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We calculate the correlated two-electron momentum distributions for nonsequential double ion-
ization of helium in a 400 nm laser pulse with a peak intensity of 6.5× 1014 W/cm2, which is below
the recollision threshold, by using the quantitative rescattering model in which the lowering of the
threshold due to the presence of electric field at the instant of recollision is taken into account.
While distinct correlated back-to-back emission of the electrons along the polarization direction is
predicted in accord with other existing theoretical simulations, we suggest an alternative mechanism
that is responsible for the anticorrelation. At intensities below the recollision threshold, recollision
excitation can only take place when the barrier of the Coulomb potential is sufficiently suppressed
by the electric field. The excited electron begins to ionize at a “delayed” recollision time after a
crossing of the field and hence the probability of being tunnel-ionized after the subsequent peak
of the field is increased. It is demonstrated that the “delayed” recollision time predominantly de-
termines the parallel momentum distribution of the tunneling electron and plays a decisive role in
forming anticorrelation.

PACS numbers: 32.80.Fb, 32.80.Rm, 34.80.Dp

I. INTRODUCTION

It has been well established that nonsequential dou-
ble ionization (NSDI) is a laser-induced recollision pro-
cess that can be interpreted by the classical rescatter-
ing model [1, 2]. In the rescattering picture, one elec-
tron is first released through quantum tunneling, then it
is driven back by the oscillating laser field to share en-
ergy with another electron during its collision with the
residual ion. While the generally accepted mechanisms
for NSDI are laser-induced recollision direct ionization
(RDI) and recollision excitation with subsequent ioniza-
tion (RESI) [3], NSDI can also take place through sequen-
tial ionization of doubly excited states that are populated
after the laser-induced recollision [4].

The attractiveness of NSDI mainly originates from the
fact that this phenomenon represents a uniquely clean
example of electron-electron correlation enforced by an
external field. The quest to understand electron-electron
correlation in NSDI has greatly benefited from highly
differential measurements. Since the groundbreaking ex-
periment conducted 20 years ago, in which the corre-
lated two-electron momentum distributions (CMDs) for
NSDI of Ar were measured by Weber et al. [5], a number
of kinematically complete measurements have been per-

formed [3, 6–8]. In the measurements of CMD for NSDI,
the data are integrated over the transverse momentum of
the first and second electron such that only the parallel
momentum (the momentum component along the laser
polarization axis) distributions are reported. The parallel
momentum distributions for the correlated two-electron
pair have been shown to be the most effective tool to in-
vestigate the underlying mechanisms of NSDI since they
provide much more detailed information than the early
measured momentum distributions and the total yields
of the doubly charged ions in which many characteristic
structures of that particular process are smoothed out.
Generally, the measurements of CMD for NSDI by lin-
early polarized laser light clearly show that the two elec-
trons have a greater probability of being emitted in the
same direction parallel to the laser polarization. How-
ever, at intensities below the recollision threshold, i.e.,
the minimum intensity required for the rescattering elec-
tron to have enough energy to ionize another electron
in the parent ion, the measurements of CMD for NSDI
actually show an anticorrelation, indicating a significant
probability for the electrons to drift out on opposite sides
of the atom [9, 10].

The observed anticorrelation in the experimental mea-
surements [9, 10] has attracted a large number of the-
oretical studies. However, the assignment of the ob-
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served anticorrelation to specific mechanisms still re-
mains a challenge for theory. Based on classical or semi-
classical models, multiple recollisions, in the context of
RESI, were first put forth to explain anticorrelated two-
electron escape [9, 11, 12]. However, other classical simu-
lations disproved that multiple recollisions cause the anti-
correlated emission of the two electrons [13, 14]. Instead,
Coulomb repulsion between the two electrons was sug-
gested as a possible mechanism [15]. Furthermore, while
anticorrelation was also attributed to quantum tunneling
in the semiclassical simulations [12], it was later argued
that this effect does not matter in NSDI [16]. Recently
another mechanism, Coulomb slingshot motion, was pro-
posed by Katsoulis et al. [17] to explain anticorrelated
two-electron escape. Using a three-dimensional semiclas-
sical model, they also found that the anticorrelation pat-
tern is more pronounced for shorter compared to longer
pulses.

In addition to classical or semiclassical models,
S-matrix theory [18–20] has been employed to investi-
gate the anticorrelated behavior. It was found that in-
terference has a major influence on the shape, localiza-
tion, and symmetry of the correlated electron momentum
distributions [19]. However, it should be noted that al-
though anticorrelation has been successfully predicted by
the S-matrix theory when quantum interference between
the contributions of different intermediate excited states
is incorporated, the obtained results only qualitatively
reproduced the experimental data. In fact, the simu-
lated patterns of the correlated longitudinal momentum
distributions were quite different from those observed ex-
perimentally [9, 10].

While the above-mentioned studies show that anti-
correlation results from RESI, there also exist theoret-
ical studies based on numerical solutions of the time-
dependent Schrödinger equation (TDSE) [21] and the
time-dependent Newton equation [22]. They show that
anticorrelation can also be obtained through RDI.

The existing controversial debate on the mechanisms
responsible for anticorrelation in NSDI clearly indicates
that more theoretical studies are highly desirable. In
the present work, we aim to investigate anticorrelation
in NSDI of atoms driven by strong laser fields at inten-
sities below the recollision threshold. We employ the re-
cently improved quantitative rescattering (QRS) model,
in which the lowering of the threshold due to the presence
of the electric field at the instant of recollision is taken
into account. The improved QRS model was first em-
ployed to evaluate the double-to-single ionization ratio
for atoms in strong laser fields [23–25] and was later ap-
plied to CMD simulations for NSDI at intensities above
the recollision threshold [26–28]. For the CMD calcu-
lations of NSDI below the threshold intensity, which is
considered in the present paper, however, the QRS model
needs to be improved further, since NSDI can only take
place at recollision times when the barrier due to the com-
bined external electric and internal Coulomb potential is
sufficiently suppressed. Even though anticorrelation has

only been observed experimentally in the measured CMD
for NSDI of Ar, as a first step in this direction, we choose
He as the target due to the fact that NSDI of the He atom
serves as a prototype for exploring correlated electron dy-
namics in strong fields [7, 8, 11, 15, 17, 29–34].
Unless specified otherwise, atomic units (a.u.) (h̄ =

|e| = m = 4πǫ0 = 1) are used throughout this paper.

II. THEORETICAL MODEL

While laser-induced rescattering processes can be
qualitatively interpreted by the classical rescattering
model [1, 2], the QRS approach provides a quantita-
tive description. Based on the factorization formula
in [35–37], the QRS model was first formulated for high-
order above-threshold ionization (HATI) [38] and high-
order harmonic generation [39]. It was later extended to
NSDI [40, 41].
In this paper, we use the QRS model to calculate the

CMD for NSDI of He at an intensity well below the rec-
ollision threshold. Since the contribution from RDI can
be safely neglected for the case considered here, we only
focus on the process of RESI in the present paper. Since
the details of the improved QRS model for RESI have
been presented in Refs. [27, 42], we only give a brief re-
view here with a description of the further improvements
for anticorrelation.
According to the QRS model, the CMD of RESI for the

momentum components p
||
1 and p

||
2 of the two outgoing

electrons along the laser polarization direction can be
expressed as a product of the parallel momentum distri-
bution for the returning electron after recollision and the
parallel momentum distribution for the electron tunnel-
ionized from an excited state of the parent ion. This
indicates that, in the QRS model, the laser-induced rec-
ollision excitation of the parent ion and the tunnel ion-
ization of electrons from an excited state in RESI are
disentangled and treated separately.
Electron impact excitation of the parent ion is de-

scribed by employing a laser-free differential cross sec-
tion (DCS) for this process. In the original QRS model,
the incident energy is chosen as the kinetic energy that
a returning electron accumulates in the laser field. This
implies that the QRS model predicts no NSDI events
when the maximum energy of the returning electron is
less than the energy difference between the first excited
state and the ground state of the parent ion. This clearly
conflicts with the experimental observations at low inten-
sities. This conflict, as argued by van der Hart and Bur-
nett [43], arises from the assumption that laser-induced
rescattering can be treated as if it takes place in a field-
free atom or ion, where the total energy of a continuum
electron must be positive. However, this is not necessar-
ily the case when the collision takes place in an external
electric field. Since the combined electric and atomic
potentials form a barrier below zero, the incoming elec-
tron can escape from the atom or ion even with a nega-
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tive total energy, provided that its energy is higher than
the potential barrier after the collision. Therefore, the
returning electron can donate more energy to the ionic
electron compared to a laser-free collision. This is effec-
tively equivalent to a lowering of the threshold, although
the energy level of an excited state is not lowered.
Since it is still a formidable task to perform actual

numerical calculations for recollision in the QRS model
with the threshold lowering taken into account, a practi-
cal attempt is to adjust the collision energy [43]. For this
purpose, it is assumed that the energy Er of the laser-
induced returning electron with respect to the maximum
of the barrier in the combined atomic and electric field
potential at a recollision time tr corresponds to the in-
coming electron energy Ei in the field-free case, i.e.,

Ei = Er +∆E(tr), (1)

where ∆E(tr) is the lowering of threshold (see Fig. 1 in
Ref. [43]). For laser-induced recollision excitation,

∆E(tr) = 2
√

Z|F (tr)|, (2)

where Z(= 1) is the asymptotic charge of the residual ion
seen by the scattered electron, and F (tr) is the electric
field at the recollision time.
To obtain the parallel momentum distribution for the

returning electron after recollision, we first calculate the
DCSs for laser-free electron impact excitation of He+.
Here, we only need to consider the singlet DCSs since
the two electrons involved in the laser-induced recolli-
sion process start in the singlet ground state of He and
their singlet coupling is preserved [44]. Then we convert
the scattering angle in the singlet DCS dσs/dΩ to the
parallel momentum. Since the DCS is symmetric around
the incident direction, the parallel momentum distribu-
tion for the scattered electron at incident energy Ei is
given by

YEi
(k

||
f ) =

2π

kf

dσs

dΩ
, (3)

where kf is the momentum of the scattered electron, and

k
||
f = kf cos θ, with θ being the scattering angle. The

prefactor 2π/kf in Eq. (3) is introduced to ensure

∫

YEi
(k

||
f )dk

||
f =

∫

dσs

dΩ
dΩ = σs. (4)

Due to energy conservation, we have

Ei =
1

2
k2f + Ip, (5)

where Ip is the threshold energy for excitation. For
the laser-induced recollision excitation taking place at
tr when the vector potential Ar = A(tr), the projectile
electron is still under the influence of the laser field af-
ter the collision. As a result, it will gain an additional
momentum −Ar in the direction of the laser polarization

from tr to the end of the laser pulse. Finally, the corre-
sponding parallel momentum distribution for the return-
ing electron after recollision excitation in a strong field
at an intensity I can be obtained from Eq. (3) by shifting
the momentum of the projectile electron by −Ar, i.e.,

D exc
Ei

(p
||
1 ) = YEi

(k
||
f −Ar). (6)

The vector potential Ar in Eq. (6) is related to the mo-
mentum kr (=

√
2Er) of the returning electron. In the

QRS model, the relation between Ar and kr is approxi-
mated by [38]

|Ar| = kr/1.26. (7)

To account for the lowering of the threshold, Eq. (7)
should be rewritten as

|Ar| =
√

2[Ei −∆E(tr)]/1.26. (8)

The process of tunneling ionization of electron from the
excited state of He+ is described by solving the TDSE
within the single-active-electron approximation [45]. In-
deed, the Ammosov-Delone-Krainov (ADK) [46] model
modified by Tong and Lin [47] is the simplest method
that could be used to evaluate the parallel momentum
distribution for tunneling ionization. However, since the
shape of the parallel momentum distribution significantly
depends on the ionization rate, but the ionization rate
can hardly be predicted accurately by the ADK model, a
much better choice is to solve the TDSE directly. In the
present work, we first calculate the two-dimensional (2D)
momentum distributions for single ionization of electrons
from excited states with a specified magnetic quantum
number by solving the TDSE. Then the parallel momen-
tum distributions for the tunnel-ionized electrons are ob-
tained by integrating the 2D momentum distributions
over the momentum components perpendicular to the
laser polarization.
The prevalent view has been that rescattering occurs,

most probably, near field crossings. However, for the
case of low intensity in which the energy of the return-
ing electron is smaller than the threshold energy for
excitation, recollisions taking place near field crossings
are unable to trigger NSDI. Therefore, one has to con-
sider recollisions at the time after the field crossing when
Er +∆E(tr) > Ip. Here, we assume that tunneling ion-
ization begins immediately after recollision excitation.
As will be demonstrated in the next section, the ini-
tial tunneling ionization time plays an important role in
the pattern of the parallel momentum distributions for
electrons that are tunnel-ionized from excited states. To
control the time at which tunneling ionization begins, we
introduce a parameter tr in the electric field used in the
TDSE calculations,

F (t) = a(t)F0 cos(ωt+ φ)ẑ. (9)

Here ω is the carrier frequency and φ the carrier enve-
lope phase. The envelope function a(t) is chosen to be
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constant for the first two cycles within tr ≤ t ≤ 2T and
then ramped down over four cycles. Specifically,

a(t) =







1 (tr ≤ t ≤ 2T );
sin2[π(6T − t)/(8T )] (2T < t ≤ 6T );
0 (t < tr, t > 6T ).

(10)

Here the returning time tr is in the range of 0 to T/4, and
the carrier envelope phase φ is set to π/2 to account for
the recollision process in which the laser-induced recollid-
ing electron returns to the origin along the −ẑ direction.
It should be noted that the parallel momentum distri-
butions for electrons tunnel-ionized from excited states
are obtained at the end of the laser pulse and the results
remain essentially unchanged if a longer pulse with one
or two more cycles is used.

With the parallel momentum distributions D exc
Ei

(p
||
1 )

calculated by using Eq. (6) for excitation and D tun
tr

(p
||
2 )

by solving the TDSE for tunneling ionization, the CMD
for laser-induced electron impact excitation at incident
energy Ei with subsequent tunneling ionization in the
laser field with a peak intensity I is obtained as

DEi,tr (p
||
1 , p

||
2 ) = D exc

Ei
(p

||
1 )×D tun

tr
(p

||
2 ). (11)

Note that D tun
tr

(p
||
2 ) depends on the recollision time tr at

which tunneling ionization begins. In addition, since ex-
citation can always take place when Ei ≥ Ip, an integral
over Ei should be performed to account for the contribu-
tions from collisions at all incident energies. Therefore,
the CMD for RESI at an intensity I is given by

D(p
||
1 , p

||
2 ) =

∫ ∞

Ip

dEiDEi,tr(p
||
1 , p

||
2 )W (Er), (12)

where Er = Ei − ∆E(tr) and W (Er) is the recolliding
wave packet (RWP) describing the energy (momentum)
distribution of the returning (incoming) electron in the
laser field [38]. The RWP can be calculated by using
the second-order strong-field approximation (SFA2) for
HATI [38]. For He, the details of the RWP calculations
were presented in Ref. [23].

III. RESULTS AND DISCUSSION

A. Calculations of correlated two-electron

momentum distributions

We calculate the CMD of He atoms irradiated by few-
cycle laser pulses with a wavelength of 400 nm and a peak
intensity of 6.5× 1014 W/cm2.
According to the rescattering model, all the laser-

induced rescattering processes are initiated by the col-
lisions of the returning electrons with the parent ions.
Therefore, the energy distribution of the returning elec-
tron in a laser field plays an essential role in the calcu-
lations. In the QRS model, the energy distribution of
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FIG. 1: Recolliding wave packet against the kinetic energy of
the laser-induced returning electron in a 400 nm laser pulse
with a peak intensity of 6.5 × 1014 W/cm2. The blue bro-
ken curve is the smoothed wave packet used in the numerical
calculations. The arrow indicates the cutoff at 3.17Up.

the returning electron is described by the RWP. Since
all the rescattering processes share the same RWP, the
RWP for NSDI can be extracted from the 2D momentum
distribution for HATI due to elastic scattering of the re-
turning electron with the parent ion. In Fig. 1 we show
the obtained RWP as a function of the kinetic energy of
the laser-induced returning electron. The electric field
used in the calculations of the RWP is linearly polarized
along the z axis and has a trapezoidal pulse shape with a
four-cycle turn on, two cycles at full strength, and a four-
cycle turn off. As shown in Fig. 1, a cutoff appears at
3.17Up = 31 eV, corresponding to the maximum kinetic
energy of the returning electron predicted by the classi-
cal rescattering model. This is well below the threshold
energy for excitation of He+.

The energy distribution shown in Fig. 1 implies that
one has to consider the potential change due to the pres-
ence of an electric field at the time of recollision. Ac-
cording to Eq. (2), the maximum value of this poten-
tial change is 20 eV for the laser pulse considered here.
Consequently, RDI can be ruled out. To trigger RESI,
the energy of the returning electron with respect to the
barrier of the combined electric and atomic potentials
must be higher than the excitation energy of the parent
ion. Taking the maximum energy of returning electron
as 31 eV, only the effective recollisions taking place after
a crossing of the driving field with “time delay” (i.e., the
time difference between the recollision time and the time
at a crossing of the electric field) leading to ωtr greater
than 15◦ and 45◦, when ∆E(tr) = 10 eV and 17 eV, can
promote He+ from the ground state to the excited states
with n=2 and n=3, respectively. However, it should be
noted that the extension of the RWP beyond the cutoff
indicates that the returning electron could possess higher
energies, although with decreasing probabilities. Actu-
ally, it is the RWP, together with the time delay, that
determines the weight of a contribution from recollision
at a given incident energy.
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In the actual numerical calculations of CMD, it is a
tremendous challenge to consider all the effective recol-
lisions possibly taking place at any time with ωtr ≥ 15◦

(45◦) for excitation to n= 2 (n= 3). Consequently, we
choose an “average” recollision (returning) time to make
the calculations tractable. An average recollision time
was recently used successfully to account for the lower-
ing of the potential due to the presence of an electric
field at the instant of recollision in numerical simulations
for the total yields of doubly-charged ions [23–25], the
CMDs for NSDI of atoms at intensities well above the
recollision threshold [26, 27], and the momentum distri-
butions of doubly-charged ions [48]. The method used to
determine the average returning time was presented in
detail in Ref. [26]. The average returning time is approx-
imately given by

θ̄r =

∫ θ2

θ1
θrWADK(θr)dθr

∫ θ2

θ1
WADK(θr)dθr

, (13)

where θr = ωtr and WADK(θr) is the ionization rate,
obtained using the Ammosov-Delone-Krainov (ADK)
model [46], for the electron that is ionized at time tb
and returns to the origin at time tr. Here we neglect the
Coulomb degeneracy of the He+ states [49, 50].
Suppose an electron in the atom is released into a

monochromatic laser field F (t) = ẑF0 cos(ωt), a one-to-
one relation between the birth time tb and the returning
time tr can be obtained by solving the one-dimensional
(1D) Newton’s equation of motion for the system [38],
i.e.,

z̈(t) = −F0 cos(ωt). (14)

Based on this 1D classical model, it was found that elec-
trons born before ωt = 13◦ will return at a time after
ωt = 270◦. According to the above analysis about the
restricted effective recollision times, we choose θ2=360◦

and θ1 =285◦ (315◦) in Eq. (13) for excitation to n=2
(n = 3). With these considerations, we obtain θ̄r ≃ 55◦

and 70◦ after a crossing of the electric field for n=2 and
3, respectively.
To evaluate the parallel momentum distributions for

the projectile electron after the laser-induced recollision,
we first prepare the laser-free singlet DCSs for electron
impact excitation of He+ from the ground state to the
excited states of n = 2 and n = 3 for each angular mo-
mentum l with specific magnetic quantum number m,
respectively. Due to the n−3 scaling law, the contribu-
tions from higher excited states are neglected. [We use
the short-hand notation 2p0 ≡ 2p (m= 0) and similarly
for 2p1, 3p0, 3p1.] By expressing the singlet DCSs as a
function of the parallel momentum with the shift of the
drift momentum taken into account, we obtain the paral-
lel momentum distributions for the active electron after
recolliding with the He+ ion. Figure 2 displays the re-
sults for exciting the residual ground-state electron to the
excited states 2s, 2p0, 2p1, 3s, 3p0, and 3p1. According

10-3
10-2
10-1
100

  

ωtr = 55°

45 eV
50 eV
55 eV

(a) 
 
 

2s

10-2

10-1

M
om

en
tu

m
 d

is
tr

ib
ut

io
n 

(a
.u

.)

(b)

2p0

10-3

10-2

10-1

 0  0.5  1  1.5  2  2.5

 

p1
|| (a.u.)

(c)

2p1

10-3

10-2

10-1

ωtr = 70°

(d)

3s

10-2

10-1

(e)

3p0

10-3

10-2

10-1

 0  0.5  1  1.5  2  2.5

p1
|| (a.u.)

(f)

3p1

FIG. 2: Parallel momentum distributions for the active elec-
tron after recolliding with the He+ ion and exciting the resid-
ual ground-state electron to the excited states of (a) 2s,
(b) 2p0, (c) 2p1, (d) 3s, (e) 3p0, and (f) 3p1 in a 400 nm
laser field with a peak intensity of 6.5 × 1014 W/cm2. The
recolliding electron returns to the origin along the −ẑ direc-
tion with energies of 45, 50, and 55 eV. The recollision times
are chosen to be such that ωtr = 55◦ and 70◦ after a crossing
of the electric field for n=2 and 3, respectively.
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FIG. 3: Parallel momentum distributions for the electron
ejected from He+ in the excited states of (a) 2s, (b) 2p0,
(c) 2p1, (d) 3s, (e) 3p0, and (f) 3p1 by a 400 nm laser field
with a peak intensity of 6.5 × 1014 W/cm2. The recollid-
ing electron returns to the origin along the −ẑ direction at
ωtr = 55◦ and 70◦ after a crossing of the electric field for
n=2 and 3, respectively. Asymmetry parameters for the mo-
mentum distributions are also indicated. See text for details.
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to the rescattering model, the final parallel momentum
of the projectile electron that returns to the origin along
the −ẑ direction is restricted by [3]

−
√

2(Ei − Ip)−Ar ≤ p
||
1 ≤

√

2(Ei − Ip)−Ar. (15)

The above equation implies that the range of the momen-
tum distribution shrinks for higher excited states. As
demonstrated in Fig. 2, the momentum distributions for
n = 3 cover smaller ranges compared to those for n = 2.
In addition, it can be seen from Eqs. (7) and (8) that,
with the lowering of the potential considered, the parallel
momentum distributions shift to smaller momenta by

∆|Ar| =
{

√

2Ei −
√

2[Ei −∆E(tr)]
}

/1.26. (16)

For example, ∆|Ar| = 0.31 for Ei = 50 eV and ωtr = 55◦

for the laser field considered here.
Figure 3 displays the parallel momentum distribu-

tions for the tunnel-ionized electron from selected excited
states of He+ corresponding to those in Fig. 2. As men-
tioned before, these results were obtained by integrating
the 2D momentum distributions from the TDSE over the
momentum component perpendicular to the direction of
the laser polarization. According to the classical rescat-
tering model, the momentum of the tunneling electron is

limited by −A0 ≤ p
||
2 ≤ A0, where A0 is the maximum

value of the vector potential. For the laser field consid-
ered here, A0 = 1.2. Nevertheless, it can be seen from
Fig. 3 that the parallel momentum distributions obtained
from the TDSE clearly spread outside of A0. The most
important feature of the momentum distributions is that

they are not symmetric with respect to p
||
2 = 0. The

asymmetry of the momentum distribution can be repre-
sented by the parameter A = PL/PR, where PL and PR

are the total single-ionization yields of electrons with neg-
ative and positive momenta, respectively. By integrating
the distributions over the parallel momentum, we found
that the asymmetry parameters are greater than one for
n = 2 but less than one for n = 3, except for the case of
3s where the asymmetry parameter is slightly larger than
one. As will be demonstrated below, the asymmetry of
the momentum distribution for the electron being tunnel-
ionized from an excited state of the singly-charged ion
plays a decisive role in forming the anticorrelated CMD.
With the recolliding wave packet evaluated within

SFA2 and the parallel momentum distributions obtained
from the R-matrix and TDSE calculations for the two
outgoing electrons, respectively, we are ready to calculate
the CMD for RESI using Eq. (12). The calculated corre-
lated parallel momentum spectra for tunneling from the
excited 2s, 2p0, 2p1, 3s, 3p0, and 3p1 states are displayed
in Fig. 4. Note that in the CMDs presented in Fig. 4, the
contributions from collisions by the laser-induced elec-
tron that returns to the parent ion along the direction of
−ẑ at all possible incident energies have been accounted
for. As expected, the CMD for 2p0 dominates. Indeed,
the patterns of the momentum distributions for the two
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1 > 0) correlated parallel momentum

spectra for excitation-tunneling from (a) 2s, (b) 2p0, (c) 2p1,
(d) 3s, (e) 3p0, and (f) 3p1 in a 400 nm laser field with a peak
intensity of 6.5 × 1014 W/cm2 with ωtr = 55◦ and 70◦ for
n = 2 and 3, respectively.
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FIG. 5: Symmetrized full-space correlated parallel momen-
tum spectra for excitation-tunneling from the excited states
of (a) 2s, (b) 2p0, (c) 2p1, (d) 3s, (e) 3p0, and (f) 3p1 in a
400 nm laser field with a peak intensity of 6.5× 1014 W/cm2.

outgoing electrons are both imprinted in the CMD. Since
tunnel ionization does not depend on the returning elec-

tron energy, the distribution along p
||
2 in the CMD di-

rectly reflects the momentum distribution of the tunnel-
ionized electron. The denser population in the region of

p
||
2 < 0 for n = 2 in Figs. 4(a)−4(c) results from the

asymmetric distributions in Figs. 3(a)−3(c) with asym-
metry parameters larger than one. Similarly, the bright

spots near p
||
2 = 0 for n = 3 in Figs. 4(d)−4(f) correspond

to the sharp distributions in Figs. 3(d)−3(f).
According to the 1D classical model, if an electron is
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FIG. 6: Correlated parallel momentum spectra for excitation-
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(b) n=3, and (c) sum of n=2 and 3 in a 400 nm laser field
with a peak intensity of 6.5× 1014 W/cm2.

tunnel-ionized in a half cycle when the electric field is
negative, it could be driven back to the parent ion along
the −ẑ direction. On the other hand, for a long pulse, if
the electron is born during the other half cycle, it pos-
sesses the same probability for returning to the parent
ion along the +ẑ direction. Since A(t ± T/2) = −A(t),
where T = 2π/ω denotes the field cycle, events whose
times are displaced by half a cycle are related by mo-
mentum inversion. Furthermore, since both electrons are
indistinguishable, the CMD for excitation + tunneling
should be symmetric with respect to both diagonals, i.e.,

p
||
1 = ±p

||
2 . However, it should be emphasized that the ad-

ditional symmetry with respect to the coordinate axes,
suggested by Feuerstein et al. [3], is never guaranteed.
Figure 5 depicts the full-space CMDs for excitation +
tunneling upon symmetrization of the CMDs displayed
in Fig. 4. The CMDs for 2p0 and 2p1 reveal the domi-
nance of back-to-back (anticorrelated) emission, whereas
for 3p0 and 3p1 most populations are found close to the
coordinate axes in quadrants 1 and 3, thus showing a
distinct correlated behavior.

Figure 6(a) depicts the CMD for n=2 that consists of
the distributions from 2s, 2p0, and 2p1 (the latter result
is multiplied by two, since 2p−1 yields the same contri-
bution as that of 2p1). Due to the dominance of 2p0,
the CMD for n=2 is reminiscent of that for 2p0. Simi-
larly, the result for n=3 is shown in Fig. 6(b). Finally, by
summing the CMDs in Figs. 6(a) and 6(b), we obtain the
CMD for excitation-tunneling from all excited states with
n=2 and 3. As displayed in Fig. 6(c), it exhibits a strong
anticorrelated emission. The present final CMD for RESI
of He is found to be in good agreement with the simu-
lated result from a classical ensemble model [15] in which
the same laser parameters were used. Very recently, by
employing a three-dimensional semiclassical model, Kat-
soulis et al. [17] also calculated the CMD for NSDI of He
in a laser pulse at 400 nm but with a lower peak intensity
of 5×1014 W/cm2. As demonstrated in [17], at this lower
intensity, the two electrons escape overwhelmingly in op-
posite directions, thus showing a strong anticorrelation.

We note that the present model predicts no events for
small momenta in the center of the CMD. This is differ-

ent from existing classical simulations [15, 17] in which
the populations also appear around zero momenta for
two electrons, albeit with very small intensities. The
empty population in the center of the CMD in Fig. 6
is due to the fact that only an averaged collision time is
used in the present calculations. From Eqs. (8) and (15),
one can see that the range of the momentum distribu-
tion for the laser-induced returning electron after colli-
sion depends on the recollision time. Consequently, the
small-momenta region in the center of the CMD would
be populated if all possible recollision times were consid-
ered.

B. Interpretation of mechanism for anticorrelation

We start by showing how the recollision time alters
the distribution of tunnel-ionized electrons in the TDSE
calculations. Figure 7 displays the 2D photoelectron mo-
mentum distributions parallel (p||=pz) and perpendicular

(p⊥=
√

p2x + p2y) to the laser polarization direction from

the TDSE for single ionization of He+ from the excited
2p0 state, the corresponding parallel momentum distri-
butions, and the laser fields used in the TDSE calcula-
tions. One can see from Figs. 7(a)−7(c) that, while all
the 2D momentum spectra reveal typical features, such
as a fan-like structure at low energies and circular rings
at high energies, for above-threshold ionization, the left-
side (pz < 0) distribution becomes denser as the initial
ionization time increases. As a result, the asymmetry pa-
rameters for the parallel momentum distributions shown
in Figs. 7(d)−7(f) increase accordingly. As will be dis-
cussed below, this trend is of great importance in leading
to anticorrelation.
Although solving the TDSE provides accurate numeri-

cal results, insight into the underlying physics is hidden.
To unveil the role of the recollision time (initial ionization
time) in the momentum distribution of the tunnel-ionized
electron, we employ the ADK model [46], which provides
an intuitive interpretation of the tunnel ionization pro-
cess. With the depletion effect taken into account, the
ADK rate can be expressed as

Y ADK(t) = W [|F (t)|] e−
∫

t

tr
W [|F (t′)|]dt′

, (17)

where W [|F (t)|] is the modified ADK rate given by
Eq. (2) in Ref. [47]. Note that the integral of Y ADK(t)
over time yields the total ionization probability, i.e.,

P =

∫ t

tr

Y ADK(t)dt = 1− e
−
∫

t

tr
W [|F (t′)|]dt′

. (18)

In Fig. 8(a), we show the ionization rate Y ADK(t) of He+

from 2p0 in a 400 nm laser field with a peak intensity of
6.5× 1014 W/cm2 with initial ionization times at ωtr =
20◦, 40◦, and 80◦, respectively. One can see that all the
excited atomic ions are ionized within an optical cycle
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electric fields with ωtr = 0◦ and 70◦, respectively.
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FIG. 8: (a) ADK rate for ionization of He+ from 2p0 vs. time
in a 400 nm laser field with a peak intensity of 6.5 × 1014

W/cm2 with initial ionization times corresponding to ωtr =
20◦, 40◦ and 80◦, respectively. The electric field and vector
potential of the laser field are also plotted. In the electric field
the initial ionization times corresponding to ωtr = 20◦, 40◦,
and 80◦ are marked by points 1, 2, and 3, respectively. (b)
Parallel momentum distributions of the ionized electron cor-
responding to the ADK rates shown in (a). The asymmetry
parameters are also indicated.

in the subsequent strong laser field even with different
initial ionization times.

The momentum spectra of the excited electron after
tunnel ionization at the end of the laser pulse are ob-
tained by shifting the initial momentum by the drift mo-
mentum, which is the vector potential at the time the

electron is ionized. Assuming that the electron is tunnel-
ionized with zero initial velocity, the momentum spec-
trum is given by

DADK(p
||
2 ) = DADK[−A(t)] =

1

|E(t)|Y
ADK(t). (19)

Using Eq. (19), we calculated the parallel momentum
distributions corresponding to the ADK rates shown in
Fig. 8(a). The results are displayed in Fig. 8(b). At
first glance, the momentum spectra calculated by us-
ing the ADK model in Fig. 8(b) are quite different from
those evaluated by solving the TDSE in Figs. 7(d)−7(f).
Firstly, while the momentum spectra from the TDSE ex-
tend beyond the range of [−A0, A0], the momentum of
the tunneling electron in the ADK model is completely

limited by −A0 ≤ p
||
2 ≤ −A(tr), where A(tr) is the vector

potential at the initial tunneling time tr. Consequently,
the ADK distribution on the right side is squeezed to-
wards smaller momenta as the initial tunneling time in-
creases. Secondly, the sharp peak on the right side at
the end of momentum distribution predicted by ADK is
not observed in the corresponding TDSE results. This
difference clearly indicates that the ADK model is un-
able to produce reliable parallel momentum spectra for
tunnel-ionized electrons involved in RESI, at least not
for the situations considered here. The high peak in the
momentum distributions is due to the fact that the ADK
model significantly overestimates the ionization rates.
Despite the distinct discrepancies between the paral-

lel momentum distributions from ADK and TDSE, both
exhibit a clear trend towards increasing asymmetry pa-
rameters with increasing initial ionization time. Below,
we analyze in detail the reason for this trend.
According to Eq. (19), the ADK rates for ionization

before (after) T/4 with A(t) < 0 (A(t) > 0) result in

momentum distributions with p
||
2 > 0 (p

||
2 < 0). For a

monochromatic laser field shown in Fig. 8(a), the ADK
rate as a function of time without taking into account
depletion is symmetric with respect to the peak of laser
field within each of a half cycle. However, once the de-
pletion effect can no longer be neglected, the ionization
rate at T/4 + t is always smaller than that at T/4 − t.
Therefore, the symmetry is broken and asymmetric mo-
mentum distributions with A < 1 are generated if the
initial ionization time is chosen to be ωtr = 0. How-
ever, as the initial ionization time increases, the total
yield before the laser field reaches its maximum value at
T/4 decreases. As a result, the asymmetry parameter for
the parallel momentum distributions increases. As seen
in Fig. 8, once the initial ionization time is sufficiently
“delayed”, the asymmetry parameter for the momentum
distribution becomes greater than one, which is referred
to as “antisymmetric” in the present paper.
We emphasize that the ADK model was only employed

here to analyze the trend of the asymmetry in the parallel
momentum distributions generated by solving the TDSE
shown in Figs. 7(d)−7(f). It was never adopted in the
numerical calculations for the CMD in this work, since for
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FIG. 9: (a,b,c): Right-side (p
||
1 > 0) correlated parallel mo-

mentum spectra for excitation tunneling from 2p0 in a 400 nm
laser field with a peak intensity of 6.5 × 1014 W/cm2 for
Ei = 45 eV and ωtr = 20◦, 40◦, and 70◦, respectively; (d,e,f):
Symmetrized full-space correlated parallel momentum spectra
obtained from (a), (b), and (c), respectively.

tunneling ionization considered here, the excited states
of He+ require special treatment due to the Coulomb
degeneracy [49, 50].

Next, we show that only with the “antisymmetric”
(A > 1) momentum distributions of the tunnel-ionized
electron can an anticorrelated CMD be formed. For this
purpose, we first display in Figs. 9(a)−9(c) the right-

side (p
||
1 > 0) CMD for excitation tunneling from 2p0 in

a 400 nm laser field with a peak intensity of 6.5 × 1014

W/cm2 with ωtr = 20◦, 40◦, and 70◦, respectively. Here,
for simplicity, we only choose Ei = 45 eV. Therefore, all
the CMDs in Figs. 9(a)−9(c) share the same distribu-

tion along p
||
1 , except that, as the initial ionization time

increases, the spectra move towards p
||
1 = 0 due to the

increasing potential change. On the other hand, the mo-
mentum distributions depicted in Figs. 9(a)−9(c) along

p
||
2 are different. They completely reflect the parallel mo-

mentum distributions for tunneling ionized electron dis-
played in Figs. 7(d)−7(f), respectively. The asymmetry
parameters for the parallel momentum distributions in
Figs. 7(d) and 7(e) are both close to one, but with a small
change from less than one to greater than one. On the
other hand, as the initial time increases further, the par-
allel momentum distributions in Fig. 7(f) become highly
asymmetric with a large asymmetry parameter close to
two.

The change of the asymmetry parameter from less
than one to greater than one leads to the transition of
RESI from (positively) correlated to anticorrelated elec-
tron emission. This is demonstrated in Figs. 9(d)−9(f),
which display the symmetrized full-space CMDs obtained
from Figs. 9(a)−9(c), respectively. The ratio of the total

yield in the fourth (second) quadrant to that in the first
(third) quadrant in the symmetrized full-space CMD is
the same as the ratio of the total yield in the region below

p
||
2 = 0 to that in the region above p

||
2 = 0 in the corre-

sponding right-side CMD. Furthermore, this is just the
asymmetry parameter for the parallel momentum distri-
butions of the tunnel-ionized electron. This is the reason
why the CMD in Fig. 7(f) exhibits a strong anticorrelated
behavior.

It should be noted that, in the QRS model, the laser-
induced electron is assumed to be ejected immediately
after recollision. Then, according to the above analysis
based on the ADK model, if the recollision takes place
at a time before the field reaches a maximum and the
excited electron ionizes after the field maximum or just
before the field reaches a maximum again, the two elec-
trons escape into opposite hemispheres. Otherwise, if the
two electrons are both ionized before the field maximum,
they move into the same hemisphere. This argument
is consistent with that made by Zhou et al. [15] in the
context of a trajectory analysis based on their classical
model.

Although the mechanism for anticorrelation has now
been clearly unveiled, there still exist two issues that
have not been addressed. (i) Why does the CMD for
n = 3 displayed in Fig. 6(b) show a (positively) cor-
related rather than an anticorrelated distribution? (ii)
Why does the anticorrelation disappear at high laser in-
tensities? To answer these questions, we again consider
the ionization rate. It is well known that the ionization
rate depends strongly on both the ionization potential
and the intensity of the laser field. Since the ionization
potential for n=3 is smaller than that for n=2, tunnel-
ing ionization occurs much faster such that the total yield
for single ionization during the time interval [ωtr, T/4]
could be larger than that in the subsequent time interval
[T/4, T/2]. This explains why, even with a larger initial
ionization time, the asymmetry parameters for the par-
allel momentum distributions of tunnel-ionized electrons
from 3s, 3p0, and 3p1 are much smaller than the corre-
sponding ones for the cases of 2s, 2p0, and 2p1, as demon-
strated in Fig. 3. Interestingly, Figs. 8(b) and 3(e) show
that the sharp peak near zero momentum in the paral-
lel momentum distributions for tunnel-ionized electrons
from 2p0 with ωtr = 80◦ obtained from the ADK model
is similar to that in the distributions for 3p0 evaluated
by solving the TDSE. This confirms again that the ADK
model overestimates the ionization rates significantly.

The absence of anticorrelation in the CMD for RESI
at high intensities is also attributed to the rapidly in-
creased ionization rate. Furthermore, it should be noted
that, at high intensities, recollisions at any time could
lead to RESI. Therefore, the average returning time is
smaller (earlier) than that at low intensities. As a result,
the total yield for single ionization during the time inter-
val [ωtr, T/4] is always larger than that in the subsequent
time interval [T/4, T/2]. Besides, for NSDI at intensities
in the regime above the recollision threshold, substantial



10

contributions from RDI will cause additional enhance-
ment of the probability for electron pairs being emitted
in the same direction parallel to the laser polarization.

IV. CONCLUSIONS

Using the improved QRS model, we have calculated
the correlated two-electron momentum distributions for
NSDI of helium in a 400 nm laser pulse at an intensity
well below the recollision threshold. Since the maximum
energy of the laser-induced returning electron (the first
electron), according to the classical rescattering model, is
not sufficient to promote the parent ion to its first excited
state, the lowering of the threshold due to the presence
of an electric field at the instant of recollision has to be
considered. To account for this effect in the numerical
calculations, we used an average (returning) recollision
time less than T/4 after a crossing of the driving field.
Other than that, all our theoretical treatments are based
on accurate, fully quantum mechanical calculations. The
present model predicts a distinct anticorrelation pattern
in the correlated two-electron momentum distributions,
which is in accord with existing theoretical results ob-
tained from (semi)classical models [15, 17].
In contrast to previous studies, however, our investi-

gation reveals that it is the antisymmetric parallel mo-
mentum distribution of the tunnel-ionized electron (the
second electron) that leads to the dominance of anti-
correlated emission. We found that the antisymmetry
of the parallel momentum distribution for the tunnel-

ionized electron is caused by a “delayed” recollision time.
The recollision time is forced to be delayed due to the
fact that, only when the barrier of the Coulomb poten-
tial is suppressed by a sufficiently large electric field at
the instant of recollision, can the laser-induced returning
electron donate enough energy to the ionic electron to be
excited. While the “delayed” recollision time predomi-
nantly determines the parallel momentum distribution of
the tunneling electron and plays a decisive role in form-
ing anticorrelation, the intensity and the wavelength of
the laser field as well as the ionization potential of the ex-
cited state from which the electron is tunnel-ionized are
additional quantities of high significance in anticorrelated
emission. The present work, therefore, provides a reason-
able explanation of the mechanisms leading to both anti-
correlated and (positively) correlated two-electron escape
in NSDI.
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Siegel, U. Morgner, R. Moshammer, and J. Ullrich,
Phys. Rev. Lett. 101, 053001 (2008).

[10] Y. Liu, D. Ye, J. Liu, A. Rudenko, S. Tschuch, M. Dürr,
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