
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Magnetic noise from metal objects near qubit arrays
Jonathan Kenny, Hruday Mallubhotla, and Robert Joynt
Phys. Rev. A 103, 062401 — Published  1 June 2021

DOI: 10.1103/PhysRevA.103.062401

https://dx.doi.org/10.1103/PhysRevA.103.062401


Magnetic Noise from Metal Objects near Qubit Arrays

Jonathan Kenny
School of Physical and Mathematical Science,

Nanyang Technological University,
21 Nanyang Link, 04-01, Singapore 637371∗

Hruday Mallubhotla and Robert Joynt†
Physics Department, University of Wisconsin-Madison,

1150 University Ave, Madison, WI, 53706, USA
(Dated: April 27, 2021)

All metal objects support fluctuating currents that are responsible for evanescent-wave Johnson
noise in their vicinity due to both thermal and quantum effects. The noise fields can decohere qubits.
It is quantified by the average value of B(x, t)B(x′, t′) and its time Fourier transform. We develop
the formalism particularly for objects whose dimensions are small compared with the skin depth,
which is the appropriate regime for nanoscale devices. This leads to a general and surprisingly
simple formula for the two-point noise correlation function of an object of arbitrary shape. This
formula has a clear physical interpretation in terms of induced currents in the object and it can be
the basis for straightforward numerical evaluation. We discuss its experimental implications. For
a sphere, a solution is given in closed form in terms of a generalized multipole expansion. Plots of
the solution illustrate the physical principles involved. We give examples of how the spatial pattern
of noise can affect quantum information processing in nearby qubits. The theory implies that if the
qubit system is miniaturized to a scale D, then decoherence rates of qubits scale as 1/D.

I. INTRODUCTION

The success of quantum computing depends on being
able to perform many operations before the qubits deco-
here. To make the decoherence time as long as possible,
we need to have a precise understanding of noise in the
system. Many platforms, particularly spin qubits and su-
perconducting qubits that use a flux degree of freedom,
are vulnerable to magnetic noise: random fluctuations
in the ambient magnetic field. At the single qubit level,
the important fluctuations are those that occur at a sin-
gle spatial point or a single small volume. We will call
these 1-point noise correlations. But correlations in the
noise field at different spatial points are also important.
Indeed they pose dangers that are far more difficult to
correct using standard quantum error correction1. Thus
it is also important to compute the 2-point noise corre-
lation function (NCF).

All metal objects have free random currents that cre-
ate magnetic noise in the vicinity, often called evanescent-
wave Johnson noise (EWJN). This effect has been known
for decades and the underlying quantum field theory was
worked out in the 1960s and 1970s2–4. The effect of
electric noise from a metal surface on atom qubits was
described by Henkel and collaborators5, and was subse-
quently observed6. Systematic studies of the effect of
magnetic EWJN from a silver film on NV-center qubits
have been performed7,8. In experiments on spin qubits
in Si/SiGe platforms EWJN may in many cases be re-
sponsible for the spin relaxation9–11.

Essentially all qubit systems that would be sensitive to
magnetic EWJN operate with metallic device elements.
The accidental presence of metallic inclusions is also pos-
sible. In all cases we need to understand the strength and

spatial pattern of the noise. An obvious place to start
is the noise that comes from a localized metallic object
in the parameter regimes appropriate to qubit systems.
This paper presents the general theory of this problem.
The solution of a sphere in the dipole approximation is
known11,12. However, this solution is not quantitatively
correct when the distance of the object from the qubit is
comparable to the size of the object, which is the param-
eter range that is often of interest in quantum computers.

In this paper we solve the full problem of the sphere
using a type of multipole expansion. We also present a
simple formula that can serve as the basis of a straight-
forward numerical solution for the noise field of an object
with an arbitrary shape.

We present pictures of the noise field in order to
develop some physical intuition about a physical phe-
nomenon that is important but not necessarily widely
understood by all workers in the field. We also present
examples of how the noise can affect quantum informa-
tion processing.

In Sec. II we set out the basic formalism, including the
simplifications that are characteristic in the regimes of
frequency and particle size that are relevant for nanode-
vices. This allows us to derive in a fairly straightforward
fashion the formula for an object of arbitrary shape. Al-
ready at this stage it is possible to make a number of
statements about experiment, so we devote Sec. III to
developing those implications. A reader less interested
in formalism may prefer to focus primarily on that sec-
tion of the paper. Sec. IV is more technical. It contains
the derivation of the multipole expansion for the sphere.
In Sec. V we give results for the 1-point noise correlation
function, while in Sec. VI the results for the 2-point case
are presented. At the end of these two sections we give
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examples of how to apply the results to qubit architec-
tures and operations. Sec. VII is a summary and gives
prospects for future work.

II. CALCULATION METHOD

In this section we set up the formalism for the calcu-
lation, including the simplifications that are appropriate
for typical quantum computing hardware.

A. Noise Correlation Function

Metal objects in the vicinity of magnetic qubits will
decohere them because of the magnetic noise field set up
by the random currents in the object. We quantify this
in the following way. We choose the center of gravity of
the object as the origin and compute the noise correlation
function (NCF)

〈Bi(~x)Bj(~x
′)〉ω =

∫ ∞
−∞
〈Bi(~x, t)Bj(~x

′, 0)〉eiωtdt.

Here Bi(~x, t) is the ith Cartesian component of the mag-
netic noise field and the angle brackets denote a quantum
and thermal average. Both ~x and ~x′ lie outside the ob-
ject.

Thermal quantum field theory has been used to work
out the equation for the photon Green’s function from
which the NCF can be deduced12. It was shown more
recently11 that the resulting equations for the NCF are
equivalent to a classical electrodynamics problem: that
of a point magnetic dipole source in the presence of the
object. More precisely, we place a fictitious dipole of
strength ~µ and frequency ω at the point ~x′ and compute
the fictitious field at ~x. This yields ~Bf (~x, ~x′) where ~x is
the observation point and ~x′ is the source point. Then
the NCF at the frequency ω is given by

〈Bi(~x)Bj(~x
′)〉ω =

~
µj

ImBind,i(~x, ~x
′) coth(~ω/2kBT ).

(1)
Bi(~x) and Bj(~x

′) are physical noise fields. Here
~Bind(~x, ~x′) is the induced field, that is the total field
~Bf (~x, ~x′) in the fictitious problem, minus the self field
(the field in the absence of the object). ~Bind(~x, ~x′) is
a kind of Green’s function, but since we wish to stress
the analogy to a magnetostatic problem, we prefer the
present notation. The coth function results from the
bosonic character of the photons and it includes the emis-
sion of thermally excited photons from the metal that are
absorbed by the qubit and the reverse process from the
qubit (which is not necessarily in thermodynamic equilib-
rium) to the object. Both contribute to decoherence. The
units of the NCF are erg-s/cm3 in the CGS units used in
this paper. The equations to be solved for ~Bf (~x, ~x′) are
the standard Maxwell equations, supplemented by the

boundary condition that the magnetic field is continuous
at the surface of the object and by the constitutive rela-
tion ~J = σ ~E for the current ~J as a function of the electric
field ~E inside the object. σ is the conductivity.

B. Simplification of Maxwell Equations

The equations to be solved for the fictitious fields in
the frequency domain are

∇~x · ~Bf = 0 ∇~x × ~Ef − i
ω

c
~Bf = 0 (2)

∇~x · ~Ef = 0 ∇~x × ~Bf + i
ω

c
~Ef =

4π

c
~J. (3)

~Ef is the fictitious electric field associated with ~Bf .
Outside the metal we have the dipole current ~J(~x) =

∇δ3(~x − ~x′) × ~µ while inside the metal ~J = σ ~E. All
quantities have the time dependence exp(−iωt). We will
work in the frequency domain henceforth.

For the nanoscale qubit applications that are the sub-
ject here, there are some simplifications of these equa-
tions that can be obtained by looking at some characteris-
tic length and time scales. The frequencies of interest are
at the operating frequency of the qubit or below, which
gives the inequality ω < 1010 Hz. This yields a lower
bound on the vacuum wavelength: λ = 2πc/ω > 18.8cm.
A typical conductivity10 would be in the range σ = 1.6×
107S/m = 1.44 × 1017s−1. We will take this as a repre-
sentative value for illustrative purposes below. These val-
ues yield the skin depth δ = c/

√
2πσω = 3.14× 10−4cm

(around a micron). In nanoscale semiconductor qubit de-
vices, we may take a maximum radius am for our object
that satisfies am < 10−5cm. Summarizing our consider-
ations we have the inequalities

am < δ < λ. (4)

Some other conditions are important for the validity of
the theory presented in this paper. We need ω << 1/τ ,
where τ is the relaxation time of the electrons, since oth-
erwise one cannot neglect the frequency dependence of
the conductivity. Similarly the mean free path of the elec-
trons must be short compared with am, since otherwise
the spatial dependence of the relation between current
and electric field cannot be neglected. Finally |~x| and
|~x′| must be small compared with λ for the quasistatic
approximation to be valid. All of these conditions are
normally satisfied in the spin qubit systems of interest
here.

Superconducting qubit circuit elements can be larger
than the skin depth δ. Our theory does not work for
this case. However, it can still serve as the basis for some
simple approximate solutions that we will mention below.

Rewriting Eqs. 2, the Maxwell equations inside the
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metal using the variables λ and δ, we have

∇~x · ~Bf = 0 ∇~x × ~Ef −
2πi

λ
~Bf = 0 (5)

∇~x · ~Ef = 0 ∇~x × ~Bf +
2πi

λ
~Ef =

λ

πδ2
~Ef . (6)

Eliminating ~Ef from these equations gives

∇2
~x
~Bf = (− 2i

δ2
− 4π2

λ2
) ~Bf .

Using our inequalities to neglect terms of order δ2/λ2
(the quasistatic approximation) we find

∇2
~x
~Bf = − 2i

δ2
~Bf (7)

in the metal. Outside the object we have simply ∇2
~x
~Bf =

0 and ∇~x × ~Bf = 4π∇δ3(~x− ~x′)× ~µ/c.
Thus far these are rather standard approximations.

Further progress may be made by solving the problem
in two stages. The solution ~Bd for the dipole problem in
the absence of the sphere is

~Bd(~x, ~x′) =
3(~x− ~x′)(~x− ~x′) · ~µ− ~µ|~x− ~x′|2

|~x− ~x′|5
, (8)

and we write the total solution as the sum of the dipole
field and the induced field:

~Bf (~x, ~x′) = ~Bd(~x, ~x′) + ~Bind(~x, ~x′). (9)

The equation for the total field is then

(∇2
~x +

2i

δ2
)( ~Bd + ~Bind) = 0. (10)

Expanding ~Bind in powers of δ−2 we find that

∇2
~x
~Bind = − 2i

δ2
~Bd, (11)

correct to order a2m/δ2. Since ~Bd is given by Eq. 8, this
is simply a Poisson equation for the components of ~Bind,
which is the field that enters the NCF. Actually the result
for the NCF is accurate to order a4m/δ4 since the fourth-
order term in ~Bind is real, and the NCF depends only on
the imaginary part, as is seen from Eq. 1. Since δ−2 =
2πσω/c2, the formula also immediately implies that the
NCF is linearly proportional to the conductivity σ and
to the frequency ω.

C. Solution for Arbitrary Shape

The fictitious dipole at ~x′ sets up a vector potential

~Ad(~x′′, ~x′) =
~µ× (~x′′ − ~x′)
|~x′′ − ~x′|3

+∇~x′′fd(~x′′), (12)

where we have indicated the gauge ambiguity explicitly
by including the function fd. Inside the object we have

~Ed(~x′′, ~x′) =
iω

c
~Ad(~x′′) =

1

σ
~J(~x′′), (13)

since we are using the temporal gauge.

∇~x′′ · ~Ed(~x, ~x′)′′ = 0 so ∇~x′′ · ~Ad(~x, ~x′
′′
) = 0. Further-

more,

∇~x′′ ·
~µ× (~x′′ − ~x′)
|~x′′ − ~x′|3

= 0,

so ∇2
~x′′fd(~x′′, ~x′) = 0. This means that fd satisfies a

Laplace equation. To determine the boundary condition,
note that ~J(~x′′) · n̂ = 0, where n̂ is the outward-pointing
normal vector to the object. Hence

n̂ · ∇~x′′fd(~x′′) = −n̂ · ~µ× (~x′′ − ~x′)
|~x′′ − ~x′|3

This is a Neumann boundary condition, so fd(~x′′) is
determined uniquely up to an unimportant global con-
stant. From Eq. 13 we have that

~J(~x′′, ~x′) =
iωσ

c

[
~µ× (~x′′ − ~x′)
|~x′′ − ~x′|3

+∇~x′′fd(~x′′, ~x′)

]
(14)

This current creates the induced field ~Bind(~x, ~x′). Note
however, that the second term in ~J is purely longitudinal,
and for a source that occupies a finite region, this part
of the current does not contribute to the induced field.
At this point we may apply the Biot-Savart law together
with Eq. 14 and obtain

~Bind(~x, ~x′) =
i

2πδ2

∫
d3x′′

~µ× (~x− ~x′)
|(~x− ~x′)|3

× (~x− ~x′′)
|(~x− ~x′′)|3

(15)
Here the limits of the integral run only over the volume of
the metal object. However, it is obviously equally valid
if there are multiple objects, their effects being additive.
Note that ~x′ is a parameter in this equation. Of course ~x′
plays a role of equal importance to ~x once it is substituted
back into Eq. 1.

Eq. 15 is a remarkably simple expression. It gives an
explicit method for the calculation of ~Bind, which when
substituted into Eq.1 gives directly the NCF. It can there-
fore serve as the basis for a straightforward numerical cal-
culation of the NCF for a finite object of arbitrary shape.
For most practical purposes, one needs to compute only
a few multipole moments of the three integrals to obtain
a serviceable answer. Indeed, as we shall see below, even
just the dipole term, the first term in the expansion, is
sometimes sufficient.
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III. EXPERIMENTAL IMPLICATIONS

Eq. 15 is the basis for understanding EWJN in a quan-
tum computing device with multiple metallic elements.
When combined with Eq. 1 to obtain the NCF, one can
already give a good semi-quantitative description of the
consequences of the theory for experiment.

A. Experimental Signatures of EWJN

In this subsection we describe an experimental proto-
col to test for EWJN is the dominant source of noise in a
given experimental setup. To do this, we first discuss the
prefactor (1/δ2) coth(~ω/2kBT ) in Eq. 15 for the NCF.
The coth function is a sum of a constant and a Bose func-
tion. It comes from the fluctuation-dissipation theorem
and can be interpreted as the emission and absorption of
overdamped photons by the object. The other factor is
1/δ2 = 2πσω/c2 and the key point is that it is propor-
tional to ω.

In the low temperature limit ~ω >> kBT when
coth(~ω/2kBT )→ 1 the NCF is proportional to ω. This
is the regime in which absorption and stimulated emission
of photons by the object dominate. In the high temper-
ature limit ~ω << kBT we have that coth(~ω/2kBT )→
2kBT/~ω and the NCF is proportional to kBT . Thermal
emission of photons dominates.

The prefactor is very important for identifying EWJN
experimentally. This can be done by measuring T1, which
depends only on the NCF evaluated at the qubit fre-
quency ω. Varying both T and ω one can obtain T1(T, ω).
For spin qubits, the frequency is proportional to the ap-
plied field B, so this is a relatively straightforward pro-
tocol. All other factors in Eq. 15 are independent of B
and T so the coth factor controls T1 in the entire B − T
plane. There is also a coth factor in phonon decoher-
ence. But for spin qubits there are other very strong
B-dependencies. Thus the omega coth(~ω/2kBT ) de-
pendence gives EWJN a unique experimental signature.

In order to judge whether this signature is accessible in
experiments, it is necessary to have some idea of the or-
der of magnitude of the quantities involved, particularly
T1 since it is most affected by EWJN. For this we need
to analyze the full expression including the integral in
Eq. 15. Let us choose the temperature T = 0 and typical
values σ = 1.44× 1017/s and ω = 1010/s. Let the object
have roughly the linear dimension a = 10−5cm and let
the distance to the qubit be the same order of magnitude.
Then the result for the NCF is 8π~/δ2a = 2.65 × 10−14

erg-s/cm3. To get some idea of the physical meaning
of this number, an electron spin qubit in a noise field
of this magnitude would have a relaxation rate of about
1/T1 ≈ 2s−1, which is a typical value for spin qubits in
silicon nanodevices.

Unlike T1, T2 is controlled by a weighted average of
the NCF over all frequencies. In particular, the low fre-
quency limit is very important. Because of the coth fac-

tor, the NCF approaches a constant value that is set by
the temperature. For many solid-state qubits, there is
1/f noise. This noise usually dominates EWJN at small
f but falls off at high f , which means that EWJN is im-
portant for qubit relaxation (T1) but other kinds of noise
usually determine dephasing and thereby T2.

B. Limitations of the Theory

The derivation of Eq. 15 required certain assumptions,
stated in Eq. 4 and the text surrounding it. Here we make
more explicit the experimental consequences of these as-
sumptions.

The assumption that the skin depth exceeds the size
of a metallic device element (δ >> am) will breaks down
if the metallic object is large or ω is big. This will be the
case for mesoscopic (e.g. superconductor) rather than
nanoscopic (e.g. semiconductor) qubits. In this case
EWJN is still present, but exact formulas are harder to
come by. Nevertheless, some qualitative statements are
possible. If δ & am then the expansion of the NCF in
powers of a2m/δ2 can be continued by repeated substitu-
tion into Eq. 10, though the resulting differential equa-
tion for the next-order term is complicated. In the oppo-
site limit when δ << amin, where amin is the minimum
radius of the object, then the field does not penetrate
into the interior of the object but only to a distance δ.
We may apply Eq. 15 but replace the volume of integra-
tion by a shell of width δ from the surface to obtain an
approximate result. This reduces the result for the NCF
by a factor of roughly δ/amin.

If, at the other limit, the dimensions of the metallic ob-
ject are very small, less than an electron mean free path,
the local form for the dielectric function breaks down.
We expect less dissipation from long-wavelength photon
modes and reduced EWJN relative to the formulas given
in this paper.

C. Consequences for Qubit Architectures

At large distances r from the object to the qubit, the
NCF follows the van der Waals form r−6 and therefore
EWJN can be minimized by ensuring that metal device
elements are far from qubits.

Eq. 15 also has consequences for miniaturization. We
consider On the other hand, we may ask about an ar-
chitecture with more-or-less fixed ratios of distances that
are to made smaller and smaller, as is done in standard
silicon technology. So there is a feature size D such that
D ≈ r ≈ a in a device. When D is around 100 nm, then
any spin coherence time T1 is of order 1 s and we will show
later that Eq. 15 implies that T1 ∝ 1/D. Thus smaller
devices correspond to shorter coherence times and the
times are inversely proportional to the inverse first power
of the feature size according to our results.
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In what follows we compute in detail the results for a
spherical metallic object as a source of noise. The spa-
tial patterns of the noise are important in actual devices
where the device elements and the qubits stand in defi-
nite spatial relations to one another. The 1-point NCFs
will control single qubit quantum amplitudes, while the
2-point NCFs tell us how the noise destroys multiqubit

amplitudes. Both are of course important for quantum
information processing. Some explicit examples of how
the noise patterns can inform architectures and software
design are given. Finally, we analyze the convergence
of the multipole expansion for the sphere. The dipole
is approximation is often a good rough guide for exper-
imenters, but it is important to know when it breaks
down.

IV. MULTIPOLE EXPANSION FOR THE SPHERE

In this section, we derive the multipole expansion for the NCF of a spherical conductor of radius a, taking advantage
of the symmetry of the problem. We introduce the notation ~x = (x1, x2, x3) = (r, θ, φ) in Cartesian and spherical
coordinates and ∂i = ∂/∂xi and similarly for x′i and x′′i .

A. Induced Magnetic Field

Outside the sphere there are no currents that affect ~Bind so we may define a scalar magnetic potential ψind(~x) that
determines ~Bind through ~Bind(~x) = −∇ψind(~x). Hence

~x · ~Bind = −r ∂ψind

∂r
.

and we have a Poisson equation for the radial part of the field

∇2
~x(~x · ~Bind(~x)) = −4π

c
~x · ∇ × ~J(~x)

with the solution

~x · ~Bind(~x) =
1

c

∫
r′′≤a

d3x′′

|~x− ~x′′|
~x′′ ·

(
∇′′ × ~J(~x′′)

)
= −r ∂ψind(~x)

∂r
.

So we may write the induced field as

~Bind(~x, ~x′) =
1

c
∇~x

[∫ r dr

r

∫
object

d3x′′

|~x− ~x′′|
~x′′ · ∇′′ × ~J(~x′′)

]
.

~J depends parametrically on ~x′. Referring to Eqs. 12 and 13 we see that fd does not contribute to the field. This
is an application of the principle that a longitudinal current does not produce a magnetic field. Finally we have the
formula

~Bind(~x, ~x′) =
i

2πδ2
∇
[∫ r dr

r

∫
object

d3x′′

|~x− ~x′′|
~x′′ · ~Bd(~x′′)

]
. (16)

Keeping in mind the relations

∂i
1

|~x− ~x′|
= −∂′i

1

|~x− ~x′|
= − xi − x′i
|~x− ~x′|3

, (17)

and using Eq. 17 twice to rewrite Eq. 8 as

~Bd(~x′′, ~x′) = −∂′′i µj∂
′
j

1

|~x′′ − ~x′|
, (18)

we find the component version of Eq. 16 to be

Bind,k(~x, ~x′) = − i

2πδ2
µj∂

′
j∂k

[∫
r

1

r
dr

∫
object

d3x′′x′′i
1

|~x− ~x′′|
∂′′i

1

|~x′′ − ~x′|

]
. (19)
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Summation over repeated Cartesian indices is understood. Now we use the standard relation

1

|~x− ~x′|
=

∞∑
`=0

∑̀
m=−`

4π

2`+ 1

r′`

r`+1
Y ∗lm(θ′, φ′)Ylm(θ, φ) (20)

valid for r′ < r. Substituting Eq. 20 into Eq. 19 we find

Bind,k(~x, ~x′) = − i

2πδ2
µj∂

′
j∂k

[ ∫ r

0

r−1dr

∫
d3x′′x′′i ×

∞∑
`=0

∑̀
m=−`

4π

2l + 1

(r′′)l

rl+1
Y ∗`m(θ′′, φ′′)Y`m(θ, φ)×

∞∑
`′=0

l′∑
m′=−`′

4π

2`′ + 1
∂′′i

(r′′)`
′

(r′)l′+1
Y ∗`′m′(θ

′, φ′)Y`′m′(θ
′′, φ′′)

]
=

i

2πδ2
µj

∑
`,m

4π

(l + 1)(2l + 1)
∂k

[
Y`m(θ, φ)

r`+1

]
×
∑
`′,m′

4π

(2l′ + 1)
∂′j

[
Y ∗`′m′

(r′)`′+1

]
×∫

d3x′′x′′i (r′′)`Y ∗`m(θ′′, φ′′)∂′′i

[
(r′′)`

′
Y`′m′(θ

′′, φ′′)
]

(21)

This rather complicated-looking formula will serve as the basis for the multipole expansion.

B. Definitions and Auxiliary Quantities

The vector spherical harmonics as defined by Barrera et al.13 are

~Y`m(~x) = r̂Y`m(θ, φ) (22)

and

~Ψ(~x) = r∇Y`m(θ, φ). (23)

We will need the fact that

∂k[r`Y`m(θ, φ)] = `r`−1~Y`m,k(~x) + r`−1~Ψ`m,k(~x). (24)

We also make the new definitions

~S`m(~x) = (`+ 1)~Y`m(θ, φ)− ~Ψ`m(θ, φ) (25)

= (`+ 1)r̂Y`m(~x)− θ̂ ∂
∂θ
Y`m(θ, φ)− φ̂ 1

sin θ

∂

∂φ
Y`m(θ, φ) (26)

and

A` =
`

(`+ 1)(2`+ 1)2(2`+ 3)
. (27)

C. Collapse to a Multipole Expansion

Eq. 24 now allows us to express the derivatives in Eq. 21 as vector spherical harmonics, while Eq. 22 shows how
to re-express them as scalar harmonics for the variable ~x′′ and finally apply the orthogonality property of the Y`m to
perform the integral as follows. Performing the differentiations in Eq. 21 we find:

~Bind(~x, ~x′) =
i

2πδ2

∑
l,m

4π

(l + 1)(2l + 1)

[
− l + 1

rl+2
~Ylm(~x) +

1

rl+2
~Ψlm(~x)

]
×

∑
l′,m′

4π

(2l′ + 1)
~µ ·
[
− l′ + 1

(r′)l′+2
~Y ∗l′m′(~x′) +

1

(r′)l′+2
~Ψ∗l′m′(~x′)

]
×∫

d3x′′(r′′)lY ∗lm(θ′′, φ′′) ~x′′ ·
[
l′(r′′)l

′−1~Yl′m′( ~x′′) + (r′′)l
′−1~Ψl′m′( ~x′′)

]
.
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The integral can now be evaluated:∫
d3x′′(r′′)lY ∗lm(θ′′, φ′′) ~x′′ ·

[
l′(r′′)l

′−1~Yl′m′( ~x′′) + (r′′)l
′−1~Ψl′m′( ~x′′)

]
=

∫
d3x′′Y ∗lm(θ′′, φ′′) ~x′′ ·

[
l′r′′

(l′+l−1)

Yl′m′(θ
′′, φ′′)x̂′′

]
= l′

∫ a

0

dr′′r′′
(l′+l−1)

r′′
∫
dΩ′′Y ∗lm(Ω′′)Ylm(Ω′′)

=
l′al+l′+3

l + l′ + 3
δl,l′δm,m′ ,

where a is the radius of the sphere. The key technical issue in the above derivation is to move the derivatives
entirely to the ~x and ~x′ variables so that the orthogonality relation can be used to perform the integration over ~x′′.
Again, this result is only valid when a << δ. However, it can be used to obtain an approximate answer for the case
δ << a; we can change the lower limit on the angular integral to a− δ which leads to the replacement of a`+`′+3 by
a`+`′+3 − (a− δ)`+`′+3 in the last line.

Simplifying somewhat further, we obtain

~Bind(~x, ~x′) =
i

2πδ2

∞∑
l=0

∑̀
m=−`

16π2

(l + 1)(2l + 1)2

(
la2`+3

2`+ 3

)[
−`+ 1

r`+2
~Y`m(~x) +

1

rl+2
~Ψ`m(~x)

]
~µ ·
[
− `′ + 1

(r′)`′+2
~Y ∗`′m′(~x) +

1

(r′)`′+2
~Ψ∗`′m′(~x)

]
=

8π

δ2

∞∑
`=0

∑̀
m=−`

l

(`+ 1)(2`+ 1)2(2`+ 3)

a2`+3

(rr′)`+2

[
(`+ 1)~Y`m(θ, φ)− ~Ψ`m(θ, φ)

]
~µ ·
[
(`+ 1) ~Y ∗`m(θ′, φ′)− ~Ψ∗`m(θ′, φ′)

]
.

This may be put into a more compact form

~Bind(~x, ~x′) =
8iπ

δ2

∞∑
`=1

m=∑̀
m=−`

Al
a2`+3

(rr′)`+2
~S`m(θ, φ)~µ · ~S∗`m(θ′, φ′), (28)

using the definitions in Eqs. 25 and 27. This is the second new result in this paper. As it stands, it is a closed form
solution for a problem in classical electromagnetic theory. But substitution into Eq. 1 yields immediately the magnetic
NCF. Since A` = 0 when ` = 0, we see that the expansion begins at ` = 1. This of course is just the non-existence of
the monopole moment. It shows explicitly that the asymptotic long-distance behavior of the NCF is r−3(r′)−3, as is
to be expected once the dipole analogy for the problem is accepted. Once again we note that the theory only holds
for r, r′ << λ and asymptotics must be applied only with this proviso.

D. Dimensionless Form

Substituting Eq. 28 into Eq. 1 we find

〈Bi(~x)Bj(~x
′)〉ω =

8π~
δ2aµj

coth

(
~ω

2kBT

) ∞∑
`=1

m=−`∑
m=−`

A`

(
r

a

)−`−2(
r′

a

)−`−2
S`m,i(θ, φ)S∗`m,j(θ

′, φ′), (29)

and we note that the Cartesian components S`m,i are dimensionless functions of angle only.
We are thus motivated to define the dimensionless functions Fij by

Fij(~x, ~x
′) =

∞∑
`=1

m=−`∑
m=−`

A`

(
r

a

)−`−2(
r′

a

)−`−2
S`m,i(θ, φ)S∗`m,j(θ

′, φ′), (30)

which will be investigated numerically below.
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E. Transformation Properties

The underlying problem has spherical symmetry. The NCF is a second-rank tensor so this symmetry puts strong
restrictions on its form. Let us define a rotation R with matrix representation Rij drawn from SO(3). R is param-
eterized by the usual Euler angles. We use active transformations R because we do not want to introduce a new
coordinate system. Then the NCF satisfies

Fij(R~x,R~x
′) =

∑
i,j

RikRjlFkl(~x, ~x
′), (31)

and we will see illustrations of this relation below.
.

V. RESULTS FOR THE 1-POINT NOISE
CORRELATION FUNCTION OF A METALLIC

SPHERE

A. General Formula

We proceed to find the formulas for the dimen-
sionless form of the 1-point NCFs 〈Bz(~x)Bz(~x)〉ω and
〈Bx(~x)Bx(~x)〉ω. These are special cases of Eq. 30 when
~x′ = ~x and i = j = z or i = j = x. Because we want to
illustrate how quickly the multipole moments converge,
we will sum over ` only up to L. Thus we arrive at

F (L)
zz (~x, ~x) =

L∑
`=1

m=∑̀
m=−`

A`

(a
r

)2`+4

ẑ·~S`m(θ, φ) ẑ· ~S∗`m(θ, φ)

(32)
and

F (L)
xx (~x, ~x) =

L∑
`=1

m=∑̀
m=−`

A`

(a
r

)2`+4

x̂·~S`m(θ, φ) x̂· ~S∗`m(θ, φ)

(33)
We will be plotting the equations on the x−z plane at

y = 0, which means φ = 0. In certain cases we will vary
L from L = 1 to L = 5 to understand the contribution of
the first few multipoles to the noise correlation function
and the overall convergence rate of the expansion.

B. Angular Patterns for the 1-point NCF

To get some physical insight into the formulas for the
NCF, we now compute numerically and then plot some
of the diagonal components of the 1-point tensor.

Substituting Eq.25 into Eq.32 returns

F (L)
zz (~x, ~x) =

L∑
l=`

m=∑̀
m=−`

A`

(
a

r

)2`+4

[
(`+ 1) cos θ Y`m(θ, 0) + sin θ

∂

∂θ
Y`m(θ, 0)

]
[
(`+ 1) cos θ Y ∗`m(θ, 0) + sin θ

∂

∂θ
Y ∗`m(θ, 0)

]
(34)

and

F (L)
xx (~x, ~x) =

L∑
l=`

m=∑̀
m=−`

A`

(
a

r

)2`+4

[
sin θ(`+ 1)Y`m(θ, 0)− cos θ

∂

∂θ
Y`m(θ, 0)

]
[

sin θ(`+ 1)Y ∗`m(θ, 0)− cos θ
∂

∂θ
Y ∗`m(θ, 0)

]
.

(35)

These formulas are expressed entirely in terms of tab-
ulated functions.

For better visualization of the angular dependence of
the one-point NCF, we will remove the lowest-order de-
pendence on distance by multiplying it by (r/a)6. Fig. 1
shows F (L)

zz (~x, ~x) × (r/a)6 (top panel) and F
(L)
xx (~x, ~x) ×

(r/a)6 (bottom panel).
The angular pattern for the local NCF shown in Fig. 1

can be understood using the analogy to the classical
problem11. A dipole that points in the z-direction that
oscillates at the frequency ω is placed at ~x. It induces
currents in the object, which in turn produce the induced
field component Bind,z.

Consider F (L)
xx (~x, ~x) and let ~x = (0, 0, d) with d >> a

so that the pure dipole approximation (L = 1) is valid for
the induced field of the object. At the object, the field of
the original dipole is in the +z-direction and it is strong,
since the object lies along the direction of the dipole. The
induced dipole is also in the z-direction and it is strong
since it is proportional to the applied field. Bind,z(~x) is
therefore large and positive. Now let ~x = (d, 0, 0) with
d >> a. The field of the original dipole is slightly less
strong at the object, since the object lies along the di-
rection perpendicular to the dipole, so it is in the return
field. The induced dipole is in the −z-direction and it is
weaker. Hence we find a smaller result at ~x = (d, 0, 0)
than at ~x = (0, 0, d), which accounts for the anisotropy
in the results. Going beyond the dipole approximation
when d ≥ a, so that L > 1, we must take into account
that the currents in the object are strong in the parts
of the sphere that are near the dipole, and weaker as we
move farther away. This amplifies the original mecha-
nism since when d is not much greater than a, there is
considerable cancellation of the x-component of the re-
turn field but not when it is on the z-axis. We expect
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FIG. 1. Basic noise pattern for qubits in the vicinity of a
metallic sphere. The top plot is F (L=5)

zz (~x, ~x) × (r/a)6. It
shows that noise is greatest when the separation vector of the
qubit and the object is parallel to the noise field components
considered. Here ~x is in the x-z plane. The unit of distance
is a, the radius of the sphere. Deep-blue color indicates re-
gions of very small positive correlation and yellow color shows
region of high positive correlation. The bottom plot illus-
trates the rotation properties of the noise tensor. Plotted is
F

(L=5)
xx (~x, ~x) × (r/a)6. The two plots are related by a π/2

rotation as follows from Eq. 31
.

increasing anisotropy as more multipole moments are in-
cluded in the calculation.

The rotation properties of the noise tensor components
in the two plots in Fig. 1 can be understood simply by
using Eq.31 with R representing a rotation by angle γ
about the y-axis, so that Rxx = Rzz = cos γ, Rxz =
−Rzx = sin γ, Ryy = 1 and all other components equal
to 0. Substitution of this form of R with i = j = x into
Eq.31 leads immediately to

R(x, y, z) = (−x cos γ − x sin γ, y, z cos γ + x sin γ)

and

Fxx(R(x, y, z),R(x, y, z)) =

cos2 γFxx((x, y, z), (x, y, z))+ sin2 γFzz((x, y, z), (x, y, z)).

In particular, when γ = π/2, we find
Fxx(R~x,R~x) = Fzz(~x, ~x). This accounts for the evident
relation between the two plots in Fig. 1, clearly rotated
by π/2 relative to each other.

The convergence rate of the multipole expansion is il-
lustrated in Fig. 2. It can be seen that to achieve reason-
able accuracy near the sphere, it is necessary to include
about 5 terms in the expansion. The dipole approxima-
tion is very poor at distances of r, r′ ≈ 2a.

FIG. 2. Convergence of the multipole expansion. Shown are
the first five multipole approximations for the dimensionless
one-point noise correlation function F

(L)
zz (~x, ~x) × (r/a)6 for

L = 1 to L = 5, where L is the number of multipoles included
in the sum. The dipole approximation F (1)

zz (~x, ~x) gives qual-
itatively incorrect results. Rough convergence is achieved at
L = 5. The plot for L = 5 is a zoomed-out version of the top
plot in Fig. 1.
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C. Application of 1-point NCFS to Quantum
Computing

The metal object may be a device element or (less
likely) an accidental inclusion in an array of qubits. Mag-
netic noise is important in many quantum computing
platforms, but we will confine ourselves here to electron
spin qubits. Our aim is to show how our visualization of
noise can help to develop recommendations for designers
of quantum computing hardware and software. In this
subsection we focus on a hardware issue.

We picture a single metallic object at the origin with
qubits at position ~x in the vicinity. The one-point NCF
creates decoherence only on local quantum amplitudes:
single qubit T1 and T2. Consider a qubit at ~x = (0, 0, d).
The one-point NCF is a diagonal tensor at this point in
the (x, y, z) basis. If the steady applied field ~Bapp is in the
z-direction, then T2 is determined only by the zz entry of
the NCF tensor while T1 is determined by the sum of the
xx and yy entries. (Roughly speaking, we must multiply
the NCF entries by µ2

B/~2 to get the decoherence times.)
If the applied field is in the n̂-direction, then T2 and
T1 are respectively determined by

∑
ij ninjFij(~x) and∑

ij [m1,im1,j + m2,im2,j ]Fij(~x), where m̂1 and m̂2 are
unit vectors orthogonal to each other and to n̂. At other
qubit positions, we first apply Eq. 31 and then follow the
same logic to obtain T1 and T2.

To give a simple example, let us say that we wish to
maximize T2, which is often the case, and the qubit is
at (d, 0, 0) with d & a. Then we consult Fig. 1 and we
see that the zz entry of the one-point NCF is less than
the xx entry. We conclude that we should use an applied
field in the z-direction.

VI. RESULTS FOR 2-POINT NOISE
CORRELATION FUNCTION

A. General Formulas

In this section, we investigate the 2-point dimensionless
NCF, that is, F (L)

zz (~x, ~x′) when ~x 6= ~x′. Using the classical
analogy, we fix the position of the fictitious dipole at ~x′

and compute ~Bind(~x, ~x′) at the observation point ~x. For
purposes of illustration we will take ~x′ = (0, 0, |~x′|) at
various distances from the origin. Again, the fictitious
dipole sets up currents in the sphere which in turn create
the induced field.

Proceeding as in Sec. V, we have the following formu-
las for the 2-point correlation functions:

F (L)
zz (~x, ~x′) =

L∑
`=1

m=−`∑
m=−`

A`

(
a

r

)`+2(
a

r′

)`+2

ẑ · ~S`m(θ, φ)ẑ · ~S∗`m(θ′, φ′) (36)

F (L)
xx (~x, ~x′) =

L∑
`=1

m=−`∑
m=−`

A`

(
a

r

)`+2(
a

r′

)`+2

x̂ · ~S`m(θ, φ)x̂ · ~S∗`m(θ′, φ′) (37)

F (L)
xz (~x, ~x′) =

L∑
`=1

m=−`∑
m=−`

A`

(
a

r

)`+2(
a

r′

)`+2

x̂ · ~S`m(θ, φ)ẑ · ~S∗`m(θ′, φ′) (38)

B. 2-point noise correlation functions

For this section we will refer to ~x′ as the base point.
Physically, however, ~x and ~x are interchangeable.

Expressing Eq. 36 in terms of the usual spherical har-
monics, we get

F (L)
zz (~x, ~x′) =

L∑
`=1

m=−`∑
m=−`

A`

(
a2

rd

)`+2[
(`+ 1)Y ∗`m(0, 0)

]
[

cos θ(`+ 1)Y`m(θ, 0) + sin θ
∂

∂θ
Y`m(θ, 0)

]
(39)

We are interested in the change of the NCF when the
base point is moved around relative to the sphere. So we
plot Eq. 39 for values of d = 2a and d = 5a in Fig. 3.
This zz entry for the two-point NCF is the z-component
of the induced field for a fictitious dipole at ~x′ = (0, 0, d)
pointing in the z-direction. This induces a dipole on the
sphere that also points in the z-direction. This explains
why the we see a highly positive correlation near the z-
axis and a highly negative one along the x-axis. This
is in sharp contrast to the 1-point functions, which are
always positive.

In the top panel of Fig. 3, in which d = (0, 0, 2a),
the higher multipoles make a very significant contribu-
tion to the NCF and an interesting asymmetric pattern
emerges. When F (L)

zz (~x, ~x′) is calculated up to the even
harmonics (l = 2, 4), the positively valued region in the
negative z-axis becomes smaller. The even harmonics are
asymmetric and the odd harmonic are symmetric under
this reflection operation, which gives the periodic behav-
ior as a function of L. At the level of resolution of the
figures (a few percent), the function has converged at
around L ≈ 5. In contrast, in the bottom panel of Fig. 3,
in which d = 5a, we see that the higher order multi-
pole terms do not contribute much to the field. This
is expected since for large d the fictitious field is nearly
uniform at the sphere and higher-order dipoles are not
induced. Convergence happens at about L ≈ 2.

For the 2-point NCFs the tensor character of the noise
is much more apparent. Without changing the base
points, we look at the xx component of the NCF.
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FIG. 3. Inter-qubit noise correlations. Shown is the 2-point
noise correlation function F (L=5)

zz (~x, ~x′). Here the base point
(qubit 1) is at ~x′ = (0, 0, 2a) (red dot at the top center of the
plot) and ~x, the position of qubit 2 is varied. The bottom plot
is the same except that the base point is at ~x′ = (0, 0, 5a) (off
the plot). For the more distant base point the dipole approxi-
mation is excellent and we see a dipole pattern, but when the
base point is closer the up-down asymmetry is clear. Unlike
the 1-point NCF, the 2-point NCF need not be positive.

Solving Eq. 37, we get

F (L)
xx (~x, ~x′) =

L∑
`=1

m=−`∑
m=−`

A`

(
a

rd

)`+2

(d)−`−2 (40)[
− ∂

∂θ
Y ∗`m(0, 0)

]
[

sin θ(`+ 1)Y`m(θ, 0)− cos θ
∂

∂θ
Y`m(θ, 0)

]
(41)

Plotting Eq. 40 for d = (0, 0, 2a) and d = (0, 0, 5a)

gives us Fig. 4 The fictitious dipole at ~x′ = (d, 0, 0) is
now pointing in the x-direction induces a dipole on the
sphere pointing in the −x direction situated at the ori-
gin. Therefore, the NCF is highly negative along the

x-axis and positive along the z-axis. Similar asymme-
try and symmetry patterns are observed for the odd and
even harmonics of the function. The asymmetry is ob-
served along the x-axis because the fictitious dipole is
near the north pole of the sphere. It causes more in-
duced current flowing in the northern hemisphere than
the southern hemisphere. For the xx component there
is a very pronounced up-down asymmetry, which is not
present in the odd multipoles. As a result the conver-
gence is slow unless d >> a. This is illustrated in Fig. 5,
which shows how the result changes as more multipoles
are included in the sum. Convergence is just barely hap-
pening at L = 5. For d = (0, 0, 5) convergence is much
quicker, as expected, and we do not show results for that
case.

FIG. 4. Tensor character of inter-qubit noise correlations.
The top panel is the dimensionless 2-point noise correlation
function F (L=5)

xx (~x, ~x′) with base point at ~x′ = (0, 0, 2a). Is is
indicated by a red dot. Here the separation vector (along z)
is perpendicular to the noise vectors along x. The up-down
asymmetry is striking. It is nearly absent in the lower plot
where the base point is at ~x′ = (0, 0, 5a) (off the plot) because
then the symmetric dipole term dominates.
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FIG. 5. Convergence of multipole expansion for 2-point NCFs.
Shown is F (L)

xx (~x, ~x′) for a base point at d = (0, 0, 2a) (red
dot). This is plotted for L = 1− 5 to show the growth of the
up-down asymmetry, which comes solely from the ` = 2 and
` = 4 terms. At L = 5 the plot is a zoomed-out version of the
top plot in Fig. 4.

C. Off-diagonal 2-point noise correlation functions

Solving Eq. 38, we get

F (L)
xz (~x, ~x′) =

L∑
`=1

m=−`∑
m=−`

A`

(
a

rd

)`+2[
(l + 1)Y ∗lm(0, 0)

]
[

sin θ(l + 1)Ylm(θ, 0)− cos θ
∂

∂θ
Ylm(θ, 0)

]
(42)

This xz component is the only off-diagonal entry in
the 2-point NCF tensor that we will investigate. We
must now imagine a fictitious dipole that points in the z-
direction and we observe the x-component of the induced
field. Plotting Eq. 42 for different values of d gives us

Fig. 6. Here the fictitious dipole induces a dipole on the
sphere pointing in the +z-direction at the origin. How-
ever, the function Fxz maps the x component of the noise
field. The magnetic field created by this induced dipole
on the sphere goes outward from the north pole, going
around the equator of the sphere, and comes back in-
ward into the south pole. Therefore, one would expect
the x-component to be positive in the x > 0, z > 0 and
x < 0, z < 0 quadrants and negative in the x > 0, z < 0
and x < 0, z > 0 quadrants, as is indeed seen in the
plots. The odd-even asymmetry pattern of the higher
order terms is qualitatively the same as that seen in Fxx.

FIG. 6. Off-diagonal noise correlations. Here the noise vectors
in the NCF are perpendicular to one another. Top plot shows
F

(L)
xz (~x, ~x′). Here the base point is at ~x′ = (0, 0, 2a) (red dot).

In this case the dipole approximation is adequate and this is
confirmed by the fact that the function is little changed when
the base point is moved to ~x′ = (0, 0, 5a) (off the plot). This
figure shows that the symmetry of the off-diagonal compo-
nents is quite different from the diagonal components shown
in earlier figures.
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D. Application of the 2-point NCF to Quantum
Computing

The recommendations for quantum computer design-
ers that come from the angular pattern of the two-point
NCF are slightly more subtle than those for the one-
point NCF, but not different in kind. Fundamentally,
the 1-point NCFs are the ones that cause decoherence
in single-qubit amplitudes. 2-point correlations destroy
quantum information stored in multi-qubit amplitudes.

In Sec. V we gave a hardware recommendation that
followed from the noise pattern. Here, we give a software
example. Again there is a single metallic object at the
origin but now we have two spin qubits, one at ~x and one
at ~x′. The 2-point NCF Fij(~x, ~x

′) couples to an operator
σ~xi σ

~x′

j , where σ~xi is the Pauli matrix that acts on a spin at
~x. The noise creates decoherence on two-qubit quantum
amplitudes.

Here is an example that is useful for algorithm design.
Let us say that the qubits are at positions where the zz
entry of Fij(~x, ~x

′) is large compared to other entries. A
glance at Fig. 3 shows that this is the case, for example,
when both qubits are on the z-axis but on opposite sides
of the object. We can protect the qubits from the noise
by working in a decoherence-free subspace. Let us choose
the computational basis {|0〉, |1〉} of eigenstates of σz.
The Bell state (1/

√
2)(|00〉 + |11〉) is decoherence-free if

only zz noise is present. In particular, the relative phase
of the |00〉 and |11〉 states is preserved. This is not the
case for the relative phase of (|00〉 and |01〉) states. Hence
we wish to operate in the {(|00〉, |11〉)} subspace and this
can be done by careful design of the quantum circuit that
implements a quantum algorithm.

Other examples of the usefulness of the 2-point NCFs
are easy to construct.

VII. CONCLUSION

Controllable qubits with long decoherence time are de-
sirable in quantum computing. This means that the ex-
istence of metallic elements of qubit devices are a double-
edged sword. On one hand, they are needed to interact
with and thereby control the qubits. On the other hand,
the fluctuations of currents and charges in these metallic
objects create a noise field that disturbs and decoheres
the qubits. The results in this paper allowed us to vi-
sually represent the noise field in the different spatial
points of qubit arrays when metallic objects are present.
We gave examples of how this visualization can aid in
the design of both hardware and software for a quantum
computer.

From a more formal and mathematical point of view,
we gave a solution in closed form for the magnetic EWJN
for an object, or set of objects in the limits appropriate
for a nano-device. Its simplicity means that it can be
used as the basis for numerical calculations of the NCF
for real devices. We also calculated, for the first time, the
multipole expansion for the NCF of a spherical metallic
device. The characteristics of the solution illustrated the
general principle of magnetic EWJN from localized ob-
jects.
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