + 2∆
, (G15)

ωLP2
≈ 2ω0 − g

√
4N − 2− 1

2

2g2

g
√

4N − 2− 2∆
≈ 2ωLP +

g

2
√
N
− 1

2

2g2

g
√

4N − 2− 2∆
, (G16)

ω2S ≈ 2ω0 − 2∆ + ∆
g2

g2(N − 1/2)−∆2
, (G17)

ωLU = 2ω0, (G18)

where we included the exact eigenvalue of the |LU〉 state for completeness. The corresponding approximate eigenstates
can be written as:

|UP2〉 ≈
√

N

4N − 2
|20〉+

√
1

2
|101m〉+

√
N − 1

4N − 2
|1m1m′〉+

g

g
√

4N − 2 + 2∆
|2m〉 , (G19)

|LP2〉 ≈
√

N

4N − 2
|20〉 −

√
1

2
|101m〉+

√
N − 1

4N − 2
|1m1m′〉+

g

g
√

4N − 2− 2∆
|2m〉 , (G20)

|2S〉 ≈ |2m〉 −
g2

g2(2N − 1)− 2∆2

(√
N |20〉+

√
N − 1 |1m1m′〉

)
+

√
2g∆

g2(2N − 1)− 2∆2
|101m〉 , (G21)

|LU〉 =

√
N − 1

2N − 1
|20〉 −

√
N

2N − 1
|1m1m′〉 . (G22)


	Enhanced optical nonlinearities under collective strong light-matter coupling
	Abstract
	1 Introduction
	2 Molecular nonlinear response
	2.1 Effective Hamiltonian
	2.2 Nonlinear molecular polarization under strong light-matter coupling

	3 Polariton-enhanced two-photon absorption
	4 Discussion and Conclusions
	 References
	A Basic definitions for empty microcavity
	B Nonlinear susceptibility of strongly coupled molecular system
	C Nonlinear absorption spectrum under strong coupling
	1 Zero detuning

	D Nonlinear susceptibility of bare molecular system
	E Nonlinear absorption spectrum of bare molecular system
	F Quantitative comparison of molecular nonlinear susceptibility of bare and strongly coupled systems
	G Energy eigenvalues and eigenstates of non-dissipative system


