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We present a sequence of driven-dissipative protocols for controlling cold atoms in tilted optical
lattices. These experimentally accessible examples are templates that demonstrate how dissipation
can be used to manipulate quantum many-body systems. We consider bosonic atoms trapped in a
tilted optical lattice, immersed in a superfluid bath, and excited by coherent Raman lasers. With
these ingredients, we are able to controllably transport atoms in the lattice and produce self-healing
quantum states: a Mott insulator and the topologically ordered spin-1 AKLT state.

I. INTRODUCTION

While dissipation is often viewed as a hindrance, it
can also be a tool for manipulating quantum states.
Here we provide a series of cold atom examples of using
dissipation to prepare quantum states, and control their
behavior. This approach complements other methods
of state preparation, and avoids some of the challenges
those techniques face. By giving specific protocols for
dissipative state preparation and control, we are able to
elucidate the underlying principles and directly confront
the advantages and disadvantages of this approach.

In cold atom experiments, dissipation is provided by
several mechanisms: off-resonant light scattering, three-
body atom loss, collisions with background atoms, and
even the conversion of coherent excitations into inco-
herent ones through elastic collisions of atoms in the
sample. Traditional cooling schemes have long relied
on these processes for equilibration [1], but the idea
of engineering dissipation to target specific many-body
quantum states is more novel [2]. In the few-particle
limit, there are more established examples, such as op-
tical pumping. The driven-dissipative approach to state
preparation can be viewed as a many-body analog of op-
tical pumping.

This method offers a practical alternative to other
techniques of state preparation, and overcomes some of
their difficulties. For instance, adiabatic state prepara-
tion requires the process to be much slower than the
many-body gap [3]. This poses particular challenges if
one needs to traverse a critical region, where the gap
vanishes. Another common state preparation technique
is Hamiltonian engineering where the desired state is
the ground state of some fixed Hamiltonian which can
be reached by cooling. Obstacles to Hamiltonian engi-
neering include: (1) The required temperatures may be
unachievably low, and (2) the equilibration rates may
become small as one approaches the state of interest.
An example is the Fractional Quantum Hall state, where
particles avoid one-another, and hence the elastic colli-
sion rate is small. In all of these techniques, the key
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questions are: (1) Can you produce the state of inter-
est, and (2) How long does it take? We answer both
these questions for our examples.

Dissipative state preparation has the potential to
be fast – the timescale is experimentally controllable
and the kinetic bottlenecks can be explicitly removed
by properly engineering the environment. The critical
slowing down that plagues adiabatic methods is com-
pletely avoided: one is far from equilibrium throughout
the time evolution. Most importantly, the final state is
self-correcting. If one leaves on the dissipation (perhaps
with some reduced amplitude) any perturbations can
be healed. This has connections to autonomous error
correcting codes: the dissipatively stabilized quantum
state is a protected resource for manipulating quantum
information.

Controlled driven-dissipative state preparation is an
active area of research both theoretically and experi-
mentally. For example, in superconducting qubits, dis-
sipation has been used to create a stable Mott insu-
lator of photons [4] and a long lived two qubit Bell
state [5]. Reservoir engineering has been used in trapped
ion systems to create a four qubit GHZ state [6]. Ul-
tracold atoms can be promising candidates for dissipa-
tive state preparation. The Mott-superfluid transition
in a driven-dissipative Bose-Hubbard system has been
realized experimentally [7]. Some theoretical propos-
als include preparation of number and phase squeezed
bosonic states [8] and dissipatively prepared topological
superconductors [9].

In this work, we analyze a broadly applicable ap-
proach to driven-dissipative control in cold atoms, which
both extends these examples and provides an experi-
mentally accessible framework for exploring the general
principles. Our setup is schematically shown in Fig. 1.
We consider 7Li atoms in a “tilted” one dimensional op-
tical lattice, modelled by the sum of a linear and sinu-
soidal potential. Transitions are driven by two-photon
Raman processes, which use an electronically excited
state as an intermediary in changing the spatial mode
of an atom. Dissipation is provided by coupling to a
superfluid bath of 23Na atoms which are not trapped
by the lattice. Lithium atoms can decay from excited
vibrational states to lower ones by emitting Bogoliubov
excitations in the superfluid bath. We note that all the
different parts of our proposed process have been exper-
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imentally demonstrated in other works [10–14]. Simi-
larly, these ingredients have been studied in a number
of theory works [15, 16]. We explicitly calculate all the
relevant energy and time scales and quantitatively show
how the drive and dissipation can produce our target
states.

We give three examples to demonstrate the capabili-
ties of our driven-dissipative scheme. First, we show a
way to control atom transport along a one dimensional
tilted optical lattice potential, both up and down the
lattice. This would be relatively simple to implement
and an excellent target for initial experiments. Addi-
tionally, it provides a way to fully control the speed
of atom transport in a lattice. Second, we show how
it can be further modified to drive the system into a
strongly-correlated Mott insulator state in a tilted lat-
tice with a mechanism to self-heal any holes. Finally, we
propose how the iconic AKLT (Affleck-Kennedy-Lieb-
Tasaki) state can be achieved with this technique.

The AKLT state occurs in a spin-1 chain. It has
unique properties, including symmetry protected topo-
logical order and valence bond order. It has emergent
spin-1/2 edge modes and a gapped ground state. It is
also a prototypical example of a matrix product state.
The AKLT state has never been created experimentally
in cold atom systems. One of our central results is a
protocol to create it in a driven-dissipative ultra cold
atomic system.

Our paper is organized as follows. In Section II we
introduce the physical system and derive the effective
model which we will use to describe it. This includes
showing how the driving and dissipation processes are
engineered. In Section III, we describe our protocols and
calculate state preparation time, including the scaling
with system size.

II. MODEL

A. System and Effective Model

As already introduced, our basic setup is shown in
Fig. 1. For each of our examples, we consider two popu-
lations of bosons, referred to as the lattice and the bath
atoms. The lattice atoms are constrained to move in
one dimension (1D). They experience a “tilted lattice”
potential along that direction, consisting of the super-
position of sinusoidal and linear potentials. The bath
atoms form a 3D cloud. There are also a series of con-
trol lasers that are used to drive Raman transitions.
Each of these components are discussed in detail below.

In its simplest incarnation, the resulting effective
model has the structure of a 1D chain of sites with a lin-
ear potential gradient. Each site j contains two states:
The ground state |g〉j and a vibrationally excited state
|e〉j , with an energy gap, ~ω0 between them.

Ĥ0 =
∑
j

−j∆|g〉j〈g|j + (−j∆ + ~ω0)|e〉j〈e|j . (1)

Additionally, there is an onsite interaction Hamiltonian,

Ĥint = Ugg|gg〉〈gg|+ Uge|ge〉〈ge|+ Uee|ee〉〈ee|, (2)

and coherent drives,

Hcoh = Ω′e−iωt|g〉j〈e|j+1 + h.c. (3)

Our decay terms are modelled by on-site jump operators
of the form,

L̂j =
√

Γ|g〉j〈e|j . (4)

Subsections II B through II F derive this effective
model, starting with a microscopic description of the
trapped gas.

B. 1D Lattice

The system atoms are trapped in a one dimensional
tilted optical lattice. The lattice is generated by inter-
fering two counter-propagating laser beams. The tilt
can be generated by using the AC stark shift from a
large waist laser which is incident on the system from a
direction perpendicular to the lattice [10]. The resulting
potential is shown in Fig. 1.

When the energy difference between neighboring
sites, ∆, is large compared to the tunneling ampli-
tude, t, then the eigenstates of the tilted lattice become
strongly localized to individual sites. If we limit our-
selves to nearest neighbor hopping, the exact Wannier-
Stark eigenstates are [17]

ψm,α =
∑
l

Jl−m(
tα
∆

)φαl , (5)

Here, α is the band index, l, m are site indices, φαl is
the site localized Wannier function for the α’th band,
and tα is the hopping matrix element for that band.
Jn(x) is the n’th Bessel function: for small arguments,
Jn(x) ∼ x|n|, and we see that the wavefunction falls
off exponentially. For a sufficiently tight lattice, one
can approximate the Wannier states, φαm, as harmonic
oscillator eigenstates, with energy

Em,α = −m~∆ + (α+ 1/2)~ω0, (6)

where ω0 is the small oscillation frequency. Throughout
we will only consider two bands, labeled by α = g, e –
and regardless of the accuracy of the harmonic approx-
imation, we can define ~ω0 = Em,e − Em,g.

For two particles on a site, the on-shell components
of the on-site interaction are,

Ĥint = Ugg|gg〉〈gg|+ Uge|ge〉〈ge|+ Uee|ee〉〈ee| (7)

where |αβ〉 is the state with particles in bands α and
β, and the site index has been suppressed. The U ’s
scale as as/d

2
⊥, where as is the scattering length, and

d⊥ is the transverse size of the Wannier state. If one
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FIG. 1. (color online) Spatial dependence of potential en-
ergy in a one dimensional tilted optical lattice. Each site has
two eigenstates, labelled |g〉 and |e〉 with an energy gap ω0.
Energy offset between neighboring sites is ∆ and the tunnel-
ing within the lowest band is tgg. As depicted by black and
orange arrows, labeled by Ω0, coherent Raman lasers drive
transitions between the ground band of site m and the ex-
cited band of site m+1. The Raman transition is detuned by
δ from an intermediate electronic excited state. The lattice
is immersed in a 3D superfluid bath (bath atom shown in
red). The blue curvy arrow shows spontaneous decay from
excited band to ground band through bath interactions with
a rate, Γ. Upper right: A finite length tilted lattice with the
addition box potential walls at the edges.

approximates the Wannier states as harmonic oscillator
eigenstates, then Ugg can be calculated as,

Ugg =
8π~2as
md2
⊥

∫ ∞
−∞

dx |wg(x)|4 (8)

Here, wg is the ground state harmonic oscillator wave-
function. Analogous expressions give the interaction en-
ergies involving higher bands, and one finds Uge = 1

2Ugg
and Uee = 3

4Ugg.
We model the lattice potential as V (r) =

V0Erec sin2(2πx/d), where V0 is the dimensionless lat-
tice strength, d is the lattice beam wavelength, and

Erec = 2~2π2

md2 is the recoil energy. This potential has
a lattice spacing of d/2.

The tunneling amplitude, tgg in the lowest motional
band in the harmonic approximation can be written as,

tgg =

∫
dxw∗g(x+ d/2)Ĥwg(x) (9)

∼ Erec

√
V0e
−π2

4

√
V0 (10)

The tunneling in the higher band can be similarly

found to be, tee ∼ 3tgg√
2

(1 + π2

4

√
V0). The bandgap be-

tween the ground and excited motional band is,

~ω0 ∼ 2Erec

√
V0. (11)

As a rule of thumb, these approximations work well
when V0 & 9. For d = 1064nm, a typical laser wave-
length, one then has a tunneling amplitude on the order

of tens to hundreds of Hz, while the band gap between
the ground and first band is on the order of tens of kHz.
Typical background scattering lengths are of the order
of a few nm for 7Li atoms [18]. These scattering lengths
can be easily tuned via Feshbach resonances, with the
caveat that one may find enhanced inelastic processes
if they are made too large. In our system, we envision
that the lattice atoms are tightly confined in the trans-
verse directions with d⊥ � d and thus the interaction
energy is also on the order of tens of kHz.

Such one dimenisonal tilted optical lattices have been
realized in experiments either using the AC stark shift
gradient from a laser [10] or with a magnetic field gra-
dient [11].

C. Coherent Drive

Transitions are driven by a two-photon coherent
drive: the lasers are tuned so that absorbing a pho-
ton from one beam, and emitting it into the second is
resonant with a band-changing hopping event. For ex-
ample, as illustrated in Fig. 1, this Raman process could
drive the transition from the ground band on one site
to the excited band on a neighboring site, in which case
ω1 − ω2 = ω0 −∆. Here ω1 = c|k1| and ω2 = c|k2| are
the frequencies of the lasers. An incoherent scattering
event will later return the atom to the ground band.

The Raman laser frequencies can be adjusted to bring
other possible transitions like hopping between ground
bands of neighboring sites into resonance.

In our concrete scenario, one laser beam drives the
atom in the lowest band in site m to a virtual level, cor-
responding to an electronically excited state. This sin-
gle photon process is detuned by frequency δ, and has
transition rate Ω0. The second laser drives the tran-
sition from this virtual level to the motionally excited
state of site m+ 1.

If δ � Ω0, the effective rate of this two photon process
can be calculated by adiabatically eliminating the higher
electronic level and is given by:

Ω′ =
Ω2

0

δ

∣∣∣∣∫ dxψ∗m,g(x)ei(k1−k2)xψm+1,e(x)

∣∣∣∣2 (12)

∼ Ω2
0

δ

(
1 +

π2
√
V0

2

)
e−

π2√V0
2 . (13)

The latter result is derived in Appendix A, in the deep
lattice limit, with the angle between the Raman beams
chosen to optimize the transition rate.

To make unwanted transitions highly off-resonant, we
want to be in the regime where Ω′ � ∆, ω0 (which as
previously explained are on the order of 104Hz).

These conditions would ensure that our drive induces
coherent Rabi oscillations of atom transfer between ad-
jacent sites. A similar coherent atom transfer process in
a Wannier-Stark ladder has been experimentally demon-
strated by Beaufils et al. [12]. They were able to achieve
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Raman transition rates larger than needed for our pro-
posal.

D. Dissipation Medium

Dissipation is provided by scattering from a particle
bath of superfluid bosons that do not feel the optical
lattice [15]. An atom in the higher band can transition
to the ground band through spontaneous emission of a
Boguliobov excitation in the superfluid bath. This spon-
taneous decay process is shown schematically in Fig. 1.

The temperature of the superfluid bath is much
smaller than ω0, so the bath of Bogoliubov particles
can effectively be taken as T = 0: These excitations can
be created, but are never absorbed.

Fermi’s golden rule can be used to calculate the re-
sulting decay rate from the motionally excited state to
the ground state. Following the arugment of Griessner
et al. [15], we find the decay rate in our system to be,

Γ = 8πρba
2
ab

√
Erec.

V
1/4
0

m
1/2
a

e−
4π2mr

√
V0d

2
⊥

d2 f(mr)

f(mr) =
(1 +mr)

2

mr
(
√
πerf(

√
mr)− 2

√
mre

−mr )

(14)

Here, mb and ma are the masses of the bath atoms and
lattice atoms respectively, and mr = mb

ma
is their ratio.

The interactions between the lattice and bath atoms are
parameterized by the s-wave scattering length, aab. The
number density of bath atoms is ρb, and erf(x) is the
error function.

The rate can be tuned by changing the superfluid bath
density, scattering length and atomic mass ratios. The
first of these is experimentally the most accessible – but
Feshbach resonances can be used to control aab.

The rate strongly depends on the mass ratio, mr. For
mr � 1, f(mr) scales as

√
mr while for mr � 1, the

rate exponentially decays as e−
4π2mr

√
V0d

2
⊥

d2 . The rate
exponentially decreases at larger mass ratios because
the energy transfer is poorer in collisions with higher
mass atoms. The optimal mass ratio occurs for mr ∼ 10

[for experimentally typical values of
√
V0d

2
⊥

d2 ].

For concreteness, we consider the 7Li atoms in the
lattice immersed in a superfluid bath of 23Na atoms.
For a typical bath atom density of 1013 cm−3 and inter-
species scattering length on the order of a few nm, the
decay rate is on the order of a few kHz. This rate sets
the time-scale of the experiment. Our coherent trans-
fers rely upon resolving the motional sidebands and the
lattice tilts, and hence require Γ� Ω′, ω0,∆, U .

In this setup, the bath atoms do not feel the optical
lattice: this can be arranged due to the different AC
polarizabilities of the atomic species. For example, R.
Scelle et al. [13] immerse Lithium atoms in a conden-
sate of Sodium atoms where only the Lithium atoms are
trapped in a species-specific optical lattice. A detailed

discussion of techniques to create species-specific opti-
cal lattices for various alkali atom mixtures is given by
LeBlanc and Thywissen in [16].

This decay process can be viewed as a form of sym-
pathetic cooling – and has been experimentally studied
by Chen et al. [14] in that context.

E. Additional Potentials

For some of our protocols we also add an additional
potential, which can be created with an off-resonant
laser. In particular, we wish to be able to create a fi-
nite length chain as shown in the upper right corner in
Fig. 1, by adding barriers at the end of the chain. Such
potentials are commonly generated in experiments [19].

F. Limitations of Effective Model

An experiment can only be described by the effective
model in Eqs. (1) through (4) if ∆, ω0 � Ω′,Γ.

The condition ∆, ω0 � Ω′ is required so that the
drive does not produce transitions to unwanted sites.
For example, the drive inevitably produces a matrix el-
ement connecting |g〉j and |g〉j+1. This transition is off-
resonant, though, and the rate is suppressed by a factor
of Ω′/ω0 relative to the wanted transition. Similarly, the
matrix element connecting |g〉j and |e〉j is suppressed by
Ω′/∆.

The condition ∆, ω0 � Γ is required so that the level
broadening does not bring any of those same unwanted
transitions into resonance.

Note, these conditions puts constraints on the tech-
niques which can be used to introduce the dissipation.
For example, it would be challenging to design the pro-
tocols so that spontaneous emission of a photon would
provide the dissipation. The characteristic scales of op-
tical processes are much larger than ∆ and ω0. The
scales of the Bogoliubov excitations are better-matched.

III. PROPOSALS

As already explained, we propose three scenarios:
In section III A, we describe a novel transport scheme
where this driven-dissipative approach controls the mo-
tion of a cold gas. In section III B, we show a variant of
the technique that can be used to heal defects in a Mott
state. Finally, in section III C, we explain how to pump
the system into the AKLT state – a highly nontrivial
example of state engineering.

All of these will be described using variants of the
model introduced in Eqs. (1) through (4).
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A. Raman Sideband Elevator

Transport in solid state systems is a driven-dissipative
process. A potential gradient provides energy to the sys-
tem, while inelastic scattering off of impurities acts as a
regulator, controlling the average speed of the electrons.
We propose constructing the analogous process in our
atomic system. As in the solid-state system, the atoms
will move with constant velocity. By changing the inten-
sity and frequency of the Raman lasers, one can control
both the direction and speed of motion, which leads us
to refer to this as a “Raman Sideband Elevator.”

As depicted in Fig. 1, the coherent Raman drive res-
onantly couples atoms from ground band of one site to
the excited band of its nearest neighbor. The atom in
the higher band interacts with the dissipative bath and
decays to the ground band at that site. This irreversibly
transfers the atom one site down the ladder. The pro-
cess can then repeat itself. In steady state, all atoms are
moving at a constant speed. This elevator can transfer
atoms in either direction, depending on the frequencies
of the Raman lasers: when ω1−ω2 = ω0−∆, the transfer
is down-hill, while when ω1−ω2 = ω0 + ∆, the transfer
is uphill. The analysis is identical, and throughout this
section, we use the notation appropriate for down-hill
transport.

We will neglect interactions between atoms, and just
model the single-particle problem. The weakly inter-
acting regime is readily reached by either reducing the
strength of transverse confinement or using a Feshbach
resonance.

Given that the single-particle eigenstates are localized
on each site, this situation can be modelled via a clas-
sical rate equation: the only relevant variable is ni, the
expectation value of the number of particles on site i,
and

dni
dt

= Γ̃ni−1 − Γ̃ni. (15)

The rate Γ̃ is found by modeling the three levels involved
in the transport of atoms by one site. Under the regime
where the driving rate is greater than the decay rate,
that is, Ω′ � Γ, one finds Γ̃ = Γ/2. The Raman lasers
cause the atom to execute many Rabi oscillations, so
it spends half of its time in the unstable state – which
decays with rate Γ.

These rate equations can be solved exactly to deter-
mine the speed at with which the center of mass moves
down-hill and how much the cloud spreads over time.
Using Eq. (15), the rate of change of the center of mass
position of the atom cloud, Xcom is given by,

dXcom

dt
=

1∑
i ni

d(
∑
i ini)

dt
= Γ̃ (16)

Similarly, the rate of change of the cloud spread, σ2

can be derived from Eq. 15 to be,

dσ2

dt
=

1∑
i ni

d(
∑
i i

2ni − (
∑
i ini)

2)

dt
= Γ̃ (17)

m
m-1

m-2
m-3

m+1
m+2

FIG. 2. A partially filled configuration. The driven dissi-
pative process leads to incoherent hopping in the down-hill
direction. In the presence of strong interactions, hopping
onto a filled site is detuned and therefore forbidden. This is
indicated by the red arrows with x’s through them.

Under this process, the atom cloud’s center of mass
moves downhill with a constant speed, controlled by the
dissipation rate, Γ̃. At the same time, there is a linear
spread of the square of the cloud size with time. Both
the drift and the spread are readily measured in exper-
iments.

One can also envision a finite length chain with all the
atoms initially confined at the upper end of the ladder,
and a potential barrier at the bottom, as described in
Sec. II E. The final steady state would be reached when
all atoms accumulate in the last site downhill. For a
chain of length L, the time taken would scale as, t ∼
L/Γ̃.

B. Mott State

An ideal Mott insulating state contains exactly one
particle per site. This is the ground state of the Bose
Hubbard model with very strong interactions [20]. Fi-
nite temperature introduces defects, as do atom loss
events. A variant of our Raman Sideband Elevator can
pump the system into an ideal Mott state, and heal de-
fects which are later created.

We consider a finite length chain, with a potential
similar to the one in the upper right corner in Fig. 1. We
require that the atom-atom interaction, Uge � Γ,Ω′.
This large interaction strength can be engineered by
tightening the transverse confinement, or using a Fes-
hbach resonance.

With strong interactions amongst the lattice atoms,
the Raman transition between the ground state of site
i and the excited state of site i + 1 is only resonant if
there are no atoms on site i+ 1. Effectively, this means
our incoherent hopping only occurs onto an empty site.
Starting from a sparsely filled chain where the average
occupation per site is less than 1, as shown in Fig. 2,
the driven-dissipative process enables transport of the
atoms down the ladder from filled sites to empty sites.
The right-most atom stops when it hits the barrier.
Subsequent atoms stop when they encounter the filled
states. The end result is an idealized Mott state, with
one atom per site. If holes later develop, they are rapidly
filled, as all uphill particles shift over by one site.
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We can estimate the time needed for a partially filled
ladder to reach the final Mott state. The model from
Section III A is simply modified to forbid hopping onto
an occupied site. We use a Gillespie algorithm to simu-
late the resulting stochastic dynamics [21].

We find that the results are very well approximated
by assuming that the probability distributions on dif-
ferent sites are uncorrelated and incoherent hopping is
only allowed on empty sites. Thus the dynamics are ef-
ficiently simulated using the “mean field” rate equation

dni
dt

= Γ̃ni−1(1− ni)− Γ̃ni(1− ni+1) (18)

As before, ni is the expectation value of the number of
particles on site i.

For a finite length chain, the infinite time solution
of the above equation is the desired Mott state, where
all atoms are jammed up at the right hand side. For
generic initial conditions, the time to reach this dark
state scales linearly with the size of the system.

Double occupancies are highly disruptive here. Our
procedure does not allow them to move, and they act
as barriers that prevent the motion of other atoms.
There are several techniques to remove doubly occupied
sites [22].

After the ideal Mott state is formed, an atom loss
event will create a hole. This is healed by the hole hop-
ping to the left. The hole needs to hop at most N sites,
where N is the number of particles. Thus the charac-
teristic time for the repair is τ ∼ N/Γ̃.

C. AKLT State

Finally, a variant of this set-up can be used to create
the AKLT (Affleck-Kennedy-Lieb-Tasaki) state of the
spin-1 chain. As previously explained, the AKLT state
is a symmetry protected topologically ordered state hav-
ing topologically protected edge modes.

The set-up here is slightly more involved than our pre-
vious examples, as we need to manipulate the hyperfine
spin degrees of freedom. We consider the construction
demonstrated in experiments at MIT [23] where they
build local spin-1 objects by placing two atoms on each
site. Each atom has two accessible hyperfine states, and
is effectively a spin-1/2 object. Because two Bosons in
the same site must be in a spin symmetric state, these
form a spin-1 composite. In the experiments, bosonic
7Li was used.

The physical structure in this experiment parallels
the “parton” construction often used to understand the
AKLT state [24]. In that picture, each spin-1 is broken
into two (symmetrized) spin-1/2’s as shown in Fig. 3.
Each of these spin-1/2’s forms a singlet with a parton
from a neighboring site. The edge modes are understood
as the leftover spins which do not have singlet partners.
The partons are usually a mathematical construct, but
in the experiment they represent individual atoms.

FIG. 3. AKLT state described in a parton picture, where
the spin-1’s are represented by two spin-1/2 particles at each
site. Each blue square corresponds to projection of the two
spin-1/2’s into a triplet state while each red double arrow
connecting spin-1/2’s on neighboring sites represents a sin-
glet. The green (dashed) spins at the two ends are spin-1/2
edge modes.

In the original spin-1 language, the AKLT state is
uniquely (up to the boundary modes) defined by the
property that if you take any two neighboring spin-1’s
– they have zero weight in the spin-2 channel. In other
words, the AKLT state is annihilated by the operators

P
(ST=2)
i,j = 1

2Si · Sj + 1
6 (Si · Sj)

2 + 1
3 , each of which

projects the spins on neighboring sites i and j into spin-
2. The simultaneous null-space of these operators is 4-
fold degenerate, corresponding to the two spin-1/2 edge
degrees of freedom. The AKLT state is one of the pro-
totypical examples of a matrix product state. It has
also been proposed as a potential platform for measure-
ment based quantum computing [25], and this projector
construction has analogs with stabilizer codes [26].

Our goal is to engineer a dissipative process which
occurs only when two neighboring sites are in the spin-
2 sector. The AKLT state will then be the unique
dark state. Again, uniqueness is only up to the bound-
ary mode configuration. The strategy will be to have
the dissipation involve an intermediate state with four
bosons on a single site – a configuration which can only
be reached if the atoms are in the spin-2 sector.

Each site can be in one of the following three triplet
states, which are the different Sz projections of spin 1:

| ↑↑〉 = |+〉 (19)

1√
2
| ↑↓ + ↓↑〉 = |0〉 (20)

| ↓↓〉 = |−〉 (21)

As seen in [23], each of the spin-1 states on a site, |+〉,
|0〉 and |−〉 have spin-dependent on-site interaction en-

ergies, U
|σ〉
gg , with σ = −,+, 0. These interaction en-

ergies depend on the magnetic field. Amato-Grill et
al. [23] find that there are special values of magnetic
fields where the three Sz projections have equally spaced

interaction energies, that is, U
|+〉
gg −U |0〉gg = U

|0〉
gg −U |−〉gg =

∆Ugg ∼ kHz. Under those conditions, the spin depen-
dence of the interactions are equivalent to a magnetic
field in the ẑ direction. In our dynamics, the total Sz
will be conserved, so this field plays no role. The spin
Hamiltonian is then effectively rotationally invariant.

Note that ∆U is small compared to U
|σ〉
gg ∼ Ugg, which

is tens of kHz.
The same story works in the excited band, but U

|σ〉
ee 6=

U
|σ〉
gg . Within our approximations, U

|σ〉
ee = (3/4)U

|σ〉
gg ,
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FIG. 4. (A) Coherent resonant Raman transfer of two atoms
from the left site to the right site. (B) Coherent resonant
Raman transfer of the two atoms back to the excited band on
the left site. The two atoms then decay to the ground band.
Due to bosonic symmetry, this sequence is only possible if
the total spin of the four atoms is ST = 2, and hence this
process cannot occur in the AKLT state.

which means ∆Uee = (3/4)∆Ugg.
The protocol is shown in Fig. 4. We switch on a coher-

ent Raman drive such that it is in resonance with transi-
tions where two atoms from the ground band of one site
are transported to the ground band of the (filled) site
next to it down the ladder, resulting in four atoms on
that site. Due to Bose statistics, four spin-1/2 bosons
on the same site in the same band must be in a total spin
symmetric state. Thus this Raman process can only oc-
cur if the atoms on neighboring sites are in an ST = 2
state. This process cannot occur if we are in the AKLT
state.

The initial, final, and intermediate states in this pro-
cess have (2, 2), (0, 4), and (1, 3) atoms on the two sites.
They have interaction energies 2Ugg, 6Ugg, and 2Ugg. If
the drive is chosen so that the initial and final states
are resonant, then the intermediate state is detuned by
∆− 3Ugg. The process therefore occurs at a rate

Ω
′′
∼ Ω′2

|∆− 3Ugg|
. (22)

As in Sec. II C, Ω
′

is the rate of coherently transferring
one atom by one site.

We would operate in the limit where Ugg,∆� Ω
′′
&

∆U,Γ. This hierarchy of energy scales ensures that un-
wanted processes are far off resonant.

Simultaneously, another set of Raman lasers reso-
nantly transfers two atoms from the four-atom site
back to their original site but in the excited motional
band as shown in Fig. 4. Following our previous ar-
guments, the rate of this process would scale as Ω

′′ ∼
Ω′2/|∆ − 3Ugg + ω0|. Here the intermediate state with
three atoms on one of the sites has an extra detuning
ω0 due to the atoms being transferred into the excited
band. The same hierarchy of energy scales makes only
this process resonant for all Sz combinations. The two
atoms in the higher band can now decay through their
interaction with the superfluid bath atoms.

Spin decoherence is engineered through two mecha-
nisms. First, there is a dephasing resulting from time
spent in the excited state configuration. For concrete-
ness, consider a neighboring pair in the |ST = 2, SZT = 1〉
state, 1√

2
(| +e 0〉 + |0e+〉) with atoms on one of the

sites in the excited band. The | +e 0〉 state has energy

U
|+〉
ee +U

|0〉
gg , while the |0e+〉 state has energy U

|0〉
ee +U

|+〉
gg .

These two states have an energy difference given by,
∆Ugg − ∆Uee − (1/4)∆U . Thus their relative phases
wind at a rate (1/4)∆U . As long as Γ′.(1/4)∆U , then
the phase is effectively scrambled. Here Γ′ = Γ/2 repre-
sents the effective decay rate of the two atoms from the
motionally excited band.

A second mechanism for decoherence comes from the
decay process itself. The transition |+e〉 → |+〉 requires
emitting a different frequency Bogoliubov phonon than
the transition |0e〉 → |0〉. The bath learns which-path
information, and this is then analogous to a measure-
ment. For the energy difference to be resolvable, we
require Γ′.(1/4)∆U .

After the decay, the probability of being in the ST = 2
sector has been reduced. These processes would con-
tinue until no neighboring pairs are in the ST = 2 chan-
nel. The chain is then in the AKLT state, and all dy-
namics stop.

We used a Lindblad master equation approach to
model the dynamics. As in our previous treatments, we
do not explicitly model the various intermediate states,
and instead work with an effective model, where the in-
coherent processes are described by jump operators of
the form

Ĉi,kk′ =
√

Γ′|kk′〉〈kk′|P̂ST=2
i,i+1 (23)

Here, k, k′ ∈ {|+〉, |0〉, |−〉}, and P̂ST=2
i,i+1 projects the

spin-1 objects on neighboring sites to the spin-2 sector.
The effective rate is Γ′.

The master equation for the density matrix ρ̂ is

dρ̂

dt
=

i=N−1∑
i=1

∑
kk′

Ĉi,kk′ ρ̂Ĉ
†
i,kk′ −

1

2
{Ĉ†i,kk′Ĉi,kk′ , ρ̂} (24)

By construction, superpositions of the four AKLT states
are the only steady states.
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We use two approaches for analyzing the behavior:
in Sec. III C 1, we numerically calculate the eigenvalues
of the Lindblad super-operator. The real part of the
smallest non-zero eigenvalue gives the time-scale for ap-
proaching the AKLT state. The size of the matrix we
need to diagonalize grows exponentially with the size of
the system, limiting this technique to chains with fewer
than 7 sites.

In Sec. III C 2, we instead use a stochastic wavefunc-
tion approach which is equivalent to Eq. (24). We write
the wavefunction as a matrix product state, and use
tensor network tools to efficiently evolve it in time. We
take the initial state as a product state of |0〉 on all sites.
We measure the expectation value of the sum of all the
nearest neighbor spin-2 projectors. At long times, this
decays exponentially – and we extract the time-scale by
fitting this exponential.

We find that the time to create the AKLT state scales
as (N −1)2, where N is the number of sites. We give an
intuitive understanding of this result based upon diffu-
sion of domain walls.

1. Exact Diagonalization

We vectorize the density matrix by putting all of its
elements in a column vector, denoted ρ̃. The Lindblad
equation then has the structure of a linear differential
equation with constant coefficients and we can use stan-
dard linear algebra techniques to find the rate of ap-
proaching equilibrium.

If we do not take advantage of any symmetries, our
Hilbert space has length 3N , where N is the number
of spins. The density matrix is a 3N × 3N matrix, so
ρ̃ is a vector of length 32N . The index α which labels
the elements of ρ̃ is associated with a bra 〈ψ| and a ket
|φ〉, and ρ̃α = 〈ψ|ρ̂|φ〉α. Here 〈ψ| and |φ〉 are arbitrary
states in the 3N dimensional Hilbert space.

In its vectorized form, the Lindblad equation from
Eq. (24) is

dρ̃α
dt

=
∑
β

L̂αβ ρ̃β (25)

where the the matrix on the right has elements

L̂αβ =
(
|ψ〉 ⊗ 〈φ|

)
α
L̂
(
|ψ〉 ⊗ 〈φ|

)
β
. (26)

The Lindblad superoperator L̂ is

L̂ =

i=N−1∑
i=1

∑
kk′

Ĉi,kk′ ⊗ Ĉi,kk′ −
1

2
Ĉ†i,kk′Ĉi,kk′ ⊗ 1

−1

2
1⊗ Ĉ†i,kk′Ĉi,kk′ .

(27)

The non-zero eigenvalues of L̂ have negative real parts
which give the rates of decay of various perturbations.
The zero eigenvalues identify the dark states. The total

Sz of the chain is conserved in the dynamics, so L̂ is
block diagonal. We restrict ourselves to the block with
Sz = 0.

We find four zero-eigenvalues, corresponding to two
of the AKLT states, and the coherences between them.
These AKLT states have edge modes | ↑↓〉 and | ↓↑〉.

The time taken to reach the AKLT state is controlled
by the eigenvalue whose real part has the smallest non-
zero magnitude, γ. Figure 5 shows how this slowest rate
scales with N for the exact diagonalization calculation.
Due to the exponential scaling of the Hilbert space, we
are restricted to N < 7.

As will be discussed in more detail in Sec. III C 2, the
rate scales inversely with the number of sites as γ ∝
1/(N − 1)2.

2. DMRG Calculation

To explore larger systems, we use the stochastic wave-
function formalism [28]. In this approach, one uses a
non-Hermitian effective Hamiltonian to evolve an ini-
tial wavefunction in time, stochastically including dis-
crete “quantum jumps.” The non-Hermitian part of
the Hamiltonian is constructed using the jump oper-
ators and leads to a non-unitary evolution of the wave-
function. The stochastic quantum jumps represent the
effects of random ‘measurements’ by the environment
through the application of a random jump operator onto
the wavefunction.

Following the approach introduced by Daley et
al. [29], and also used by Bonnes and Läuchli [30], we
use a matrix product state ansatz for the time depen-
dent wavefunction. This is extremely efficient, allowing
us to model systems with as many as 9 sites (corre-
sponding to a Hilbert space with almost 20,000 states,
a density matrix with almost 400 million elements, and
a super-operator with over 1017 elements).

In particular, we take

|ψ(t)〉 =
∑
{ij ,σj}

A
(1)
1,i1,σ1

A
(2)
i1,i2,σ2

· · ·A(n)
in−1,1,σn

|σ1 · · ·σn〉.

(28)
The bond indices ij are dummy variables which take
on no more than χ different values, where χ is referred
to as the bond dimension. The indices σj = −1, 0, 1
corresponds to the physical spins. All time dependence

is contained in the tensors A
(j)
ij−1,ij ,σj

. The AKLT state

can be represented in this form with χ = 2.

We take an initial product state of |0〉 on all sites. We
discretize time. During each time-step, we evolve the
wavefunction as, |ψ(t+δt)〉 = (1− iĤeffδt)|ψ(t)〉, where

Ĥeff = Ĥ0 − i
∑
i,kk′ Ĉ

†
i,kk′Ĉi,kk′ is a non-Hermitian ef-

fective Hamiltonian. In our model Ĥ0 = 0 as all dy-
namics simply comes from the jump operators.

We construct the time evolution operator Ô = (1 −
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iĤeffδt) as a matrix product operator,

Ô =
∑

{kj ,σ′j ,σj}

W
(1)
1,k1,σ′1σ1

W
(2)
k1,k2,σ′2σ2

· · ·

· · ·W (n)
kn−1,1,σ′nσn

|σ′1 · · ·σ′n〉〈σ1 · · ·σn|.
(29)

Here again the kj are bond indices and σj , σ
′
j are phys-

ical spins. Our effective Hamiltonian only has nearest-
neighbor terms, and the tensors W (i) take the standard
form, where blocks of non-zero elements appear on the
first column and last row [31]. To evolve the wavefunc-

tion |ψ(t)〉 with Ô, we take tensor products of A(i) with
W (i). The bond dimension of the evolved wavefunction
increases after each step. We use the zip-up method
described in [32] to control the bond-dimension of the
resulting state at each time step and proceed with the
time evolution.

Due to the non-unitary evolution of the wavefunction
by Ĥeff , the wavefunction norm is reduced. We calculate
this norm, 1 − p = 〈ψ(t + δt|ψ(t + δt)〉. We then draw
a random number x between 0 and 1. If x > p, we
normalize |ψ〉, then continue with the next time step.

If x < p it means a quantum jump has oc-
curred. We then calculate the probabilities, pi,kk′ =

〈ψ(t)|Ĉ†i,kk′Ĉi,kk′ |ψ(t)〉 where p =
∑
i,kk′ pi,kk′ , and

draw another random number to determine which has
occured [28]. We apply the relevant jump operator and
renormalize the state.

We measured the total spin-2 projection of all nearest
neighbor pairs as a function of time and fit the tail with
a decaying exponential function. Our resulting estimate
for the slowest decay rate, γ is plotted in Fig. 5 for up
to 9 sites. The DMRG simulation reproduces the exact
diagonalization rates and shows the same 1/(N − 1)2

scaling. We use 75 realizations, and error bars in Fig. 5
correspond to the statistical uncertainty in γ.

This 1/(N − 1)2 scaling can be qualitatively under-
stood by analyzing how string order develops in the
spin chain. The AKLT state in the spin-1 basis is a
superposition of different arrangements of |+〉, |0〉 and
|−〉 – for example, with three sites, an AKLT state is
1
2 |000〉 − |+−0〉 − |0 +−〉+ |+ 0−〉. There is a ”string
order” here in that if you threw away all of the spin-0
sites, each of these terms correspond to an antiferroma-
gentic arrangement | + −〉. This same property occurs
for longer chains.

Domain walls in the string order can be assigned a
“charge” corresponding to the excess local magnetiza-
tion: a configuration |−++−〉 has a positively charged
domain wall, and | + − − +〉 has a negatively charged
domain wall. Our stochastic process involves local pro-
jections, which conserve the total magnetization, and
hence cannot remove an isolated domain wall. Instead,
during the stochastic process, the domain walls undergo
random walks – and can be annihilated when two op-
positely charged domain walls touch. For example, to
establish string order in the state |+ + 00−−〉, the cir-
cled spins must either exchange position, or annihilate
each-other.

△

△

△
DMRG Simulation

△ Exact Diagonalization
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1
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FIG. 5. (color online) Scaling of slowest rate of decay, γ,
with the number of spins, N . Large red triangles: Diagonal-
ization of the Lindblad super-operator; Blue dots with error
bars: Stochastic DMRG simulation. The error bars repre-
sent the statistical uncertainty from using 75 realizations in
the DMRG calculation. The decay is measured in terms of
Γ′, the rate of the local dissipation.

The underlying domain wall dynamics are diffusive,
and the slowest processes involve the motion of a domain
wall over a distance of order N − 1, where N is the
number of sites. Thus one expects the time required to
scale as (N − 1)2, as seen in the numerics.

We conclude that the state preparation time would
scale quadratically with the number of sites. This scal-
ing is quite favorable. In contrast, for an adiabatic
preparation scheme, one expects the smallest gap to
scale exponentially in the system size, and hence the
preparation time would also scale in that manner.

IV. SUMMARY AND OUTLOOK

We present concrete examples which elucidate how
engineered dissipation, in conjunction with an appro-
priate drive, can be used to manipulate bosonic atoms
in tilted optical lattices. In these examples, the drive
is supplied by coherent Raman lasers, and the dissipa-
tion comes from band-changing collisions with a super-
fluid bath. Using these ingredients, we present proto-
cols for controlling transport, forming a Mott insula-
tor state, and creating the topologically ordered spin-
1 AKLT state. In the latter two cases, the states are
autonomously stabilized, and any perturbations can be
automatically healed.

We calculate the relevant time scales for state prepa-
ration and their dependence on system size. We note
that in all cases, the preparation time scales polyno-
mially with system size. By contrast, adiabatic state
preparation techniques typically scale exponentially.

All of the ingredients in our protocols have been in-
dividually realized in existing experiments. Moreover,
the three examples form a natural progression for an
experimental program: each adding a layer of sophisti-
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cation to the previous one. While all three examples are
important, the observation of the AKLT state would be
particularly impactful.

As previously stated, these examples are also impor-
tant for the way they exemplify general principles of the
driven-dissipative manipulation of quantum states. In
describing them, we are able to address the interplay
of different energy scales, and rates of processes. We
show how the symmetries of the system and the tar-
get quantum state can be exploited for dissipative state
preparation. The techniques are readily extended into
other systems, and into other forms of manipulation.

While all of the ingredients have been realized in ex-
periments, a real challenge with our proposals is that
they require combining a number of sophisticated ex-
perimental techniques. The superfluid bath, which pro-
vides our dissipation, is one of the most challenging ele-
ments. It would be desirable to construct an all-optical
scheme which uses spontaneous photon emission to pro-
vide the dissipation. As discussed in Sec. II F, the dif-
ficulty there is that optical line-widths are larger than
the other scales in the system, and would lead to un-
wanted transitions. An important future research di-
rection would be to explore dressed state techniques or
other ways to overcome this difficulty.
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Appendix A: Raman Rates

Here we derive the expression in Eq. (13) for the Ra-
man matrix elements. We begin with Eq. (12),

Ω′ =
Ω2

0

δ

∣∣∣∣∫ dxψ∗m,g(x)ei(k1−k2)xψm+1,e(x)

∣∣∣∣2 (A1)

In the limit where ∆ � tα, we can approximate the
Wannier-Stark eigenstates in Eq. (5) upto leading order
as,

ψm,α(x) ∼ φαm(x) (A2)

As described in Sec. II B, in the deep lattice limit,
φαm(x) ≈ wα(x−md/2), where wα(x−md/2) are highly
localized harmonic oscillator eigenstates. The Raman
matrix element becomes,

Ω′ =
Ω2

0

δ
|I|2 (A3)

where,

I =

∫
dxw∗g(x−md/2)eikxwe(x− (m+ 1)d/2). (A4)

Here k = k1−k2 where k1 and k2 are the wavevectors of
the two raman lasers. The Gaussian integral is readily
calculated,

I =

(
iC − πV

1/4
0√
2

)
e−

C2

2 −
ikd
4 −

π2√V0
4 (A5)

with C = kd/
(

2
√

2πV
1/4
0

)
.

For a sufficiently deep lattice, the net transition rate
scales as,

Ω′ ∼ Ω2
0

δ

(
k2d2

8π2
√
V0

+
π2
√
V0

2

)
e
− k2d2

8π2
√
V0
−π

2√V0
2 (A6)

Many of the coefficients are under experimental con-
trol. Ω0 is the dipole matrix element between the
ground and excited electronic levels of the lattice atoms,
which directly depends on the laser intensity. The
wavevector k is tuned by changing the angle between
the two lattice beams, the optimal value is given by
k2 = 8π2

√
V0/d

2, in which case

Ω′ ∼ Ω2
0

δ

(
1 +

π2
√
V0

2

)
e−

π2√V0
2 . (A7)
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