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Optical quantum memory—the ability to store photonic quantum states and retrieve them on
demand—is an essential resource for emerging quantum technologies and photonic quantum infor-
mation protocols. Simultaneously achieving high e�ciency and high-speed, broadband operation
is an important task necessary for enabling these applications. We investigate the optimization of
a large class of optical quantum memories based on resonant and near-resonant interaction with
ensembles of ⇤-type level systems with the restriction that the temporal envelope of all optical fields
must be Gaussian, which reduces experimental complexity. Through this optimization we demon-
strate an experimentally simple path to saturation of the protocol-independent storage e�ciency
bound that is valid for a wide range of memory bandwidths, including those that are broadband
and high-speed. Examining the resulting optimal Gaussian control field parameters, we find a con-
tinuous transformation between three physically distinct resonant quantum memory protocols. We
compare this Gaussian optimization scheme with standard shape-based optimization.

I. INTRODUCTION

E�cient photonic quantum state generation and syn-
chronization [1, 2], metropolitan-scale quantum network-
ing and entanglement distribution [3, 4], and linear-
optical quantum computing [5] all rely on e�cient op-
tical quantum memory. In order for these emerging ap-
plications to operate at high speed they must be com-
patible with broadband photonic quantum states [6–8],
ideally with minimal experimental complexity. In quan-
tum memories based on atomic ensembles, a significant
body of theoretical [9–14] and experimental [15–17] work
has been dedicated to improving quantum memory e�-
ciency by temporal shaping of the optical signal field to
be stored or the control field used to mediate the inter-
action. However, these techniques have largely only been
applied for signal bandwidths smaller than the linewidths
of the excited states participating in the memory inter-
action, in part due to the technological complexity of
shaping intense broadband fields. In e↵ect, ensemble
quantum memories to date have been limited to e�cient
narrowband operation [18–22] or ine�cient broadband
operation [6, 23–32], with only a few notable exceptions
[8, 33–36].

In this work, we provide a quantitative performance
analysis of resonant ⇤-type quantum memories, shown in
Fig. 1, with a specific focus on signal bandwidths larger
than the memory’s intermediate state linewidth (� in
Fig. 1), which we consider broadband. While a variety
of other level systems are employed for quantum memory
(ladder-type, etc.), ⇤-type level systems are currently the
most common, and our analysis is readily generalizable
to other level systems.

⇤ kais@illinois.edu

In the broadband regime, far o↵-resonant quantum
memory protocols are well-established, but require signif-
icantly more control field power than resonant protocols
and su↵er from low e�ciency due to the experimental dif-
ficulty in satisfying this requirement [6, 23–26, 29, 31, 32].
In this work, we restrict our discussion to the use of reso-
nant and near-resonant optical fields with Gaussian tem-
poral envelopes in order to avoid the experimental com-
plexities of large pulse energies and shaping of the optical
fields. Despite these restrictions, we find that through op-
timization of the native parameters of Gaussian control
fields (i.e., optical power, arrival time, and duration)—
which are simple to fine-tune experimentally—we can
still achieve high-e�ciency memory operation, including
in the broadband regime.

Whereas most work aimed at optimizing quantum
memory e�ciency focuses on a particular physical quan-
tum memory protocol and leverages physical understand-
ing of the storage mechanism to solve a generic, un-
constrained optimization problem [8–11, 14, 33, 34, 37],
herein we take a physically agnostic approach where
we aim to optimize the memory e�ciency through a
highly constrained set of experimental parameters, ini-
tially without regard for the physical storage proto-
cols. While the protocol-based approach facilitates un-
derstanding the underlying physics of the quantum mem-
ory interaction, practically one is often presented with a
set of experimental parameters and resources which are
limited, may drift over time, and which in general are not
guaranteed to align neatly with a particular storage pro-
tocol. Between these physical regimes and storage proto-
cols, it is useful to fine-tune the experimental parameters
at hand in order to maximize memory e�ciency.

After numerically calculating the optimal Gaussian
control field parameters for a broad range of experimen-
tal conditions, we return to examine the physical stor-
age mechanisms and identify the regions of high-e�ciency
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memory operation. We provide physical explanation for
the optimized control field parameters in terms of three
established memory protocols: those of Refs. [11, 37–
39] that we summarize with the phrase ‘absorb-then-
transfer,’ the recently proposed Autler-Townes splitting
(ATS) protocol [33–36], and the electromagnetically in-
duced transparency (EIT) protocol [11, 40–42]. As we
show, our optimization procedure connects these three
physically distinct quantum memory protocols through
continuous transformation of the control field parame-
ters (extending the results of Ref. [34]), and allows for
high-e�ciency operation in the transition regions be-
tween physical protocols. In particular, we report op-
timized Gaussian control field parameters that allow for
optimal memory operation for bandwidths broader than
those used in the ATS protocol, and for bandwidths be-
tween the ATS and EIT protocols.

This article is organized as follows: After providing
details on our numerical analysis of the equations of mo-
tion describing the quantum memory interaction and the
optimal e�ciency bound for a given optical depth (Sec-
tion II), in Section III we consider resonant (Sec. III A)
and near-resonant (Sec. III B) Gaussian control field
optimization. In Section IV we compare the e�cien-
cies generated with the Gaussian optimization described
in Sec. III and the standard shape-based optimization
method described in Refs. [9, 10, 12–14]. We find that
the Gaussian optimization procedure achieves memory
e�ciencies comparable to the shape-based method in all
but the most broadband cases. In the appendices we pro-
vide physical descriptions of the three resonant storage
protocols and details on the conditions we use to calcu-
late ATS and EIT regions.

Throughout this work we assume ‘backward retrieval’
of the signal field (Fig. 1) such that the atomic dynamics
during retrieval are the time reverse of those during the
storage process, which holds for near-degenerate ground
and storage states (|1i and |3i in Fig. 1) [10–12]. In this
case, the retrieval e�ciency is identical to the storage e�-
ciency, ⌘, and the total memory e�ciency is ⌘2. Thus, in
order to fully characterize the memory e�ciency, we need
only compute ⌘. Since the Gaussian fields we consider
are intrinsically time-reversal symmetric, under these as-
sumptions no additional experimental measures need to
be taken in order to ensure optimization of retrieval be-
yond routing the retrieval control pulse to the output
facet of the atomic ensemble.

II. NUMERICAL SOLUTION OF
MAXWELL-BLOCH EQUATIONS

The ⇤-type level structure shown in Fig. 1 includes
two stable or meta-stable ground states, |1i and |3i,
and an intermediate excited state |2i that decays to the
ground states with the coherence decay rate � = �/2,
where � is the population decay rate of the |2i state.
All temporal dynamics are considered in the co-moving

FIG. 1. ‘Backward retrieval’ quantum memory scheme,
wherein a weak signal field [Ain(⌧), red thin line] and strong
control field [⌦(⌧), black thick line] enter an atomic medium,
generating atomic polarization [P (z, ⌧), orange ellipse] and
spin wave [B(z, ⌧), blue ellipse] fields according to the ⇤-type
level scheme shown on the right, with excited-state linewidth
� and two-photon detuning �. After a controllable delay,
the signal field is retrieved with total e�ciency ⌘2 via the
application of another strong control field that propagates
antiparallel to the first control field.

frame defined by ⌧ = t � z/c, where t is the time mea-
sured in the lab frame, z is the one-dimensional spatial
coordinate—defined as z = 0(L) at the input (output)
face of the medium, where L is the medium length—and
c is the speed of light. We assume that a control field
with frequency near the |2i $ |3i transition, Rabi fre-
quency ⌦(⌧), and duration ⌧ ctrl

FWHM
enters the medium

with a Gaussian temporal envelope and does not un-
dergo significant absorption or distortion as it propagates
[⌦(z, ⌧) = ⌦(⌧)]. We assume that before the signal field
enters the medium, it has a Gaussian temporal enve-
lope Ain(⌧) = e�⌧2/4�2

, where � = ⌧FWHM/(2
p
2 ln 2),

for the signal duration ⌧FWHM [temporal full width at
half maximum (FWHM)]. There exists also the possibil-
ity to temporally chirp the optical field and optimize sep-
arately over control pulse bandwidth, but in this work we
consider only Fourier-transform-limited pulses such that,
e.g., the signal field spectral intensity bandwidth � and
duration ⌧FWHM are related by � = 2⇡⇥2 ln 2/(⇡⌧FWHM).

We further assume that all atoms initially populate
the |1i state, which is a valid approximation for atomic
populations after optical pumping, or for atomic species
with su�cient energy separation between the |1i state
and other low-lying states. In general, the signal field
undergoes spatial and temporal deformation as it prop-
agates through the medium and is absorbed along the
|1i ! |2i transition, described by A(z, ⌧). The atomic
dynamics in the presence of these two optical fields are
described by the resonant, normalized Maxwell-Bloch
equations [10, 14, 33, 43]:
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@zA(z, ⌧) = �

p

dP (z, ⌧) (1)

@⌧P (z, ⌧) = ��̄P (z, ⌧)+
p

dA(z, ⌧)� i
⌦(⌧)

2
B(z, ⌧) (2)

@⌧B(z, ⌧) = ��BB(z, ⌧)� i
⌦⇤(⌧)

2
P (z, ⌧), (3)

where d is the resonant optical depth of the memory,
�̄ = (�� i�)/� is the normalized complex detuning, and
P (z, ⌧) and B(z, ⌧) are macroscopic field operators rep-
resenting the atomic coherences |1i $ |2i and |1i $ |3i,
respectively, which are delocalized across the length of
the medium. In Eqs. (1)-(3), all frequency (time) scales
are normalized by � (1/�), and all length scales are nor-
malized by L. We assume that the coherence decay rate
corresponding to the |3i ! |1i transition, �B , is negligi-
ble during the storage and retrieval operations: �B ⌧ 1.

We iteratively solve these equations of motion using
Ralston’s method for evaluating the ⌧ -derivatives and
Chebyshev spectral di↵erentiation for the z-derivatives.
After integration, we compare the population in B to
the population in Ain in order to calculate the storage
e�ciency for a particular choice of ⌦(⌧), as:

⌘ =

R
1

0
dz |B(z, ⌧ ! 1)|2
R1
�1 d⌧ |Ain(⌧)|

2
, (4)

where in practice we truncate Ain(⌧) and B(z, ⌧) at
⌧ end = 4⌧FWHM, where Ain(⌧ end) has dropped to
O(10�10) of its maximum value. Thus Eqs. (1)-(3) in
combination with Eq. (4) define an objective function
that can be maximized with respect to the free param-
eters of ⌦(⌧). We parameterize the control field Rabi
frequency—which we take to be real for simplicity—in
terms of its pulse area ✓ =

R1
�1 d⌧ ⌦(⌧), temporal de-

lay �⌧ ctrl relative to the arrival of the signal field, and
duration ⌧ ctrl

FWHM
= 2

p
2 ln 2�ctrl as:

⌦(⌧) = ⌦0 e
�[(⌧��⌧ctrl

)/2�ctrl
]
2

, (5)

where ⌦0 = ✓/(2
p
⇡�ctrl), and we optimize over the pa-

rameter space vector G ⌘
�
✓,�⌧ ctrl, ⌧ ctrl

FWHM

�
using a

Nelder-Mead simplex method, which rapidly identifies
the e�ciency maxima under these constraints, as verified
by deterministic searches of the same parameter space.
We define ⌧ = 0 at the maximum of the signal field.

Throughout this work we normalize the e�cien-
cies calculated via the method above by the protocol-
independent e�ciency bound for a fixed optical depth,
⌘opt, described in Refs. [10, 11, 14, 16] and elsewhere. In
brief, we calculate this e�ciency bound by finding the
eigenvalues of the anti-normally ordered storage kernel

K(z, z0) =
d

2
e�d(z+z0

)/2I0(d
p

zz0), (6)

where I0(x) is the zeroth-order modified Bessel function
of the first kind, and we discretize K(z, z0) on a 5000 ⇥
5000 point grid. For fixed d, the largest eigenvalue �0

of this kernel represents the maximum achievable storage
e�ciency at that optical depth, ⌘opt = �0. By performing
this normalization, we aim to compare the e�ciencies of
particular memory implementations independent of the
limitation imposed by finite optical depth.

III. RESULTS OF GAUSSIAN OPTIMIZATION

A. On Resonance (� = 0)

We first consider the case of resonant interaction of
the optical fields with the atomic ⇤ system (i.e., � = 0).
At each optical depth and signal bandwidth, we optimize
over the control field parameters G =

�
✓,�⌧ ctrl, ⌧ ctrl

FWHM

�
,

which fully define any Gaussian control field through
Eq. (5). This allows us to show that the three known,
physically distinct quantum storage protocols for reso-
nant storage (see Appendix A for a brief overview of
the protocols) are smoothly connected via continuous
transformation of the control-field parameters. This re-
sult is similar to that in Ref. [34], which demonstrated
ATS and EIT quantum memory behavior can be con-
nected through continuous transformation of the con-
trol field Rabi frequency for fixed memory parameters,
under the condition of either a constant control field
or an interrupted control field of varying linear slope.
Here we distinguish between the memory parameters
M ⌘ (d, ⌧FWHM�), which represent the physical char-
acteristics of a particular quantum memory for the cho-
sen signal bandwidth, and the control field parameters
G. In this formalism, Ref. [34] derived a connection be-
tween ATS and EIT storage for fixed M by varying G

[where, e.g., Gc = (⌦0) is a single-parameter vector in
the case of a constant control field, ⌦(⌧) = ⌦0]. Moti-
vated by this observation, we consider the distinct condi-
tion of Gaussian-shape control fields, and we show that
again ATS and EIT memory behavior can be connected
if we consider the transformation as a function of M,
where optimization of G at each point in M ensures opti-
mal or near-optimal storage e�ciency. Further, we show
the two protocols can be connected to the ‘absorb-then-
transfer’ protocol through the same continuous transfor-
mation. We show each protocol possesses a region of
optimality under the restriction of Gaussian pulses and
identify two regions where our optimization scheme is
most useful: one where the storage mechanism is given
by the ‘absorb-then-transfer’ protocol, but in the largely
unexplored non-adiabatic regime, and one between the
regions of e�cient ATS and EIT memory operation.
Figure 2 presents the main results of this section. In

Fig. 2(a) we show the normalized e�ciencies achieved
through the optimization procedure described in Sec. II,
for memory parameters in the range d = 1 to 50 and
⌧FWHM� = 0 to 1.5, which we take to be representative of
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FIG. 2. (a) Storage e�ciencies achieved through optimiza-
tion of Gaussian-shape control fields, relative to the optimal
bound ⌘opt shown in parentheses for each optical depth d;
(b) memory adiabaticity, where the region d⌧FWHM� = 3 to 8
corresponds to optimal ATS memory operation (see Appendix
B); (c) the memory character ratio, where C̃  0.1 indicates
the region of EIT memory operation; and (d)-(f) the opti-
mized control field parameters as a function of optical depth
and signal field duration, ⌧FWHM. Positive (negative) delay,
�⌧ ctrl > 0 (�⌧ ctrl < 0), refers to control fields that arrive
after (before) the signal field.

the bulk of experimental broadband quantum memories,
though our analysis is easily extended to other regions.
The e�ciencies shown saturate the optimal e�ciency
bound (⌘/⌘opt = 100%) for adiabaticities d⌧FWHM� � 1
[see Fig. 2(b) for a map of the memory adiabaticity]. This
result demonstrates that Gaussian-shape fields are su�-
cient for high-e�ciency, broadband memory operation,
without the need for full pulse-shape control.

The first region of the M parameter space where
our optimization is most useful can be highlighted us-
ing Fig. 2(b), which shows the memory adiabaticity
(d⌧FWHM�) as a function of M. For d⌧FWHM� < 1,
we observe the expected decay of the storage e�ciency
[11], shown in Fig. 2(a). Between d⌧FWHM� = 1 and
the region of e�cient ATS operation [delineated with
dashed lines in Fig. 2(b)—see Appendix B for deriva-
tion], we observe storage e�ciencies that approach the
optimal bound (⌘/⌘opt = 100%), where the physical stor-
age mechanism is given by the ‘absorb-then-transfer’ pro-
tocol [11, 37–39]. As can be seen in Fig. 2(d)-(f), the

optimized control field parameters in this region corre-
spond to approximately ⇡-pulse-area control fields that
are narrower in duration than the signal fields they store
(⌧ ctrl

FWHM
< ⌧FWHM), and arrive after the signal field

(�⌧ ctrl > 0). The optimized control fields arrive at the
approximate time when the electric field of the signal
changes sign (when evaluated at z = 1/2), in agreement
with the analysis of Refs. [39, 44, 45]. This result demon-
strates that the absorb-then-transfer protocol can ap-
proach the optimal e�ciency bound in the non-adiabatic
regime, in addition to the adiabatic regime investigated
in Ref. [37].
The second region of M-space where our optimization

procedure is most useful is in the region between the
optimal memory conditions for ATS and EIT storage,
delineated by the dashed lines in Fig. 2 (see Appendix
C for derivation of the boundary of the EIT region).
Here the memory is still non-adiabatic (d⌧FWHM� � 1
is not satisfied), but the ATS condition d⌧FWHM� = 3
to 8 is exceeded, similar to the broadband-EIT region of
Refs. [8, 34]. In this region, fine-tuning of the control field
parameters allows for optimal memory e�ciency, whereas
use of the typical ATS [G = (2⇡, 0, ⌧FWHM)] or EIT con-
trol field parameters leads to sub-optimal e�ciency.
We note that Fig. 2(d)-(f) may act as a guide for

experimentally simple optimization of broadband quan-
tum memory using Gaussian pulses. For a given set of
memory parameters M, the optimal Gaussian control
field parameters may be read o↵ directly from Fig. 2(d)-
(f). In the adiabatic, EIT regime (d⌧FWHM� � 1), we
find negative temporal delays that asymptote to around
�0.55⌧FWHM, and control field durations that asymptote
to ⇠ 1.33⌧FWHM.
Notably, the optimized control field parameters pre-

sented in Fig. 2 are not mutually independent; for ex-
ample, at fixed M, changes to the control field duration
away from the optimal choice shown in Fig. 2(f) may be
compensated for with changes to the control field delay
and pulse area, with only a small decrease in e�ciency
in some cases. Fig. 2(d)-(f) shows only the optimal and
mutually dependent choice of control field parameters.
The sensitivity or robustness to noise in these optimal
parameters may be the subject of future work.

B. Near Resonance (� 6= 0)

The case of resonant signal and control fields consid-
ered above has shown optimal storage e�ciency to be
possible for a wide range of memory parameters using
only Gaussian pulses. In this section we continue this
analysis for non-zero two-photon detunings in the near-
resonant regime, where � is of order �. This analysis dif-
fers then from the far-o↵-resonant Raman regime [14, 23–
26, 29], where � � �. While we nominally only consider
positive detunings, the results presented in this section
are symmetric about � = 0.
Whereas for resonant signal and control fields all opti-
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FIG. 3. Optimized ⇤-type quantum memory e�ciency and
corresponding optimized control field parameters as a func-
tion of optical depth, d, and signal field duration, ⌧FWHM, for
varying two-photon detuning, (a)-(d) � = �, (e)-(h) � = 5�,
and (i)-(l) � = 10�, for excited state coherence decay rate �.

mization parameters G are smooth, monotonic functions
of the memory parameters M, in the near-resonant case
we observe more complicated behavior where the opti-
mized parameters are no longer strictly monotonic func-
tions of M. In Fig. 3(a)-(d), (e)-(h), and (i)-(l), we
consider two-photon detunings � = �, � = 5�, and
� = 10�, respectively. As shown in Fig. 3(a), (e), and
(i), for fixed memory parameters M, larger � consis-
tently implies smaller ⌘/⌘max. It appears this decrease
in memory e�ciency can be avoided by increasing optical
depth, although this comes at the cost of larger control
field pulse area and optical power required to implement
optimized storage. In general, as shown in Fig. 3(b), (f),
and (j), for fixed M the pulse areas necessary to imple-
ment optimized quantum storage with Gaussian pulses
tend to increase with increasing �. The minimum tem-
poral delay in the region we simulate decreases as a func-
tion of �, indicating control field pulses in those regions
of negative delay that arrive significantly sooner (before
the signal field) than their resonant counterparts in the
EIT regime. In these same regions [i.e., M ⇡ (20, 1.5)
for � = 5�, M ⇡ (35, 1.5) for � = 10�], the control field
duration is also significantly larger than in the resonant
case.

As in Sec. IIIA, we note that Fig. 3 may serve as an ex-
perimental guide for optimized quantum memory imple-
mentation with Gaussian-shape signal and control fields
at fixed detuning in the near-resonant regime.

IV. COMPARISON OF GAUSSIAN AND
SHAPE-BASED OPTIMIZATION

In the sections above we have introduced an alter-
native quantum memory optimization scheme that re-
lies only on broadband light pulses with Gaussian tem-
poral envelope. This scheme operates at or near two-
photon resonance, and therefore avoids the experimental
complexities associated with full pulse-shape control of
broadband fields and the use of large pulse energies. In
this section, we compare the results of this optimization
scheme with the more standard shape-based optimization
of Refs. [9, 10, 12–14].
In order to enumerate this comparison, we consider

a quantum memory with optical depth d = 50, where
we calculate via Eq. (6) an optimal storage e�ciency of
⌘opt = 95.2% (total e�ciency: ⌘2

opt
= 90.6%). We further

assume resonant storage of photons such that � = 0. To
calculate the storage e�ciencies achieved via shape-based
optimization, we first numerically construct the storage
kernel K(z, ⌧) defined by the linear integral transform,

Bout(z) = B(z, ⌧ ! 1) =

Z 1

�1
d⌧ K(z, ⌧)Ain(⌧), (7)

via the method described in Ref. [14]. The largest singu-
lar value of K(z, ⌧) and the corresponding right-singular
vector represent the optimal storage e�ciency and opti-
mal signal mode temporal profile, respectively [11, 14].
Importantly, K(z, ⌧) depends both on the chosen opti-
cal depth, d, and the control field parameters, G. The
optimal signal mode calculated through this method is
therefore guaranteed to lead to optimal storage e�ciency
for the given d and G.
This method relies on signal-field shaping in order to

achieve optimal memory e�ciency. One can instead op-
timize the memory e�ciency through shaping of the con-
trol field with the procedure outlined in Ref. [14]. In
short, one interpolates between the optimal signal mode
calculated for given d and G and the desired signal mode
(typically a Gaussian, with duration ⌧FWHM), and at
each interpolation step one optimizes Gs, which is a large
vector that defines the shape of ⌦(⌧). At each interpo-
lation step, the signal field is deformed away from the
optimal shape and the control field shape is optimized
in order to compensate for the decrease in memory e�-
ciency. For su�ciently small successive deformations of
the signal field, optimality is preserved at each interpola-
tion step and this procedure leads to the optimal control
field shape for a Gaussian signal field. We find the final
memory e�ciency achieved through control-field shap-
ing is typically bounded above by the e�ciency achieved
through signal-field shaping. For the purposes of this
comparison, we compare the results of the Gaussian op-
timization in Sec. III with the upper bound achieved via
signal-field shaping.
In Fig. 4, we calculate the storage e�ciency achieved

via signal-field shaping alongside the e�ciency calculated
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via the Gaussian optimization scheme presented in this
article, for signal durations between 0 and 1.5/� in the
example case of a ⇤-type level system at d = 50. We
observe saturation of the optimal bound (dashed line,
⌘ = ⌘opt = 95.2%) in the region ⌧FWHM = 0.1/� to
1.5/� for both optimization schemes, where the opti-
mal storage protocol transitions between all three res-
onant protocols defined in Appendix A. Below 0.1/�
signal field duration, we observe decay in the memory
e�ciency for both schemes, where the Gaussian opti-
mization scheme leads to comparatively lower storage ef-
ficiencies for the most broadband pulse durations. Nev-
ertheless, the Gaussian optimization procedure provides
comparable memory performance over a wide range of
bandwidths.

The main result of this section is as follows: Through
the Gaussian optimization procedure described in this
article, we achieve storage e�ciencies that closely com-
pare with the e�ciencies achieved through shape-based
optimization, but which (1) require significantly less com-
putational expense to calculate, and (2) physically cor-
respond to quantum memory experiments that are sim-
pler, as they eliminate the need for arbitrary shaping
of either intense, broadband fields (control-field shaping)
or broadband single-photon level fields (signal-field shap-
ing).

V. CONCLUSIONS AND FUTURE WORK

In this work we have presented a quantitative and
qualitative exploration of ⇤-type quantum memory with
Gaussian optical fields that are resonant and near-
resonant with an atomic two-photon transition. The
restriction to Gaussian fields serves to simplify exper-

imental implementations of optical quantum memory.
We have shown that despite this restriction, optimiza-
tion of the parameters of Gaussian control fields (opti-
cal power, arrival time, and duration) can lead to high-
e�ciency memory operation over a wide range of memory
parameters in the broadband regime. We make the dis-
tinction between the memory parameters (M) and the
control field parameters (G), and in so doing we find
that optimization of G reveals a continuous transition
between three physically distinct quantum memory pro-
tocols (what we call the ‘absorb-then-transfer’ protocol,
ATS, and EIT) as a function of M. This optimization
procedure is most useful in two regions of the memory
parameter space. In the region of M that is more broad-
band than the optimal ATS region at fixed optical depth,
we show that the ‘absorb-then-transfer’ protocol can op-
erate with near-optimal e�ciency, extending the result
investigated previously in the adiabatic (d⌧FWHM� � 1)
regime [37]. In the region ofM between optimal ATS and
EIT operation—the mixed ATS/EIT regime—we also
show that optimal memory operation is possible.
In Sec. III B we have extended this analysis to the

near-resonant regime where the two-photon detuning is
of order the excited state linewidth, � ⇠ �. We observe
similar qualitative behaviour of the optimal control field
parameters G as a function of M, but in order to achieve
the same memory e�ciency, a larger optical depth d and
control field pulse area ✓ are required compared to the
resonant case.
Finally, in Sec. IV we have provided a numerical com-

parison of the proposed Gaussian optimization technique
with the more common shape-based optimization proce-
dure. We find that Gaussian pulses are suitable for opti-
mal memory operation over a wide range of memory pa-
rameters, and only perform significantly worse than arbi-
trarily shaped pulses in the most broadband cases where
the storage e�ciency is non-optimal even for shape-based
optimization.
In this work we restrict ourselves to the widely avail-

able resource of Fourier-transform limited pulses, where
pulse duration and bandwidth are Fourier-transform
pairs and accordingly only describe one degree of free-
dom subject to optimization. Future work may consider
optimization via chirped optical fields, which expands the
toolbox for optimization of Gaussian quantum memory
and has been explored in other memory protocols [46–
48]. We have also restricted our optimization procedure
to the case of homogeneous dephasing of the atomic po-
larization field. The case of inhomogeneous polarization
dephasing, following the approach of [49], may be con-
sidered in future work.
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Appendix A: Description of Protocols

Here we briefly review the three known resonant quan-
tum memory protocols that make use of a homogeneously
broadened excited-state linewidth, and their key features:

(1) ‘Absorb-then-transfer.’ Described in Refs. [11, 37–
39], quantum storage is achieved through linear absorp-
tion of the signal field along the |1i ! |2i transition and
coherent population transfer between the atomic polar-
ization and spin-wave field via a ⇡-pulse control field.
We distinguish this ‘absorb-then-transfer’ storage pro-
tocol from the related photon-echo protocols [50–53],
as photon emission upon retrieval does not depend on
dipole rephasing for homogeneously broadened interme-
diate states. Ref. [39] indicates that in order to opti-
mize storage e�ciency the arrival time of the control field
should occur near the first zero of the complex signal field
amplitude when evaluated at the middle of the ensem-
ble (z = 1/2), at least in the weak-absorption regime.
Ref. [37] has shown this storage protocol can be optimal
(i.e., can achieve ⌘ = ⌘opt) for large optical depths, such
that d⌧FWHM� � 1.

(2) Autler-Townes Splitting. In the recently proposed
Autler-Townes-Splitting (ATS) protocol [33–36], a con-
trol field propagates with the signal field at zero de-
lay (�⌧ ctrl = 0) with pulse area ✓ = 2⇡, creating an
Autler-Townes doublet in the signal field absorption pro-
file that matches the signal field bandwidth. As shown
in Ref. [34], one is free to choose any control-field shape,
as long as ✓ = 2⇡ is fulfilled over the duration of the
signal field. As more broadband signal fields experience
lesser e↵ective optical depth (due to increasing Autler-
Townes splitting), and more narrowband pulses lead to
decoherence of the atomic polarization during the stor-
age operation, the ATS protocol is constrained to optimal
operation in a narrow bandwidth region around a unique
choice of ⌧FWHM for a given optical depth [33, 34] (see
Appendix B).

(3) Electromagnetically Induced Transparency. The
well-known Electromagnetically Induced Transparency
(EIT) protocol is described in the narrowband regime
in Refs. [11, 40–42], and in the broadband regime in
Refs. [8, 34]. A control field of duration longer than
the signal field (⌧ ctrl

FWHM
> ⌧FWHM) enters the medium

ahead of the signal field in time (�⌧ ctrl < 0) and opens a
spectral transparency window that is slowly closed after
the signal field enters the medium, thereby trapping the

signal field in the medium via the slow-light e↵ect.
We note that the key physical features of all three

protocols are compatible with the use of Gaussian-shape
control fields, which helps to explain why Gaussian-shape
fields are su�cient to achieve the high storage e�ciencies
of Sec. III and IV.

Appendix B: Derivation of the ATS Region

As stated in Appendix A, at fixed optical depth the
ATS protocol is constrained to optimal operation in a
narrow region around a unique value of ⌧FWHM [33, 34].
In this appendix we derive an approximation of this re-
gion, for the memory parameters investigated in the text,
given by d⌧FWHM� = 3 to 8. Notably, this approxima-
tion is dependent on the region of M chosen, and is not
strictly valid for other regions, such as those in Refs. [33–
35].
Nominally the ATS protocol requires pulse areas ✓ =

2⇡ for optimal operation, however, as stated in Ref. [33],
this constraint is relaxed in regions of non-optimal e↵ec-
tive optical depth d̃ < 3, where d̃ = d⌧FWHM� ⇡/(2✓ ln 2)
for Gaussian pulses. If the e↵ective optical depth is
small—as is frequently the case in the broadband regime
considered here—pulses with area ✓ < 2⇡ yield larger
memory e�ciency than ✓ = 2⇡, due to a reduction in
Autler-Townes splitting and an increase in the e↵ective
optical depth.
In order to accurately capture the ATS region of M

discussed in Section IIIA, we do not rely solely on the
region of high-e�ciency operation with ✓ = 2⇡ control
fields. Instead, we follow a reduced version of the opti-
mization procedure presented in the main text, wherein
we fix �⌧ ctrl = 0 and ⌧ ctrl

FWHM
= ⌧FWHM and optimize

over ✓. The e�ciencies resulting from this optimization
procedure, compared to the e�ciencies for ✓ = 2⇡ only,
are presented in Fig. B.1(a)-(b). For purposes of compar-
ison, we plot the boundary of ⌘/⌘opt = 98% operation,
which is increased upon optimization of ✓. The opti-
mized pulse areas corresponding to Fig. B.1(b) are shown
in Fig. B.1(c). The region of ✓ ⇡ 2⇡ operation which re-
sults in high normalized e�ciency is well-captured by the
condition d⌧FWHM� = 3 to 8 in this region of M, and ac-
cordingly we take this condition to be representative of
ATS operation for the memory parameters under consid-
eration.
We note that for extremely low optical depths, d ⇠ 1,

the region of high-e�ciency ATS operation diverges from
the d⌧FWHM� = 3 to 8 condition towards smaller adia-
baticity. Other conditions may be used to define the
ATS region, for example based on optimal delay (e.g.,
�⌧ ctrl = �0.25 to 0.25) or the character ratio discussed
in Appendix C (e.g., C̃ = 0.75 to 1.25), that better cap-
ture this region of ATS operation. However, the region
given by d⌧FWHM� = 3 to 8 is the largest of these and is
consistent with Refs. [33–35].
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Appendix C: Derivation of the EIT Region

We define the boundary of the EIT region via the char-
acter ratio

C =
1

⌧s

R ⌧s/2
�⌧s/2

d⌧
R
1

0
dz |P (z, ⌧)|2

R
1

0
dz |B(z, ⌧ ! 1)|2

(C1)

introduced in Ref. [34], which gives the ratio of the tran-
sient population that enters P (z, ⌧) during the storage
period ⌧s = 2.25⌧FWHM to the population that arrives
in B(z, ⌧) after the storage operation is completed. We

consider the normalized character ratio C̃ = C/C0 using
the value of C for each optical depth that corresponds to
‘pure’ ATS operation with �⌧ ctrl = 0, which we identify
as C0. Using this normalization, we consider the region
of M where C̃  0.1 to correspond to EIT operation, de-
lineated with dashed lines in Fig. 2(c) [34]. In this region,
Fig. 2(d)-(f) shows the optimal control fields have larger
pulse area than in the ‘absorb-then-transfer’ or ATS re-
gions, the control fields are broader in duration than the
accompanying signal field, and the control fields arrive
before the signal field. This behavior is a signature of
EIT storage, and supports the choice of C̃  0.1 as the
threshold for EIT behavior.
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