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Spin systems such as silicon or nitrogen vacancy centers in diamond, quantum dots and quantum
dot molecules coupled to optical cavities appear as key elements for creating quantum networks as
not only constituting the nodes of the network, but also assisting the creation of photonic networks.
Here we study deterministic preparation of arbitrary size W states with spin systems. We present
an efficient operation on three qubits, two being the logical qubits and one being the ancillary qubit,
where no interaction between the logical qubits are required. The proposed operation can create
a W -type EPR pair from two separable qubits, and expand that EPR pair or an arbitrary size W
state by one, creating a W -like state. Taking this operation as the fundamental building block, we
show how to create a large scale W state out of separable qubits, or double the size of a W state.
Based on this operation and focusing on nitrogen vacancy (NV) centers in diamond as an exemplary
spin system, we propose a setup for preparing W states of circularly polarized photons, assisted by
a single spin qubit, where no photon-photon interactions are required. Next, we propose a setup
for preparing W states of spin qubits of spatially separated systems, assisted by a single photon.
We also analyze the effects of possible imperfections in implementing the gates on the fidelity of the
generated W states. In our setups, neither post-measurement, nor post-processing on the states of
spin or photonic qubit is required. Our setups can be implemented with current technology, and we
anticipate that they contribute to quantum science and technologies.

I. INTRODUCTION

Preparing multipartite entangled systems belonging to
basic classes such as GHZ [1], cluster [2], Dicke [3] and
W [4], is not only a critical step for enabling quantum
technologies but also vital for understanding the quan-
tum entanglement from a fundamental perspective. The
preparation methods for cluster and GHZ states are usu-
ally straightforward [2, 5] with ongoing efforts on various
physical systems such as quantum dot spins [6]. On the
other hand, an intense theoretical and experimental ef-
fort has been devoted to develop efficient methods for
preparing W states [7–15].
This is because an n-qubit cluster state in a generic

form can be prepared via a series of controlled gates and
single qubit rotation gates [16, 17], and a GHZ state in
the form

|GHZ〉 = |0〉⊗n + |1〉⊗n

√
2

(1)

can be prepared via a series of controlled-NOT gates and
Hadamard gates [5], efficiently. However, efficient prepa-
ration of an n-qubit W state requires more efforts due to
its sophisticated form [18]

|Wn〉 =
1√
n
(|0〉⊗(n−1)|1〉+

√
n− 1|Wn−1〉|0〉), (2)
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which reads for n = 4 as follows

|W4〉 =
1√
4
(|0001〉+ |0010〉+ |0100〉+ |1000〉). (3)

A probabilistic fusion setup for polarization based en-
coded photons was proposed [18] and further improved
for increasing the probability of success and simultaneous
fusion of several W states [19–26]. In a recent work, a
quantum eraser model was proposed to enhanced the W
state fusion process [27].
Fusion approach was applied to cavity-QED systems

for creating W states of atoms [28–32] and quantum dot
spins [33, 34]. Recently, it was shown that a double quan-
tum dot system can be used for fusing two W states of
spin qubits using Pauli spin blockade, requiring no cavi-
ties and ancillary photons [35].
Deterministic expansion schemes were proposed to pre-

pare W states of 4-qubits [36] and finally large-scale W
states of arbitrary number of polarization based encoded
photonic qubits [37]. This strategy was then considered
in preparing atomic qubits via cavities [31], and in im-
plementing efficient algorithms on IBM quantum com-
puter [38].
On the other hand, spin systems are of great impor-

tance in quantum science and technologies. However, a
deterministic expansion strategy for spin systems based
on spin-photon interactions is missing. Addressing this
problem in the present paper, we propose an optimum
three-qubit operation and present its circuit model de-
composed into only two- and single-qubit gates. The op-
eration applies on two logical qubits and one ancillary
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qubit, such that through the ancillary qubit, the desired
interaction between the logical qubits is realized without
any direct interaction between them.
Then, we first show how this three-qubit operation

can be implemented for a system where an ancillary spin
qubit assists preparing a W state of circularly polarized
photons. Next, we present the essential contribution of
this work, i.e., how to create large-scale W states of spa-
tially separated spins qubits, using an ancillary photon.
The proposed scheme can be realized in various spin

systems that possess spin selective reflectivity. Quantum-
dot-based technologies and NV centers are the most com-
mon platforms in which our proposed method can be ap-
plied. The required tasks to prepare W states can be
achieved by sequential detection of auxiliary photons in
a system with quantum dots or quantum dot molecules
coupled to plasmon or optical cavities [39, 40]. Similarly,
instead of quantum dots, spin states in solid-state mate-
rials such as silicon-vacancy centers in diamond [41, 42]
and silicon carbide [43, 44] can be considered as alterna-
tive platforms. Besides, various novel phenomena such
as spin selective metasurfaces [45], chiral molecules [46],
chiral metamirrors [47], and chiral coupling of valley ex-
citons [48] can be utilized to perform the operations re-
quired in the present scheme. Achieving high coherence
times even in the room temperature, NV centers cou-
pled to high quality optical cavities enable significant ad-
vances in quantum information science. Including the ad-
vantages and excluding the disadvantages of optical and
solid state systems, NV centers are considered as strong
candidates for distributed computing and quantum com-
munication among large-scale quantum networks [49–53].
Based on the interaction between an incident photon and
the NV center, it has been shown that it is possible to cre-
ate entanglement and even realize basic two- and three-
qubit gates between the electronic spins of spatially sep-
arated NV centers [54–65]. Very recently, the idea of
fusing two existing W states to create a larger one has
been studied for NV centers, opening a new direction in
this field [66]. Hence, we choose NV centers to give an
exemplary implementation of our general scheme based
on spin-photon interactions in microcavities.
This paper is organized as follows: In Section II, we

present the three-qubit operation in consideration. In
Section III, we present the physics of the NV center
briefly as the exemplary spin system, and the interaction
between an incident photon and the spin which realizes
a controlled-Z gate. In Section IV and V, we present
the implementations of this operation to create W states
of circularly polarized photons and spins qubits, respec-
tively. In Section VI, we analyze how possible imper-
fections in implementing the single- and two-qubit gates
affect the fidelity of the generated W state. In Section
VII, we discuss some advantages and drawbacks of the
present scheme and conclude.

II. A THREE-QUBIT OPERATION FOR
DETERMINISTIC PREPARATION OF W STATES

In the common scenario [54, 55, 59, 61–65], a three-
qubit operation can be considered for an ancillary pho-
ton and two spatially separated spin qubits to be en-
tangled. We will introduce such a three-qubit operation
as the basic building block, show how it can be real-
ized and used for preparing arbitrary size W states of
spins qubits. We will also show that this operation can
be used for preparing photonic W states, such that in-
stead of photon-photon interactions, each photon inter-
acts only with the spin qubits separately. This opera-
tion can be considered as an optimization of three-qubit-
extension of the two-qubit deterministic expansion cir-
cuit presented in Ref. [37] which consists of a controlled-
Hadamard and a controlled-NOT gate as shown in Fig. 1.
With a qubit in state |1〉 in input 1 and a qubit in state
|0〉 in input 2, this circuit performs the transformation

|10〉 → (|01〉 + |10〉)/
√
2. However, as will be detailed

later in this section, if the qubit in input 1 belongs to a
|Wn〉 state, the transformation results in an n+ 1 qubit
W -like state. Repeating the procedure for each qubit
of the initial |Wn〉 state (with an additional qubit in |0〉
state in input 2), a genuine |W2n〉 state is prepared.
Extending a general two-qubit operation -consisting of

two controlled gates- to a three qubit operation where
the logical qubits do not interact directly but the inter-
action is realized through an ancillary qubit, requires two
swap operations. Each swap operation can be realized by
three two-qubit gates (between the ancillary qubit and
the logical qubits), summing up to eight two-qubit gates.
However, because the input qubits of the deterministic
expansion operation in consideration have no general but
some specific states, that is, not {|00〉, |01〉, |10〉, |11〉} but
{|00〉, |10〉}, it is possible to remove half of the two-qubit
gates to realize this operation.
As illustrated Fig. 2, we consider two logical qubits

in the inputs 1 and 2, and an ancillary qubit in in-
put Anc. The circuit for the operation consists of four
controlled-Z (CZ) gates and eight single qubit gates, i.e.
six Hadamard gates and two T′ gates with the operation

T′ =

(

cos θ sin θ
sin θ − cos θ

)

, (4)

for θ = π
8 . It is straightforward to show that the overall

operation on three qubits in the computational basis is

O =
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FIG. 1. W state expansion circuit consisting of a controlled-
Hadamard gate followed by a controlled-NOT gate, as intro-
duced in Ref.[37]. With the i’th qubit of a |Wn〉 state in input
1 (for i = 1, 2, .., n), a qubit in |0〉 state in input 2 joins to
the W state, creating an n+1 qubit W -like state. Repeating
the procedure for each qubit of the initial |Wn〉 state, a |W2n〉
state is created.

Applying this operation and tracing out the ancillary
qubit, a W -type Bell pair in the form 1√

2
(|01〉 + |10〉)

can be created from a three qubit system initially in the
separable state |1〉|0〉|0〉 in inputs 1, Anc and 2, respec-
tively. In more detail, the transformation for the initial
state |1〉|0〉|0〉 is described as

T′
1,CZ1,T

′
2 → |1〉

( |0〉+ |1〉√
2

)

|0〉,

H1,CZ2,H2 →
( |1〉|0〉+ |0〉|1〉√

2

)

(|0〉) ,

H3,CZ3,H4 →
( |1〉|0〉|0〉+ |0〉|1〉|1〉√

2

)

, (6)

H5,CZ4,H6 →
( |1〉|0〉|0〉+ |0〉|0〉|1〉√

2

)

,

trAnc →
( |1〉|0〉+ |0〉|1〉√

2

)

,

that is, although the two qubits in input 1 and input 2
have never interacted directly, a two-qubit W type Bell
pair is created between them. Now, let us consider that
the qubit in input 1 is the i’th qubit of an n-qubit W
state in the form |Wn〉 = 1√

n

∑n
i=1

⊗n
j=1 |δij〉. Then,

this operation expands the state with the qubit in in-
put 2 (denoted as |0〉2), creating an n + 1 qubit W -like
state as follows. The i’th term of the initial state with
superposition coefficient 1/

√
n splits into two terms with

superposition coefficients each 1/
√
2n, as

|0〉⊗i−1 ⊗ |1i〉 ⊗ |0〉2 ⊗ |0〉⊗n−i

√
n

→ |0〉⊗i−1 ⊗ |1i〉 ⊗ |0〉2 ⊗ |0〉⊗n−i

√
2n

(7)

+
|0〉⊗i−1 ⊗ |0i〉 ⊗ |1〉2 ⊗ |0〉⊗n−i

√
2n

.

Taking this expansion operation as the basic building
block, it is easy to see that applying it to each qubit of
the initial n-qubit W state with a new qubit in input 2,

FIG. 2. Three-qubit circuit consisting of only two- and single-
qubit gates for implementing the basic expansion operation
O in Eq. 5. A qubit of the W state to be expanded is sent
through input 1, a qubit in state |0〉 in the computational
basis to join the W state through input 2, and the ancillary
qubit in state |0〉 is at Anc input. H represents Hadamard
gate, and T ′ gate is defined in the text. Controlled-Z gates
apply the operation |1〉|1〉 → −|1〉|1〉. Subscripts denote the
order of applying each gate of the same type.

a 2n-qubit W state is created, having 2n terms all with
coefficients 1/

√
2n.

In Fig. 3, we illustrate the first three steps of our
strategy for preparing a large scale W state, requir-
ing no initial entanglement. We start with a qubit
(red circle) in |1〉 state. In the first row, applying the
basic expansion operation (blue dashed rectangle) to
the qubit with an additional qubit (green circle) in |0〉
state (and the ancillary qubit in |0〉 state, not shown
in the figure) a W -type EPR pair is created. In the
middle row, the EPR pair is expanded with another
qubit in |0〉 state, creating a 3-qubit W -like state in the
form 1√

4
|100〉 + 1√

4
|010〉 + 1√

2
|001〉. The third step is

to expand the 3-qubit W -like state with another qubit
in |0〉 state, obtaining a 4-qubit W state in the form
1√
4
|1000〉+ 1√

4
|0100〉+ 1√

4
|0010〉+ 1√

4
|0001〉. It is straight-

forward to continue expanding the |W4〉 state in the same
fashion.
Besides starting with qubits initially in a separable

state, it is also possible to double the size of an exist-
ing n-qubit W state. Assuming that each intermediate
step for expanding the state by one qubit is appropri-
ately achieved -which can also be done in parallel, we
now move to a more intuitive notation. We consider that
the initial state is in the form |Wn〉|0〉⊗n|0〉⊗n

Anc, which re-
quires swapping qubits appropriately so that each triple
of qubits shall consist of one qubit of the W state, one
ancillary qubit, and one qubit to join the W state, re-
spectively. For n = 3, the overall expansion process can
be described as

|W3〉|0〉⊗3|0〉⊗3
Anc

→ tr2,5,8[O
⊗3(SW5,9SW3,4SW2,7)(|W3〉|0〉⊗3|0〉⊗3

Anc)]

= |W6〉,
(8)

where tri denotes tracing out i’th qubit and SWi,j de-
notes swapping i’th and j’th qubits. For n qubits, de-
noting the overall qubit swap operations as SWAP, the
expansion process reads
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FIG. 3. Large scale W -state preparation strategy, starting
from initially separable qubits in |1〉 and |0〉 states in the first
step (first row), shown with red and green circles, respectively.
Blue dashed rectangle represent the expansion process and
the ancillary qubit is not shown for clarity. A 3-qubit W -like
state is prepared in the second step (middle row) which is
then expanded to a genuine |W4〉 state in the third step (last
row).

|Wn〉|0〉⊗n|0〉⊗n
Anc

→ tr2,5,..,3n−1[O
⊗nSWAP(|Wn〉|0〉⊗n|0〉⊗n

Anc)]

= |W2n〉.
(9)

On the contrary to inherently probabilistic fusion
or expansion operations presented in Refs. [8–12, 18–
24, 30, 32, 33], this operation is in principally determin-
istic, i.e. besides inevitable experimental imperfections -
which also exist in fusion operations, the resultant state is
predicted with certainty, requiring no post-measurement
that would possibly destroy some of the qubits and shrink
the size of the target state.

III. PHYSICAL MODEL

We consider an NV-center coupled to an optical cavity.
When an incident photon is introduced to the cavity, the
Langevin equations can be solved and neglecting the vac-
uum input field in the rotating frame, assuming weak as-
sumption limit 〈σz〉 = −1 and adiabatically eliminating
the cavity mode, the reflection coefficient for the input
photon pulse is found as [67–69]

r(ωp) =
[i(ωC − ωp)− κ

2 ][i(ω0 − ωp) +
γ
2 ] + g2

[i(ωC − ωp) +
κ
2 ][i(ω0 − ωp) +

γ
2 ] + g2

, (10)

where ωp, ωC and ω0 are the frequency of the incident
photon, frequency of the cavity field and the transition
frequency of the electronic energy levels, respectively. g
is the coupling strength of the cavity to the NV center,
κ is the cavity decay rate and γ is the NV center decay
rate.

FIG. 4. Λ type optical transitions possible in an NV center.
The transitions |−〉 ↔ |e〉 and |+〉 ↔ |e〉 are associated with
the left and right polarization of the photon, denoted as |L〉
and |R〉 respectively.

If the NV center is uncoupled from the cavity, the reflec-
tion coefficient for the input photon becomes

r0(ωp) =
i(ωC − ωp)− κ

2

i(ωC − ωp) +
κ
2

. (11)

The reflection coefficients can be obtained for the reso-
nant condition ωp = ω0 = ωC as

r(ωp) =
−κγ + 4g2

κγ + 4g2
, and r0(ωp) = −1. (12)

|R〉 and |L〉 denoting the right and left circular po-
larization states, respectively, due to the spin-dependent
optical transition rules [62] as simply illustrated in Fig. 4
and optical Faraday rotation, an |R〉 polarized incident
photon receives a phase shift eiφ0 . Because, due to large
level splitting, the spin state of the NV center is decou-
pled from the incident pulse [67]. However, if the incident
photon is |L〉 polarized, it will receive a phase shift eiφ

(eiφ0) depending on the spin state of the NV center |−〉
(|+〉), where φ and φ0 are the arguments of the complex
numbers r(ωp) and r0(ωp), respectively. For the resonant
condition, and g > 5

√
κγ, one approximately finds φ = 0

and φ0 = π. Placing a π phase shifter to the photon re-
flection path, a controlled-Z gate between the electronic
spin of the NV center and the incident photon is realized
as |R〉|+〉 → |R〉|+〉, |R〉|−〉 → |R〉|−〉, |L〉|+〉 → |L〉|+〉,
|L〉|−〉 → −|L〉|−〉 [59, 62, 64]. Note that the implemen-
tations of single qubit operations on NV center spins and
incident photons are presented in the Appendix.

IV. CREATING OR EXPANDING A
PHOTONIC W STATE USING AN NV CENTER

In this section, we first present how a W -type photonic
Bell state in the form |W2〉 = 1/

√
2(|L〉|R〉 + |R〉|L〉)

can be created from an initially separable state of two
photons in the circular polarization states |R〉 and |L〉.
The strategy is as follows: A photon in input 1, spin
in the NV center (as the ancillary qubit) and a photon
in input 2 are prepared in the |L〉 ⊗ |+〉 ⊗ |R〉 state,
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FIG. 5. NV center assisted setup for creating or expanding
photonic W states. H denotes the Hadamard gate. Delay is
to denote that the photon in input 2 arrives to the setup after
an arbitrary time. The π phase shifter on the photon output
paths are not shown for clarity. For the definition T′ gate and
overall operation of the setup, please see the text.

respectively. The setup for physical realization of the
circuit model in Fig. 2 is presented in Fig. 5. A T′

1 gate
is applied to the NV center spin, before and after the
interaction between the photon in input 1. A Hadamard
gate is applied to the photon in input 1, before and after
the second interaction. Next, comes the photon in input
2. A Hadamard gate is applied to the photon, and the
NV center spin, before and after the first, and the second
interactions, respectively. In summary, starting with
an initial |L〉|+〉|R〉 state and applying the gates with
indices as shown in Fig. 2 and finally tracing out the
NV spin, one obtains the state 1/

√
2(|L〉|R〉 + |R〉|L〉).

That is, although the two photons in input 1 and input
2 have never interacted directly, a two-photon W -type
Bell pair is created between them.

We now proceed with the strategy how an arbitrarily
large W state of n photons in the form

|Wn〉 =
1√
n
( |L1R2...Rn−1Rn〉+ |R1L2...Rn−1Rn〉

+ ...+ |R1R2...Rn−1Ln〉)
(13)

can be expanded to a W state of 2n photons. Each pho-
ton of the W state is sent to the NV center in Fig. 5 to-
gether with a |R〉 polarized photon through inputs 1 and
2, respectively. NV center spin which is initially prepared
in |+〉 state is found in the same state after each oper-
ation. Therefore, the same NV center spin can be used
arbitrary times before it decoheres, or setting it back to
|+〉 state between the expansion operations. Each op-
eration expands the size of the state by one, creating
a W -like state with weighted superposition coefficients,
and through the final operation, a genuine |W2n〉 state is
obtained.

FIG. 6. Setup for realizing the basic expansion step for
preparing large-scale W state of NV center spins, via an an-
cillary photon. The photon interacts with the first NV center
between two T ′ gates defined in the text. Before and af-
ter the second interaction, Hadamard gates are applied to the
NV center. Then the photon is sent to the spatially separated
NV center. Before and after the first interaction, Hadamard
gates are applied to the NV center and finally, Hadamard
gates are applied to the photon before and after the second
interaction. The π phase shifter on the photon output paths
are not shown.

V. CREATING OR EXPANDING A W STATE
OF DISTANT NV CENTER SPINS USING AN

ANCILLARY PHOTON

We now present how to create a two-qubit W -type Bell
pair, and how to expand an arbitrary size W state of
distant NV center spins in the form

|Wn〉 =
1√
n
( | −1 +2...+n−1 +n〉+ |+1 −2...+n−1 +n〉

+ ...+ |+1 +2...+n−1 −n〉)
(14)

via an ancillary photon, implementing the circuit model
in Fig. 2. An NV center (NV2) with the spin state |+〉 is
in input 2, and the ancillary photon in the state |R〉 is in
Anc input. In the W -type Bell pair creation scenario, an
NV center in the state |−〉, and in the W state expansion
scenario, an NV center spin as one of the qubits of the
W state is in input 1 (NV1). As illustrated in Fig. 6, the
photon interacts with NV1 between two T ′ gates. Be-
fore and after the second interaction, a Hadamard gate
is applied to NV1. Then the photon is sent to NV2

which is subject to Hadamard gates before and after the
first interaction. Finally, the photon interacts with NV2

again, between two Hadamard gates. It is straightfor-
ward to show that this setup realizes the circuit model
in Fig. 2, achieving the operation O in Eq. 5. That is,
a three-qubit system of NV1, ancillary photon and NV2

initially prepared in |−〉|R〉|+〉 state is transformed into

1/
√
2(|−〉|R〉|+〉+ |+〉|R〉|−〉) state, i.e. creating W -type

Bell pair 1/
√
2(|−〉|+〉+ |+〉|−〉) between two distant NV

center spins, leaving the ancillary photon in the |R〉 state



6

FIG. 7. An ancillary photon (Anc) in |R〉 circular polarization
state is sent to a pair of NV centers, first (red circle) belonging
to the |Wn〉 state to be expanded, and second (green circle)
being the one to join to the W state. Each operation ex-
pands the state by one qubit, creating W -like state, and with
the last operation on n’th pair, a |W2n〉 state is obtained.
Alternatively, n ancillary photons can be used to realize the
expansion process in parallel. Single qubit gates (in Fig. 6)
and the π phase shifter on the photon output paths are not
shown.

ready for another operation.
The implementation of the strategy of Fig. 3 for ex-

panding a |Wn〉 state to a |W2n〉 state is as follows, and
illustrated in Fig. 7. An ancillary photon in |R〉 state is
sent to each pair of NV centers, first being a qubit of the
W state to be expanded, and second being the additional
qubit to join the W state. Single qubit operations are ap-
plied appropriately as shown in Fig. 6. Each of the n− 1
operations expands the W state by one qubit, leading to
a W -like state with weighted superposition coefficients,
as explained in Section III. Finally, the last operation
creates a genuine |W2n〉 state.
Due to the flexibility of our model, the same ancillary

photon can be used to apply the operations by traveling
among each pair of NV centers consecutively in a serial
manner, or n distinct ancillary photons can be used in
parallel. For the latter case, the transformation |Wn〉 ⊗
|R〉⊗n ⊗ |+〉⊗n → |W2n〉 ⊗ |R〉⊗n is achieved and a W
state of 2n NV center spins is prepared.

VI. FIDELITY ANALYSIS DUE TO
IMPERFECTIONS

In this section, we analyze the effects of non-ideal gates
of the circuit presented in Fig.2 on the fidelity of the pre-
pared W state. We assume that the initial logical and
ancillary qubits are prepared in the ideal state, and af-
ter the operations, the ancillary qubit is left in its ideal
initial state (or that after each round, a fresh ancillary
qubit can be prepared). Because no post-measurements

are required, we focus on possible imperfections in imple-
menting controlled-Z (CZ), Hadamard and T ′ gates. We
consider non-ideal Hadamard and T ′ gates as follows:

H (α) =

(

cos (θ − α) sin (θ − α)
sin (θ − α) − cos (θ − α)

)

, (15)

T′ (β) =

(

cos (θ − β) sin (θ − β)
sin (θ − β) − cos (θ − β)

)

, (16)

with θ = π/4 and θ = π/8. They represent ideal
Hadamard and T ′ gates for α = 0 and β = 0, respec-
tively. Similarly, a non-ideal CZ gate is considered as a
general controlled-phase gate

CP(γ) =







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 Exp[i(π − γ)]






, (17)

representing an ideal CZ gate for γ = 0. Hence, for a non-
zero α, β or θ, not a genuine W state but a W -like state
is obtained. We calculate the fidelity of the W -like state
obtained in the size doubling process, i.e. |Wn〉 → |W2n〉
with respect to these imperfections. We first find that
the fidelity does not depend on the number of qubits, n.
This can be interpreted as follows, and be related to the
robustness of W states. Unlike a GHZ state for example,
in each superposition term of a W state, only one qubit
is in |1〉 state.
Therefore, although we do not measure and learn

which one, each controlled-gate in the circuit in Fig.2 ap-
ply (ideal or non-ideal) Z operation only when the logical
qubit in input 1 is in |1〉, and apply an identity operator
otherwise. In the latter case, applying two single qubit
gates of the same type consecutively is equivalent to an
identity operator, as well. Hence, for an arbitrary n, in-
cluding the case (n = 1) where an EPR pair is created
from two separable qubits, the fidelities with respect to
each imperfection separately and the combined one are
found as
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FIG. 8. Fidelity as a function of imperfection in CZ gate (dot-
ted red curve), T ′ gate (dashed green curve), Hadamard gate
(dotdashed blue curve), and combined (solid black curve). For
Θ = π/60 with all gate the imperfections combined, fidelity
is greater than 0.97.

We plot the fidelity results with respect to the same
parameter, 0 ≤ Θ ≤ π/60 in Fig.8, and find that for
Θ = π/60 with all the gate imperfections combined, fi-
delity is greater than 0.97.

VII. DISCUSSION

The analyses in Refs.[56, 59, 66] suggest that the
present setups are feasible with the current technology.
Previous proposals and experimental demonstrations for
preparing W states based on fusion strategies are in-
herently probabilistic, requiring post-selection and possi-
bly post-processing even in the ideal experimental condi-
tions. This causes a significant decrease in the efficiency
of the strategies, requiring a sub-exponential resource
cost in the optimal case as shown in Monte Carlo simula-
tions in Refs. [18, 21]. However, we call our schemes de-
terministic in principle because in an ideal experimental
realization, no matter what technology and what kind of
qubits are used, our circuit model illustrated in Fig. 2
operates in a deterministic way. Besides possible ex-
perimental imperfections -which are plausibly minimized
using NV centers even in the room temperature- the
spin-photon interaction is not ideal due to broad phonon
sideband. However, being deterministic in principle, the
present proposal can be significantly more efficient than
the proposals which are probabilistic even without in-
cluding the experimental imperfections.
Another essential aspect of the present proposal is that,

in most of the proposals based on spin systems, after
the interaction with the incident photon, an extra pho-
ton is required to interact with spin qubit to reveal the
spin state or the entangled state created between the
qubits. Our proposal on the contrary, does not require
such a post-measurement or forward processing which re-
quires additional interactions. Similarly to a recent work
on implementing the Magic Square Game with quantum
dots [70], the ancillary system herein is used just like
a catalyzer, left in the initial state after the operation
and can be used again. Note that in any task based on

distant spin or atomic qubits and traveling ancillary pho-
tons such as [54, 55, 59, 61–65, 70] operations on three or
more qubits are implicitly realized. Hence, considering a
three-qubit operation as the basic building block enables
a more systematic approach. The three-qubit operation
O presented in Eq. 5 and its applications to W states of
photonic or spin qubits can be used not only to expand a
|Wn〉 with n qubits to a |W2n〉 in a deterministic way, but
also to expand a W state with arbitrary size of qubits in
a probabilistic way with specific fidelities, following the
approach presented in Ref. [37].
Note that we do not exclude the possibility of fur-

ther decreasing the two-qubit operations (realized by
the interaction of the incident photon with the spin).
However, such a reduction would break the in-principle-
deterministic nature of our proposal, requiring post-
measurements and post-processing, achievable by intro-
ducing additional two-qubit operations, resulting in the
increase of the number of overall two-qubit operations.
Regarding the feasibility of our setup, experimen-

tal demonstrations of polarization independent couplers
with high efficiency were reported [71, 72]. Micro-
toroid resonators with whispering gallery modes (WGM)
have been considered for realizing the photon-NV cen-
ter spin interactions [55–57, 61–66]. Due to the non-
transversality of WGM, the WGM resonators behaves
differently from conventional ring or Fabry-Perot res-
onators [73]. That is, the orthogonal polarization states
are correlated with the propagating directions of the
photons, making the counter-propagating photons dis-
tinguishable. As an alternative to WGM microtoroid
cavities, single-sided cavities can be utilized for realiz-
ing the interactions required in our setups. Single- and
double-sided cavities have been recently attracted atten-
tion for realizing spin-photon interactions [74–78]. On
the other hand, due to their relatively low Q-factors, a
major issue in using single-sided optical cavities is that
photon losses and effective weak measurements can de-
crease the fidelity of the prepared state. However, con-
sidering the NV center in diamond in a photonic crystal
(PC) modeled as a single-sided low-Q cavity, Young et
al. showed that the NV center spin can be efficiently
measured with high fidelity, and that with appropriate
modifications, their system can be used for entangling
spatially separated NV center spins [79]. Achieving Q-
factors up to 107 [80], PCs are promising as cavities for
NV center spins, and experimental demonstrations have
been reported [81–84].
An interesting future problem is to design error correc-

tion mechanisms for systems such as the one presented
herein based on spin-photon interactions.
In conclusion, we proposed a three-qubit operation for

creating and expanding arbitrary size W states and de-
composed this operation into only two- and single-qubit
gates. We showed that this operation can be imple-
mented for, i) photonic systems, assisted by an ancillary
spin qubit, and ii) spin qubits, assisted by an ancillary
photonic qubit. We presented two exemplary setups for
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NV center systems in microcavities. We analyzed the ef-
fects of experimental imperfections in implementing the
gates on the fidelity of the prepared W state.
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APPENDIX

Single qubit operations on photons considered in this
paper can be realized simply by an half wave plate
(HWP) with the operation [85]

HWP(θ/2) =

(

cos θ sin θ
sin θ − cos θ

)

, (18)

which realizes an Hadamard gate for θ = π/8 and a T ′

gate for for θ = π/16.
For the single qubit operations on NV center spins,

EM pulses can be used as described in Refs. [86, 87].

Here, we follow holonomic quantum computation which
attracted much attention recently [88–91]. In Ref. [91]
it was demonstrated that the highest excited state |e〉
can be connected to |−〉 and |+〉 states by a single tun-
able laser which can generate frequency side-bands and
nanosecond pulses [92] by electro-optical modulation. In
the rotating frame, the system is described by the Hamil-
tonian

H(t) =
~Ω(t)

2
(u|e〉〈−|+ v|e〉〈+|+ h.c.) + ∆|e〉〈e|. (19)

Here, Ω(t) is the pulse envelope for both tones and
the transitions associated with |−〉 ↔ |e〉 and |+〉 ↔
|e〉 are scaled by complex constants u = sin(θ/2) and
v = −e−iφ cos(θ/2), respectively, controlled by the tun-
ing of the relative strength and phase between the car-
rier and sideband frequencies. ∆ denotes the pho-
ton detuning. The dark state of the Hamiltonian de-
coupled from the dynamics is |d〉 = cos(θ/2)|−〉 and
the bright state which undergoes an excitation to |e〉
is |b〉 = sin(θ/2)|−〉 − eiφ cos(θ/2)|+〉. For the pulse

duration τ = 2π
√
Ω2 +∆2, a purely geometric opera-

tor is realized via the cyclic, non-adiabatic evolution in
{|b〉, |d〉} subspace as U(θ, φ,∆/Ω) = |d〉〈d| + eiγ |b〉〈b|,
with γ = π(1 −∆/

√
Ω2 +∆2), which performs

U(θ) =

(

cos θ sin θ
sin θ − cos θ

)

. (20)

for γ = π and φ = 0 up to a global phase [89]. Hence,
Hadamard and T ′ gates can be realized for θ = π/4 and
θ = π/8, respectively.
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