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We propose and analyze a setup to tailor the wave functions of the quantum states. Our setup
is based on the quantum teleportation circuit, but instead of the usual two-mode squeezed state,
two-mode non-Gaussian entangled state is used. Using this setup, we can generate various classes
of quantum states such as Schrödinger cat states, four-component cat states, superpositions of Fock
states, and cubic phase states. These results demonstrate the versatility of our system as a state
generator and suggest that conditioning using homodyne measurements is an important tool in the
generations of the non-Gaussian states in complementary to the photon number detection.

I. INTRODUCTION

Quantum information processing is widely researched
with expectations of broad applications [1]. Among
many candidates, continuous-variable (CV) optical sys-
tems are currently one of the most promising platforms
in terms of scalability. In CV optical systems, re-
sources for measurement-based quantum computation
(MBQC) [2, 3]—the cluster states—have been gener-
ated in a scalable fashion using time-domain multiplexing
method [4–7] and frequency-domain multiplexing method
[8], and basic operations on time-domain-multiplexed
cluster states have been recently demonstrated [9, 10].
To achieve universal MBQC, however, non-Gaussian ele-
ments have to be added to the cluster states [11, 12].

A direct way to add the non-Gaussian elements is
adding non-Guassian measurements to the cluster state.
This, however, is experimentally difficult, especially in
optical systems, where direct non-Gaussian measure-
ments are usually either probabilistic or require the non-
available strong nonlinearity. A more viable option is to
use ancillary non-Gaussian states (such as cubic phase
states) and realize non-Gaussian operations via gate tele-
portation protocol [13, 14]. In addition, non-Gaussian
states also have many other applications. For example,
a superposition of coherent states—commonly known as
a Schrödinger cat state—have applications in quantum
computation [15–18], quantum communication [19, 20],
and quantum error correction [21–23]. Another non-
Gaussian state called Gottesman-Kitaev-Preskill (GKP)
qubit is currently the most promising logical qubit for
fault-tolerant CV quantum computation [14, 24–29].

Despite their varieties, optical generations of non-
Gaussian states are mostly based on the same idea: the
quantum state is first represented in the photon num-
ber basis (Fock basis), i.e. |ψ〉 =

∑∞
n=0 cn |n〉, and the

target state is obtained by truncating the superposition
below a certain maximum photon number, |ψtarget〉 ≈
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∑nmax

n=0 cn |n〉. Then, we can find a setup that consists
of squeezed light sources, linear optics, and photon num-
ber detectors that herald |ψtarget〉 when particular results
are detected by the photon number detectors. Based on
this idea, generations of various non-Gaussian states have
been explored [18, 22, 29–41]. In this approach, however,
the generation system is highly dependent on the tar-
get states and the generation systems tend to become
more complex when the maximum photon number in-
creases. Also, although these generations are formulated
based on Fock basis, for CV quantum states, phase space
representation in quadrature basis is also a natural rep-
resentation. As the examples of previous researches in
this direction, generation of non-Gaussian state by the
implementation of the quadrature operator [42], gener-
ation and amplification of Schrödinger cat states using
conditional homodyne measurement [43, 44], and high-
rate Schrödinger cat state generation formulated using
the wave function picture [45] have been studied. Even
so, the non-Gaussian state generation using the quadra-
ture basis has remained largely unexplored.

In this paper, we present a methodology to tailor
the wave functions of the quantum states using quan-
tum teleportation circuit and non-Gaussian entangle-
ment resource. The idea of our protocol is based on
gate teleportation protocol [13, 14], where we have de-
signed the non-Gaussian two-mode resource states to be
equivalent to EPR state—a resource state for CV quan-
tum teleportation—with quadrature operators (such as
x̂) acting on one of its mode in the ideal limit. As
the quadrature operators and their polynomials are non-
unitary, we need to use the conditional quantum telepor-
tation instead of the conventional unconditional quantum
teleportation in the state preparation using our proto-
col. In this case, the measurement results of the Bell
measurements herald the generated states. In addition,
this teleportation-based architecture possesses high affin-
ity with the time-domain-multiplexing method [46], mak-
ing it possible to realize our scheme in a scalable fashion.
Our results demonstrate a programmable and scalable
non-Gaussian quantum state generator that utilizes the
quadrature basis.
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The paper is structured as follows. In Sec. II, we define
the basic notations. In Sec. III, we analyze our method-
ology. In Sec. IV, we show the actual generations of var-
ious non-Gaussian states: Schrödinger cat states, four-
component cat states, superpositions of Fock states, and
cubic phase states. We discuss success rate and realistic
implementation of our architecture in Sec. V. Finally, we
conclude our paper in Sec. VI.

II. NOTATIONS

In CV systems, the quadrature operators x̂ and p̂ sat-
isfy commutation relation: [x̂, p̂] = i, where we use ~ = 1.
The quadrature operators are related to the annihilation
and creation operators via

x̂ =
1√
2

(â+ â†), (1)

p̂ =
1

i
√

2
(â− â†), (2)

with [â, â†] = 1, and the effect of the annihilation and
the creation operators on the Fock basis |n〉 are

â |n〉 =
√
n |n− 1〉 , (3)

â† |n〉 =
√
n+ 1 |n+ 1〉 . (4)

For a quantum states |ψ〉, the wave function in x and
p are given by

ψ(x) = 〈x|ψ〉 , (5)

ψ̃(p) = 〈p|ψ〉 , (6)

respectively. Here |x〉 and |p〉 are eigenvectors of the
quadrature operator x̂ and p̂ which satisfy x̂ |x〉 = x |x〉
and p̂ |p〉 = p |p〉. When quadrature operators act on the
quantum states, they transform the wave functions into
a new (unnormalized) wave function given by

〈x|x̂ |ψ〉 = xψ(x), (7)

〈x|p̂ |ψ〉 = −i d

dx
ψ(x), (8)

〈p|x̂ |ψ〉 = i
d

dp
ψ̃(p), (9)

〈p|p̂ |ψ〉 = pψ̃(p). (10)

In the quantum teleportation circuit, the ideal two-
mode resources are called EPR states and their unnor-
malized form are given by

|EPR〉 =

∫
dx |x〉1 |x〉2 =

∞∑
n=0

|n〉1 |n〉2 . (11)

Note that unless stated otherwise, we assume that the
ranges of the integrations are always from −∞ to ∞. In
the physical setting, two-mode squeezed state (TMSS) is

used instead of the EPR state and it can be represented
as

|TMSS〉 =

∫
dx1dx2 ΨTMSS(x1, x2) |x〉1 |x〉2

=
√

1− η2
∞∑
n=0

ηn |n〉1 |n〉2 ,
(12)

with

ΨTMSS(x1, x2) = exp

[
−e

2r

2

(
x1 − x2√

2

)2
]

× exp

[
−e
−2r

2

(
x1 + x2√

2

)2
] (13)

η = tanh r, (14)

where r is the squeezing parameter of the initial squeezed
vacua used in the generation of TMSS and is assumed to
be initially equal for both modes. We can see that in the
limit of the infinite squeezing, the first term approaches
δ(x1−x2), while the second term is a Gaussian envelope
that becomes broader as r increases.

TMSS can be generated by mixing two orthogonal
squeezed lights on a beam splitter:

|TMSS〉 = B̂Ŝ1(−r)Ŝ2(r) |0〉1 |0〉2 . (15)

S(r) := exp
[
r
2 (â2 − â†2)

]
is a squeezing operator where

r > 0 (r < 0) corresponds to squeezing in x̂ (p̂) quadra-

ture. B̂ is an operator of 50:50 beamsplitter interaction
which transforms the annihilation operator of the two
modes as

B̂†
(
â1
â2

)
B̂ =

1√
2

(
1 −1
1 1

)(
â1
â2

)
. (16)

III. PROPOSED SETUP

In this section, we analyze the proposed setup. The
generalized form of our setup is shown in Fig. 1. This
setup consists of photon-subtracted two-mode entangle-
ment and conditioning quantum teleportation with that
resource. Let us look at each component.

A. Photon-subtracted TMSS

We consider what happens when photon subtractions
are combined with TMSS. The main reason we consider
this type of state is that the quadrature operators can be
written as superpositions between the annihilation and
creation operators. Therefore, as we will shortly show,
by implementing the photon subtraction before the 50:50
beamsplitter, we can easily implement the superposition
of the annihilation and the creation operator, i.e. quadra-
ture operators, on one of the modes of the TMSS. First,
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FIG. 1. Schematic diagram of the proposed setup. Our setup
is a quantum teleportation circuit where the usual two-mode
squeezed state (TMSS) are replaced with the states which
we will call non-Gaussian entangled state (NGES). One of
the possible generation methods used in the analysis in this
paper is that by photon subtractions on the squeezed states
used in the generation of the TMSS. The success of the proto-
col is conditioned by certain measurement results at the Bell
measurements.

let us consider subtraction of k photons from one of the
mode of the TMSS. This state can be written as

(â1)k |TMSS〉 =

∞∑
n=k

ηn

√
n!

(n− k)!
|n− k〉1 |n〉2 . (17)

Note that we will omit the normalization factor for the
simplicity. The above equation can be equivalently writ-
ten as

(â1)k |TMSS〉 = (â†2)k
∞∑
n=k

ηn |n− k〉1 |n− k〉2

= (ηâ†2)k |TMSS〉 .

(18)

This means that photon subtraction in a single mode can
be considered as photon addition in another mode with
additional factor η.

Now let us return to the non-Gaussian entanglement in
Fig. 1. The non-Gaussian entangled state |NGES(k, l)〉
is given by

|NGES(k, l)〉 = B̂(â1)k(â2)lŜ1(−r)Ŝ2(r) |0〉1 |0〉2 . (19)

Using the beamsplitter transformation, this state can be
transformed into

|NGES(k, l)〉 =

(
â1 + â2√

2

)k (
â1 − â2√

2

)l
|TMSS〉 . (20)

Using Eq. (18), we get

|NGES(k, l)〉 = f̂k,l(η) |TMSS〉 , (21)

where

f̂k,l(η) ≡ 1√
2k+l

k+l∑
j=0

ck,lj âk+l−j2 (ηâ†2)j (22)

and ck,lj is a coefficient of the polynomial

(a+ b)k(a− b)l =

k+l∑
j=0

ck,lj ajbk+l−j . (23)

Therefore, by implementing photon subtractions on
the initial squeezed states, we can implement a poly-
nomial of annihilation and creation operators on one of
the modes of the TMSS. This is because the subtraction
before the beamsplitter is equivalent to the superposi-
tion between the photon subtraction on each mode of the
TMSS, which is also equivalent superposition of the pho-
ton subtraction and addition on one of the modes. In that
sense, the physical intuition of our method is that quan-
tum teleportation using this non-Gaussian entanglement
is roughly the same as the implementation of the polyno-

mial fkl(â2, ηâ
†
2) on the input state. The implementation

of the coherent superposition of the annihilation and the
creation operators on a quantum state has been studied
in a different context [47]. There are also effects from the
measurement results of the bell measurements which will
be discussed in Sec. III B.

Although Eq. (21) and Eq. (22) give complete charac-
terization of NGES, it will be more convenient to define

f̂k,l(η) via a recursive formula. From Eq. (21), we can
write down the following recursive formula

f̂k,l =
1√
2
âf̂k−1,l +

1√
2
ηf̂k−1,lâ

†, (24)

f̂k,l = − 1√
2
âf̂k,l−1 +

1√
2
ηf̂k,l−1â

†, (25)

with f̂0,0 = Î and we dropped the index “2” and the

dependence on η of f̂k,l(η). This can be further written
using quadrature operators as

f̂k,l =
1

2

(
x̂f̂k−1,l + ηf̂k−1,lx̂

)
+
i

2

(
p̂f̂k−1,l − ηf̂k−1,lp̂

)
,

(26)

f̂k,l =− 1

2

(
x̂f̂k,l−1 − ηf̂k,l−1x̂

)
− i

2

(
p̂f̂k,l−1 + ηf̂k,l−1p̂

)
.

(27)

In the limit of η → 1, we can show that f̂k,0 is the poly-

nomial of solely x̂ and f̂0,l is the polynomial of solely p̂.

This can be done as follows. Let us put ĝk,l ≡ limη→1 f̂k,l.
Then,

ĝk,l =
1

2
{x̂, ĝk−1,l}+

i

2
[p̂, ĝk−1,l], (28)

ĝk,l = −1

2
[x̂, ĝk,l−1]− i

2
{p̂, ĝk,l−1}. (29)

As we can easily show that ĝ1,0 = x̂ and ĝ0,1 = −ip̂, using
the recursive formula of the Hermite polynomial, we can
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write down

ĝk,0 =
1

(2i)k
Hk(ix̂), (30)

ĝ0,l =
1

(−2)l
Hl(ip̂), (31)

where Hn(·) is the Hermite polynomials of the order n.
The reason that both ĝk,0 and ĝ0,l are polynomial in x̂
or p̂ with real coefficients is because we are utilizing the
phase information and the splitting ratio of the beam-
splitter, whereas general arbitrary superposition of the
annihilation and creation operators do not necessarily re-
sult in the real-coefficient polynomial in the quadrature
operators.

As an example of f̂k,l, we list a few of them here. Note

that f̂k,l are always at most the polynomial of the order
k + l in x̂ and p̂.

f̂1,0 =
1 + η

2
x̂+ i

1− η
2

p̂ (32)

f̂0,1 = −1− η
2

x̂− i1 + η

2
p̂ (33)

f̂1,1 = −1− η2

4
(x̂2 − p̂2)− i1 + η2

4
(x̂p̂+ p̂x̂) (34)

f̂2,0 =

[
1 + η

2

]2
x̂2 +

[
i
1− η

2

]2
p̂2

+
1

4
(η2 − 1 + 2η)

(35)

B. Output states

Now that we have established that our two-mode re-
source is equivalent to coherent superposition of photon
subtraction and photon addition acting on one of the
modes of the TMSS, we look at the conditional quantum
teleportation part. When we implement Bell measure-
ment, we are projecting the mode “in” and “1” onto the
displaced EPR states via the projection operator:

Π̂(mx,mp) =

D̂x,in(mx)D̂p,1(mp) |EPR〉in,1 〈EPR| D̂†x,in(mx)D̂†p,1(mp),

(36)

where the displacement operators D̂x(mx) and D̂p(mp)

transform quadrature operators as D̂†x(mx)x̂D̂x(mx) =

x̂ + mx and D̂†p(mp)p̂D̂p(mp) = p̂ + mp. Note that mx

and mp are not directly the measurement results of the
two homodyne measurements but are related to that by
a factor of

√
2. We, however, use the projector operator

in Eq. (36) so that we do not have the factor
√

2 in all
the equations below.

Then, if we denote ψin(x) as a wave function of the in-
put mode, the output after the conditional teleportation
before the displacement operations can be written down
as

|ψ′〉 = D̂†p(mp)D̂
†
x(mx)

∫ ∫
dxdx′ eimp(x−x′)

ψin(x)ΨTMSS(x−mx, x
′ −mx) |x′〉 . (37)

In the normal context, by displacing, we can recover the
input state and remove the dependence on the measure-
ment results when ΨTMSS(x, x′)→ δ(x− x′).

As we have previously stated, since the |NGES(k, l)〉
is equivalent to |TMSS〉 acted on with f̂k,l, we can write
down the (unnormalized) state when |NGES(k, l)〉 is used
as

|ψ′〉 = f̂k,l(η)D̂†p(mp)D̂
†
x(mx)

∫ ∫
dxdx′ eimp(x−x′)ψin(x)ΨTMSS(x−mx, x

′ −mx) |x′〉 . (38)

Therefore, the wave function ψout(x
′,mx,mp) after dis-

placement operations is

ψout(x
′,mx,mp) =

ĥk,l(η,mx,mp)ψcond(x′,mx,mp) (39)

where each part is defined as follows.

ĥk,l(η,mx,mp) ≡
D̂p(mp)D̂x(mx)f̂k,l(η)D̂†p(mp)D̂

†
x(mx) (40)

ψcond(x′,mx,mp) ≡∫
dx eimp(x−x′)ψin(x)ΨTMSS(x−mx, x

′ −mx) (41)

Let us consider the physical intuition of each part
of ψout(x

′,mx,mp). The conditional wave function
ψcond(x′,mx,mp) consists of three parts: modulation due
to mp, input wave function ψin(x), and convolution due
to the TMSS. We observe that even if we displace both
x and x′ of the ΨTMSS(x, x′), the argument of the first
exponential term in Eq. (13) remains the same. Thus,
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the integral is evaluated around x ≈ x′. This makes the
demodulation term with mp negligible as long as mp is
not too big and the squeezing level is sufficient. On the
other hand, the argument of the second exponential term
in Eq. (13) is now centered around mx. As such the effect
due to the finite squeezing of the TMSS is the Gaussian
convolution and a Gaussian envelope.

Next, regarding the term ĥk,l(η,mx,mp), let us look
at a special case where k = 1, l = 0, and η → 1. In

such case, this term becomes ĥk,l(1,mx,mp) = x̂ −mx.
Therefore, in the infinite squeezing limit, the wave func-
tion of the output state is equal to the wave function of
the input state multiplied by (x−mx).

Using this setup, it is possible to tailor the wave func-
tion of the input states. For example, if we consider
|p = 0〉 as our input state and iteratively use this circuit
for the case where k = 1 and l = 0, then after n itera-
tions, the wave function becomes ψ(x) =

∏n
i=1(x−mi),

where mi are the measurement results of the homodyne
detectors. As we can see, ψ(x) is a n-th order poly-
nomial with real roots. We could also have imaginary

roots by using, for example, f̂2,0(η). In general, we can
use this setup and realize arbitrary wave function with
real roots. Although we believe that there should exist
a modification of our setup to include arbitrary complex
roots and complex coefficients, we leave the explorations
of such possibility to the future work. Note that in a re-
alistic setup, we would have to approximate |p = 0〉 with
p-squeezed states, which means that the wave function
will be attenuated at large x. Moreover, the additional
Gaussian envelope due to the finite squeezing and finite-
width of the conditioning window mx and mp must be
taken into an account.

In the next section, we will show the simulation results
of various quantum states that can be generated with
our system. We will first assume that the conditioning is
applied with zero width. Afterward, the discussions on
the actual conditioning window and success probability
will be given.

IV. SIMULATIONS OF THE GENERATED
STATES

In most of the simulations, we will be modest and as-
sume the squeezing parameter to be |r| ≤ 1.0, which
corresponds to about −8.7 dB of squeezing, an achiev-
able value in the optical system [48]. Moreover, all cal-
culations and simulations use quadrature basis and not
Fock basis and the Wigner functions are calculated from
the wave functions. For the cases where multiple itera-
tions are used, we put mx = (mx,1,mx,2, . . . ,mx,n) and
mp = (mp,1,mp,2, . . . ,mp,n) as vectors showing the val-
ues we condition the homodyne measurements in each
iteration with.

A. Schrödinger cat states

Here, we will show that our system can be used to
generate cat states. A Schrödinger cat state |CAT, α,±〉
is given by

|CAT, α,±〉 = Nα,± (|α〉 ± |−α〉) , (42)

where Nα,± is a normalization factor and we will assume
α ∈ R for the simplicity. We call |CAT, α,+〉 a plus
cat state and |CAT, α,−〉 a minus cat state. In general,
the generated states in this section will be close to the
squeezed cat state Ŝ(ξ) |CAT, α,±〉 and we will consider
the fidelity of the generated states to the squeezed cat
state with parameter (ξ, α).

Let us first consider the infinite squeezing limit. If we
start from a p-squeezed as our input and implement x̂n

on it by repeating the circuit in Fig. 1 for n times, the
(unnormalized) wave function in both x and p becomes

ψn(x) = xn exp

(
− x2

2e2r

)
, (43)

ψ̃n(p) = Hn

(
p√

2e−r

)
exp

(
− p2

2e−2r

)
. (44)

This type of wave function is similar to those in Ref.
[43, 45] and is known to be a good approximation to the
cat state. When n is odd (even), the generated state
approximates minus (plus) cat state. The wave function
ψn(x) has two extrema located at

xext = ±
√
ner (45)

This means that the amplitude of the cat state will
roughly scale with square root of the number of the it-
erations and the initial scale of the cat state will be de-
termined by the squeezing of the input. In the p quadra-
ture, there is an oscillatory structure due to the Hermite
polynomial. Note that in addition to ĝ1,0, we can also
consider using the NGES with more number of photon
subtracted. In such a case, since ĝk,0 ∝ Hk(ix̂), we ex-
pect that the increase in the amplitude will be amplified
by roughly

√
k, since the leading term when x becomes

large is x̂k. Moreover, if we plot Hk,0(ix), we can see that
its values around x = 0 are very small and the function
rapidly increases at the large x. Such behavior is advan-
tageous for cat state generations as we want the ψ(x) to
have two peaks that are far apart from each other.

In some protocols such as generation of GKP qubits
using cat states, it is more advantageous to use squeezed
cat states, rather than normal cat states with large ampli-
tude [23]. In the usual photon subtraction, a conventional
method to approximate cat state, since the annihilation
operators â are applied to the state, there can be no phase
information and the cat states are always generated with
the amplitude pointing out in the antisqueezing direction.
In our method, since we are effectively applying quadra-
ture operator x̂, it is possible to apply x̂ to a x-squeezed
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FIG. 2. Simulation results of the wave functions and the Wigner functions of the generation of the Schrödinger cat states. We
use k = 1 and l = 0 in this simulation. The squeezing parameters for the NGES are rtele = 1.0 and the squeezing parameters
r of the initial squeezed states for (A) and (B) are −1.0 and 1.0, respectively. Wave functions of the generated states (solid

lines) and of the closest squeezed cat states Ŝ(ξ) |CAT, α,±〉 (dashed lines) are shown. The parameters α and ξ are written in
the lower-right corner of each subfigure. The numbers of the iterations are n = 1, 2, 3, 4 (from left to right).

states so that the amplitudes are in the squeezing direc-
tion. The resulting wave functions after n iterations in
the infinite squeezing limit are

ψn(x) = xn exp

(
− x2

2e−2r

)
, (46)

ψ̃n(p) = Hn

(
p√
2er

)
exp

(
− p2

2e2r

)
, (47)

which are simply the squeezed version of Eqs. (43) and
(44).

Figure 2 shows the simulation results. We observe
that the number of the interference fringes, which are
characteristics of cat states, increases with each itera-
tion. Contrary to our expectation, however, even for the
case where we used p-squeezed states as our inputs, the
resulting states are weakly squeezed in the x-direction.
This is the effects from both the finite squeezing of the
initial squeezed states and the finite squeezing in NGES.
Even then, we observe that for the case where the ini-
tial state is squeezed in x̂, the generated states are also
squeezed in x̂ without having to additionally squeeze the
state. However, the amplitude α tends to be larger for

the cases where p-squeezed states are used. Even so, the
fidelity to the squeezed cat states are over 0.995 for every
subfigure. The procedure here can be repeated to achieve
cat states with large amplitudes. Although we restrict
ourselves to the case where k = 1 and l = 0 in Fig. 2,
by increasing k, we could reach the large-amplitude cat
states with much fewer iterations. Figure 3 shows an ex-
ample of this. Thus, depending on the number of the
photon that we can resolve, the number of the iterations
can be adjusted properly.

B. Four-component cat states

In addition to the usual cat state, there is also an
important class of state called four-component cat state
[22, 49, 50]. This type of state is a superposition of four
coherent states, i.e. |ψm〉 ∝ |β〉+(−1)m |−β〉+(i)m |iβ〉+
(−i)m |−iβ〉 with β = |β| exp(iπ/4). Four-component cat
states are known to be useful for applications such as cat
codes [49, 50]. In this section, we will show that our
system can also be used to generate such states.

Since four-component cat states are symmetric be-
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FIG. 3. Simulation results of the generation of the
Schrödinger cat states for the case where k = 3 and l = 0.
The squeezing parameters for the NGES are rtele = 1.0 and
the squeezing parameters r of the initial squeezed states are
−1.0 and 1.0 for the left and the right subfigure, respectively.
The number of the iterations is 2.
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FIG. 4. Four-component cat states generated with f̂1,1. The
squeezing parameters for the NGES are rtele = 1.0 and the
initial states are vacuum states. The amplitude of the closest
four-component cat states are shown in the subfigure and the
fidelity is above 0.99 for both subfigures. Note that these two
are of different types of the four-component cat states. The
numbers of the iterations are 3 and 4 for the left and the right
subfigure, respectively.

tween x and p, we should start with an input state with
such symmetry. After that there are two ways where we
can evolve the state into a four-component cat states.

First, we can implement f̂1,0 and f̂0,1 alternatively with
the conditioning at quadrature values 0 at the homodyne
detectors. Note that this is also equivalent to keep imple-

menting f̂1,0 but changing the measurement basis of the
conditioning teleportation so that the teleported states
are rotated by 90 degrees [51]. Another method is to

use f̂1,1 which is symmetric in x̂ and p̂ in the infinite
squeezing limit. Note that we expect the operations to
be symmetric in both quadrature for all k = l.

Figure 4 shows the simulation results. We start with
vacuum states and evolve the state in each iteration us-
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FIG. 5. Simulation of various superpositions of Fock states
up to three photons. The squeezing parameters for the NGES
are rtele = 1.0 and the initial states are vacuum states. (A)
|0〉+ |1〉. (B) |0〉+ |3〉. (C) |0〉+ |1〉+ |2〉+ |3〉. (D) |2〉+ |3〉.
For all cases, we assume mp = 0 and the mx for each states
are (-0.63), (-0.91, 0.93, 0.46), (-1,06, 0.13, 0.36), and (-1.27,
0.13, 0.99), respectively. The fidelity to the target states are
0.99, 0.97, ∼1.00, ∼1.00, respectively.

ing f̂1,1. As f̂1,1 does not change the parity of the states,
the generated states are four-component cat states whose
wave functions are even functions. Although we only
show the simulation results for the such cases, we can
make the four-component cat states with odd wave func-

tions by adding, for example f̂1,0.

C. Fock state superpositions

In the previous two examples regarding cat states, we
assume that the results of the homodyne measurements
are 0. In this section, to illustrate the possible applica-
tions of utilizing the other measurement results, we show
how our system can be used to generate qubits. In the
same way as a genuinely CV states can be approximated
in Fock basis by truncating the infinitely large Hilbert
spaces to subspaces below certain photon number, our
method of tailoring wave function can also be used to
approximate superposition of Fock states. This is done
by attempting to shape the wave function to be close to
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the wave function of the Fock state superpositions.
For a Fock state superposition up to nmax photons, the

ket vector becomes

|ψ〉 =

nmax∑
n=0

cn |n〉 . (48)

Then, the corresponding wave function is

|ψ〉 =
1

π1/4

nmax∑
n=0

cn
1√

2nn!
Hn(x) exp

(
−x

2

2

)
. (49)

Therefore, for cn ∈ R, the wave function is a polyno-
mial of at most nmax order, multiplied with the wave
function of the vacuum state. Therefore, we expect that
atmost nmax iterations of our circuit on vacuum states is
required to generate such states. Note that we could also
easily make the squeezed version of the Fock superposi-
tion state, Ŝ(r) |ψ〉, by injecting squeezed states instead
of the vacuum states and scaling the conditioning of the
homodyne measurement results.

As an example, we consider Fock superposition states
of the form |ψF 〉 = c0 |0〉+c1 |1〉+c2 |2〉+c3 |3〉. This type
of arbitrary superposition of Fock states have been exper-
imentally realized using TMSS, three avalanche photodi-
odes, and three coherent beams for displacements [35].
When c2 = c3 = 0, |ψF 〉 reduces to the usual qubit.
Figure 5 shows the simulation results. We observe that
they have high fidelity to the target state and show how
conditioning at other measurement results than 0 can be
used to tailor the wave function. The general strategy

here is that we select initial mx so that they are close to
the 0 points or the local minima of the wave functions
and then optimize the wave function to match the target
states. Another remark is that, unlike most experiment
with Fock basis that usually implicitly assume low pump
limit and truncate multiphoton components, no trunca-
tions in Fock basis are used and we work on the Hilbert
space using quadrature basis.

D. Approximated cubic phase state

One of important classes of the nonclassical state is a
cubic phase state |CPS〉 = exp(iγx̂3) |p = 0〉. This state
is an ancillary state for cubic phase gate which is a can-
didate for non-Gaussian gates in CV quantum computa-
tion [14, 52]. In the previous attempts to generate this
state, truncation based on Fock state was used and this
state was approximated to up to three photons [35]. In
this section, we will show that it is possible to use our
method to realize cubic phase state.

If we expand the ket vector of the cubic phase state,
we get

|CPS〉 =

[
1 + iγx̂3 +

1

2!
(iγx̂3)2 + . . .

]
|p = 0〉 . (50)

As it was previously mentioned in Sec. III B, our method
can realize wave function in x that has real roots. There-
fore, we need to modified the above equation. By looking
at the wave function in p instead of x and approximating
|p = 0〉 with p-squeezed states, we get

ψ̃|CPS〉(p) ≈
[
1 + γ′H3

(
p′√

2

)
+
γ′2

2!
H6

(
p′√

2

)
+ . . .

]
exp

(
−p
′2

2

)
, (51)

with γ′ = γ/(
√

2e−2ξ)3 and p′ = p/e−ξ. In that sense,
the parameter γ and the squeezing of the squeezed states
are in the scaling relationship. In the approximation, we
will assume that ξ = 0 for simplicity, as the squeezing can
be added after the state is generated when necessary.

There is also another possible approximation. If we
recall that the unnormalized wave function of the ideal
|CPS〉 is

ψ|CPS〉(x) ∝ exp(iγx̂3), (52)

the Fourier transform of the above function is [53]

ψ̃|CPS〉(p) ∝ Ai

(
− p

3
√

3γ

)
, (53)

where Ai(·) is the Airy function. As the Airy function is a
real function, it can be approximated using our method-
ology. However, there are two points that need consid-
erations. First, as ψ̃|CPS〉(p) is mainly contained in the

upper-region of the phase space (i.e. region with positive
p), it will be more advantageous to generate a displaced
version of this. Second, ideal Airy functions extend to the
infinity, meaning that we have to add another approxi-
mation. One of possible ways to do so is considering a
Gaussian envelope over a displaced Airy function as our
approximation, i.e.

ψ̃|CPS〉(p) ≈ exp

(
− p2

2e2ξ

)
Ai

(
− (p+ p0)

3
√

3γ

)
(54)

as our target state which approaches ideal |CPS〉 in the
limit of ξ →∞.

Figure 6 shows the generated state using both approxi-
mation that is targeted to this state. We observe that al-
though both approximations yield different Wigner func-
tions, they share similar traits: parabolic structure and
oscillatory structure in p-direction. The first type of ap-
proximation is actually equivalent to Fock basis trun-
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FIG. 6. Simulations of cubic phase state generations. The
target states for all subfigures assume γ = 0.5 and mp = 0

and generation using f̂1,0. The squeezing parameters of the
NGES for all subfigures are rtele = 1.0. (A,B) Approximation
using Eq. (51) with ξ = 0 up to the first-order (A) and the
second-order (B) in γ. The initial squeezing level of the inputs
is r = 0 and−0.7, and the mx are (0.78, -1.51, 0.58) and (0.61,
-1.15, -0.23, 0.60), respectively. (C,D) Approximation using
Eq. (54). The squeezing of the envelope is ξ = 0.6 and p0 = 8
and 9, respectively. The mx are (2.80, 1.39, -1.18, -0.08, 1.02)
and (-1.73, 1.72, -0.68, 1.02, 0.08). The fidelities of each state
to its targeted approximated |CPS〉 are ∼ 1.00, 0.985, 0.978,
and 0.962, respectively. Note that the state is rotated by 90
degrees after the generation.

cations when ξ = 0 is equivalent to truncation up to
six photons. On the other hand, the second type of
approximation would roughly be equivalent to reducing
the weight of the multiphoton components, but not com-
pletely truncating them in a sense that the Wigner func-
tions of the Fock states with lower photon numbers tend
to be localized near the origin of the phase space. Note
that a more rigorous approximation of the cubic phase
state is to look at its performance when it is used to
realize the cubic phase gate [52, 54].
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FIG. 7. Success probabilities of the homodyne condition-
ing for states generated with a single step of f̂1,0 to have
fidelities to the target states above the threshold fidelity.
The initial states are Ŝ(r) |0〉 (circle), Ŝ(−r) |0〉 (diamond),

Ŝ(r) |1〉 (square), and Ŝ(−r) |1〉 (triangle), with r = 1.0 and
rtele = 1.0. The target states are the states generated when
mx = mp = 0 for all input states.

V. DISCUSSIONS

A. Success rate and fidelity

In this section, we discuss success rate and fidelity. Up
until this point, we have assumed for the simplicity that
the window of the conditioning can be infinitesimal. In
reality, we have to have a finite window to have a finite
success rate. Since we are effectively tailoring by approx-
imating them as polynomial and the measurement results
of the homodyne detector determine the positions of the
roots of the polynomials, the conditioning window size
is determined by how the polynomials change when the
roots are changed. In general, we would expect that for
a wave function that is broadly distributed, the positions
of the roots do not greatly affect the overall polynomi-
als, thus we can have a large conditioning window. This
means that, it tends to be more advantageous to tailor
the wave function of the antisqueezed version of the tar-
get state.

Figure 7 shows the probability of successfully generat-
ing quantum states whose fidelity to the target state is
higher than a certain threshold. Indeed, the success prob-
ability is higher as we lower the threshold fidelity. We
also observe that, as expected, the success probability is
indeed higher for a state that is broadly distributed in the

quadrature x for the current case where the operator f̂1,0
is applied to the initial state in the case where the con-
ditioning window is infinitesimal. Interestingly, although
we are conditioning near mx = mp = 0, rather than
squeezed states whose wave function is a Gaussian func-
tion centered at the origin, the squeezed single photon
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FIG. 8. Effects due to the shifts of the measurement results.
Blue line: The wave function of the approximated cubic phase
state in Fig. 6(B). Orange line: the wave function of the state
generated when the measurement results mx is shifted by (0.1,
0.1, 0.1, 0.1).

states, which have zero probability of finding the quadra-
ture value 0, have much higher success probability. This
is due to the fact that when the squeezed single photon
is interfered with one of the modes of the |NGES(1, 0)〉,
the probability of Bell measurement giving mx = mp = 0
increases due to the interference of the non-Gaussian fea-
tures of both states.

For the case where the conditioning teleportation with
NGES is implemented multiple times, there are addi-
tional aspects that must be considered. First, the overall
success probability. To illustrate this aspect quantita-
tively, let us consider the ideal case with k = 1 and
l = 0 and infinite squeezing. Then, if the initial wave
function is ψ(x), the unnormalized wave function af-
ter one and two step of our circuit is (x − m)ψ(x) and
(x−m′)(x−m′′)ψ(x) where m, m′, and m′′ are the results
of the Bell measurement in x quadrature. If we want to
do conditioning near the place where m = m′ = m′′ = 0,
then for the one-step case, the allowable range of m
should be well below 〈x̂2〉1/2, where the mean 〈·〉 here is
taken with respect to the initial state |ψ〉. On the other
hand, for the two-step case, if we restrict to the case
where m′ = −m′′, it is easy to show that the allowable
range should be well below 〈x̂4〉1/4. As 〈x̂4〉1/4 ≥ 〈x̂2〉1/2,
the allowable range of each measurement in the two-step
case should be broader given that they have appropriate
relation. As such, this qualitative example suggests that
for the multi-step case, rather than consider each step in-
dividually, we should perform conditioning and heralding
on a set or a range of the measurement results.

Another aspect we have to consider is the possibility of
increasing the fidelity to the target state using Gaussian
operations. Figure 8 shows an example of such cases.
Although the fidelity between the two wave functions is

0.87, it is obvious that the two are related via displace-
ment operation. If the wave function is displaced by the
amount of the shifts, the fidelity becomes 0.95 which is
much higher. The effects from the displacements due
to the shifts in the measurement results from the target
state are more obvious when the wave function is oscilla-
tory as shown in this example. In addition, we could also
consider a case where all the measurement results are just
the scaling of the target case. In such case, the gener-
ated state would be roughly the squeezed or antisqueezed
version of the target state. Therefore, when considering
the success probability and the fidelity, it is more advan-
tageous to optimize the fidelity to the target state using
Gaussian operations. This optimization is expected to
increase the success probability further.

By combining these two aspects, it is expected that
the success probability of our method can be further in-
creased. As the calculations for the actual experimental
setup would be highly dependent on the initial states and
the target states, and also the experimental imperfections
such as optical losses, we leave the detailed consideration
as a future experimental work.

B. Experimental feasibility

In addition to the probabilistic nature of the homo-
dyne conditioning, we also need to consider how to realize
NGES. We will restrict our discussions to the realization
in the optical systems. One of the simplest implemen-
tations to realize NGES is that via photon subtraction,
which is a method widely used to approximate cat states.
As photon subtraction is probabilistic, using the photon
subtraction as it is will limit the generation rate even
further. There are a few possibilities to overcome this.
First, we could simply employ quantum memory as our
protocol used NGES as resource states that can be gen-
erated offline. Second, for k = 1 and l = 0 (or k = 0
and l = 1), the squeezed states become squeezed single
photon states. As there exists on-demand single photon
source based on architecture such as quantum dots [55]
and deterministic squeezing of single photons have been
realized [56], we could use such architecture for determin-
istic generation. Third, as photon-subtracted squeezed
states are usually approximations of cat states [36], we
could also consider a possibility of replacing them with
cat state sources. Recently, there is a proposal for a
system to generate Schrödinger cat state with high gen-
eration rate [45] which might enable realistic realization
of the method in this paper.

C. Time-domain-multiplexing and Non-Gaussian
cluster states

Figure 9 shows a possible experimental realization of
our setup using the time-domain-multiplexing method.
As our setup is based on sequential quantum teleporta-
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FIG. 9. A setup for iterative implementation of our protocol
using the time-domain multiplexing method. The NGES used
is for the implementation of f̂1,0 and is realized by replacing
one of the squeezed light source in the one-dimensional cluster
state setup with a squeezed single photon source.

tion circuits, by using the time-domain multiplexing and
replacing the source of the TMSS with the NGES, it is
possible to realize a versatile and compact experimen-
tal setup for generation of various non-Gaussian states,
where the generated state can be programmed via the
choice of the homodyne conditioning. The optical switch
is used to inject the initial quantum state or retrieve the
quantum state after the implementation of our protocol.
The usage of such optical switch on the quantum states
has recently been demonstrated [57, 58].

Also, as the setup in Fig. 9 resembles that of the one-
dimensional cluster state generation [4, 5, 46], we could
also interpret our protocol as a cluster state computation
where the NGES is used instead of the usual Gaussian CV
cluster states. Degaussification of Gaussian cluster states
and their properties have been studied recently [59–61]
and a basic demonstration of the generation of such non-
Gaussian cluster state has also been realized [62]. In this
context, our protocol here demonstrates a possible appli-
cation of non-Gaussian entanglement resource and could
serve as a setup to study the combination of the non-
Gaussian element to the time-domain-multiplexed clus-
ter state. Moreover, appropriate modifications of our
methodology might enable non-Gaussian operations us-
ing this setup. This is due to both the fact that our
system is equivalent to the usage of the degaussified CV
cluster states and is also based on the gate teleportation

setup [13, 14]. Related to this, there is a recent research
which combines non-Gaussian states to the time-domain-
multiplexing method and realizes a universal quantum
computation architecture [63]. Thus, explorations of a
capability of our system beyond the state generation is a
crucial next step.

VI. CONCLUSION

In this paper, we present a methodology to generate
non-Gaussian states based on tailoring of the wave func-
tion using the non-Gaussian entanglements and the con-
ditional quantum teleportation. Our approach is a com-
plementary approach to the Fock basis approach. We
demonstrate the versatility of our method by showing
that, without modifying our system at all, we can gen-
erate various quantum states with iterative conditional
quantum teleportation using the non-Gaussian entangle-
ment resources. In addition to a system that can generate
any states, we could also consider a system specialized for
a certain state such as GKP states. Such a study has been
done in Ref. [29] where parameters of the optical systems
and photon number resolving detector are optimized in
Fock basis. As we have demonstrated that homodyne
conditioning is also useful for state generation, it will be
interesting to see if we can also incorporate homodyne
conditioning and realize a kind of hybridized state gen-
erator that utilizes both Fock basis and wave function
picture.

ACKNOWLEDGMENTS

This work was partly supported by JST [Moon-
shot R&D][Grant No. JPMJMS2064], JSPS KAK-
ENHI (Grant No. 18H05207, No. 18H01149, and No.
20K15187), UTokyo Foundation, and donations from
Nichia Corporation. K.T. acknowledges financial sup-
ports from the Japan Society for the Promotion of Sci-
ence (JSPS). The authors would like to thank Takahiro
Mitani for proofreading of the manuscript.

[1] M. A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information (Cambridge University Press,
Cambridge, 2000).

[2] R. Raussendorf and H. J. Briegel, A one-way quantum
computer, Phys. Rev. Lett. 86, 5188 (2001).

[3] N. C. Menicucci, P. van Loock, M. Gu, C. Weedbrook,
T. C. Ralph, and M. A. Nielsen, Universal quantum com-
putation with continuous-variable cluster states, Phys.
Rev. Lett. 97, 110501 (2006).

[4] S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphat-
phong, T. Kaji, S. Suzuki, J. Yoshikawa, H. Yonezawa,
N. C. Menicucci, and A. Furusawa, Ultra-large-scale
continuous-variable cluster states multiplexed in the time

domain, Nature Photonics 7, 982 (2013).
[5] J. Yoshikawa, S. Yokoyama, T. Kaji, C. Sornphiphat-

phong, Y. Shiozawa, K. Makino, and A. Furu-
sawa, Invited article: Generation of one-million-mode
continuous-variable cluster state by unlimited time-
domain multiplexing, APL Photonics 1, 060801 (2016).

[6] W. Asavanant, Y. Shiozawa, S. Yokoyama, B. Charoen-
sombutamon, H. Emura, R. N. Alexander, S. Takeda,
J. Yoshikawa, N. C. Menicucci, H. Yonezawa, and A. Fu-
rusawa, Generation of time-domain-multiplexed two-
dimensional cluster state, Science 366, 373 (2019).

[7] M. V. Larsen, X. Guo, C. R. Breum, J. S. Neergaard-
Nielsen, and U. L. Andersen, Deterministic generation of



12

a two-dimensional cluster state, Science 366, 369 (2019).
[8] M. Chen, N. C. Menicucci, and O. Pfister, Experimental

realization of multipartite entanglement of 60 modes of a
quantum optical frequency comb, Phys. Rev. Lett. 112,
120505 (2014).

[9] W. Asavanant, B. Charoensombutamon, S. Yokoyama,
T. Ebihara, T. Nakamura, R. N. Alexander, M. Endo,
J. Yoshikawa, N. C. Menicucci, H. Yonezawa, and A. Fu-
rusawa, One-hundred step measurement-based quantum
computation multiplexed in the time domain with 25
MHz clock frequency, arXiv e-prints , arXiv:2006.11537
(2020).

[10] M. V. Larsen, X. Guo, C. R. Breum, J. S. Neergaard-
Nielsen, and U. L. Andersen, Deterministic multi-mode
gates on a scalable photonic quantum computing plat-
form, arXiv e-prints , arXiv:2010.14422 (2020).

[11] S. Lloyd and S. L. Braunstein, Quantum computation
over continuous variables, Phys. Rev. Lett. 82, 1784
(1999).

[12] S. D. Bartlett, B. C. Sanders, S. L. Braunstein, and
K. Nemoto, Efficient classical simulation of continuous
variable quantum information processes, Phys. Rev. Lett.
88, 097904 (2002).

[13] D. Gottesman and I. L. Chuang, Demonstrating the via-
bility of universal quantum computation using teleporta-
tion and single-qubit operations, Nature 402, 390 (1999).

[14] D. Gottesman, A. Kitaev, and J. Preskill, Encoding a
qubit in an oscillator, Phys. Rev. A 64, 012310 (2001).

[15] P. T. Cochrane, G. J. Milburn, and W. J. Munro, Macro-
scopically distinct quantum-superposition states as a
bosonic code for amplitude damping, Phys. Rev. A 59,
2631 (1999).

[16] T. C. Ralph, A. Gilchrist, G. J. Milburn, W. J. Munro,
and S. Glancy, Quantum computation with optical co-
herent states, Phys. Rev. A 68, 042319 (2003).

[17] A. P. Lund, T. C. Ralph, and H. L. Haselgrove, Fault-
tolerant linear optical quantum computing with small-
amplitude coherent states, Phys. Rev. Lett. 100, 030503
(2008).

[18] J. S. Neergaard-Nielsen, M. Takeuchi, K. Wakui,
H. Takahashi, K. Hayasaka, M. Takeoka, and M. Sasaki,
Optical continuous-variable qubit, Phys. Rev. Lett. 105,
053602 (2010).

[19] V. Karimipour, A. Bahraminasab, and S. Bagherinezhad,
Entanglement swapping of generalized cat states and se-
cret sharing, Phys. Rev. A 65, 042320 (2002).

[20] N. Sangouard, C. Simon, N. Gisin, J. Laurat, R. Tualle-
Brouri, and P. Grangier, Quantum repeaters with entan-
gled coherent states, J. Opt. Soc. Am. B 27, A137 (2010).

[21] H. M. Vasconcelos, L. Sanz, and S. Glancy, All-optical
generation of states for “encoding a qubit in an oscilla-
tor”, Opt. Lett. 35, 3261 (2010).

[22] J. Hastrup, J. S. Neergaard-Nielsen, and U. L. Andersen,
Deterministic generation of a four-component optical cat
state, Opt. Lett. 45, 640 (2020).

[23] D. J. Weigand and B. M. Terhal, Generating grid states
from schrödinger-cat states without postselection, Phys.
Rev. A 97, 022341 (2018).

[24] N. C. Menicucci, Fault-tolerant measurement-based
quantum computing with continuous-variable cluster
states, Phys. Rev. Lett. 112, 120504 (2014).

[25] K. Fukui, A. Tomita, A. Okamoto, and K. Fujii, High-
threshold fault-tolerant quantum computation with ana-
log quantum error correction, Phys. Rev. X 8, 021054

(2018).
[26] B. W. Walshe, L. J. Mensen, B. Q. Baragiola, and N. C.

Menicucci, Robust fault tolerance for continuous-variable
cluster states with excess antisqueezing, Phys. Rev. A
100, 010301 (2019).

[27] B. Q. Baragiola, G. Pantaleoni, R. N. Alexander,
A. Karanjai, and N. C. Menicucci, All-gaussian universal-
ity and fault tolerance with the gottesman-kitaev-preskill
code, Phys. Rev. Lett. 123, 200502 (2019).

[28] H. Yamasaki, T. Matsuura, and M. Koashi, Cost-
reduced all-gaussian universality with the gottesman-
kitaev-preskill code: Resource-theoretic approach to cost
analysis, Phys. Rev. Research 2, 023270 (2020).

[29] I. Tzitrin, J. E. Bourassa, N. C. Menicucci, and K. K.
Sabapathy, Progress towards practical qubit computa-
tion using approximate gottesman-kitaev-preskill codes,
Phys. Rev. A 101, 032315 (2020).

[30] A. I. Lvovsky and J. Mlynek, Quantum-optical catalysis:
Generating nonclassical states of light by means of linear
optics, Phys. Rev. Lett. 88, 250401 (2002).

[31] K. J. Resch, J. S. Lundeen, and A. M. Steinberg, Quan-
tum state preparation and conditional coherence, Phys.
Rev. Lett. 88, 113601 (2002).

[32] Y. Hashimoto, T. Toyama, J. Yoshikawa, K. Makino,
F. Okamoto, R. Sakakibara, S. Takeda, P. van Loock,
and A. Furusawa, All-optical storage of phase-sensitive
quantum states of light, Phys. Rev. Lett. 123, 113603
(2019).

[33] E. Bimbard, N. Jain, A. MacRae, and A. I. Lvovsky,
Quantum-optical state engineering up to the two-photon
level, Nature Photonics 4, 243 (2010).

[34] T. J. Bartley, G. Donati, J. B. Spring, X.-M. Jin, M. Bar-
bieri, A. Datta, B. J. Smith, and I. A. Walmsley, Mul-
tiphoton state engineering by heralded interference be-
tween single photons and coherent states, Phys. Rev. A
86, 043820 (2012).

[35] M. Yukawa, K. Miyata, T. Mizuta, H. Yonezawa,
P. Marek, R. Filip, and A. Furusawa, Generating super-
position of up-to three photons for continuous variable
quantum information processing, Opt. Express 21, 5529
(2013).

[36] M. Dakna, T. Anhut, T. Opatrný, L. Knöll, and D.-G.
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