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Quantum tomography is a class of characterization methods frequently used in current experi-
ments, but its standard protocols suffer from unreliability originated from pre-knowledge assump-
tions. Self-consistent quantum tomography is an approach to avoid the problem, which treats every
quantum operations in a characterization experiment as unknown objects to be characterized. As
compensation for the beneficence, it leads to a problem that its characterization results cannot
be determined uniquely only from experimental data due to the existence of experimentally unde-
tectable gauge degrees of freedom, and we need to introduce a criterion to fix the gauge. Here, we
propose to use a regularization technique to fix the gauge. First, we derive a sufficient condition
on a characterization experiment to obtain all information of objects to be characterized except for
the gauge. Second, we propose a self-consistent data-processing method with regularization and
physicality constraints. A careless use of regularization can lead non-negligible bias on the char-
acterization result. As a solution for the concern, we propose a concrete way to tune the strength
of the regularization, and mathematically prove that the method provides characterization results
that converge to the gauge-equivalence class of the quantum operations of interest at the limit of
data going to infinity. The asymptotic convergence guarantees the reliability of the method. We
also derive the asymptotic convergence rate, which would be optimal. These theoretical results
hold for any finite dimensional quantum systems. Finally, as its first numerical implementation, we
show numerical results on 1-qubit system, which confirm the theoretical results and prove that the
method proposed is practical.

PACS numbers: 03.65.Wj, 03.67.-a, 02.50.Tt, 06.20.Dk

I. INTRODUCTION

As error rates of elementary quantum operations
implemented in recent experiments approach a fault-
tolerant threshold of a surface code [1], it becomes more
important to develop more reliable methods for charac-
terizing their actions to validate and to further improve
their accuracies. Standard randomized benchmarking
(RB) [2–6] and the relatives [7–14] are efficient meth-
ods specified for estimating an accuracy parameter like
the average gate fidelity, except for a tomographic RB
protocol [15] for multi-parameter estimation. Although
they are frequently used in current experiments, recent
numerical work revealed that a non-negligible bias can
exist in the estimation results in realistic experimental
settings [16–18]. Standard quantum tomography (QT)
[19–26] are methods for estimating full information of
state preparations, measurements, or gates. They are
also popular in experiments but have two disadvantages,
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exponentially growing costs of implementation and in-
evitable biases caused by unknown imperfections in ex-
periments. When we restrict the use of QT to small
subsystems like a few qubits, the high implementation
costs do not pose a problem. If the biases stem from
finiteness of data size, we can make their effects as small
as necessary by increasing the size. However, in a re-
alistic scenario, the biases in estimation results of RB
and QT can survive even at the limit of data size go-
ing to infinity, regardless of what kind of data-processing
is used. Hence, the possible low reliability of QT and
RB can become crucial because the purpose of quantum
characterization is to reliably characterize super-accurate
operations beyond the fault-tolerance threshold.

Self-consistent quantum tomography (SCQT) [27–29]
is an approach towards overcoming the low reliability of
standard QT. In the SCQT approach, all quantum opera-
tions used in a characterization experiment are treated as
unknown objects to be estimated, in contrast to standard
QTs that model some of them as known. This makes it
possible to avoid biases caused from our pre-knowledge
discrepancy between the true unknown objects and as-
sumed models. On the other hand, the approach causes
a problem that we cannot uniquely determine the set of
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GST RSCQT

Data-fitting optimization Nonlinear Nonlinear
Gauge fixing method Additional gauge optimization Regularization at data-fitting
Physicality constraints Not fully taken into account Fully taken into account
Long gate sequences Implemented Not implemented

TABLE I. Comparison of GST and RSCQT. GST is a current representative tomographic method in the self-consistent approach.
RSCQT is the method proposed in the paper. Both suffer from nonlinearity of data-fitting, which can cause numerical
instability. There are two possible advantages of RSCQT compared to GST. One is that RSCQT does not need additional gauge-
optimization, which reduces numerical costs of data-processing. The other is that RSCQT fully takes physicality constraints
into account, which is suitable to the accuracy validation step. On the other hand, long gate sequences, which have been
implemented in GST to amplify effects of tiny physical errors, have not been implemented in RSCQT yet.

quantum operations only from experimental data even if
we have infinite amount of data. This is because there ex-
ist experimentally undetectable gauge degrees of freedom
[28]. In order to obtain estimates of quantum operations
in the setting of SCQT, we have to choose how to fix
the gauge. Gate-set tomography (GST) [29] is a current
representative method in SCQT, and a software package
for performing GST, named pyGSTi, is provided [30].
For the gauge-fixing, GST uses an optimization with re-
spect to a norm over the gauge degrees of freedom [31].
GST has superior features, e.g., it is self-consistent and
free from the pre-knowledge errors, there is a method for
testing the existence of time-dependent errors with data
for the GST experiment, and so on. However, it has
at least two problems. First, the data-processing proce-
dure in GST is very complicated, and it becomes hard
to theoretically evaluate the estimation error caused by
finiteness of data. Second, the optimization is a non-
linear problem, and its numerical implementation suffers
from high numerical cost, low numerical stability, and
hardness of taking into account physicality constraints.
Actually, the current version of pyGSTi can ensure phys-
icality of gates, but physicality of state preparation and
measurement (SPAM) are not guaranteed [32]. Such a
gauge-fixing method with possibly unphysical results is
not suitable for use in the validation step.

Here, we propose a new method based on SCQT with
regularization that is used for fixing the gauge degrees of
freedom. We call the method Regularized Self-Consistent
Quantum Tomography (RSCQT). A careless use of a reg-
ularization can lead an non-negligible bias on its char-
acterization result. We propose a method for tuning
the regularization in order to avoid the bias problem
and prove the validity mathematically and theoretically.
Comparisons of RSCQT and GST are summarized in Ta-
ble I for readers familiar with GST. In Sec. II, settings
and notation are explained. Details of settings and no-
tation are explained in Appendices A and B. Sec. III
includes three theoretical results. First, we introduce the
SCQT method with regularization and mathematically
prove a sufficient condition on a characterization exper-
iment to obtain all information of objects to be charac-
terized except for the gauge degrees of freedom. Second,
we prove its asymptotic convergence and derive the con-
vergence rate, which are valid for any finite dimensional

systems and have been proven for the first time in SCQT
methods. Third, we propose a method to extract in-
formation of Lindbladian from a characterization result
of a gate. Proofs of theorems in Sec. III are given in
Appendix C, D, and E. Two statistical techniques, reg-
ularization and cross validation, are used in the method
proposed, and their brief explanations are given in Ap-
pendices F and G, respectively. We performed numerical
experiments for 1-qubit system, and the numerical results
are reported in Sec. IV. Details of the numerical exper-
iments are described in Appendix H. Sec. V is devoted
for discussions. We conclude the main text in Sec. VI.

II. SETTING AND NOTATION

We consider a characterization problem of quantum
operations on a finite-dimensional quantum system in the
SCQT approach. Let d denote the dimension of the sys-
tem. The dimension considered in Sec. III is arbitrary
finite, and d = 2 in Sec. IV. The purpose of SCQT
is to know mathematical representations of a set of un-
known state preparations, measurements, and gates that
are implemented in a QIP protocol. We use notations ρ,
Π, and G for a density matrix for a state preparation,
a positive operator-valued measure (POVM) for a mea-
surement, and a linear trace-preserving and completely-
positive (TPCP) map for a gate. In the SCQT approach,
every states, measurements, and gates used in its charac-
terization experiment are treated as unknown objects to
be estimated, under assumptions that (i) d is finite and
known, (ii) the numbers of outcomes of measurements
are known, (iii) operations are independent of each other,
(iv) the actions of operations are identical at any timing
during the experiment. For simplicity, we consider cases
that the set of quantum operations to be estimated, s,
consists of single state preparation, single measurement,
and multiple gates. Generalizations of theoretical results
in Sec. III to cases of multiple state preparations and
measurements are straightforward. Let ng denote the
number of gates in s.

A set of quantum operations can be parametrized with
a real Euclidean vector. We identify the set s and the
parametrization vector. Details of the parametrization
are explained in Appendix A. Let S denote the physical
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FIG. 1. Example of an experimental schedule. A set of quan-
tum operations s consists of ρ, Π, G0, G1, and G2. In this
case, the experimental schedule Id consists of three index se-
quences, i1, i2, and i3.

region in the Euclidean space. Let starget ∈ S denote the
ideal, noiseless, and known set of quantum operations
that we aim to implement in a lab. An implemented
set, say strue ∈ S, is unknown, noisy, and different from
starget because of imperfections on experimental devices.

We perform a set of experiments for estimating strue,
which consists of many different combinations of a state
preparation, gate sequences, and a measurement. In the
SCQT approach, the range of possible choices of the com-
binations is extremely wide. For example, GST chooses
complicated combinations [31]. In this paper, the con-
ditions required on the experiments for estimating full
information of strue are presented at Sec. III A. Concrete
combinations used in the numerical experiments reported
in Sec. IV are shown in Table III in Appendix H.

Each combination of operations is specified with an in-
dex sequence of gates, say i, and a set of index sequences
is denoted by Id, called experimental schedule. An ex-
ample of an experimental schedule is shown in Fig. 1. Let
pi(s) denote the probability distribution of measurement
outcomes of the i-th experiment with a set of quantum
operations s ∈ S. We define p(Id, s) := {pi(s)}i∈Id.
We repeat the experiment N times for each i ∈ Id.
Let f i

N denote an empirical distribution calculated from
data obtained in the N repetitions of a sequence i and
fN (Id) := {f i

N}i∈Id. The total amount of data is N |Id|.

For any strue, there exist sets of quantum operations
s̃ ∈ S satisfying pi(strue) = pi(s̃) for any i in arbitrary
Id [29]. We call such s̃ gauge-equivalent to strue. Let
[strue] denote the gauge-equivalence class of strue, i.e.,
the set of all s̃ gauge-equivalent to strue. Any differ-
ence in the gauge degrees of freedom is superficial and
experimentally undetectable. Therefore, in the SCQT
approach, we have to choose how to fix the gauge to
obtain an estimate of strue from experimental data. In
Sec. III B, we propose a SCQT method that uses a regu-
larization to fix the gauge. Details of the gauge degrees
of freedom are explained in Appendix B.

III. THEORETICAL RESULTS

In this section, we show our theoretical results. In
Sec. III A, we introduce a concept of informational com-
pleteness for the self-consistent approach, which is an
expansion of informational completeness in the standard
quantum tomography [26]. We prove that the expanded
informational completeness is a sufficient condition on
experiments for estimating all parameters of a set strue

except for the gauge degrees of freedom (Theorem 1).
The details of the proof of Theorem 1 are shown in Ap-
pendix C. In Sec. III B, we propose a data-processing
method, called an estimator in statistics, with regular-
ization for estimating strue. We prove that, by tuning a
regularization parameter appropriately, an estimate se-
quence of the estimator sestN converges into [strue] at the
limit of N going to infinity, assuming that an experi-
ment satisfies the informational completeness. We also
prove that p(Id, sestN ) converges to p(Id, strue) with con-
vergence rate equivalent to or faster than fN (Id) does,
which would be optimal. The details of the proof of
the asymptotic convergence and derivation of the con-
vergence rate are shown in Appendix D. These results
guarantee the reliability of the proposed method for suf-
ficiently large data. In Sec. III C, we give formulae for
extracting information of dynamics generators such as
Hamiltonian and dissipator from the estimates of a gate
in sestN . Details of the derivation of the formula are shown
in Appendix E. The formulae would be useful for improv-
ing accuracy of a gate in QIP experiments.

A. Informational completeness and
gauge-equivalence

We derive a sufficient condition on an experimental
schedule Id to self-consistently characterize quantum op-
erations. Under the condition, we can know full informa-
tion of strue except for the gauge degrees of freedom.

We introduce informational completeness in the con-
text of SCQT. Let Id = {(ig1k , . . . , igLk

) : k = 1, . . .}
denote a set of index vectors, where k is an index for
gate sequences and ig is an index for gates. We call an
experimental schedule Id state-informationally complete
if a set of density matrix

{ρi := GigLk
◦ · · · ◦ Gig1k

(ρ)}i∈Id (1)

is a (possibly over-complete) basis of d × d matrix
space. We call an experimental schedule Id POVM-
informationally complete if a set of POVMs

{Πi := G†
ig1k

◦ · · · ◦ G†
igLk

(Π)}i∈Id (2)

is a (possibly over-complete) basis of the space. Let i∪i′

denote the direct union of two index vectors, i.e., i ∪
i′ = (i1, . . . , iL, i

′
1, . . . , i

′
L′). We call Id self-consistently

informationally complete (SCIC) if it includes
{

is ∪ ip
∣

∣ is ∈ Ids, ip ∈ Idp

}

(3)
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and
{

is ∪ ig ∪ ip
∣

∣ is ∈ Ids, ig ∈ {1, . . . , ng}, ip ∈ Idp

}

(4)

as subsets where Ids and Idp are state-informationally
and POVM-informationally complete sets of gate index
sequences, respectively. Eq. (4) means that when i is
SCIC, it includes quantum process tomography (QPT)
experiment for all gates in s, and Eq. (3) means that it in-
cludes quantum state tomography (QST) experiment for
state preparations and POVM tomography (POVMT)
experiment for measurements used in the QPT exper-
iment. The SCIC condition implies that Id includes
QST,POVMT, and QPT experiments allowing duplica-
tion of index sequences. Hence, we expect that we can
obtain full information of s except for the gauge degrees
of freedom from experimental data of a SCIC Id.

Theorem 1 Suppose that assumptions (i)–(iv) in Sec. II
hold, Id is SCIC, and inverse maps G−1

ig
exists for ig =

1, . . . , ng. Then, for any s, s̃ ∈ S, the following two
statements are equivalent:

1. s̃ ∈ [s].

2. p(Id, s̃) = p(Id, s).

Proof of Theorem 1 is given at Appendix C. Note that
the inverse maps mentioned in Theorem 1 are not re-
quired to be TPCP. The inverse map always exists if
a gate is implemented with dynamics obeying a time-
dependent GKLS master equation [33–35], the time pe-
riod is finite, and the dissipator of the dynamics is
bounded [36] (see Appendix E. 1). These conditions are
considered as natural in usual settings of QIP experi-
ments, and the condition on the existence of the inverse
is a natural assumption in experiments.

Theorem 1 indicates that the experimental indistin-
guishability implies the gauge-equivalence when the set
of gate index sequences is SCIC. By taking contraposition
of Theorem 1, we have

s̃ /∈ [s] ⇔ p(Id, s̃) 6= p(Id, s). (5)

This means that we can distinguish gauge-inequivalent
sets of quantum operations from probability distributions
of experiments satisfying the SCIC condition. Therefore
the SCIC condition is a sufficient condition.

B. Asymptotically Gauge-Equivalent Estimator

We propose an estimator with regularization. The es-
timator is formulated with three parts, loss function, reg-
ularization function, and regularization parameter. Here
we specify the classes of loss and regularization functions
into squared errors for simplicity. Results in this subsec-
tion hold for much wider classes, which is mentioned in
Sec. V A.

Suppose that we choose an experimental schedule Id
satisfying the SCIC condition and obtain experimental

data after N repetition. Our purpose is to obtain an
estimate sestN from the data. In order to do that, we
introduce loss regularization functions as

L
(

p (Id, s),fN (Id)
)

:=
1

|Id|
∑

i∈Id

1

2

∥

∥pi(s) − f i

N

∥

∥

2

2
,(6)

and

R(s, s′) :=
1

2
‖ρ− ρ′‖ 2

2 +
1

|X |
∑

x∈X

1

2
‖Πx − Π′

x‖
2
2

+

ng
∑

ig=1

1

2d2

∥

∥

∥
HS
(

Gig

)

− HS
(

G′
ig

)
∥

∥

∥

2

2
, (7)

where HS(G) denote a Hilbert-Schmidt matrix represen-
tation of a TPCP map G.

We propose the following estimator:

sestN := argmin
s∈S

{

L
(

p(Id, s),fN (Id)
)

+rNR(s, starget)
}

, (8)

where rN is a positive number, called regularization pa-
rameter. It is user-tunable and can depend not only on
N , but also on data. The regularization term in Eq. (8)
takes a role for fixing the gauge as the estimate becomes
close to s′, which is a new way to use regularization. The
set s′ is a user-specified set of quantum operations. Its
choice is arbitrary and up to the user. We propose to use
the target set as the regularization point, i.e., s′ = starget

in Eq. (8). We discuss the choice of s′ in Sec. V A.
We call the estimator defined by Eq. (8) a regularized

self-consistent (RSC) estimator, and we call a quantum
tomographic protocol with the RSC estimator regularized
self-consistent quantum tomography (RSCQT). We have
to select the value of rN carefully. For example, if we
select rN so large that the effect of the loss function in
the minimization of Eq. (8) becomes negligible, the RSC
estimate sestN approaches starget. Then p(Id, sestN ) cannot
reproduce fN (Id) precisely for finite N .

The following theorem gives a guideline to select a valid
value of rN . We use a mathematical notation, <∼, in such
a way that f(N) <∼ g(N) indicates that, for a positive
constant a, f(N) ≤ ag(N) holds for any sufficiently large
N . An abbreviation, a.s., stands for almost surely in
probability theory. A rigorous definition of the notation
is given in Appendix D 1.

Theorem 2 (Asymptotic gauge-equivalence)
Suppose that assumptions (i)–(iv) in Sec II hold. If we
select a regularization parameter satisfying

lim
N→∞

rN = 0 a.s., (9)

then the sequence of the probability distributions,
{p(Id, sestN )}, converges to the true one p(Id, strue) al-
most surely, i.e., the equality,

lim
N→∞

√

L(p(Id, sestN ),p(Id, strue)) = 0 a.s., (10)
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holds. If we select the regularization parameter satisfying

rN <∼ 1/N a.s., (11)

then inequalities,

√

L(p(Id, sestN ),p(Id, strue))

<∼
√

L(p(Id, strue),fN (Id)) (12)

<∼
√

ln lnN

N
a.s., (13)

hold. If Eq. (9) is satisfied and Id is SCIC, then the
sequence of RSC estimates {sestN } converges to [strue] al-
most surely, i.e., the equality,

lim
N→∞

min
{

R(sestN , s̃)
∣

∣ s̃ ∈ [strue]
}

= 0 a.s., (14)

holds.

The details of the proof are given in Appendix D. Here
we sketch them.

• Proof of Eqs. (10), (12), and (13): We combine a
property of sestN as a minimizer with the strong law
of large numbers, the central limit theorem, and
the strong law of iterated logarithm [37] in order to
prove them.

• Proof of Eq. (14): First, we derive an inequal-
ity that any points in S outside ǫ-neighborhood
of [strue] satisfy. A main mathematical tool at
the derivation is the strong law of large numbers.
Second, we prove that, for any small ǫ > 0, by
taking a sufficiently large N , sestN does not satisfy
the inequality. This indicates that sestN is in the
ǫ-neighborhood and converges to [strue].

At the construction of the proof of Eq. (14), we used
known results from mathematical statistics as reference.
If we neglect the existence of the gauge degrees of free-
dom in the setting of SCQT, the RSC estimator defined
by Eq. (8) can be categorized into an abstract and general
class of statistical estimators, called minimum contrast
estimator. In statistical parameter estimation, some suf-
ficient conditions for a minimum contrast estimator to
asymptotically converge to the true parameter are known
[38]. These results are not directly applicable to the RSC
estimator in the setting of SCQT because there exist the
gauge degrees of freedom. Nevertheless, our setting has
many properties that are easy to mathematically handle,
such as finite dimensional parameter space, multinomial
probability distributions, and smooth parametrization of
the probability distributions. We modified the known re-
sults to make them applicable to the setting of SCQT.
Simultaneously, with the good properties of the setting of
SCQT and the specific form of the RSC estimates sestN , we
simplified the modified sufficient conditions. Detailed ex-
planations on differences between our results and known
results of regularization are given in Appendix F.

Suppose that Id is SCIC and rN is chosen to satisfy
Eq. (9). Theorem 2 indicates the asymptotic gauge-
equivalence of sestN , i.e., the convergence of sestN to
[strue], and this guarantees the high reliability of the
RSC estimates sestN for sufficiently large N . The esti-
mates are physical, because the minimization range is
restricted into the physical region S. Hence, sestN is
self-consistent, stringently physical, and asymptotically
gauge-equivalent, in theory. Additionally, Eq. (12) guar-
antees that, if we choose rN = c/N where c is a positive
constant independent of N , the asymptotic convergence
rate of p(Id, sestN ) to p(Id, strue) becomes equivalent to
or better than that of fN (Id). This means that sestN can
reproduce p(Id, strue) at least as precise as fN (Id) can.
We conjecture that the asymptotic convergence rates of
p(Id, sestN ) and fN (Id) are equivalent because that of
fN (Id) would be optimal. There is still arbitrariness
of selection of c for tuning the value of rN . In practice,
even if c is independent of N , too large c can lead a large
bias on the RSC estimates for finite N . We can avoid to
select such unreasonably large c by combining the esti-
mator with cross validation [39, 40], which is a standard
method for selecting a regularization parameter in statis-
tics and its brief explanation is given at Appendix G. We
show the performance of the combination for the case of
1-qubit system in Sec. IV.

C. Dynamics Generator Analysis

Here we propose a method for extracting information
of dynamics generators from an estimate of a gate. Sup-
pose that the dynamics of a quantum state during the
gate operation obeys the time-dependent GKLS equation
[33–35].

dρ

dt
= Lt(ρ) := −i[H(t), ρ] + {J(t), ρ}

+

d2−1
∑

α,β=1

Kαβ(t)BαρB
†
β , (15)

where B := {Bα}d
2−1

α=0 is an orthonormal Hermitian ma-

trix basis satisfying B0 = I/
√
d, H(t) =

∑d2−1
α=1 Hα(t)Bα,

J(t) =
∑d2−1

α=0 Jα(t)Bα, Hα(t) ∈ R, Jα(t) ∈ R, and
Kαβ(t) ∈ C. When a gate G is implemented under
Eq. (15) from t = 0 to t = T , the HS representation
of the map is formally expressed as

HS(G) = T exp

[

∫ T

0

dt HS(Lt)

]

, (16)

where T stands for the chronological operator. If H(t),
J(t), and K(t) are bounded for any t ∈ [0, T ] and T is
finite, HS(G)−1 exists (see Appendix E. 1 for the proof),
and there exists a matrix Lacc satisfying

HS(G) = exp(Lacc). (17)



6

We call Lacc the accumulated dynamics generator of the
gate G. It satisfies

Lacc = ln HS(G). (18)

Let us define Lacc as a linear map satisfying

HS(Lacc) = Lacc. (19)

From the completeness of the matrix basis B, the action
of the map Lacc can be represented in the following form.

Lacc(ρ) = −i[Hacc, ρ] + {Jacc, ρ}

+

d2−1
∑

α,β=1

Kacc
αβ BαρB

†
β , (20)

where

Hacc =

d2−1
∑

α=1

Hacc
α Bα, (21)

Jacc =

d2−1
∑

α=0

Jacc
α Bα. (22)

The matrix Hacc represents the accumulated action of
the original Hamiltonian H(t) from t = 0 to t = T , and
Kacc represents the accumulated action of the original
dissipator K(t) from t = 0 to t = T . When the orig-
inal generators are time-independent, i.e., H(t) = H ,
J(t) = J , and K(t) = K, the accumulated generators
{Hacc, Jacc,Kacc} are simply Hacc = T ·H , Jacc = T · J ,
and Kacc = T ·K.

Let Lacc,cb denote the HS representation of Lacc with
respect to the computational basis. The coefficients of
the accumulated generators can be calculated from Lacc

as follows:

Hacc
α =

i

2d
Tr
[

Lacc,cb(Bα ⊗ I − I ⊗Bα)
]

,

α = 1, . . . , d2 − 1, (23)

Jacc
α =

1

2d(1 + δ0α)
Tr
[

Lacc,cb(Bα ⊗ I + I ⊗Bα)
]

,

α = 0, . . . , d2 − 1, (24)

Kacc
αβ = Tr

[

Lacc,cb
(

Bα ⊗Bβ

)]

,

α, β = 1, . . . , d2 − 1, (25)

where Bα is the complex conjugate of the matrix ba-
sis element with respect to the computational basis rep-
resentation. The derivations of Eqs. (23), (24), and
(25) are shown in Appendix E. 2. After perform-
ing a self-consistent tomographic experiments and data-
prosessing, we have an estimate Gest := HS(Gest) of a
gate G = HS(G). Then we can obtain an estimate of the
accumulated generators in the following procedure:

Step 1. Choose the computational basis as the repre-
sentation basis of HS. Then we have Gest =
HScb(Gest).

Step 2. Calculate the matrix logarithm, ln Gest =:
(Lacc,cb)est.

Step 3. Substitute (Lacc,cb)est into Lacc,cb in the R.H.S.
of Eqs. (23), (24), and (25).

By following steps above, we can extract information of
the accumulated generators Hacc, Jacc, and Kacc, but
we cannot know the information about the original gen-
erators H(t), J(t), and K(t) at each t ∈ [0, T ]. This is
because in general quantum tomography treat a gate as
a black box, and a tomographic result gives the informa-
tion of an input-output relation during the time period.

IV. NUMERICAL RESULTS

Theorem 2 in Sec. III guarantees the high reliability
of the RSC estimator for asymptotically large N on any
finite-dimensional quantum system. In practice, it is im-
portant to investigate its performances for finite N . The
investigation must be done by numerical experiments be-
cause calculations of an estimation error require infor-
mation of the true set strue, and it’s not available in real
experiments. Numerical implementation of the RSC esti-
mator includes a constraint nonlinear optimization prob-
lem, which is the main challenge and is different from
standard QT. As the first step, we numerically imple-
mented the RSC estimator for 1-qubit systems and per-
formed numerical experiments

We investigated the performance of the RSC estima-
tor for several settings and parameter regions of error
models. The observed results are both of positive and
negative. The positive part is that they are consistent
with Eqs. (10), (12), and (13), and these indicate its
high reliability on its prediction performance of proba-
bility distributions with finite data as well, even though
there exist effects of bias originated from regularization.
The negative part is that Hamiltonian estimated with
the dynamics generator analysis includes an effect of a
gauge transformation and can differ from the true value,
which is not a specific feature of the RSC estimator, but
would be a common feature of the SCQT approach. In
this section, we briefly explain the setting and results of
the numerical simulations. Details of the simulation are
described in Appendix H.

A. Setting

The system simulated is a two-level system (d =
2). The target set is chosen as starget =
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{ρtarget,Πtarget,Gtarget
0 ,Gtarget

1 ,Gtarget
2 } such that

ρtarget = |0〉〈0|, (26)

Πtarget = {|0〉〈0|, |1〉〈1|} , (27)

Gtarget
0 (ρ) = ρ, (28)

Gtarget
1 (ρ) = e−iπ

4
σ1ρei

π
4
σ1 , (29)

Gtarget
2 (ρ) = e−iπ

4
σ2ρei

π
4
σ2 , (30)

i.e., the target state is the ground state, the target POVM
is the projective measurement along with the Z-axis, and
the target gates are the identity, π

2 -rotation along with
the X-axis, and π

2 -rotation along with the Y -axis. The
true set strue is chosen as a set that is close to the target
set but it includes coherent errors and decoherence. In
the realistic model, the state and POVM are affected
by a depolarizing error, and the gates are generated by
a rectangular pulse with decoherence obeying a GKLS
master equation [41]. We chose an experimental schedule
Id consisting of 45 operation sequences, which is SCIC.
Details of the model are described in Appendix H 1.

Along with Theorem 2, we select the regularization
parameter as rN = c/N , where c is a constant positive
value. The selection of c is up to the user. In order to
check the effect of the selection on the performance, we
set c in a wide range, 10−1, 1, 10, 102, 103, and we com-
bined the RSC estimator with a k-fold cross validation,
which selects a reasonable value of c from the set of candi-
date values. The procedure of the data-processing at the
k-fold cross validation is explained in Appendix G. The
computational cost for k-fold cross validation procedures
becomes larger as k becomes larger. In order to keep the
computational cost as small as possible, we set k = 3.
We performed a Monte Carlo simulation with N = 102

to 106. Statistics like expectations, variances, and stan-
dard deviations are calculated with 500 iterations.

B. Numerical Result 1: Loss and Regularization

At the first analysis, we investigate behaviors of quan-
tities related to the loss function L in Eq. (6) and reg-
ularization function R in Eq. (7) in order to test how
the performance of the RSC estimator for finite N differs
from the asymptotic behaviours in Theorem 2. The re-
sults are visualized in Fig. 2, which includes four panels.
Horizontal axes of the panels are the amount of data N .

Panel (a) of Fig. 2 is for the root-mean square of es-
timation error from strue w.r.t. the probability distribu-
tions, i.e.,

√

E[L(p(Id, s),p(Id, strue))]. The black solid
line is for s=starget, and it quantifies the discrepancy be-
tween starget and strue in the space of probability distri-
butions, which is independent of N . The blue solid line is
for empirical distributions,

√

E[L(fN (Id),p(Id, strue))],

which scales as 1/
√
N . The red solid line is for s= sestN

with the cross validation, and the other dotted lines are
for s = sestN with fixed c. Line style and color of sestN

are common in all panels of Figs. 2, 3, and 4. Lines of

sestN converge to zero as N increases, and they are, ex-
cept for the line of the largest c, almost parallel with
and below the line of fN . The convergence in the space
of probability distributions means the convergence to the
gauge-equivalence class [strue] because of the SCIC of the
experimental schedule and Theorem 1. This is consistent
with Eqs. (10) and (13). The panel also shows that the
cross validation selects the almost best value of c in the
candidates on average.

It is interesting that the estimation errors of sestN are
smaller than that of fN (except for c = 103), and the
gap remains up to asymptotically large amount of data,
at least N = 106. We observed the same tendency at
the other error models as well. This means that, if we
choose a reasonable value of c, the RSC estimator has the
predictability of the true probability distributions higher
than experimental data itself. There are four possible
origins of the gap: (i) inequality constraints of physical-
ity, (ii) equality constraints of physicality, (iii) regular-
ization, and (iv) gauge degrees of freedom. It is known
that, in the standard QT, the inequality constraints con-
tribute to reduce an estimation error [42]. Such effect
exists as well in the SCQT, but it would not be the main
origin of the gap because the effect is expected to de-
crease as N increases. The equality constraints must be
one of the main origin, because it reduces the degrees of
freedom of s and p(Id, s) while there are no restrictions
on fN . Regularization can also be the main origin, be-
cause it tends to reduce the variance of the estimator,
although it introduce a bias. Whatever the origin, the
figure indicates the RSC estimator’s high predictability
of probability distributions.

Panel (b) of Fig. 2 is for the goodness of fit to data,

i.e.,
√

E[L(p(Id, s),fN )]. The blue line is for s= strue,
and note that it’s equivalent to the blue line at Panel (a)

due to the symmetry of
√

L w.r.t. the first and second
variables. For s = sestN , the lines correspond to the first
term of R.H.S. of Eq. (8) after its minimization process.
The lines are almost similar except for the largest c. This
means that the selection of the regularization parameter c
does not affect on the goodness of fit of the RSC estimator
to data if c is not too large.

Panel (c) of Fig. 2 is for the estimation error in the
space of quantum operations. The vertical axis is the
root-mean-squared error from strue,

√

E[R(s, strue)], for
s = starget and s = sestN . In Panels (c) and (d), we have
performed a gauge transformation on sestN that diagonal-
izes the POVM in order to adjust a reference frame for
comparing to strue. The lines of sestN are below that of
starget, but they do not converge to zero. Panels (a) and
(c) indicate that the RSC estimates converge to a point
in the gauge-equivalence class [strue] and the point is dif-
ferent from strue. This is as expected because there is an
arbitrary choice of gauge-fixing method and the gauge-
fixing with the squared 2-norm distance to the target set,
R(s, starget), does not lead the estimates to the true set
in general. We investigate the discrepancy of sestN and
strue later at the explanation of Figs. 3 and 4.
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FIG. 2. Plots of root mean squares (RMS) of loss and regularization functions for the RSC estimator against number of data N
when the error is generated by the GKLS master equation. Panel (a) is for the estimation error in the space of the probability
distributions. Panel (b) is for the goodness of fit to data. Panel (c) is for the estimation error in the space of quantum
operations. Panel (d) is for the regularization term to the target set. All of horizontal and vertical axes are log-scale. See main
texts for the details.

Panel (d) of Fig. 2 is for the root mean of the reg-
ularization term without the regularization parameter,
√

E[R(s, starget)], for s = strue and s = sestN . Note that
the black lines at Panels (c) and (d) are equivalent due
to the symmetry of R. For regions of small N , sestN tends
to be closer to starget as c becomes larger. This is as
expected because larger c makes its estimate closer to
starget.

The observed behaviours of sestN in Fig. 2 indicate that
the use of regularization for fixing the gauge degrees of
freedom does not cause effective biases on estimation of
probability distributions and the discrepancy originated
from different choice of the regularization parameter c
becomes negligible as the amount of data increases.

C. Numerical Result 2: Dynamics Generator
Analysis

As shown in the previous subsection, the RSC estima-
tor gives estimates converge to the gauge-equivalence set
[strue], but the convergence point is different from strue.
This is due to the existence of the gauge degrees of free-

dom. We investigate more details of the discrepancy with
the dynamics generator analysis proposed in Sec. III C.

Figure 3 shows the root mean squared errors (RMSE)
of the RSC estimator to strue. We have performed
a gauge transformation on sestN that diagonalizes their
POVM in order to adjust a reference frame to strue.
There are six panels. Three panels at the upper row
are for the RMSE of the hamiltonian part of the Lind-
bladian of gate-0, -1, and -2, respectively. Other pan-
els at the lower row are for the RMSE of the dissipator
part of Lindbladian of each gate. At the all panels, the
black solid lines are for starget, red solid lines are for sestN

with the cross validation, and the other dashed lines are
for sestN with a fixed c. These six panels indicate that
the main sources of the non-convergence to strue are the
hamiltonian parts of gate-1 and gate-2 (Panels (1-H) and
(2-H)).

More details of the estimation errors of Hamiltonian
are shown in Fig. 4, which is for the RMSE of the Pauli
X-, Y -, and Z-components of the estimated Hamiltonian.
There are six panels. Three panels at the upper row are
for the RMSE of the components of gate-1, respectively.
Other panels at the lower row are for the RMSE of them
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FIG. 3. Root mean squared error (RMSE) of the estimated Lindbladian against the number of data N when the error is
generated by the GKLS master equation. The number and letter at each panel label correspond to the gate index (0, 1, 2) and
part of Lindbladian (H for Hamiltonian, and D for Dissipator). All of horizontal and vertical axes are log-scale. See the main
texts for the details.

of gate-2. Line style and color are same as in Fig. 3.
Behaviors of the lines for sestN in the six panels can be
classified into three types: (i) they decrease almost mono-
tonically (Panels (1-Z) and (2-Z)), (ii) they are below the
black line but converge to a finite value (Panels (1-X) and
(2-Y)), and (iii) they are the same order of the black line
(Panels (1-Y) and (2-X)). This classification has a sym-
metry on X and Y for gate-1 (π/2-rotation along with
X-axis) and gate-2 (π/2-rotation along with Y -axis).

These behavior can be explained by the commutation
relation between the ideal Hamiltonian of each gate and
the generator of the gauge transformation as follows. Let
Gi = exp(Li) denote the matrix representation of the i-
th gate of the convergence point of the RSC estimates,
where Li denote their Lindbladian. The convergence
point is gauge-equivalent to strue, there exists a gauge
transformation between them. Let A denote the matrix
representation of the gauge transformation. Because of
the invertibility of A, there exists a matrix a satisfying
A = ea. Let Ltarget

i denote the ideal Lindbladian of the
i-th gate, which consists of the Hamiltonian part only
and ∆i denote the discrepancy between Li and Ltarget

i ,

i.e., ∆i = Li − Ltarget
i . Then

Gi = AGtrue
i A−1 = exp

(

eaLie
−a
)

≈ exp
(

Li + [a,Ltarget
i ]

)

, (31)

where we assumed ‖a‖ ≪ 1, used Tailer expansion, and
neglected higher order terms. Eq. (31) indicates that the
gauge transformation changes the Lindbladian from Li

to Li + [a,Ltarget
i ] (approximately). The Lindbladians

contain parts of Hamiltonian and Dissipators. For sim-
plicity, let us focus on the Hamiltonian part. In the dy-
namics generator analysis, we have performed the gauge

transformation that makes POVM diagonal. At the ref-
erence frame of diagonal POVM, the remaining gauge de-
grees of freedom in the Hamiltonian part is the rotation
along with Z-axis, because rotations along with other
axes makes POVM non-diagonal. Then the hamiltonian
part of a contains Z-component only. On the other hand,
the target Lindbladian contains only X-component for
gate-1 and only Y -component for gate-2. Hence, the com-
mutator [a,Ltarget

i ] leads to Y -component for gate-1 and
to X-component for gate-2.

At the discussion above, we ignored the higher order
terms of the Taylor expansion. When ‖a‖ is not so small,
such higher order terms become non-negligible. Actu-
ally we observed such cases in our numerical simulations
with another setting. The results of the dynamics genera-
tor analysis shown here indicate that the RSC estimates
is affected by uncontrollable gauge transformation and
the estimated Hamiltonian can be different from the true
value in some non-negligible amount. The discrepancy
makes the RSC estimates not useful for experimentalists
to perform further improvement of their gate operations.
Although we investigated the performance of the RSC
estimator only, we believe that this defect is common for
all characterization methods in the SCQT approach, be-
cause the gauge degrees of freedom remain in any way.

V. DISCUSSION

In Sec. V A, we explain the suitability of the use of
a regularization for the gauge-fixing in the SCQT ap-
proach. We discuss implementation costs in Sec. V B.
Discussions and Appendixes in [43] would be useful for



10

FIG. 4. Root mean squared error (RMSE) of the estimated Hamiltonian components against the number of data N when the
error is generated by the GKLS master equation. The number and letter at each panel label correspond to the gate index (0,
1, 2) and Hamiltonian component (X, Y, Z). All of horizontal and vertical axes are log-scale. See the main texts for the details.

considering relations between the SCQT approach with
regularization and steps of accuracy validation and im-
provement for quantum computing.

A. Choice of Regularization

The main purpose of this paper is to propose a reliable
tomographic estimator. We require the estimator to re-
turn a physical estimate that can reproduce experimental
data and predict results of a QIP experiment in the fu-
ture precisely. A physical argument that minimizes the
loss function, i.e., argmins∈S L(p(Id, s),fN (Id)) might
look suitable for the request. However, since there exist
gauge degrees of freedom, the argument is not unique. In
order to obtain an estimate from multiple candidates, we
have to fix the gauge. It is desirable to choose a gauge-
fixing method suitable for validation and improvement af-
ter characterization. A typical task at the validation and
improvement steps is to estimate a difference between
strue and starget, say D(strue, starget) by evaluating the
difference between sestN and starget, D(sestN , starget). Sup-
pose that there are two gauge-fixing methods A and B.
Their respective estimates, obtained from experimental
data, are denoted as sestA,N and sestB,N . If p(Id, sestA,N ) is as

close to fN (Id) as p(Id, sestB,N ) is and D(sestA,N , starget) <

D(sestB,N , starget), we consider method A better because

the difference D(sestB,N , starget)−D(sestA,N , starget) is mainly
caused by the difference of gauge degrees of freedom that
are experimentally indistinguishable. In order to reduce
such fake effect on estimates, we fix the gauge such that
estimates are as close to the target starget as they can
describe experimental data precisely.

In Eq. (8), we choose the squared 2-norm as the regu-
larization. This is for the simplicity of mathematical and
numerical treatments. We can replace the 2-norms in
the loss function and in the regularization with any other
norms. The estimator with other norms is also asymptot-
ically gauge-equivalent because any norms can be upper-
bounded by the 2-norm in finite dimensional complex
spaces [44]. In quantum information theory, some norms
like the trace-norm and diamond-norm have operational
meanings [45, 46]. A regularization using such norms
might be more suitable from the perspective of valida-
tion after characterization, but numerical treatments of
such norms become harder and their computational costs
at the minimization increase.

As numerically shown in Sec. IV, the existence of the
gauge-degrees of freedom can cause discrepancy between
true and estimated Hamiltonians of the RSC estimator,
which is a common feature of the SCQT approach. The
possible discrepancy makes the performance of the cur-
rent form of the RSC estimator at the use for further
improvement of accuracy low. One possible direction to-
ward improving the performance is to exploit prior infor-
mation on the experiment with the regularization term.

B. Implementation Costs

The RSC estimator proposed here has superior proper-
ties such as asymptotic gauge-equivalence and probably
optimal convergence rate. On the other hand, it suffers
from one disadvantage that the cost of experiments and
data processing scales exponentially with respect to the
number of subsystems. The exponential scaling is com-
mon in tomographic methods, where the experimental
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cost of SCQT is about the same as that of GST and
is higher than that of standard QT. The numerical cost
of RSC estimator depends on the choice of the loss and
regularization functions and optimization algorithm, but
in general it is higher than that of standard QT because
the number of parameters to be estimated is much higher.
Comparison to GST or pyGSTi is a bit obscure, because
they use an approximated likelihood function as a loss
function, which is different from our choice, and the phys-
icality constraints are not fully taken into account at the
optimization [30–32], whereas the constraints are taken
into account in the RSC estimator.

Suppose that, for GST and RSCQT, we have chosen
the same experimental setting, the same loss function,
and the same optimization algorithm with fully taking
into the physicality constraints. Then only difference
between them is how to fix the gauge. GST performs
the gauge fixing data-processing separately after the opti-
mization of the loss function, and in the approach we need
to perform an additional optimization over the gauge de-
grees of freedom. On the other hand, in the RSCQT
approach, the gauge-fixing is simultaneously performed
during the optimization of the objective function. The
objective function consists of loss and regularization func-
tions. If we choose the squared 2-norm as the regu-
larization, the numerical cost of the objective function
is dominated by that of the loss function because the
nonlinearity of the loss function is much higher than a
quadratic function in general. The regularization func-
tion is a function of the set of quantum operations s, and
the gauge degrees of freedom does not appear explicitly
there. In the RSCQT approach, we can avoid the opti-
mization over the gauge degrees of freedom. The gauge
optimization problem contains the matrix inverse (see
Eq. (B5)) with the physicality constraints. The highly
nonlinear constraint optimization can become numeri-
cally unstable and hard to be solve. This might be a
reason that the current version of pyGSTi cannot take
into account the full physicality constraints. Therefore,
because of the difference of the gauge-fixing methods, for
a fixed regularization parameter, the computational cost
of the RSC estimator would be lower than that of GST.
From the perspective of numerical stability, the RSCQT
approach would be superior than GST as well. When we
combine a k-fold cross validation with the RSC estima-
tor, we have to perform the optimization of the objective
function many times. In that case, it is unclear which
computational cost is lower, which depends on how hard
the optimization of the gauge degrees of freedom in GST
with full physicality constraints is.

In quantum computation based on the circuit model, a
computational process is constructed with combinations
of 1-qubit state preparations, 1-qubit measurements, 1-
qubit gates, and 2-qubit gates [45]. If we restrict the use
of the RSC estimator to such small subsystems, the ex-
ponential increase of the implementation costs mentioned
above poses no problem. Let nQ denote the number of
qubits in a device. In cases, where qubits are aligned

at each node on a 2-dimensional square-grid lattice, the
total number of possible locations of 1-qubit and near-
est neighbor 2-qubit operations increases linearly with
respect to nQ. Even if there is concern about crosstalk
errors and we need to evaluate nearest k-qubit subsys-
tems, the scaling of the cost of characterization with the
RSC estimator still remains linear with respect to nQ,
where k is assumed to be small and independent of nQ.
Therefore if we focus on reliable characterization of ele-
mentary quantum operations on the physical layer, the
high implementation cost of RSC estimator would not be
fatal disadvantage. Naturally, lower computational cost
is better, and therefore it is important to develop more
stable, more accurate, and faster numerical algorithms
for solving the minimization in Eq. (8). A task to be
tackled in the near future is a numerical implementation
of the RSC estimator for a 2-qubit system.

VI. CONCLUSION

In this paper, we considered a quantum characteriza-
tion problem based on the self-consistent quantum to-
mographic approach. First, we derived a sufficient con-
dition on experimental designs which enables us to access
all information of a set of unknown state preparations,
measurements, and gates except for the gauge degrees of
freedom. Second, we proposed a self-consistent estima-
tor with regularization and physicality constraints. We
theoretically proved that, by appropriately tuning the
strength of the regularization, the sequence of estimates
converges to the gauge-equivalence class of the prepared
true set of operations at the limit of the data size go-
ing to infinity. This guarantees the high reliability of the
estimation results for sufficiently large amount of data.
We also theoretically derived the rate of the asymptotic
convergence, which is expected to be optimal. These are
the first mathematically rigorous proofs of asymptotic be-
haviors of a self-consistent quantum tomography method.
Additionally, we also proposed how to extract informa-
tion of dynamics generators such as Hamiltonian and dis-
sipator from a tomographic estimation result of a gate.
These theoretical results hold for any finite-dimensional
systems. Third, we implemented the self-consistent es-
timator for 1-qubit system, performed numerical exper-
iments, and numerically analyzed its performances for
finite amount of data. The numerical results compat-
ible with the theoretical results, and it is numerically
shown that the proposed estimator has predictability of
the true probability distributions higher than that of em-
pirical distributions, even though there exists a bias orig-
inated from the regularization. The numerical results
also showed that the existence of the gauge degrees of
freedom makes it difficult to directly use the estimation
result for the accuracy improvement step, which would
be a common feature of the self-consistent approach. In
order to make quantum technologies, e.g., quantum com-
putation, quantum communication, and quantum sens-
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ing more practical, it is indispensable to develop more
reliable characterization method for accuracy validation
and accuracy improvement of elementary quantum oper-
ations. Theoretical and numerical results indicate that
the method is suitable for the reliable accuracy valida-
tion and needs additional ingenuity for contributing to
the accuracy improvement.
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Appendix A: Parametrization of Quantum
Operations

In this section, we explain real vector parametrization
of state preparation, measurement (POVM), and gate.
Let H denote a quantum system of interest. The dimen-
sion of H is finite, denoted by d.

Let ρ denote a density matrix on H, which is a d × d
complex matrix that is trace-one and positive semidefi-
nite, i.e.,

Tr[ρ] = 1 & ρ � 0. (A1)

Let B = {Bα}d
2−1

α=0 denote a d×d Hermitian orthonormal

matrix basis with B0 = I/
√
d. From the completeness

and orthogonality of the basis, we can uniquely expand
any density matrix by B as

ρ =

d2−1
∑

α=0

ραBα. (A2)

From the Hermiticity of B and ρ, the expansion coef-
ficients ρα are real. The trace-one condition leads to
ρ0 = 1/

√
d. The other (d2−1) real numbers parametrize

the density matrix. The positive-semidefiniteness condi-
tion restricts the possible range of (ρ1, . . . , ρd2−1) into a

compact convex region in Rd2−1.
There are two objects of description of a quantum mea-

surement as a quantum operation, a probability distri-
bution of measurement outcome and state transforma-
tions with respect to an obtained outcome. A positive

operator-valued measure (POVM) can treat former only,
and a quantum measurement process can treat both of
them. In the main text, we do not consider a quantum
state after measurement, and here we explain POVM. Let
us assume that the set of possible outcomes of a measure-
ment is discrete and finite. Then a POVM Π = {Πx}m−1

x=0

is a discrete and finite set of d × d Hermitian matrices
that is sum-identity and positive-semidefinite each, i.e.,

m−1
∑

x=0

Πx = I & Πx � 0. (A3)

From the sum-identity condition, one of m elements of
the POVM is fixed, e.g., as Πm−1 = I −∑m−2

x=0 Πx. We
expand the (m− 1) matrices as a density matrix.

Πx =

d2−1
∑

α=0

Πx,αBα, x = 0, . . . ,m− 2. (A4)

From the Hermiticity of B and each Πx, the (m−1)×d2

expansion coefficients Πx,α are real and parametrize the
POVM. The positive-semidefiniteness condition restricts
the possible range of the parameters into a compact con-

vex region in R(m−1)d2

.
A quantum gate transforms a state ρ to another state

ρ′, and the action is described by a linear map G : ρ 7→
ρ′ = G(ρ) that is completely positive (CP) and trace-
preserving (TP). An action of a linear map can be repre-
sented by a matrix. Let us choose a matrix representa-
tion along with the real vector representation of a state

|ρ〉〉 := (ρ0, . . . , ρd2−1)T ∈ Rd2

with respect to the basis
B. Let G denote the matrix representation of G. Then
it is a d2 × d2 real matrix. The TP condition leads to
equations,

G0β = δ0β (β = 0, . . . , d2 − 1). (A5)

The other (d2 − 1) × d2 numbers Gαβ (α = 1, . . . , d2 −
1, β = 0, . . . , d2 − 1) are real and parametrize the gate.
The CP condition restricts the possible range of the pa-

rameters into a compact convex region in R(d2−1)d2

. We
introduce another matrix representation of a linear map,

called Choi-Jamio lkowski matrix, CJ(G) ∈ C

d2×d2

, in
order to treat the CP condition mathmatically. Let us

define a vector vec(I) :=
∑d

i=0 |i〉|i〉 ∈ C

d2

. With the
vector, the CJ matrix is defined as

CJ(G) := (G ⊗ I)vec(I)vec(I)†, (A6)

where I is the identity map on Cd×d. The CP condition
on G is equivalent to the matrix inequality,

CJ(G) � 0. (A7)

An explicit form of the relation between CJ and HS ma-
trices is given at Eq. (H8).

For a given set of quantum operations consist-
ing of ns states, np POVMs, and ng gates, i.e.,
{ρ0, . . . , ρns−1, Π0, . . . ,Πnp

, G0, . . . ,Gng−1}, the real
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vector s for the set is the set of parameters for each op-
eration, i.e.,

s = (ρ0,1, . . . , ρ0,d2−1, . . . , ρns−1,1, . . . , ρns−1,d2−1,

Π0,0, . . . ,Π0,d2−1, . . . ,Πm−2,0, . . . ,Πm−2,d2−1,

G0,10, . . . , G0,d2−1d2−1, . . . , Gng−1,10, . . . ,

Gng−1,d2−1d2−1)T . (A8)

Theoretical results in Sec. III hold for any ns, np, and ng.
The parametrization in Eq. (A8) is used in numerical
experiments for a 1-qubit system explained in Sec. IV,
which were performed for the case of ns = 1, np = 1, and
ng = 3.

Appendix B: Gauge degrees of freedom

In this section, we explain a mathematical treatment of
the gauge degrees of freedom. For a given set of quantum
operations s, a gauge transformation A is an invertible
map from a set of quantum operations to another set that
satisfies A(s) ∈ [s], in which a set of quantum operations
and a parameter characterizing the set are identified as
explained in Sec. II. Let As, Ap, and Ag denote the
maps corresponding to the action of A on a state, POVM,
and gate, respectively, e.g., for s = {ρ,Π,G}, A(s) =
{As(ρ),Ap(Π),Ag(G)}. By definition, gauge-equivalent
sets give an equivalent probability distribution for a given
experimental setting. The functionalities of As, Ap, and
Ag are limited into linear because of the linearity of the
Born’s rule.

Let X denote a d × d complex matrix with the form

X =
∑d2−1

α=0 XαBα, where B = {Bα} is an orthonormal
matrix basis. We introduce a vectorization of X with re-
spect to the basis, |X〉〉 :=

∑d2−1
α=0 Xαeα, where {eα}d

2−1
α=0

is an orthonormal basis on Cd2

. The vectorization keeps
the value of the Hilbert-Schmidt inner product of two
matrices, i.e.,

Tr[Y †X ] = 〈〈Y |X〉〉. (B1)

An action of a linear map on ρ can be represented by a
matrix on the vectorization |ρ〉〉, as in the case of a gate
explained in Appendix. A. The matrix representation of
a linear map, say F , is called the Hilbert-Schmidt (HS)
representation, and we use a notation, HS(F) for the
representation. Let A denote the matrix representation
of As, i.e.,

|As(ρ)〉〉 = A|ρ〉〉. (B2)

Then the Born’s rule enacts the action of Ap, and Ag as
follows.

〈〈Ap(Πx)| = 〈〈Πx|A−1, (B3)

HS(Ag(G)) = AHS(G)A−1. (B4)

Therefore, the action of a gauge transformation A on
a state, POVM, and gate is characterized by a d2 × d2

matrix as

|ρ〉〉 7→ A|ρ〉〉
A : 〈〈Πx| 7→ 〈〈Πx|A−1

G 7→ AGA−1
(B5)

In general, a gauge transformation A is an invertible
linear map, and a transformed set A(s) is not guaranteed
to be physical even if the original set s is physical. If
we require Hermiticity of the transformed state As(ρ)
as well, As is an Hermiticity-preserving map. When we
choose B as each Bα is Hermitian, the HS representation
of an Hermiticity-preserving (HP) map is a real matrix. If
we require the trace-oneness of the transformed state, the
As is a trace-preserving map. If we choose B such that
B0 = I/

√
d, the HS representation of a trace-preserving

map satisfies A0β = δ0β for β = 0, . . . , d2 − 1. In that
case, the representation can be written as

A =

[

1 0T

b C

]

, (B6)

where b is a d2 − 1 dimensional vector, C is a (d2 − 1) ×
(d2 − 1) matrix, and T denotes the transposition with
respect to the indexing of the HS representation. 0T

denotes the d2 − 1 dimensional zero vector transposed.
The inverse A−1 has the following form

A−1 =

[

1 0T

−C−1b C−1

]

, (B7)

Let us choose an Hermitian orthonormal matrix basis
B satisfying B0 = I/

√
d. Then the vectorization of a

density matrix ρ is represented as

|ρ〉〉 =
1√
d

[

1
v

]

. (B8)

The parameter vector v ∈ Rd2−1 is a generalized Bloch
vector. The transformed vectorized density matrix via a
TPHP gauge transformation is

A|ρ〉〉 =
1√
d

[

1
Cv + b

]

. (B9)

From the singular value decomposition of C, the matrix
C contains actions of rotation and rescaling of v. The
vector b acts as the origin shift. Therefore the actions
of a gauge transformation are categorized into rotation,
rescaling, and origin shift. The rescaling and origin shift
can cause an unphysical A(s). The number of degrees of
freedom characterizing a TPHP gauge transformation is
d4 − d2.

Appendix C: Proof of Theorem 1

In this section, we give a proof of Theorem 1. First,
we mention two lemmas on vector bases as a preparation
for the proof. Let dim denote a finite positive integer.
We will set dim = d2 in the proof.
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Lemma 1 Let {ai}dimi=1 and {bi}dimi=1 denote bases of a
dim-dimensional complex vector space Cdim. Then there
exists a unique invertible dim× dim matrix C satisfying

bi = Cai, i = 1, . . . , dim . (C1)

Proof (Lemma 1): Let {ei}di=1 denote an orthonormal
basis of Cdim. There exist unique invertible matrices A
and B satisfying

ai = Aei, bi = Bei, ∀i = 1, . . . , dim . (C2)

Then

bi = BA−1ai (C3)

holds, and C = BA−1. From the uniqueness and invert-
ibility of A and B, C is also unique and invertible. �

Lemma 2 Let {ai}dimi=1 and {bi}dimi=1 denote bases of
C

dim. If matrices X, Y ∈ Cdim× dim satisfy

bj ·Xai = bj · Y ai, ∀i, j = 1, . . . , dim, (C4)

then X = Y holds.

Proof (Lemma 2): As introduced in the proof of Lemma
1, there exist unique invertible matrices A and B satis-
fying

ai = Aei, bi = Bei, ∀i = 1, . . . , dim . (C5)

Then

ej ·B†XAei = bj ·Xai = bj · Y ai = ej · B†Y Aei.(C6)

Therefore we have B†XA = B†Y A. From the invertibil-
ity of A and B, X = Y holds. �

Second, we introduce a lemma on informationally com-
plete sets of states and POVMs with gauge-equivalence.
In the following, we set dim = d2. Let |ρ〉〉, |Π〉〉 =
{|Πx〉〉}x∈X , and G denote a vectorized representation of
a density matrix ρ, the same representation of a POVM
Π, and a HS representation of a TPCP map G [26, 47]
as explained in Appendix A. The vectors |ρ〉〉 and |Πx〉〉
are in C

dim and the matrix G is in C

dim× dim. Then
generalized Born’s rule can be rewritten with the vector
representation as

p(x|ρ,G,Π) = Tr [ΠxG(ρ)] = 〈〈Πx|G|ρ〉〉. (C7)

Note that

〈〈G†(Πx)| = 〈〈Πx|G (C8)

holds.

Lemma 3 Suppose that {|ρi〉〉}Ns

i=1 and {|ρ̃i〉〉}Ns

i=1 are

state-informationally complete and {|Πj〉〉}Np

j=1 and

{|Π̃j〉〉}Np

j=1 are POVM-informationally complete. If

〈〈Πj
x|ρi〉〉 = 〈〈Π̃j

x|ρ̃i〉〉, (C9)

holds for any i, j, and x, then there exists a unique in-
vertible matrix A satisfying

|ρ̃i〉〉 = A|ρi〉〉, (C10)

〈〈Π̃j
x| = 〈〈Πj

x|A−1, (C11)

for any i, j, and x.

Proof (Lemma 3): We divide each set into a linear inde-
pendent subset subscripted with 1 and the residual subset
subscripted with 2.

{|ρi〉〉}Ns

i=1 = S1 ∩ S2, (C12)

S1 := {|ρi〉〉}dimi=1 , (C13)

S2 := {|ρi〉〉}Ns

i=dim+1, (C14)

{|ρ̃i〉〉}Ns

i=1 = S̃1 ∩ S̃2, (C15)

S̃1 := {|ρ̃i〉〉}dimi=1 , (C16)

S̃2 := {|ρ̃i〉〉}Ns

i=dim+1, (C17)

{|Πj〉〉}Np

j=1 = P1 ∩ P2, (C18)

P1 := {|Πj
xj
〉〉}dimj=1, (C19)

P2 := {|Πj
xj
〉〉}|X |·Np

j=dim+1, (C20)

{|Π̃j〉〉}Np

j=1 = P̃1 ∩ P̃2, (C21)

P̃1 := {|Π̃j
xj
〉〉}dimj=1, (C22)

P̃2 := {|Π̃j
xj
〉〉}|X |·Np

j=dim+1. (C23)

During the division process, if necessary, we relabel the
indices i, j, and x so that S1 and P1 are bases of Cdim.
From Lemma 1, there exist unique invertible matrices A
and B satisfying

|ρ̃i〉〉 = A|ρi〉〉, ∀i = 1, . . . , d, (C24)

〈〈Π̃j
xj
| = 〈〈Π̃j

xj
|B, ∀j = 1, . . . , dim . (C25)

Then

〈〈Πj
xj
|ρi〉〉 = 〈〈Π̃j

x|ρ̃i〉〉 = 〈〈Πj
xj
|BA|ρi〉〉 (C26)

holds for i, j = 1, . . . , d. From Lemma 2, we have B =
A−1. Therefore it is proven that there exists a unique
matrix A satisfying Eqs. (C10) and (C11) for the linear

independent subsets S1, S̃1, P1, and P̃1.
Suppose that dim < k ≤ Ns in the case of dim < Ns.

We can span any residual vectors in S2 and S̃2 by S1 and
S̃1 as

|ρk〉〉 =
dim
∑

i=1

cki|ρi〉〉, |ρ̃k〉〉 = A

(

dim
∑

i=1

c̃ki|ρi〉〉
)

. (C27)

Then from Eq. (C9),

〈〈Πj
xj
|
(

dim
∑

i=1

cki|ρi〉〉
)

= 〈〈Πj
xj
|ρk〉〉 = 〈〈Π̃j

xj
|ρ̃k〉〉

= 〈〈Πj
xj
|BA

(

dim
∑

i=1

c̃ki|ρi〉〉
)

= 〈〈Πj
xj
|
(

dim
∑

i=1

c̃ki|ρi〉〉
)

(C28)
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holds for j = 1, . . . , dim. Then

|ρ̃k〉〉 = A|ρk〉〉 (C29)

holds for k = dim +1, . . . , Ns.
In the same way as the state vector, we can prove

〈〈Π̃j
xj
| = 〈〈Πj

xj
|A−1, ∀j = dim +1, . . . , |X | ·Np. (C30)

�

In the proof above, we assumed that numbers of possible
outcomes are common for all Πj for simplicity. A gener-
alization to cases that each POVM has different number
of elements is straightforward.

Now we are ready for proving Theorem 1.
Proof (Theorem 1): When s̃ ∈ [s], p(Id, s̃) = p(Id, s)
holds by definition of the gauge-equivalence. Here we
prove the opposite direction, i.e., when Id is SCIC and
each gate in s has the inverse, which can be unphysical,
then p(Id, s̃) = p(Id, s) implies s̃ ∈ [s]. When Id is
SCIC, it includes a set of index sequences satisfying Eq.
(3). Ids and Idp included in Id are state- and POVM-
informationally complete, respectively. From Lemma 3,
equations

〈〈Π̃ip
x |ρ̃is〉〉 = 〈〈Πip

x |ρis〉〉 (C31)

imply that there exists a unique matrix A such that

|ρ̃is〉〉 = A|ρis〉〉, ∀is ∈ Ids, (C32)

〈〈Π̃ip
x | = 〈〈Πip

x |A−1, ∀ip ∈ Idp, x ∈ X . (C33)

The SCIC Id also includes a set of index sequences sat-
isfying Eq. (4). Then

〈〈Πip
x |Gig |ρis〉〉 = 〈〈Π̃ip

x |G̃ig |ρ̃is〉〉
= 〈〈Πip

x |A−1G̃igA|ρis〉〉 (C34)

hold for is ∈ Ids, ig = 1, . . . , ng, ip ∈ Idp, and x ∈ X .
From Lemma 2, we have

Gig = A−1G̃igA ⇔ G̃ig = AGigA
−1, (C35)

for ig = 1, . . . , ng. With Eqs. (C35), (C32) and (C33)
can be rewritten as

AGisA−1|ρ̃〉〉 = AGis |ρ〉〉, (C36)

〈〈Π̃x|AGipA−1 = 〈〈Πx|GipA−1, (C37)

where Gis and Gip are HS representations of gates con-
structed by applying Gig along with is and ip, respec-
tively. From the invertibility of A and Gig , we obtain

|ρ̃〉〉 = A|ρ〉〉, 〈〈Π̃x| = 〈〈Πx|A−1. (C38)

Let i denote an arbitrary gate index sequences whose
each element is in {1, . . . , ng}. The length of i is arbi-
trary, and i itself is not necessarily in Id. Eqs. (C38) and
(C35) lead

pi(s̃) = pi(s). (C39)

Therefore s̃ ∈ [s]. �

In the proof above, the numbers of states and POVMs
are assumed to be 1. A generalization of the proof to
cases of multiple states and POVMs is straightforward.

Appendix D: Proof of Theorem 2

In this section, we give a proof of Theorem 2. In
order to clarify the roles of each properties of the RSC
estimator in the setting of SCQT and each condition
mentioned in Theorem 2, we split the proof into two
parts. First, we prove theorems for a general setting
of statistical parameter estimation with the following
conditions:

Conditions

C.1 The parameter space S is a compact subset
of a finite-dimensional Euclidean space, and the
parametrization of p(Id, s) is continuous.

C.2 The regularization function R(s, s′) is positive and
bounded.

C.3 The regularization parameter rN is positive and
satisfies lim

N→∞
rN = 0 a.s..

C.4 The regularization parameter rN is positive and
satisfies rN <∼ L(p(Id, strue),fN (Id)).

C.5 For a given strue ∈ S, a point s ∈ S satisfying
pi(s) = pi(strue) is uniquely determined up to the
gauge-equivalence. In other words, s /∈ [strue] ⇔
∃i ∈ Id such that

∥

∥pi(s) − pi(strue)
∥

∥

2
> 0.

Second, we show that the theorems for the general setting
are applicable to the RSC estimator in the setting of
SCQT. In Appendix D 1, we give a rigorous definition
of the asymptotic notation, <∼. The definition is used in
proofs in this section. In Appendix D 2, we introduce
a lemma about bounds of the asymptotic convergence
rate of the empirical distributions to the true probability
distributions. The lemma is used in Appendix D 4. In
Sec. D 3, we prove Eq. (10). In Appendix D 4, we prove
Eqs. (12) and (13). In Appendix D 5, we prove Eq. (14).
Main tools used in the proofs are the property of sestN

as the minimizer of the objective function, the triangle
inequality of norms, the strong law of large numbers,
the central limit theorem, and the strong law of iterated
logarithm.

1. Definition of the Asymptotic Notation

We give a rigorous definition of the asymptotic no-
tation, ”<∼”, introduced in the main text and used in
Theorem 2. Suppose that f(N) and g(N) are positive
functions of the data size N > 0. Then the notation is
defined as

f(N) <∼ g(N)
def⇐⇒ lim sup

N→∞

f(N)

g(N)
< ∞. (D1)

Equivalently, f(N) <∼ g(N) holds if and only if there
exists a positive real numbers a and N0 such that

f(N) ≤ ag(N), ∀ N ≥ N0. (D2)
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This is equivalent to the big O notation, f(N) ∈
O(g(N)), in computer science.

2. Asymptotic convergence rate of empirical
distributions

We introduce a lemma for proving Eqs. (12) and (13).

Lemma 4 The asymptotic convergence rate of fN (Id)
to p(Id, strue) is bounded as

1√
N

<∼
√

L
(

p(Id, strue),fN (Id)
)

<∼
√

ln lnN

N
a.s.. (D3)

Proof (Lemma 4) : First, we prove the left inequality of
Eq. (D3) by contradiction to the central limit theorem.
We assume

L
(

p(Id, strue),fN (Id)
)

<
C

N
a.s., (D4)

for arbitrary positive constant C and sufficiently large
N . Then, due to the dominant convergence theorem, we
obtain

E

[

L(p(Id, strue),fN (Id))
]

<
C

N
, (D5)

for arbitrary positive constant C and sufficiently large
N , where E denote the expectation with respect to the
observed measurement outcomes. On the other hand, the
central limit theorem [37] leads to

E

[

L
(

p(Id, strue),fN (Id)
)]

∝ 1

N
. (D6)

Eq. (D5) contradicts Eq. (D6). Therefore there exists a
positive number a such that

a

N
≤ L

(

p(Id, strue),fN (Id)
)

a.s., (D7)

for any sufficiently large N , and we obtain the first in-
equality to be proved.

The right inequality of Eq. (D3) is the strong law of
iterated logarithm [37] itself. �

3. Proof of Eq. (10)

We prove Eq. (10) in Theorem 2. First, we prove an
equivalent statement under Conditions C.1, C.2, and C.3.

Theorem 3 If C.1, C.2, and C.3 are satisfied, then

lim
N→∞

√

L(p(Id, sestN ),p(Id, strue)) = 0 a.s. (D8)

holds.

Proof (Theorem 3):
Under Condition C.1, there exists an argument minimiz-
ing the objective function FN (s) over S. Then, we have

L (p(Id, sestN ),fN (Id)) ≤ min
s∈S

FN (s)

≤ FN (strue) → 0 as N → ∞ a.s.. (D9)

Here we used the strong law of large numbers [37] and
Conditions C.2 and C.3.

By using the triangle inequality of
√

L, we have

√

L(p(Id, sestN ),p(Id, strue))

≤
√

L(p(Id, sestN ),fN (Id))

+
√

L(p(Id, strue),fN (Id)) (D10)

→ 0 as N → ∞ a.s.. (D11)

�

Let us move on to the proof of Eq. (10). In the setting
of SCQT, we can choose a continuous parametrization
of probability distributions, and the continuous parame-
ter space can be compact subset of a finite-dimensional
Euclidean space. Hence, Condition C.1 is satisfied. Con-
dition C.2, the positivity and boundedness of R, is satis-
fied in the RSC estimator. Condition C.3 is Eq. (9) itself.
Therefore, Theorem 3 is applicable to the RSC estimator
in the setting of SCQT, and Eq. (10) holds. �

4. Proof of Eqs. (12) and (13)

We prove Eqs. (12) and (13) in Theorem 2. First, we
prove an equivalent statement under condition C.1, C.2,
and C.4.

Theorem 4 If C.1, C.2, and C.4 are satisfied, then

√

L(p(Id, sestN ),p(Id, strue))

<∼
√

L(p(Id, strue),fN (Id)) a.s. (D12)

holds.

Proof (Theorem 4):
Under Conditions C.1 and C.2 with a property of mini-
mizer of the estimator, we have

L(p(Id, sestN ),fN (Id)) ≤ L(p(Id, strue),fN (Id))

+rNR(strue, starget). (D13)

By combining Condition C.2 and C.4 with Eq. (D13), we
obtain

L(p(Id, sestN ),fN (Id))

<∼
{

1 + R(strue, starget)
}

L(p(Id, strue),fN (Id)) (D14)

<∼ L(p(Id, strue),fN (Id)) a.s.. (D15)
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By using the triangle inequality of
√

L and Eq. (D15),
we have

√

L(p(Id, sestN ),p(Id, strue))

<∼
√

L(p(Id, strue),fN (Id)) a.s.. (D16)

�

Let us move on to the prove Eqs. (12) and (13) in
Theorem 2. Conditions C.1 and C.2 are satisfied in the
setting of SCQT as explained in the end of Appendix D 3.
If we select a regularization parameter satisfying rN <∼
1/N a.s. (Eq. (11)), inequalities

rN <∼
1

N
<∼ L

(

p(Id, strue),fN (Id)
)

a.s. (D17)

hold because of the left inequality in Lemma 4, and Con-
dition C.4 is satisfied. Therefore Theorem 4 is applicable
to the RSC estimator in the setting of SCQT, and we
obtain Eq. (12). Eq. (13) is given by combining the right
inequality in Lemma 4 and Theorem 4. �

5. Proof of Eq. (14)

We prove that a sequence of estimates {sestN } converges
to the gauge-equivalence class [strue] almost surely at the
limit of N going to infinity. To prove that, we modify
the proof of Theorem 4.4 in [38] to make it applicable to
the RSC estimator in the setting of SCQT, which is an
ill-posed problem caused by the existence of the gauge
degrees of freedom. We define

R(s, [strue]) := min
{

R(s, s′)
∣

∣ s′ ∈ [strue]
}

(D18)

as a (squared) distance between s and the gauge-
equivalence class [strue].

Theorem 5 If Conditions C.1, C.2, C.3, and C.5 are
satisfied, the sequence of RSC estimates {sestN } converges
to [strue] almost surely, i.e.,

lim
N→∞

R(sestN , [strue]) = 0 a.s.. (D19)

Proof (Theorem 5): First, we derive an inequality that
any points in S outside the ǫ-neighborhood of [strue] sat-
isfy. For a given ǫ > 0, we define

ηǫ := min
s∈S

{

√

L(p(Id, strue),p(Id, s) ;

R(s, [strue]) ≥ ǫ
}

. (D20)

Since pi(s) are continuous functions over the compact
set S (Condition C.1), the minimal value ηǫ exists. From
Condition C.5, ηǫ > 0 holds.

The following arguments hold almost surely. From the
strong law of large numbers [37], for any i ∈ Id

lim
N→∞

f i

N = pi(strue) a.s.. (D21)

From Eq. (D21) and Condition C.3, for every ǫ > 0, there
exists a constant N(ǫ) such that

N ≥ N(ǫ) ⇒
{ √

L(fN (Id),p(Id, strue)) < ηǫ

4
√

rNR (strue, starget) < ηǫ

4

. (D22)

Then, for every s satisfying R(s, [strue]) ≥ ǫ, we have
√

L
(

fN (Id),p(Id, s)
)

≥
√

L(p(Id, s),p(Id, strue))

−
√

L(fN (Id),p(Id, strue)) (D23)

≥ 3

4
ηǫ, (D24)

where we used the triangle inequality for the 2-norm
(
√

L). Therefore, an inequality

min
s∈S

{

L(p(Id, s),fN (Id)) | R(s, [strue]) ≥ ǫ
}

>
9

16
η2ǫ (D25)

holds. Then we obtain

min
s∈S

{

FN (s)
∣

∣ R(s, [strue]) ≥ ǫ
}

(D26)

≥ min
s∈S

{

L
(

p(Id, s),fN (Id)
)
∣

∣ R
(

s, [strue]
)

≥ ǫ
}

(D27)

>
9

16
η2ǫ . (D28)

Next, we show that sestN does not satisfy Eq. (D28).
Since sestN is the argument minimizing FN (s) over s ∈ S,
FN (sestN ) ≤ FN (s) holds for any s ∈ S. Then, from
Eq. (D22), we have

FN (sestN ) ≤ FN (strue) <
2

16
η2ǫ <

9

16
η2ǫ . (D29)

Hence, sestN does not satisfy Eq. (D28), and it means that
sestN is in the ǫ-neighborhood of [strue]. Thus, we obtain

N ≥ N(ǫ) ⇒ R(sestN , [strue]) < ǫ. (D30)

Since ǫ is an arbitrary positive number, we obtain

lim
N→∞

R(sestN , [strue]) = 0 a.s.. (D31)

�

Let us move on to the proof of Eq. (14). Condition C.1
and C.2 are satisfied in the setting of SCQT as explained
in the ends of Appendix D 3 and D 4. Condition C.3 is
Eq. (9) itself. When Id is SCIC, Condition C.5 is satisfied
(Theorem 1). Therefore Theorem 5 is applicable to the
RSC estimator in the setting of SCQT, and it leads to
Eq. (14) in Theorem 2. �

Appendix E: Proofs on Dynamics Generator
Analysis

In this section, we prove the existence of the ma-
trix logarithm of the HS representation of a gate and
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Eqs. (23), (24), and (25) in Sec. III C, if its dynamics
obeys the time-dependent GKLS equation under condi-
tions of finite energy and finite time period. In Sec. E 3,
we explain a relation between the dynamics generator
analysis proposed and similar known results.

1. Proof of the Existence of the Matrix Logarithm

We give the proof of the existence of the matrix loga-
rithm, which is assumed in the dynamics generator anal-
ysis proposed in Sec. III C. In the vectorized state repre-
sentation, the time-dependent version of the GKLS equa-
tion is rewritten as

d

dt
|ρ(t)〉〉 = HS(Lt)|ρ(t)〉〉, (E1)

⇔ d

dt
HS(Gt)|ρ(0)〉〉 = HS(Lt)HS(Gt)|ρ(0)〉〉, (E2)

where we used |ρ(t)〉〉 = HS(Gt)|ρ(0)〉〉, and Gt is defined
as a map corresponding to the gate implemented with
the dynamics during the time period [0, t], and GT cor-
responds to G in Sec. III C. Eq. (E2) holds for arbitrary
ρ(0), and it implies

d

dt
HS(Gt) = HS(Lt)HS(Gt). (E3)

Therefore HS(Gt) is a solution of the homogeneous first-
order linear differential equation. The general theory of
differential equations guarantees the unique existence of
the solution, and the following equality holds (Problems
4a in Sec. 6.5, pp.507-508 in [36]),

det HS(Gt) = exp

[
∫ t

0

dt′ Tr {HS(Lt′ )}
]

. (E4)

When H(t′), J(t′), and K(t′) in Eq. (15) are bounded

for any t′ ∈ [0, t] with finite t,
∫ t

0 dt′Tr {HS(Lt′ )} > −∞
and det HS(Gt) > 0 hold. This implies that HS(Gt) is
invertible. Every invertible matrix can be written as the
exponential of a complex matrix (Exercises 2.9 and 2.10
in [48]). Then, for every HS(Gt), there exists a matrix
X(t) that satisfies

HS(Gt) = exp [X(t)] . (E5)

�

Note that the trace in the R.H.S. of Eq. (E4) can be
rewritten as

Tr {HS(Lt)} = Tr
{

HScb(Lt)
}

= 2dJ0(t), (E6)

where the superscript cb stands for the computational
basis, and this means that the Hamiltonian part does
not affect on the invertibility. When the dynamics is
trace-preserving, J and K are related as

J(t) = −1

2

d2−1
∑

α,β=1

Kαβ(t)B†
βBα, (E7)

and

J0(t) = Tr
{

B†
0J(t)

}

= − 1

2
√
d

Tr {K(t)} . (E8)

Therefore K(t) affects on the invertibility through J0(t).
When K(t) is positive semidefinite, the dynamics be-
comes completely positive, and Tr {K(t)} ≥ 0 and
J0(t) ≤ 0 hold. Then Tr {HS(Lt)} ≥ 0 > −∞ holds
and the inverse exists.

2. Proof of Eqs. (23), (24), and (25)

For simplicity of notation, we omit the superscript, acc,
below. Eq. (20) can be rewritten as

L(ρ) = −i

d2−1
∑

α=1

Hα (Bαρ− ρBα) +

d2−1
∑

α=0

Jα (Bαρ + ρBα)

+

d2−1
∑

α,β=1

KαβBαρB
†
β . (E9)

In the matrix vectorization, or the HS representation
w.r.t. the computational basis in the row major order,
|X〉〉 :=

∑

i,j Xij |i〉|j〉, an equality, |ABC〉〉 = A⊗CT |B〉〉,
holds. Then

HScb(L)|ρ〉〉 =







−i

d2−1
∑

α=1

Hα

(

Bα ⊗ I − I ⊗Bα

)

+

d2−1
∑

α=0

Jα
(

Bα ⊗ I + I ⊗Bα

)

+

d2−1
∑

α,β=1

KαβBα ⊗Bβ







|ρ〉〉 (E10)

hold for any ρ, and we have

Lcb := HScb(L) = −i

d2−1
∑

α=1

Hα

(

Bα ⊗ I − I ⊗Bα

)

+
d2−1
∑

α=0

Jα
(

Bα ⊗ I + I ⊗Bα

)

+

d2−1
∑

α,β=1

KαβBα ⊗Bβ. (E11)

By combining Eq. (E11) with the orthonormality and
Hermiticity of B, we obtain Eqs. (23), (24), and (25).
�

3. Related Work on Dynamics Generator Analysis

Here we discuss relation of the dynamics generator
analysis proposed in Sec. III C to known methods.
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In recent experiments on superconducting quantum
circuits [49, 50], experimentalists try to estimate the ac-
cumulated Hamiltonian Hacc in which experiments and
data-processing procedures are different from the meth-
ods proposed here. They report that calibration methods
for gates using the estimated information worked well.
The data-processing procedures depend on specific mod-
els of target accumulated Hamiltonians and do not take
into account the effects of decoherence during the gate
operations. On the other hand, the method we propose
is very general, there are no assumptions on the model of
the accumulated generators, and in the data-processing
both effects of Hamiltonian and decoherence are taken
into account. Therefore, our method can give us more ac-
curate information of the accumulated generators, which
would be useful for calibration.

An error generator, defined as ln
{

(Gtarget)−1G
}

, is
estimated with results of gate-set tomography in [31].
When a target gate is unitary, any gate can be decom-
posed into the form of G = Gtarget ◦ E , where E :=
(Gtarget)−1 ◦ G. This leads to

E := HS(E) = (Gtarget)−1G. (E12)

The error generator, ln E, can be considered as a repre-
sentation of errors on the accumulated generators. How-
ever, in general ln E and ln Gtarget =: (Lacc)target are not
commutable, and Lacc 6= (Lacc)target + ln E because

G = exp(Lacc) = exp((Lacc)target) exp(ln E)

6= exp((Lacc)target + ln E) (E13)

Therefore the error generator lnE does not represent the
direct discrepancy of the accumulated generators. On
the other hand, if we define ∆L := ln G − ln Gtarget =
Lacc−(Lacc)target, Lacc = (Lacc)target+∆L holds by defini-

tion. We consider ∆L or {Hacc
α − (Hacc

α )target}d
2−1

α=1 more
suitable for the use in a calibration process. In theory of
quantum information, especially in quantum error cor-
rection, an error model on a quantum gate is typically
introduced as G = E ′ ◦ Gtarget. Note that the timing of
the error’s action is different from E . If the purpose of
analysis is to know information of E ′, for comparison to
numerical simulation of a quantum error correction code,
for example, E′ := G(Gtarget)−1 would be an appropriate
quantity to analyze.

Appendix F: Regularization

In this section, we briefly explain conventional purpose
of using a regularization in applied mathematics. After
that, we describe differences between regularization in
RSCQT and that in conventional settings, from the view-
points of motivation and three mathematical properties.

Regularization is an attractive way to stably solve in-
verse problems [51, 52], i.e., the solution is not much
changed when the observed data are slightly fluctuated.
Much attention has been paid to the regularization in

many other fields of mathematical sciences including in-
tegral equation [53], signal processing [54], statistics and
machine learning [55–57]. It is also used in variants of
standard QT [58–60]. A purpose to use regularization
depends on each research field. For example, it is used to
avoid over-fitting to observed data in machine learning,
to make a solution stable or to solve ill-posed problems in
inverse problems, and among others. Moreover, in order
to improve interpretability of models in regression prob-
lems by increasing sparsity of estimates or to obtain a
smooth function in non-parametric estimation, the regu-
larization also plays an important role in statistics. From
the viewpoint of Bayesian analysis, a regularization can
be regarded as exploiting prior information with respect
to model parameters under some conditions.

Our purpose of introducing a regularization into the
setting of SCQT is to fix the gauge degrees of freedom,
suitable for the improvement and validation steps. This
is originated from the role of quantum characterization in
quantum information processing and our choice of SCQT
approach. This is new and quite different from the con-
ventional purposes of regularization mentioned above, al-
though the use of starget in the regularization function
can be regarded as a use of prior information of the tar-
get set of quantum operations that we aim to implement.
Additionally, a mathematical framework of RSCQT has
at least the following three attributes: (i) non-uniqueness
of the true solution of the original (unregularized) prob-
lem, (ii) constraint parameter space, (iii) non-linear pa-
rameterization, of which difficulties make our problem
more complicated than the previous studies. Hereafter,
we briefly explain these three attributes.

First, there exist the gauge degrees of freedom, which is
originated from the self-consistent approach and Born’s
rule, a fundamental principle of quantum theory. We
cannot determine parameters of interests only from ex-
perimental data, and such estimation problem can be cat-
egorized into an ill-posed problem in the inverse problem.
A conventional approach to the ill-posed problem in ap-
plied mathematics is to neglect or remove such unacces-
sible degrees of freedom. On the other hand, we cannot
neglect or remove the gauge degrees of freedom because
at the validation and improvement steps after character-
ization each mathematical representation of state, mea-
surement, and gate is necessary. In order to separate the
representations from each other, we need to fix the gauge
somehow.

Second, the region of possible parameters is con-
strained, which is originated from the requirement of
physicality on estimates of quantum operations. When
an accuracy of quantum operations is high, the true set
lies close to the boundary of the physical region. If we re-
quire physicality on estimates, we have to take the bound-
ary into account at the data-processing. In standard QT,
the boundary affects on the performance of estimators
[42] for finite data. In RSCQT, the dimension of the pa-
rameter space is much larger than that of standard QT,
and the analysis of the boundary effect becomes much
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harder.
Third, the parametrization of probability distributions

is non-linear, originated from the SCQT approach. A
non-linear function in a loss function is often analyzed in
the inverse problems [61]. The asymptotic convergence
for non-linear Tikhonov regularization was derived in [62]
under an assumption that the true solution of the orig-
inal (unregularized) problem is unique, and [63] showed
its convergence rate under a similar assumption. Since
their proofs are shown by exploiting the uniqueness of the
original solution, it is non-trivial to extend their results
to our framework with the gauge degrees of freedom, in
which the original solution is not unique.

A previous study, which takes three attributes, (i), (ii)
and (iii), exists [64]. However, the study only considers a
case that the regularization parameter, rN , is fixed, and
does not show the asymptotic convergence to equivalence
class of the true parameter nor the convergence rate of
estimator. As a matter of fact, when we fix the regu-
larization parameter, a bias caused by a regularization
remains even at the limit of data size going to infinity,
and the asymptotic convergence does not hold. On the
other hand, we proved that the RSC estimator has the
asymptotic convergence if we select rN <∼ 1/N , and we
derived its convergence rate.

Appendix G: Cross Validation

Cross validation is a standard method for selecting a
regularization parameter in statistics and machine learn-
ing [39, 40]. In the numerical experiments reported in
Sec. IV, we combined the RSC estimator with k-fold
cross validation (k = 3). Roughly speaking, the k-fold
cross validation selects a regularization parameter from
the perspective of prediction. If we calculate both of the
goodness of fit and the estimate from common data, an
over-fitting to the data occurs, and the performance of
predicting the true probability distributions or the good-
ness of fit to different data can become worse. The over-
fitting problem is caused by the statistical dependence
of the data for calculating the estimate and goodness of
fit. In order to avoid the problem, the cross validation
divides the data into two parts. One is for calculating
an estimate, which is called learning data. The other is
for calculating the goodness of fit, which is called test
data. This division makes learning data and test data
statistically independent. In order to reduce an effect of
the way of division, divisions are differently performed
k times. A goodness of a regularization parameter is
evaluated by an average value of the goodness of fit over
k divisions. We explain the details of the procedure of
k-fold cross validation below.

Suppose that we performed experiments with a SCIC
set of experimental schedules Id and obtained experi-
mental data DN with an amount of data N . For a given
coefficient c, a regularization parameter in the RSC es-
timator is calculated from the coefficient and amount of

data as rN = c/N . Let c = {c1, . . . , cnr
} denote a set of

candidates of regularization parameter coefficients. Let
k denote a positive integer larger than or equal to 2. The
k-fold cross validation selects a value from c for the RSC
estimator along with the following procedure.

Step 1. Data Division
We randomly divide the data into k distinct
parts as equally as possible. Let DN,1, . . . , DN,k

denote the k parts of DN (DN = ∪k
j=1DN,j).

We introduce a notation for complement sets
DN,j := DN\DN,j, j = 1, . . . , k. At the j-th di-

vision DN = DN,j ∪DN,j, DN,j is the test data

and DN,j is the learning data. Let Nj and Nj

denote the amounts of data for DN,j and DN,j,
respectively. Roughly speaking, Nj ≈ N/k and

Nj ≈ N −N/k hold.

Step 2. Calculation of Empirical Distributions
We calculate empirical distributions from each
DN,j and DN,j. Let fNj

(Id) and fNj
(Id) de-

note the set of empirical distributions calculated
from DN,j and DN,j, respectively. For simplic-
ity of notation, we omit Id from the notation of
the set of empirical distributions below in this
section.

Step 3. Calculation of Cross Validation Losses
First, we calculate multiple RSC estimates from
complement data and coefficient candidates.
Next, we calculate values of loss functions for
cross validation. Let ℓ denote an index for
the candidates of regularization parameter. For
ℓ = 1, . . . , nr, we repeat the following proce-
dures:

3.1 Calculation of Estimates
We calculate each RSC estimate from com-
plement empirical distribution fNj

and a

regularization parameter cℓ/Nj for j =
1, . . . , k along with Eq. (8). Let sest

Nj
(cℓ) de-

note the estimates, in which their depen-
dency on cℓ is explicitly shown in the nota-
tion for clarifying the dependence.

3.2 Calculation of Cross Validation Losses
We calculate values of the loss function in
Eq. (6) between the probability distribu-
tions predicted by the estimates calculated
in the previous sub-step from the leaning
data and the empirical distributions calcu-
lated from the test data for j=1, . . . , k. We
calculate the arithmetic mean, which is the
definition of the cross validation (cv) loss
for a candidate cℓ. Let Lcv(cℓ) denote the
cv loss of cℓ. An explicit mathematical form
of the cv loss is as follows:

Lcv(cℓ) :=
1

k

k
∑

j=1

L
(

p(Id, sest
Nj

(cℓ)),fNj

)

. (G1)
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At the end of Step 3, we have a set of values of
cv loss, {Lcv(cℓ)}nr

ℓ=1.

Step 4. Selection of Regularization Parameter
From c, we choose the coefficient candidate cℓ
that has the minimal value of the cv loss. Let
ccv denote the selected coefficient. It is defined
as

ccv := argmin
c∈c

Lcv(c). (G2)

In the procedure of k-fold cross validation explained
above, we need to perform the optimization for calculat-
ing an RSC estimate knr times. After the procedure, we
obtain the selected coefficient ccv. Finally, we calculate
the RSC estimate sestN (ccv) with the total data DN and
the selected regularization parameter rcvN := ccv/N . The
estimate sestN (ccv) is the result of the RSC estimator with
k-fold cross validation. In total, we need to perform the
optimization (knr + 1) times for the combination. The
knr times optimizations are additional costs for using k-
fold cross validation.

Appendix H: Numerical Experiments

We describe details of numerical experiments for 1-
qubit system explained in Sec. IV.

1. Setting

Three quantum gates are implemented with a Hamil-
tonian model [65],

H(t) = −∆ω

2
σ3 +

f(t)

2
{cos(φ)σ1 + sin(φ)σ2} , (H1)

where ∆ω is the frequency detuning, f(t) is the pulse
shape, and φ is the relative phase. For simplicity, we
choose a rectangular pulse,

f(t) =

{

A (0 ≤ t ≤ W )
0 otherwise

. (H2)

Each target gate in Eqs. (28), (29), and (30) cor-
responds to the combination of ∆ω = 0, A ·
W = 0 (Gtarget

0 ), π/2 (Gtarget
1 , Gtarget

2 ), and φ =

0 (Gtarget
0 , Gtarget

1 ), π/2 (Gtarget
2 ), respectively. In the

numerical experiments, true gates were chosen so that
they include the following coherent errors and decoher-
ence. We choose the gate time as 15 ns and W = 10 ns
with coherent errors shown in Table II. Decoherence is
modeled by the following three dissipation operators [41]
in the GKLS master equation.

√

Γ+|1〉〈0|,
√

Γ−|0〉〈1|,
√

Γφ

σ3√
2
. (H3)

Gate ∆ω A ·W φ AGIF

G
true

0 0.01 0 0 2.0× 10−3

G
true

1 0.01 π/2 + 0.1 0.1 5.5× 10−3

G
true

2 0.01 π/2 + 0.1 π/2 + 0.1 5.5× 10−3

TABLE II. Coherent error parameters and average gate infi-
delity (AGIF) for G

true in the numerical experiments.

Relations between the dissipation ratios, Γ+, Γ−, Γφ and
coherence times T1, T2, Tφ, and the thermal population
pth are given as

Γ+ + Γ− =
1

T1
, (H4)

1

2
Γ+ +

1

2
Γ− + Γφ =

1

T2
, (H5)

Γφ =
1

Tφ

, (H6)

Γ+ − Γ−

Γ+ + Γ−
= pth. (H7)

In the numerical experiments, we choose T1 = 30 µs,
T2 = 20 µs, and pth = 0.01. Values of the average gate
infidelity for each gate, which include both of coherent
errors and decoherence, are shown in Table II. They are
shown only the first two digits and in order of 10−3. The
depolarizing error rates for state and POVM are 0.015
and 0.010, respectively.

The schedule of the experiments consists of sub-
experiments. Every sub-experiments start with the state
initialization ρtrue and end with the measurement Πtrue.
Gate sequences between ρtrue and Πtrue are shown in
Table III. The set of sub-experiments satisfies the SCIC
condition. We choose common number of repetitions, N ,
for each sub-experiment.

ID Gate Sequence ID Gate Sequence ID Gate Sequence

1 G0 · G0 16 G0 · G2 · G0 31 G2 · G1 · G0
2 G0 · G1 17 G0 · G2 · G1 32 G2 · G1 · G1
3 G0 · G2 18 G0 · G2 · G2 33 G2 · G1 · G2
4 G1 · G0 19 G1 · G0 · G0 34 G2 · G2 · G0
5 G1 · G1 20 G1 · G0 · G1 35 G2 · G2 · G1
6 G1 · G2 21 G1 · G0 · G2 36 G2 · G2 · G2
7 G2 · G0 22 G1 · G1 · G0 37 G1 · G1 · G0 · G0
8 G2 · G1 23 G1 · G1 · G1 38 G1 · G1 · G0 · G1
9 G2 · G2 24 G1 · G1 · G2 39 G1 · G1 · G0 · G2
10 G0 · G0 · G0 25 G1 · G2 · G0 40 G1 · G1 · G1 · G0
11 G0 · G0 · G1 26 G1 · G2 · G1 41 G1 · G1 · G1 · G1
12 G0 · G0 · G2 27 G1 · G2 · G2 42 G1 · G1 · G1 · G2
13 G0 · G1 · G0 28 G2 · G0 · G0 43 G1 · G1 · G2 · G0
14 G0 · G1 · G1 29 G2 · G0 · G1 44 G1 · G1 · G2 · G1
15 G0 · G1 · G2 30 G2 · G0 · G2 45 G1 · G1 · G2 · G2

TABLE III. List of gate sequences used in the numerical ex-
periments. The operation order is from left to right. G0, G1,
G2 correspond to G

true

0 , Gtrue

1 , Gtrue

2 , respectively.
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2. Optimization Solver and Physicality Constraints

We numerically implemented the RSC estimator for 1-
qubit systems with IPOPT [66]. IPOPT is implemented
by C++ and provides interfaces to convert the objec-
tive function and constraints into a standard form of the
solver in several programming languages. We used C++
to shorten the computation time. The information of the
first and second derivatives of the objective function and
constraints are optionally acceptable with an interface of
IPOPT. Such optional information is helpful for making
the computation time even shorter. We provided them
to the interface with optional parameters. At the inter-
face, we can specify our degree of tolerance of acceptable
violation of the constraints, δ. The tolerance parameter
of δ=0 means that we do not accept any violation of the
constraints, and ideally δ= 0 would be desired. However,
we chose δ=10−4 for the numerical simulations reported
in this manuscript, because computational time for the
optimization becomes longer as we set smaller δ. We
observed unphysical estimates sometimes in the simula-
tions and confirmed that all violations are controlled to
be below δ.

We explain our numerical treatment of the physical-
ity constraints on quantum operations. We chose the
parametrization of quantum operations by real num-
bers explained in Appendix A. As explained there
(Eqs. (A1), (A3), (A5), (A7)), the physicality constraints
on quantum operations are categorized into two types,
equality constraints and inequality constraints. The
equality constraints have been taken into account by
the parametrization itself automatically. All of the in-
equality constraints are represented in the form of the
positive-semidefiniteness of an Hermitian matrix such

as ρ � 0, Πx � 0, and CJ(Gj) � 0. The positive-
semidefiniteness of an Hermitian matrix is rewritten as
a set of polynomial inequalities [67, 68]. We provided
the information of the polynomial inequalities for quan-
tum operations with their first and second derivatives to
the interface of IPOPT. The parametrization of a gate
is based on the HS matrix, and we derived and used the
following equality to represent the inequality constraint
on the gate w.r.t. the HS matrix,

CJ(G) =

d2−1
∑

α,β=0

HS(G)αβBα ⊗Bβ , (H8)

where B = {Bα}d
2−1

α=0 is the matrix basis introduced in
Appendix. A, and Bβ is the complex conjugate of the
matrix Bβ .
Proof (Eq. (H8)): Matrix elements of the HS matrix of
a linear map G with respect to the basis B is given as

HS(G)αβ = Tr
[

B†
α G(Bβ)

]

, (H9)

for α, β = 0, . . . , d2 − 1. The action of the map is repre-
sented with the CJ matrix as

G(ρ) = Tr2
[(

I1 ⊗ ρT
)

CJ(G)
]

. (H10)
Then

HS(G)αβ = Tr1,2

[

(

Bα ⊗Bβ

)†
CJ(G)

]

. (H11)

�

Note that the proof holds for any orthonormal matrix ba-
sis B, which is not necessarily Hermitian or B0 = I/

√
d.

Therefore Eq. (H8) holds not only for the (generalized)
Pauli basis, but also for the other orthonormal basis in-
cluding the computational basis.
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