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In the present work, we consider the existence and spectral stability of standing wave solutions
to a model for light propagation in a twisted multi-core fiber with no gain or loss of energy. Nu-
merical parameter continuation experiments demonstrate the existence of standing wave solutions
for sufficiently small values of the coupling parameter. Furthermore, standing waves exhibiting op-
tical Aharonov-Bohm suppression, where there is a single waveguide which remains unexcited, exist
when the twist parameter φ and the number of waveguides N is related by φ = π/N . Spectral
computations and numerical evolution simulations suggest that standing wave solutions where the
energy is concentrated in a single site are neutrally stable. Solutions with asymmetric coupling and
multi-pulse solutions are also briefly explored.

I. INTRODUCTION

There has been much recent theoretical and exper-
imental interest in light dynamics in twisted multi-
core optical fibers. Early work on twisted fibers can
be found in [1, 2], in which the coupled mode equa-
tions describing light propagation in a twisted, cir-
cular arrangement of waveguides is derived. The in-
troduction of a fiber twist in a circular array allows
for control of diffraction and light transfer, in a sim-
ilar manner to axis bending in linear waveguide ar-
rays [3]. The fiber twist introduces additional phase
terms to the model, which is known as the Peierls
phase [1, 4]. In [5], this system is considered as an
optical analogue of topological Aharonov-Bohm sup-
pression of tunneling [6], where the fiber twist plays
the role of the magnetic flux in the quantum me-
chanical system. In the optical setting, what this
suppression we believe reveals is similar to bend-
ing of rays in twisted photonic crystals [7], result-
ing in the creation of “forbidden” access points in
the transverse profile as rays propagate in the lon-
gitudinal direction. Alternatively, the phase accu-
mulation from the twist, together with that due to
the amplitude-dependent phase differences, accounts
for a phase mismatch that inhibits transfer of en-
ergy among waveguides. The unique feature present
here is that the suppression is full, thus instead of a
localized mode with nonzero amplitudes across the
array, a topological state is achieved. This state
is both nonlinear and robust. Fiber arrangements
featuring parity-time (PT ) symmetry with balanced
gain and loss terms are considered in [8, 9]. More
complicated fiber bundle geometries have since been
studied, which include Lieb lattices [10] and honey-
comb lattices [11, 12]. Experimental applications of
twisted multi-core fibers include the construction of
sensors for shape, strain, and temperature [13, 14].
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FIG. 1. Schematic of twisted, multi-core fiber consisting
of N waveguides arranged in a ring.

In this paper, we consider a multi-core fiber
consisting of N waveguides arranged in a ring
(Figure 1). The entire fiber is twisted in a uni-
form fashion along the propagation direction z with
a twist rate ǫ = 2π/Λ, where Λ is the spatial period.
For the system with an optical Kerr nonlinearity, the
dynamics are given by the coupled system of equa-
tions

i∂zcn = k
(

e−iφcn+1 + eiφcn−1

)

+ iγncn + d|cn|2cn
(1)

for n = 1, . . . , N , where c0 = cN and cN+1 = c1
due to the circular geometry [9, 15]. In the discrete
approximation, the assumption is that the energy of
electromagnetic field propagating along the optical
array is concentrated in the guiding (silica) cores. As
such, the complex amplitudes cn(z) represent the lo-
calized field amplitude in each waveguide. Since the
tail of the transverse field profile at each waveguide
extends beyond the core, the tail field concentrated
at site n overlaps with its neighbor cores at sites
n ± 1. In this approximation, k (in mm−1 units)
is the strength of the nearest-neighbor-waveguide
coupling, d is the effective (and normalized) Kerr-
nonlinear index of refraction, and γn is the optical
gain (due to doping) or loss (due to imperfections or
scattering) at waveguide n. Altogether, in the dis-
crete approximation, all coefficients depend on the
wavelength λ and φ = 4π2ǫnsR

2/Nλ is the Peierls
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phase introduced by the twist, where ns the refrac-
tive index of the substrate, R is the radius of the
circular ring, and λ is the wavelength of the prop-
agating field [9] (see also [2, 16] for a derivation of
this equation). If γn = 0 for all n, i.e. there is no
gain or loss at each node, the system is conservative.
Furthermore, upon normalizing the fields by making
cn non-dimensional using the mapping cn 7→ 1√

|d|
cn,

equation (1) becomes

i∂zcn = k
(

e−iφcn+1 + eiφcn−1

)

± |cn|2cn, (2)

which is Hamiltonian with conserved energy

H =

N
∑

n=1

k(cn+1c
∗
ne

−iφ + cnc
∗
n+1e

iφ)± 1

2
|cn|4. (3)

In this paper, we will only be concerned with the
Hamiltonian system (2) with conserved quantity (3);
we will also only consider the defocusing (minus)
nonlinearity. The case with symmetric gain-loss
terms (PT symmetry) is considered in [9]. Asymp-
totic analysis of the system (2) for N = 6 fibers
where the peak intensity is contained in the first
fiber (n = 1) shows that the opposite fiber in the
ring (n = 4) has, to leading order, zero intensity
when the twist parameter is given by φ = π/6 [9].
This is confirmed by numerical time evolution simu-
lations (see [9, Figures 4 and 5]). This phenomenon
is discussed in the context of Aharonov-Bohm (AB)
suppression of optical tunneling in twisted multicore
fibers in [15, 17]. In particular, this effect is demon-
strated analytically for the case of N = 4 fibers and
φ = π/4 by solving the nonlinear system (1) an-
alytically [17]. A natural question is whether AB
suppression is present for larger N and if this state
is robust (stable).

In what follows, we study the existence and sta-
bility of standing wave solutions (bound states) of
equation (2). This paper is organized as follows. In
section II, we use numerical parameter continuation
to construct standing wave solutions to (2) where
the bulk of the energy is confined to a single fiber.
In section III, we demonstrate the existence, both
analytically and numerically, of standing wave so-
lutions which have a single dark node; this occurs
when φ = π/N , both for N even and N odd. We
then investigate the stability of these solutions in
section IV. We conclude with a brief discussion of
asymmetric variants and multi-modal solutions and
suggest some directions for future research.

II. STANDING WAVE SOLUTIONS

Standing wave solutions to (2) are bound states of
the form

cn = ane
i(ωz+θn), (4)

where an ∈ R, θn ∈ (−π/2, π/2], and ω is the prop-
agation constant. (Since we allow an to be negative,
we can restrict θn to that interval). We will refer to
the an as the amplitudes and the θn as the phases of
each node. Standing waves are periodic in z with pe-
riod 2π/ω, and the intensity at each node |cn| = |an|
is constant in z. Making this substitution and sim-
plifying, equation (2) becomes

k
(

an+1e
i((θn+1−θn)−φ)

+ an−1e
−i((θn−θn−1)−φ)

)

+ ωan − a3n = 0,
(5)

where we have taken the defocusing (minus) nonlin-
earity. Equation (5) can be written as the system of
2n equations

k
(

an+1 cos(θn+1 − θn − φ)

+ an−1 cos(θn − θn−1 − φ)
)

+ ωan − a3n = 0

an+1 sin(θn+1 − θn − φ)

− an−1 sin(θn − θn−1 − φ) = 0

(6)

by separating real and imaginary parts. We note
that the the exponential terms in (5) depend only
on the phase differences θn+1 − θn between adjacent
sites. Due to the gauge invariance of (2), if cn is
solution, so is eiθcn, thus we may without loss of
generality take θ1 = 0. If φ = 0, i.e. the fibers are
not twisted, we can take θn = 0 for all n, and so (5)
reduces to the untwisted case with periodic bound-
ary conditions. Similarly, if we take φ = 2π/N and
θn = (n−1)φ for all n, the exponential terms do not
contribute, and (5) once again reduces to untwisted
case. The interesting cases, therefore, occur when
0 < φ < 2π/N .
In the anti-continuum (AC) limit (k = 0), the lat-

tice sites are decoupled. Each an can take on the
values {0,±√

ω}, the phases θn are arbitrary, and φ
does not contribute. The amplitudes

√
ω are real if

ω > 0. We construct solutions to (6) by parameter
continuation from the AC limit with no twist using
the standard continuation software package AUTO
[18]. As an initial condition, we choose a single ex-
cited site at node 1, i.e. a1 =

√
ω and an = 0 for

all other n. (We can start with more than once ex-
cited state, but, in general, these solutions will not
be stable.) In addition, we take θn = 0 for all n,
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FIG. 2. Schematic of symmetry relationship between
nodes for N = 6 and N = 7. For nodes connected with
arrows, the amplitudes ak are the same and the phases
θk are opposite.

and φ = 0. We first continue in the coupling pa-
rameter k, and then, for fixed k, we continue in the
twist parameter φ. In doing this, we observe that
the solutions have the following symmetry:

aj = aN−j+2 j = 2, . . . ,M − 1

θj = −θN−j+2 j = 2, . . . ,M − 1,
(7)

whereM = (N/2)+1 for N even andM = (N+1)/2
for N odd. For N even, node M is the node directly
across the ring from node 1, and θM = 0. For all
N , θ1 = 0. See Figure 2 for an illustration of these
symmetry relations for N = 6 and N = 7.
Figure 3 shows an example of a standing wave so-

lution of the form (4) produced by numerical pa-
rameter continuation for N = 6, k = 0.25, and
φ = 0.25. Since the paramater continuaton was ini-
tialized with a single excited site at node 1 in the AC
limit, the peak intensity is still contained in node 1
when k > 0, although the intensity has spread to the
other nodes in the ring. The symmetry relations (7)
among the amplitudes an and phases θn can be seen
in the left panel. The node with minimum intensity
is the node directly across the ring from node 1. The
right panel shows the intensity |cn| at each node as
a function of z. Since these are standing wave solu-
tions, the intensity is constant in z. The evolution
in z is computed with a fourth-order Runga-Kutta
method using equation (4) with z = 0 and the am-
plitudes and phases from the left panel of Figure 3
as the initial condition. This initial condition is used
for all evolution plots for standing waves.
Similarly, Figure 4 shows a standing wave solution

produced by numerical parameter continuation for
N = 7, k = 0.25, and φ = 0.25. As with the case
of N = 6, the peak intensity is contained in the
node 1, and the symmetry relations (7) among the
amplitudes an and phases θn can be seen in the left
panel. In contrast with the N = 6 case, there is a

FIG. 3. Standing wave solution for N = 6, ω = 1 mm−1,
k = 0.25 mm−1, and φ = 0.25. Left panel shows ampli-
tudes an and phases φn for solution at each node. Right
panel is intensity of solution |cn| versus z for nodes 1-4,
which is constant in z. Evolution in z computed using
fourth order Runge-Kutta method.

pair of nodes with minimum intensity and the same
amplitude directly across the ring from node 1.
The top panel of Figure 5 shows the amplitude

of the node with minimum intensity (node 4 in
Figure 3) versus the twist parameter φ for N = 6.
For all values of the coupling parameter k, the am-
plitude of this node is 0 when the twist parameter is
given by φ = π/6, which is an example of optical
Aharonov-Bohm suppression. Since this a stand-
ing wave solution, this node will have 0 intensity
for all z. This observation of a dark node opposite
the node of maximum intensity agrees with the re-
sults of [9, 15]. We show below in Section III A that
this occurs in general when N is even and φ = π/N .
The bottom panel of Figure 5 shows the amplitude
of the nodes with minimum intensity (nodes 4 and 5
in Figure 4) versus the twist parameter φ for N = 7.
Since the amplitudes of these nodes are never 0,
optical Aharonov-Bohm suppression does not occur
when N is odd and there is a single excited node.
(See Section III B below for a setting in which AB
suppression does occur for N odd).

III. OPTICAL AHARONOV-BOHM

SUPPRESSION

We now show that optical Aharonov-Bohm sup-
pression occurs for standing wave solutions when the
twist parameter is φ = π/N . We consider the cases
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FIG. 4. Standing wave solution for N = 7, ω = 1 mm−1,
k = 0.25 mm−1, and φ = 0.25. Left panel shows ampli-
tudes an and phases φn for solution at each node. Right
panel is intensity of solution |cn| versus z for nodes 1-4,
which is constant in z. Evolution in z computed using
fourth order Runge-Kutta method.

FIG. 5. Amplitude of node 4 (minimum intensity) versus
φ for standing wave solution with N = 6 (top), and
amplitude of nodes 4 and 5 (minimum intensity) versus
φ for standing wave solution with N = 7 (bottom). ω =
1 mm−1, coupling constants k are mm−1.

of N even and N odd separately, since the symmetry
patterns are different. In both cases, we find that we
can obtain a single dark node when φ = π/N .

A. N even

Taking aM = 0, where M = (N/2)+1, we use the
symmetries (7) to reduce the system (6) to

2ka2 cos(θ2 − φ) + ωa1 − a31 = 0

k(an+1 cos(θn+1 − θn − φ)

+an−1 cos(θn − θn−1 − φ))

+ωan − a3n = 0

an+1 sin(θn+1 − θn − φ)

−an−1 sin(θn − θn−1 − φ) = 0



























n = 2, . . . ,M − 1

2kaM−1 cos(θM−1 + φ) = 0

θ1 = θM = 0.

It follows that an = 0 for all n unless

cos(θM−1 + φ) = 0

sin(θn − θn−1 − φ) = 0 n = 3, . . . ,M − 1

sin(θ2 − φ) = 0.

One solution to this is

θM−1 + φ = π/2

θn − θn−1 − φ = 0 n = 3, . . . ,M − 1

θ2 − φ = 0,

from which it follows that we can have a single dark
node at site M when φ = π/N . If this is the case,
the system of equations above reduces to the simpler
system of M − 1 equations

2ka2 + ωa1 − a31 = 0

k (an+1 + an−1) + ωan − a3n = 0 n = 2, . . . ,M − 2

kaM−2 + ωaM−1 − a3M−1 = 0.
(8)

This system is of the form F (a, k) = 0,
where a = (a1, . . . , aM−1). F (ã, 0) = 0,
where ã = (

√
ω, 0, . . . , 0). Since DF (ã, 0) =

diag(−2ω, ω, . . . , ω), which is invertible for ω 6= 0,
it follows from the implicit function theorem that
there exists k0 > 0 such the system (8) has a unique
solution for all k with |k| < k0. The critical value
k0 can be computed numerically by parameter con-
tinuation with AUTO, and will depend on both N
and ω (Figure 6). These computations suggest that
k0 approaches ω/2 as N becomes large.
Figure 7 plots the ℓ2 norm of the solution to (8)

‖a‖ℓ2 =





N/2
∑

j=1

|aj |2




1/2

(9)
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FIG. 6. Left panel shows k0 versus N for dark node
opposite peak intensity node for N even, ω = 1 mm−1.
Right panel shows k0 vs ω together with least squares
linear regression line for N = 50.

FIG. 7. ℓ2 norm of solution vs k for N = 50 with dark
node opposite peak intensity node. ω = 1 mm−1.

versus the coupling parameter k. The critical value
k0 is the point at which the bifurcation curve touches
the horizontal axis. As k approaches k0 in the pa-
rameter continuation, the ℓ2 norm of the solution ap-
proaches 0, thus the solution approaches the zero so-
lution. Although it is possible that there are stand-
ing wave solutions for |k| > k0, they cannot be
reached by parameter continuation from this branch
of solutions. At k = 0 (the AC limit), there is only
one excited node with intensity

√
ω, thus the ℓ2 norm

of that solution is
√
ω (in Figure 7, ω = 1, thus the

ℓ2 norm of the solution is 1 when k = 0).
Once (8) has been solved numerically, the full so-

lution to (6) is given by

aM = 0

aM+j = aM−j j = 1, . . . ,M − 2

θ0 = 0

θj = (j − 1)φ j = 2, . . . ,M − 1

θM = 0

θM+j = −θM−j j = 1, . . . ,M − 2.

Figure 8 shows this solution for N = 6 and k = π/6.
The amplitudes an and phases θn are qualitatively

FIG. 8. Standing wave solution for N = 6 and φ =
π/6. Left panel shows amplitudes an and phases φn

for solution at each node. Right panel is intensity of
solution |cn| versus z for nodes 1-4, which is constant in
z. Evolution in z computed using fourth order Runge-
Kutta method. Node 1 has maximum amplitude, and
node 4 is a dark node. ω = 1 mm−1, k = 0.25 mm−1.

similar to the case when φ = 0.25 (Figure 3); how-
ever, when φ = π/6, the intensity of node 4 is equal
to 0, whereas for other values of φ, the intensity of
node 4 is small, but nonzero (Figure 5).

In [9], a perturbation method is used for theN = 6
case to show that if the peak intensity is contained in
node 1, the opposite node (node 4) has an intensity
of 0, to leading order, when φ = π/6. Our analysis
confirms the result of these asymptotics, but is much
more rigorous in that it demonstrates that for all N
even, when the twist is given by φ = π/N , a standing
wave solution exists for which the peak intensity is
contained in a single node, and the opposite node in
the ring has intensity identically equal to 0 for all z.

B. N odd

WhenN is odd and the peak intensity is contained
in a single node, we cannot obtain dark nodes for any
value of the twist parameter k (Figure 5). We can,
however, obtain a dark node when N is odd if we
start with two adjacent bright nodes. For simplicity,
we take node 1 to be the dark node; in this case, the
dark node will be opposite a pair of bright nodes
at aM and aM+1 with the same amplitude, where
M = (N + 1)/2. Using the symmetries (7), when
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a1 = 0, the system (6) reduces to

2ka2 cos(θ2 − φ) = 0

ka3 cos(θ3 − θ2 − φ) + ωa2 − a32 = 0

a3 sin(θ3 − θ2 − φ) = 0

k(an+1 cos(θn+1 − θn − φ)

+an−1 cos(θn − θn−1 − φ))

+ωan − a3n = 0

an+1 sin(θn+1 − θn − φ)

−an−1 sin(θn − θn−1 − φ)



























n = 3, . . . ,M − 1

k(aM cos(−2θM − φ) + aM−1 cos(θM − θM−1 − φ))

+ ωaM − a3M = 0

aM sin(−2θM − φ)− aM−1 sin(θM − θM−1 − φ) = 0.

It follows that an = 0 for all n unless

cos(θ2 − φ) = 0

sin(θn − θn−1 − φ) = 0 n = 3, . . . ,M − 1

sin(2θM + φ) = 0.

One solution to this is

θ2 − φ = −π/2

θn − θn−1 − φ = 0 n = 3, . . . ,M − 1

2θM + φ = 0,

(10)

from which it follows that we can have a single dark
node at a1 when φ = π/N . This condition for a
single dark node is the same as when N is even. For
this case, the system of equations above reduces to
the simpler system of equations

ka3 + ωa2 − a32 = 0

k(an+1 + an−1) + ωan − a3n = 0 n = 3, . . . ,M − 1

k(aM + aM−1) + ωaM − a3M = 0.
(11)

This system of equations is again of the form
F (a, k) = 0, where a = (a2, . . . , aM ). F (ã, 0) = 0,

where ã = (0, . . . , 0,
√

−ω/d, 0). Since DF (ã, 0) =
diag(ω, . . . , ω,−2ω), which is invertible for ω 6= 0, it
follows from the implicit function theorem that there
exists k0 > 0 such the system (11) has a unique so-
lution for all k with |k| < k0. As in the case for N
even, the critical value k0, as well as its dependency
on N and ω, can be computed numerically. Once
(11) has been solved numerically, we obtain the full
solution to (6) using

a1 = 0

aM+j = aM−j+1 j = 1, . . . ,M − 1

θ0 = 0

θj = (j − 1)φ− π/2 j = 2, . . . ,M

θM+j = −θM−j+1 j = 1, . . . ,M − 1

FIG. 9. Standing wave solution for N = 7 and φ =
π/7. Left panel shows amplitudes an and phases φn

for solution at each node. Right panel is intensity of
solution |cn| versus z for nodes 1-4, which is constant in
z. Evolution in z computed using fourth order Runge-
Kutta method. Nodes 4 and 5 have equal and maximum
amplitude, and node 1 is a dark node. ω = 1 mm−1,
k = 0.25 mm−1.

Figure 9 shows this solution for N = 7. The peak
intensity in this solution is contained in two adjacent
nodes, and there is a single dark node opposite this
pair, which is qualiatively different from the solution
in Figure 4.

IV. STABILITY

We now look at the stability of the standing wave
solutions we constructed in the previous section. As
a first step in stability analysis, the linearization of
equation (2) about a standing wave solution cn =
ane

i(ωz+θn) = (vn + iwn)e
iωz is the 2N × 2N block

matrix

A(cn) = k

(

S C
−C S

)

+ ω

(

0 I
−I 0

)

−
(

diag(2vnwn) diag(v2n + 3w2
n)

− diag(3v2n + w2
n) − diag(2vnwn)

) (12)

where each block is a N ×N matrix, C is the peri-
odic banded matrix with cosφ on the first upper and
lower diagonals, and S is the periodic banded matrix
with sinφ on the first lower diagonal and − sinφ on
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FIG. 10. Spectrum of linearization of (2) about solution
for even N with a single dark node opposite a single
bright node. N = 6 (left panel) and N = 50 (right
panel). k = 0.25 mm−1, ω = 1 mm−1, φ = π/N .

the first upper diagonal, i.e.

C =











0 cosφ . . . cosφ
cosφ 0 cosφ

. . .
. . .

cosφ . . . cosφ 0











S =











0 − sinφ . . . sinφ
sinφ 0 − sinφ

. . .
. . .

− sinφ . . . sinφ 0











.

Since (12) is a finite dimensional matrix, the spec-
trum is purely point spectrum. Due to the gauge
invariance, there is an eigenvalue at 0 with algebraic
multiplicity 2 and geometric multiplicity 1. Follow-
ing the analysis in [19, Section 2.1.1.1], there are
plane wave eigenfunctions which are, to leading or-
der, of the form e±(iqn+λz), where q is the discrete
wavenumber, and satisfy the dispersion relation

λ = ±i (ω + 2k cos(q + φ)) . (13)

The corresponding eigenvalues λ are thus purely
imaginary and are contained in the bounded inter-
vals ±i[ω− 2k, ω+2k]. As N increases, these eigen-
values fill out this interval. For |k| < k0 = ω/2, these
eigenvalues do not interact with the kernel eigenval-
ues. Figure 10 illustrates these results numerically
for ω = 1 and k = 0.25 for the case of N even and
φ = π/N , i.e. a single dark node opposite a single
bright node. Similar results are obtained for other
values of ω and k in which there is a single bright
node as well as the solutions from Section III B with
odd N and a single dark node opposite a pair of
bright nodes.
Since the spectrum of these solutions is purely

imaginary, we expect that they will be neutrally sta-
ble, i.e. any small perturbation will remain close to
the the unperturbed standing wave for all z, but will
exhibit oscillatory behavior. Figure 11 shows the re-
sults of numerical evolution in z for a small perturba-
tion of the standing wave solution when N = 6 and

FIG. 11. Amplitude |cn| for first four nodes versus z for
solution with N = 6, φ = π/6 (left panel) and N = 7,
φ = π/7 (right panel). Evolution performed using a
fourth order Runge-Kutta scheme, k = 0.25 mm−1.

N = 7. For the initial condition of the perturbed
solution, a small quantity (0.05) was added to the
amplitude of dark node. (This initial condition was
chosen for simplicity. Any initial condition which is
close to the unperturbed solution in amplitude and
phase produces results which are qualitatively the
same). Numerical results show small amplitude os-
cillations about the unperturbed solutions, but no
growth, which provides numerical evidence for neu-
tral stability. The amplitude of the oscillations de-
pends on the magnitude of the initial perturbation.
(Compare these evolution plots to the right panels of
Figure 8 and Figure 9, noting that the evolution in z
in Figure 11 is over a much greater length). Similar
results are obtained for other values of N , ω, and k.
In addition, we can start with a neutrally stable

standing wave solution and perturb the system by a
small change in k or φ. Figure 12 shows the results
of perturbations in k. In particular, note that in the
right panel of Figure 12, the system is evolved using
a value of the coupling parameter k which is greater
than k0, where k0 is defined in Section III A. In both
cases, the solutions show oscillations, indicating this
to be robust dynamics. The simulation suggests the
period of oscillations has a strong dependence on
k. Additional evolution results can be found in [9].
In particular, see [9, Figure 4] for evolution results
when the fiber is initially excited at a single site.

V. ASYMMETRIC COUPLING

As an additional variant, if the strength of the
nearest-neighbor coupling is allowed to differ be-
tween pairs of nodes, equation (2) becomes

i∂zcn = kn+1e
−iφcn+1+kn−1e

iφcn−1±|cn|2cn, (14)

where there is a different coupling parameter kn for
each pair of nodes. As in the symmetric case, we
will only consider the defocusing (minus) nonlinear-
ity. An asymmetric configuration can be realized by
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FIG. 12. Amplitude |cn| for first four nodes versus z for
solution with N = 10 and φ = π/10. Initial condition
is solution to (8) with k = 0.45 mm−1. Evolution per-
formed with k = 0.35 mm−1 (left) and k = 0.55 mm−1

(right) using a fourth order Runge-Kutta scheme.

FIG. 13. Asymmetric standing wave solution to (14) for
N = 6, k1 = 0.4 mm−1, and kn = 0.25 mm−1 for all
other n. Left panel shows amplitudes an and phases φn

for solution at each node. Right panel is intensity of
solution |cn| versus z for nodes 1-4, which is constant in
z. Evolution in z computed using fourth order Runge-
Kutta method. φ = 0.25, ω = 1 mm−1.

either having a variation in the separation between
waveguides or having a variation of the core radius,
although in the latter case, variations of the propa-
gation constant must be accounted by adding a term
of the form kncn to (14). Even in the idealized case
of identical separation, small variations could ap-
pear as a consequence of imperfections in the fiber
bundle construction, in which case the parameters
kn would be close, but not identical. This allows
for asymmetric solutions, as shown in Figure 13.
When compared to the symmetric solution for uni-
form k in Figure 3 (which has the same set of pa-
rameters except for the coupling parameter k1), the
phases and amplitudes are similar in magnitude, but

FIG. 14. Spectrum of linearization of (14) about
asymmetric standing wave solution from Figure 13 (left
panel). Amplitude |cn| for first four nodes versus z for
evolution of perturbation of this solution using fourth
order Runge-Kutta scheme (right panel).

the symmetry relations (7) have been broken. The
asymmetric solution in Figure 13 is neutrally stable,
since its spectrum is imaginary, and small pertur-
bations result in oscillatory behavior about the un-
perturbed solution (Figure 14, compare to the right
panel of Figure 13). Although a rigorous analysis of
these asymmetric solutions is beyond the scope of
this work, the results of these numerical simulations
suggest that it is likely that small differences in the
coupling coefficients kn do not affect stability, which
would imply that small imperfections in the physical
model would not result in loss of stability.

VI. MULTI-PULSES

Another broad class of solutions is multi-pulses,
which are solutions in which the energy is concen-
trated at multiple nodes which are well separated in
the ring (see Figure 15 for two examples where the
two nodes with peak intensity occupy opposite po-
sitions). In contrast with the solutions in Figure 9,
where the intensity is concentrated at two adjacent
nodes, the energy in a multi-pulse is concentrated at
sites which are far apart. The solutions with two ad-
jacent excited sites behave like a single soliton (see
[19] for a discussion of on-site and intersite solitons
in the discrete NLS equation), whereas multi-pulses
behave like a collection of solitons which can interact
with their neighbors on either side [20].
Multi-pulses can be generated by parameter con-

tinuation from the AC limit, similar to what was
done in section II. Although a systematic study of
the existence and stability of multi-pulses is beyond
the scope of this paper (see, for example, [20] for re-
sults on multi-pulses in the discrete NLS equation),
we present one example of a symmetric double pulse
solution for even N in which the two excited sites
are opposite each other in the ring. If N is a multi-
ple of 4 and φ = 2π/N , there is a pair of dark nodes
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FIG. 15. Amplitudes an for double pulse solutions with
two bright nodes in opposite positions of the ring. N =
8, φ = π/4 (left panel) and N = 12, φ = π/6 (right
panel). ω = 1 mm−1, k = 0.25 mm−1.

FIG. 16. Spectrum of linearization of (2) about sym-
metric double pulse solution with N = 12 and φ = π/6
(left panel). Amplitude |cn| for first four nodes versus z
for evolution of perturbation of this solution using fourth
order Runge-Kutta scheme (right panel). ω = 1 mm−1,
k = 0.25 mm−1.

halfway between the two bright nodes (in both di-
rections), as can be seen in Figure 15. In fact, these
particular solutions are exactly two copies of the so-
lutions from Section III A spliced together.
Numerical spectral computations, as well as nu-

merical evolution of perturbations of these solutions,
suggest that these double pulse solutions are neu-
trally stable (Figure 16).

VII. CONCLUSIONS

In this paper, we have demonstrated the existence
of standing wave solutions to a system of equations
modeling light propagation in a twisted multi-core

fiber in the setting of no gain or loss at the indi-
vidual sites. Our theoretical results extend previous
work and add understanding on stability properties.
It is both intriguing and fascinating that the math-
ematical tool used here(continuation) to build ex-
act solutions discovers, in a natural way, a physical
phenomenon (AB suppression). The mathematical
approach reveals the role of symmetries, phase re-
lations and nonlinearity; the last one is evident in
what is used as the starting (k = 0) solution for the
continuation method. We find specifically that if the
twist parameter φ and the number of waveguides N
are related by φ = π/N , then standing wave solu-
tions exist which are a manifestation of the optical
Aharonov-Bohm suppression, i.e. there is a node
which is completely dark for all time. These solu-
tions exist for both N even and N odd, and are
all neutrally stable. While we emphasize the theory
here, suitable parameters and powers for experimen-
tal realizations suggested in, for example, [17, Figure
3] should apply for a range of values shown here (e.g.
N = 6 − 10). For future research, it would be in-
teresting to investigate whether such standing waves
exist for twisted optical fibers in more complicated
geometries such as multiple concentric rings or Lieb
lattices. We could also systematically study multi-
pulse solutions, as well as investigate the existence
and stability of breathers, which are localized, pe-
riodic structures that are not standing waves. (See
[12] for examples of breather solutions in honeycomb
lattices). We could also apply the techniques used
here to the PT -symmetric system with symmetric
gain and loss, which is studied in [9]. Finally, since
these standing wave solutions are neutrally stable, it
would be interesting to see if they could be created
experimentally in twisted multi-core fibers.
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