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A few years ago Avetissian et al. [1, 2] discovered that the exponential growth rate of the stimulated
annihilation photons from a singlet positronium Bose-Einstein condensate should be proportional
to the square root of the positronium number density, not to the number density itself. In order to
elucidate this surprising result obtained via a field-theoretical analysis, we point out that the basic
physics involved is the same as that of resonant subharmonic transitions between two quantum
oscillators. Using this model, we show that nonlinearities of the type discovered by Avetissian et al.
are not unique to positronium and in fact will be encountered in a wide range of systems that can
be modeled as nonlinearly coupled quantum oscillators.

I. INTRODUCTION

Creating laser radiation from gamma rays by means
of the stimulated annihilation of a Bose-Einstein conden-
sate (BEC) of positronium is an open problem in the field
of atomic physics, and is generally considered a daunt-
ing challenge since the required large number densities
of condensed positronium are not readily available in the
laboratory. Ever since Dirac [3] used a calculation of
the stimulated [4] annihilation rate to find the electron-
positron annihilation cross section, and for nearly a cen-
tury since [5–12], researchers have assumed that the ex-
ponential growth rate G of the number Nγ of stimulated
annihilation photons of a gas of ultracold singlet positro-
nium (Ps) atoms would be the stimulated annihilation
cross section σ = 2π(~/mec)

2 = 0.936× 10−20 cm2 times
the number density nPs of the Ps atoms times the speed
of light,

G =
1

Nγ

dNγ
dt

= nPsσc. (1)

Surprisingly, Avetissian et al. [1, 2] recently discovered
that the growth rate of the stimulated emission of annihi-
lation photon pairs from a dense collection of BEC singlet
Ps atoms is in fact proportional to the square root of the
Ps number density,

√
nPs. An important implication of

this discovery is that the growth rate of the stimulated
annihilation for a Ps BEC should be comparatively large
for the relatively small values of nPs that could be exper-
imentally available in the near term. A complementary
implication is that the gamma ray gain per unit length
of a high density Ps BEC will not be as large as naively
thought before. Here we demonstrate that this interest-
ing nonlinear dependence on nPs is not an isolated phe-
nomenon peculiar to positronium, but may also occur for
other systems in which energy-conserving transitions can
be modeled by the conversion of k initial quanta of a first
oscillator Oa to l final state quanta of a second oscillator
Ob. The particular case of the stimulated annihilation of
Ps is represented by k=1 and l=2.
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Avetissian et al. have extended this type of system
to include the generation of coherent photon-phonon ra-
diation in an exciton BEC [13], and have also studied
the rate of multiphoton excitation and harmonic gener-
ation in the QED vacuum [14, 15]. Examples of other
processes that should exhibit some type of early time
nonlinear gain behavior, depending on the values of k
and l, include parametric subharmonic frequency gener-
ators [16–19], coupled asymmetric quantum wells [20],
sub-harmonic generators using single atoms [21], nonlin-
early coupled micromechanical resonators [22], quantum
parametric oscillators with trapped ions [23, 24], and ra-
diative decay of metastable BEC of atoms [25]. The most
well known case of harmonic generation is photon up-
conversion [26, 27], the conversion of two photons (k=2)
to a single photon of half the wavelength (l=1). It is
to be noted that the peculiar early time behavior we are
considering may not have been noticed in these systems if
the goal was simply to generate high amplitude harmon-
ics or subharmonics. Careful experiments to examine the
turn-on behavior of these systems would be illuminating.

In what follows, we demonstrate that the stimulated
emission of pairs of annihilation gamma ray photons with
equal energies and opposite momenta along one particu-
lar direction from a Ps BEC can be simply modeled by
two coupled quantum mechanical oscillators to yield the
same dynamics as predicted by Avetissian et al. Our re-
sult shows that the emission behavior is reproduced and
does not require a full treatment of the momentum de-
pendence of the Ps atoms, which is considered in the full
quantum field theory treatment.

In particular, the first oscillator Oa may represent a
BEC of singlet Ps atoms. Oa then has a natural fre-
quency 2ω0 with 2~ω0 ≈ 2mec

2 being the energy of a
singlet Ps atom. The initial occupation number Na of
Oa is very large Na� 1 and is equal to the expectation
value of the number operator in the Ps BEC. Oa is cou-
pled to a final state oscillator Ob with l = 2, which is
initially in its ground state. The occupation number Nb
of Ob is the number of annihilation photons correspond-
ing to a particular pair of opposite momenta modes of the
annihilation photon field. There is no need in this model
to have physically separate oscillators for the two annihi-
lation photons with frequencies ω0. The second oscillator
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is coupled to the first subharmonic of the first oscillator.
In the case of Ps two-photon annihilation, the excita-
tion rate of the driven subharmonic quantum oscillator
is proportional to

√
Na. We now outline the mathemati-

cal proof of this assertion and examine the generalization
of this model to higher-order coupled oscillators.

II. GENERALIZED COUPLED HARMONIC
OSCILLATORS

We consider a harmonic generation process in which
the occupation number Na of a first highly excited oscil-
lator Oa decreases by k while increasing the occupation
number Nb of a second oscillator Ob by l. To work out the
dynamics of this system, we introduce the Hamiltonian
of this system in second quantized form,

Ĥ = εaâ
†â+ εbb̂

†b̂+ g(âk b̂†l + â†k b̂l), (2)

where we employ units for which ~ = 1 with k and l

being integers. The bosonic operators â, b̂ are the anni-
hilation operators of Oa and Ob, respectively. The oper-
ators have normalized commutation relations,

[
â, â†

]
=

1,
[
b̂, b̂†

]
= 1. The Hamiltonian represents generalized

down-conversion for k < l, up-conversion for k > l, and
ordinary resonant energy transfer for k = l. In the case
of positronium, where k = 1 and l = 2, the coupling
constant in Eq. (2) is the singlet positronium annihila-
tion rate, g = α5

0mec
2/2~ ≈ 8× 109 s−1, where α0 is the

fine-structure constant.
We begin with an initial state at time t = 0

|Ψ(0)〉 = |α〉a|β〉b, (3)

in which the fundamental mode oscillator Oa is pre-
pared in a coherent state |α〉a, where â|α〉a = α|α〉a and

|α〉a = e−|α|
2/2 eαâ

† |0〉a. In view of the largeness of the
initial occupation number, it is convenient to employ co-
herent states which are optimally suited to taking semi-
classical limits. However, we would get the same results
if we had started with a Fock state, which is an eigenstate
of the number operator. Again for the specific case of Ps,
at high densities nPs > 1020 cm−3 collisions will quickly
drive an initial Fock state into a coherent state [28]. In
any case, the initial occupation number of Oa may be ap-
proximated as Na = 〈α|n̂a|α〉a = 〈α|â†â|α〉a = |α|2. The
second oscillator Ob is prepared in a number state |β〉b,
where the initially prepared average number of bosons of
Ob is Nb(0) = β.

To investigate the dynamics of the bosonic decay pro-
cess, we use the Heisenberg representation, where the
time evolution of an operator L̂ is given by the equa-
tion ∂L̂/∂t = i[Ĥ, L̂]. We are interested in the time
dependence of the expectation value Nb of the occupa-

tion number operator of Ob, n̂b = b̂†b̂, for which the time
derivative is given by,

dn̂b
dt

= i
[
Ĥ, b̂†b̂

]
= −2glŷ, (4)

where we have introduced the Hermitian operators x̂ and
ŷ,

x̂ =
1

2
(â†k b̂l + âk b̂†l), (5)

ŷ =
1

2i
(â†k b̂l − âk b̂†l), (6)

from the definition of â†k b̂l = x̂ + iŷ for simplicity. To
solve the differential equation Eq. (4), we use the follow-
ing derivatives

dŷ

dt
= δεx̂+ g

[
âk b̂†l, â†k b̂l

]
, (7)

dx̂

dt
= −δεŷ, (8)

where we define the resonance detuning δε = εak − εbl
of the transition from k bosons of Oa to l bosons of Ob.
By combining the two equations Eq. (7), (8), we inves-
tigate the characteristics of the dynamics of the number
operator n̂b of Ob for specific cases of l and k.

A. Case l = 1

This case shows up-conversion such that k bosons ofOa
combine to generate a single boson of Ob having k-times
higher energy. We then have the following differential
equations:

dŷ

dt
= δεx̂+ gn̂k−1a (k2n̂b − n̂a). (9)

For our case of a heavily populated initial state with
mean field α, we approximate the operators â, â† by c-

numbers α, α∗ to decouple the two fields â and b̂. The
solution for the average number of generated bosons, Nb
(t) = 〈n̂b(t)〉, can be obtained with the initial conditions
〈ŷ(0)〉 = 0 and 〈dŷ/dt〉|t=0 = −gNk

a :

Nb(t) =
2g2Nk

a

C1

(
1− cos(

√
C1t)

)
+ β, (10)

where we define C1 = δ2ε + 2kg2Nk−1
a and are assuming

Na � 1. We see that for short times the occupation
number of Ob is proportional to the mean occupation
number of Oa to the power k times (

√
C1t)

2. This is
precisely what we ordinarily see for the coherent genera-
tion of the kth harmonic of a fundamental oscillator, no
matter what the value of k may be so long as l=1.

B. Case l = 2

For any l = 2, regardless of the specific value of k, we
encounter a generalized version of the type of nonlinearity
discovered by Avetissian et al. [1, 2]. We rewrite the
Eq. (7) as follows

dŷ

dt
= δεx̂+g

{ [
âk, â†k

]
(n̂2b−n̂b)−2(1+2n̂b)â

†kâk
}
. (11)
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When we introduce the semi-classical approximation for
large Na, we get the solution for Nb by combining Eq. (4),
(8) and (11):

d2ŷ

dt2
= −δ2ε ŷ + 16g2Nk

a ŷ = C2ŷ, (12)

where C2 = 16g2Nk
a − δ2ε . The generalized solution for ŷ

is

ŷ = Âe−
√
C2t + B̂e

√
C2t. (13)

To find the coefficient operators Â and B̂, we use the
initial conditions of x̂ and ŷ such as 〈ŷ(0)〉 = 0 and
〈x̂(0)〉 = 0. We also have〈

dŷ

dt

〉
t=0

= −2gNk
a (1 + 2β). (14)

The expectation values of the coefficient operators are
thus 〈Â〉 = −〈B̂〉 = gNk

a (1 + 2β)/
√
C2. When we substi-

tute the solution of ŷ into Eq. (4) we find

Nb(t) =
4g2Nk

a (1 + 2β)

16g2Nk
a − δ2ε

(
e
√
C2t + e−

√
C2t − 2

)
+ β(15)

This result gives the expectation value of the number of
generated bosons as a function of time when the outgoing
boson state is initially prepared in a Fock state. If the
initial state of Ob is prepared in any arbitrary state, we
can simply replace β → 〈β|n̂b|β〉b.

Note that the initial boson number β appears in front
of the exponential functions, and hence it does not af-
fect the exponential growth rate. However, the output
intensity is linearly dependent on the number of bosons
in the initial state, a direct consequence of the presence
of the commutator in Eq. (7). We thus expect that in the
simple case of zero detuning δε = 0 the output intensity
at any given time will be proportional to 1 + 2β.

An interesting result comes from the appearance of k
only in the power of the initially prepared particle num-
ber of Oa. In our calculation, we have simplified the
real process involving a Ps BEC by ignoring the momen-
tum dependence of the bosons in Eq. (2). If we consider
the process including the phase-space integration as in
Ref. [1] we would find that for the case of zero detuning,

δε = 0, the exponential growth rate satisfies G ∝
√
nka

from the definition of Eq. (1). Moreover, when we con-
sider the outgoing bosonic pairs in the different modes,
we can check that the outgoing pairs are not coherent
with one another and so the different modes are inde-
pendently growing.

For this case with k = 1, Eq. (15) above models subhar-
monic generation or down-conversion in which one boson
with higher energy is converted into pair of bosons. This
equation which, in the case of a Ps BEC, concerns only
a single mode of the final boson state, also exhibits pre-
cisely the same time dependence as Eq. (15) of Ref. [1].
The exponential growth rate results from the positron-
ium atoms forming a BEC. At higher and higher den-
sities, nPs > 1021cm−3, the condensate fraction will de-
crease first due to spin exchanging two-body collisions,

then due to the formation of positronium molecules via
three-body collisions, and finally due to the formation of
an electron-positron plasma for nPs > 1022cm−3 [29, 30].
At the highest densities the process will be the genera-
tion of a pair of bosons from two independent fermions
with a gain linearly proportional to the density [31]. For
k = 2, l = 2, which is the generation of one pair of bosons
from another pair of bosons, the gain scales as Na as one
would expect.

The above discussion shows that we can indeed seed
one of the modes of a Ps BEC represented by setting
β = 1 corresponding to a single external on-resonance
gamma photon. In practice the seeded mode might be
difficult to detect experimentally since it will only be
3 times more intense than the plethora of spontaneous
modes that have β = 0. On the other hand, it could be
practical to seed one Ps BEC with the large spontaneous
output from a nearby collimated Ps BEC to produce a
powerful directional beam of photons [1]. However, even
if the Ps density were greater than 1020 cm−3 such that
the naive stimulated annihilation gain of Eq. (1) would
appear to be greater than the prediction of Eq. (15), the
remarkable fact is that this channel, which is linear in
Na, is not present.

C. Case l > 3

The situation for l > 3 models the generation of sev-
eral lower energy bosons starting from k bosons. In this

case, Eq. (7) contains higher powers of b̂, and the differen-
tial equations would likely have to be solved numerically
even with the semiclassical approximation. However, we
may introduce the Schrödinger picture to understand the
growth rate of harmonic generation for arbitrary l. The
time dependent quantum state is written as,

|Ψ(t)〉 = e−iĤt|Ψ(0)〉.

To simplify the calculation, we take the initial state of Ob
to be the vacuum state, β = 0. As before, we consider
the initially prepared bosons to have a large population
so that the mean field approximation applies. The expec-
tation value of the boson number operator n̂b(t) is then
given by

Nb(t) '
(l − 1)!

l

[
t2C̄

2!
+
t4

4!

{
C̄2Dl − C̄δ2ε

}]
, (16)

where we consider the small time approximation gt� 1,
and define the two coefficients,

C̄ = 2l3g2Nk
a , (17)

Dl =
(2l)!− 2(l!)2

l! l3
. (18)

Note that, Nk
a in Eq. (17) is from the approximation∏k−1

i=0 (Na − i) ' Nk
a for large initial boson number Na.

For l = 2, we have seen that C̄ = C2 and D = 1, so
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(a) For small Na

(b) For large Na

FIG. 1: The time dependence of the expectation val-
ues of the occupation number, Nb(t), with Nb(0)=0, are
shown for different values of k with l = 2 when the two
different initial values (a) Na = 10 and (b) Na = 69 are
given. The plots show the normalized scale, Nb/Na, and
compare the analytic approximations from Eq. (15) (star
marked green curves) with the numerical results (blue

curves without star markers).

Eq. (16) becomes the expansion of 1
2 (cosh(t

√
C2) − 1)

which is same as the small time approximation of Eq. (15)
for the case of zero detuning, δε = 0. However, if either
time increases sufficiently or for large l, Nb does not be-
have as the cosh function of Na and only a numerical
solution is possible. This result shows that the expec-
tation value of the number operator initially grows as
approximately g2t2Nk

a .

We have already seen that for conversion of any num-
ber k of input quanta to a single output quantum (l=1),
the number of output quanta is proportional to the kth
power of the number of input quanta times 1

2C1t
2, as ex-

pected for ordinary frequency doubling, tripling, etc. It
is conversion to a number l>1 of output quanta where
we encounter exponential growth of the output with a
rate proportional to the number of input quanta to the
power k/2,

√
Nk
a , including the case of the coupled os-

cillator model for the stimulated emission of a Ps BEC
when k = 1 and l = 2.

In Fig. 1 we compare the expectation values of the oc-
cupation number Nb as a function of time, predicted by
the analytic approximations Eq. (15), and the numeri-
cal results from the Schrödinger picture for both small
and large values of Na. Both of the plots show that Nb
begins by increasing exponentially, but the numerical re-
sult shows it converges to 2Na/k after the oscillations
have damped out. As Na increases, the gap between
two curves (the star marked and plain curves) becomes
narrower, while the two curves start to separate earlier.
When Na increases, C̄ in Eq. (16) increases, the fluctua-
tion frequency becomes bigger, and the analytic approx-
imation works only for smaller t.

III. CONCLUSION

We have presented a quantum analysis of the early
time behavior of sub- and superharmonic stimulated
emission by modeling the conversion of k initial quanta
of an oscillator Oa, to l final quanta of Ob. We have
shown that the number of final quanta l determines the
growth behavior of the expectation value of the number
of generated bosons, while the number of initial quanta
k determines the power of the initial bosonic number in
the equation for the growth rate. We have demonstrated
that the result of Avetissian et al. is modeled by the case
k = 1 and l = 2. The fact that our results are applicable
to any physical system which can be represented as a pair
of coupled oscillators thus helps to place the Avetissian
et al. discovery into context in the broader field which it
has founded.
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