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We investigate magic-wavelength trapping of ultracold bialkali molecules in the vicinity of weak
optical transitions from the vibrational ground state of the X1Σ+ potential to low-lying rovibrational
states of the b3Π0 potential, focussing our discussion on the 87Rb133Cs molecule in a magnetic field of
B = 181 G. We show that a frequency window exists between two nearest neighbor vibrational poles
in the dynamic polarizability where the trapping potential is “near magic” for multiple rotational
states simultaneously. We show that the addition of a modest DC electric field of E = 0.13 kV/cm
leads to an exact magic-wavelength trap for the lowest three rotational states at a angular-frequency
detuning of ∆v′=0 = 2π × 218.22 GHz from the X1Σ+(v = 0, J = 0) → b3Π0(v′ = 0, J = 1)
transition. We derive a set of analytical criteria that must be fulfilled to ensure the existence of
such magic frequency windows and present an analytic expression for the position of the frequency
window in terms of a set of experimentally measurable parameters. These results should inform
future experiments requiring long coherence times on multiple rotational transitions in ultracold
polar molecules.

PACS numbers:

I. INTRODUCTION

Ultracold polar molecules present a wealth of opportu-
nities in quantum science and technology [1]. Proposed
applications span the fields of precision measurement and
metrology [2–8], quantum-state resolved chemistry [9–
13], dipolar quantum matter [14–19], quantum simula-
tion [20–25] and quantum information processing [26–32].
Recent experimental progress on the production of ul-
tracold molecules by association [33–43] and direct laser
cooling [44–49] has brought many of these applications
within reach.

In the realm of quantum simulation and computa-
tion, the rotational structure of ultracold molecules pro-
vides a rich basis of long-lived states in which to en-
code pseudo-spins or quantum information. Owing to
the permanent molecular-frame electric dipole moment,
the rotational states can be conveniently manipulated
with microwave fields, as already demonstrated in a
number of settings [50–55]. Moreover, laboratory-frame
dipole moments can be engineered using applied electric
fields or superpositions of rotational states. The result-
ing long-range interaction between molecules can be ex-
ploited to realise model Hamiltonians in quantum mag-
netism [20, 21, 24, 56–58] and two-qubit gates for quan-
tum information processing [26–32]. To generate use-
ful interaction strengths necessitates inter-molecular dis-
tances below a micrometre. This is most readily achieved
using optical potentials, either in the form of an optical
lattice [59, 60] or an array of optical tweezers [61, 62].

For diatomic molecules, such as ground-state bialkali
molecules [33–43], the dynamic polarizability along the
molecular axis (α‖) is, in general, different from that per-
pendicular to it (α⊥). For light polarized at an angle θ to

the molecular axis, this leads to a dynamic polarizability
in the body-fixed frame given by,

α(θ) = α(0) + α(2)P2(cos(θ)), (1)

where α(0) = 1
3 (α‖ + 2α⊥) and α(2) = 2

3 (α‖ − α⊥) are
the isotropic and anisotropic components of the polar-
izability tensor, respectively. α‖ and α⊥ result from a
sum over all allowed molecular transitions for the com-
ponent of the dipole operator parallel or perpendicular
to the molecular axis, respectively, and are smooth func-
tions of wavelength in the regime where the frequency
of the trapping laser is far-detuned from any rovibronic
transitions [63–65]. In the lab frame, the dynamic polar-
izability can be thought of as the spatial average of α(θ).
Although α(0) is the same for all rotational states, α(2)

strongly mixes states with different rotational projections
in excited rotational states. It follows that for molecules
confined in an optical potential, the anisotropic polar-
izability leads to rotational transition frequencies that
are strongly dependent on the intensity and polarization
of the trapping light. The concomitant state-dependent
light shifts make it highly challenging to achieve rota-
tional coherence times that are sufficiently long to be
sensitive to the ∼kHz interaction strengths [51, 66] typ-
ical of most molecules. Nevertheless, several approaches
have been developed to match the polarizabilities of two
specific states within a molecule. These include judicious
choice of the intensity and polarisation of the trapping
light [67–69] and the addition of applied electric fields to
simplify the couplings within the molecule [65, 66, 70].

Inspired by the magic-wavelength traps used in atomic
clocks [71, 72], it is natural to investigate magic-
wavelength trapping for molecules. Intuitively, magic
trapping independent of the molecular rotational state
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can be realized under the condition of α(2) = 0. To
search for this condition, one needs to tune the trap-
ping laser wavelength into a regime where there is sig-
nificant interplay between several ro-vibrational poles in
α‖ and α⊥. Indeed, following this approach, very re-
cent work has demonstrated state-insensitive trapping
for two vibrational [73] or rotational [74] levels. These
magic-frequency traps show reduced sensitivity to ex-
perimental parameters, enabling longer coherence times
to be achieved. However, numerous proposed applica-
tions make greater use of the rich internal structure of
molecules by simultaneously addressing more than two
rotational levels. Examples include, coupling three rota-
tional levels with microwave fields to realize highly tun-
able models in quantum magnetism [57] and mapping
many rotational levels onto a synthetic dimension [75].
It is therefore pertinent to ask whether the concept of a
magic frequency trap can be extended to multiple rota-
tional levels simultaneously.

In this work, we investigate magic-wavelength trap-
ping of ultracold bialkali molecules in the vicinity of weak
optical transitions from the vibrational ground state
of the X1Σ+ potential to low-lying rovibrational states
of the b3Π0 potential, focussing our discussion on the
87Rb133Cs molecule. We show that a magic trapping fre-
quency window for multiple rotational states of the X1Σ+

potential exists between two nearest neighbor vibrational
poles of the b3Π0 potential, far away from any rotational
poles. Within this window, the laser trapping is “near
magic” for multiple rotational states simultaneously and
is exactly magic for pairs of neighboring rotational states
at specific laser frequencies. Moreover, the “near magic”
frequency window can be tuned to a true magic frequency
for the lowest three rotational states by applying an ex-
perimentally accessible DC electric field. This true triple
magic condition is expected to be useful for future stud-
ies of synthetic spin-1 systems using ultracold molecules.
The existence of such a magic frequency window relies on
a set of strict criteria which we derive analytically. We
show that these criteria can be satisfied near the narrow
X1Σ+ → b3Π0 transitions for heavy molecules, including
87Rb133Cs and 23Na87Rb. We also derive an analytic ex-
pression for the position of the frequency window in terms
of a set of experimentally measurable parameters, such
as transition widths and transition wavelengths. This
will provide a straightforward, self-consistent approach
to search for the magic trapping frequency window in
future experiments.

This paper is organized as follows. Section II presents
the general theoretical framework describing the molec-
ular rotational states in the lowest vibrational state of
the ground electronic potential in the presence of applied
magnetic, electric and optical fields. In section III, we
discuss the hyperfine structure of the 87Rb133Cs molecule
in the presence of applied magnetic and electric fields
with a view to identifying the best target states in each
rotational level for magic trapping. In section IV, we
consider the AC-Stark shift and dynamic polarizability

of 87Rb133Cs molecules in the vicinity of the weakly al-
lowed X1Σ+ → b3Π0 transitions. In section V, we iden-
tify magic trapping frequencies by searching for crossings
among the frequency-dependent dynamic polarizability
curves of different rotational states. We present a sim-
ple analytic treatment that shows excellent agreement
with our numerical results, both near-resonance and in
the magic frequency window between two vibrational
poles. Imaginary polarizabilities for rotational states in
the magic frequency window are also calculated. In sec-
tion VI, we discuss the wider significance of our work,
before concluding in section VII.

II. THEORETICAL FRAMEWORK

We focus on the molecular rotational states ~J asso-
ciated with the v = 0 vibrational state of the ground
electronic state of RbCs. The effective Hamiltonian that
describes the system in the presence of a static magnetic

field ~B, a static electric field ~E, and an optical laser field
of intensity I [52, 65, 76] is given by:

H = Hrot +HZ +Hhf +HDC +HAC, (2)

where the rotational Hamiltonian is

Hrot = Bv
~J2 , (3)

the Zeeman Hamiltonian is

HZ = −grµN
~J · ~B −

2∑
k=1

gkµN
~Ik · ~B(1− σk) , (4)

the nuclear quadrupole interaction is

Hhf =

2∑
k=1

(eqQ)k
Ik(Ik − 1)

C2(α, β)T2(~Ik, ~Ik) , (5)

and the DC-Stark shift is

HDC = −~d · ~E . (6)

In Eqs (3)-(6) ~J , ~Ik, and ~d denote the molecule orbital
angular momentum operator, the nuclear spin operators
for the k-th atom, and the permanent molecular elec-
tric dipole moment operator, respectively. The nuclear
quadrupole interaction Hhf couples the nuclear spin to
rotational states and depends on the quadrupole cou-
pling constants (eqQ)k for Rb and Cs obtained from

Refs [52]. The operator T2(~Ik, ~Ik) is a rank-2 tensor and

C2(α, β) =
√

4π/5Y20(α, β) is the modified spherical har-
monic function, where the angles α, β describe the orien-
tation of the diatomic molecule in the space-fixed coordi-
nate frame. In these equations Bv is the rotational con-
stant, µN is the nuclear magneton, and gr is the molecule
rotational g-factor. Moreover, gk and σk with k = 1, 2
are nuclear-spin g-factors and isotropic molecular nuclear
shielding factors, respectively.
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Here, the direction of the external magnetic field is our
quantization axis along which we define projection quan-
tum numbers of angular momenta. The matrix elements
of the Hamiltonian are determined in low-energy set of
basis functions |J,M ;m1,m2〉 , where J and M are the
orbital angular momentum and its associated projection,
respectively. Quantum numbers mk are nuclear spin pro-
jections of the k-th atom.

The AC-Stark Hamiltonian HAC in Eq. (2) is con-
structed up to second order in the electric field strength
of the driving laser in the regime where the AC-Stark
shift is much smaller than the rotational constant. In
this regime, the AC-Stark Hamiltonian HAC is

HAC = − I

ε0c

∑
J,M,M ′,
m1,m2

|J,M ′;m1,m2〉〈J,M ;m1,m2|

×
∑
f

〈J,M ′|~dtr · ~ε∗|f〉〈f |~dtr · ~ε|J,M〉
Ef − (EJ + ~ω)

, (7)

where energies EJ are the eigenvalues of Hrot, ~dtr, ~ε,
and ω are the molecular transition electric dipole mo-
ment operator, the laser polarization, and the laser an-
gular frequency, respectively. The summations over J ,
M , M ′, and mk only contain basis functions in the low-
energy space. The summation f in Eq. (7) is over all
ro-vibrational states and continua of excited electronic
states with energies Ef excluding their Zeeman, hyper-
fine, and DC-Stark shifts. We have included previously
studied [63, 70] excited electronic states that dissociate
to limits where only one of Rb or Cs is excited to its
energetically-lowest excited nP state. In this work, we
are interested in the regime where the AC-Stark shift is
much smaller than the rotational constant. Thus, in writ-
ing Eq. (7), couplings between the states with different
orbital angular momenta J are neglected. Finally, ε0, c,
and ~ are the vacuum permittivity, the speed of light in
vacuum, and the reduced Planck’s constant, respectively.

We diagonalize Eq. (2) in the basis |J,M ;m1,m2〉 in-
cluding J ≤ 20 to find eigenenergies Ei and correspond-
ing eigenstates |i〉 of the molecular system. The dynamic
polarizability of an eigenstate is −∂Ei/∂I. By mapping
out the intensity-dependence of the eigenenergies of the
effective low-energy Hamiltonian, we obtain the dynamic
polarizabilities for various rotational states. The electric
field, magnetic field, and laser frequency serve as our tun-
ing parameters which can be manipulated, as shown in
the following discussions, to realize various magic trap-
ping conditions. Although, in this work we focus our
discussion on the 87Rb133Cs molecule, the extension to
other diatomic alkali molecules is implied.

III. ZEEMAN SPLITTINGS AND DC-STARK
SHIFTS IN RBCS MOLECULES

The nuclear spins of 87Rb and 133Cs atoms are I1 =
3/2 and I2 = 7/2, respectively. Because of the multi-
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FIG. 1: The hyperfine energy levels for the J = 0, 1, and 2
manifolds as functions of the magnetic field strength B (the
left column (a), (c), and (e) panels, respectively) and the
static electric field strength E applied parallel to a magnetic
field of B = 181 G (the right column (b), (d), and (f) panels,
respectively). The red dashed lines in (a), (c), and (e) mark
the target trapping state (see text). Panel (b) consists of a
band with 32 energy levels. Panel (d) consists of two bands;
the upper one contains 32 energy levels with M = 0 and the
lower one 64 energy levels with M = ±1. Panel (f) consists
of three bands; the upper one contains 32 energy levels with
M = 0, the middle one 64 energy levels with M = ±1, and
the lower one 64 energy levels with M = ±2.

ple combinations of the atomic nuclear spin projections
and the molecular orbital angular momentum projec-
tions, there exist (2J + 1)(2I1 + 1)(2I2 + 1) energy levels
that are associated with the rotational state with orbital
angular momentum J . In the presence of the magnetic
field, the static electric field, and the hyperfine interac-
tions, these “near” degenerate energy levels split. Before
we discuss the magic trapping conditions, it is necessary
to select the best target states to be trapped among these
levels for each rotational state.

Figs. 1(a), (c), and (e) show the hyperfine energy lev-
els of the rotational J=0, 1, and 2 manifolds of the v=0
X state, respectively. The hyperfine degeneracy of a J
state is lifted by an external magnetic field B. In this

regime, the total angular momentum ~F 2 = ( ~J + ~I1 + ~I2)2

and the total projection MF = M + m1 + m2 are ap-
proximately good quantum numbers which means that
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the eigenstates consist of strong admixture of states with
different nuclear spin projections. The level repulsion is
strong, leading to quadratic Zeeman shifts dominating
over linear Zeeman shifts for B < 50 G. With increasing
magnetic field strength, the linear Zeeman shift domi-
nates. Due to the differences in the various g-factors,
gr = 0.0062, g1 = 1.836(3), and g2 = 0.738(1) in Eq. (4)
for 87Rb133Cs [52, 77], the projections M , m1, and m2

are all approximately good quantum numbers in the high-
field regime.

The red dashed lines in Figs. 1(a), (c), and (e) indicate
the energetically lowest levels of these manifolds, which
are selected as our target trapping states. For B > 150 G,
the admixture of the other components into the target
trapping states is less than 20% for J = 0, 1, and 2.
In this paper, we focus on a magnetic field strength of
B = 181 G applied in the experiment [37]. In the ad-
ditional presence of a static electric field, as shown in
Figs. 1(b), (d), and (f), these target states are more
purified and decoupled from |M | > 0 states, thereby en-
hancing their tunability and improving magic trapping
conditions. Thus, the static electric field separates the
J = 0, the J = 1, and J = 2 M = 0 levels from |M | > 0
levels of the same manifolds. For B = 181 G, a static
electric field of strength E = 0.1 kV/cm already makes
the admixture of the states with finite M into the state
with M = 0 below 1%..

IV. AC-STARK SHIFTS NEAR THE NARROW
X1Σ+ → b3Π0 TRANSITIONS

To study the AC-Stark shift of the 87Rb133Cs molecule,
we consider the application of a driving laser field with
the angular frequency ω to induce coupling between the
target trapping states and electronically excited states.
Figure 2 shows the selected relativistic adiabatic Ω = 0+

potential curves of the 87Rb133Cs molecule, where Ω is
the total projection quantum number of the electronic
angular momentum and nuclear spins along the diatomic
molecule axis. The b3Π0 potential and the A1Σ+ poten-
tial are coupled by the spin-orbit coupling terms which
lead to an avoided crossing near Rc = 10a0. Here, the
potentials and the spin-orbit coupling functions are gen-
erated based on the data in Refs. [64, 78–80]. Due to
the spin-orbit coupling, the few lowest bound states ly-
ing near the bottom of the b3Π0 potential have some
admixture of the A1Σ+ component which enables the
electric dipole coupling from these states to the states
of the ground electronic potential X1Σ+. These transi-
tions are much narrower than the transitions to the states
with dominant occupation in the A1Σ+ potential. In
this work, we are particularly interested in the AC-Stark
shift and the dynamic polarizabilities near these narrow
transitions, indicated by the blue dashed line in Fig. 2.
We denote ωv′ the resonance transition frequency from
the (v = 0, J = 0) state of the X1Σ+ potential to the
(v′, J = 1) state of the b3Π0 potential. For v′ = 0, the
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FIG. 2: Ground and relevant excited adiabatic relativistic
Ω = 0+ potentials of the 87Rb133Cs molecule as a function
of internuclear separation R. The energetically-lowest poten-
tial is identified by non-relativistic label X1Σ+. The two ex-
cited adiabatic potentials have a narrow avoided crossing at
Rc ≈ 10a0. For R < Rc the electronic wavefunction of the
second adiabat is well described by the non-relativistic b3Π0

symmetry. For R > Rc this state is well described by the
A1Σ+ symmetry. The vertical lines indicate transitions from
the J = 0 trapping state in the X1Σ+ state to the lowest
J ′ = 1 ro-vibrational states of the coupled A1Σ+-b3Π0 com-
plex. The transition wavelength is 1146.287 nm.

resonance frequency reads ω0 = 2π × 261.533 THz which
corresponds to a wavelength of 1146.287 nm. When the
driving laser frequency ω is close to the resonance fre-
quency ωv′ , we reference ω to ωv′ through the detuning
∆v′ = ω − ωv′ .

Figure 3 shows the impact of the static electric field
on the AC-Stark shifts of the microwave transition fre-
quencies from the |J = 0,M = 0;m1 = 3/2,m2 = 7/2〉
ground state to the J = 1 rotational energy manifold in
the small and large detuning regimes. The driving laser is
linearly polarized with a polarization parallel to the mag-
netic field. The red circles correspond to the target trap-
ping state as discussed in Sec. III. For the case with the
detuning of ∆v′=0 = 2π×3 GHz and vanishing static elec-
tric fields [Fig. 3 (a)], the AC-Stark shifts can be charac-
terized into two bands; one going up with increasing laser
intensity while the other staying almost independent of
the laser intensity. The former corresponds to states with
M = 0 while the latter to states with M = ±1. As
shown by the red circles in Fig. 3 (a), the energy level of
the target trapping state in the J = 1 manifold crosses
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FIG. 3: Microwave transition frequencies from the |J =
0,M = 0;m1 = 3/2,m2 = 7/2〉 ground state to the J = 1
manifold as a function of the laser intensity for a laser fre-
quency near the resonance transition to the v′ = 0 vibra-
tional state of the b3Π0 potential. A magnetic field of strength
B = 181G is applied in the z-direction. Panels (a) and (c) cor-
respond to a detuning of ∆v′=0 = 2π×3 GHz. Panels (b) and
(d) correspond to a detuning of ∆v′=0 = 2π× 200 GHz. Pan-
els (a) and (b) correspond to vanishing static electric field.
Panels (c) and (d) correspond to a static electric field of
E = 0.2 kV/cm applied in the z-direction. The red circles in
all panels mark the energy level of the target trapping state.

those of the other levels with increasing laser intensity.
These crossings lead to strong level interactions [see the
gap in the red circles near I = 0.1kW/cm2 in Fig. 3 (a)],
hence to large hyper-polarizabilities which makes the sys-
tem unstable with respect to fluctuations of the trapping
laser intensity.

The level-crossing behavior in the AC-Stark shift can
be avoided by separating the M = 0 band and the
M = ±1 band using a static electric field as discussed
in Sec. III. Figure 3 (c) shows the AC-Stark shifts in the
presence of a static electric field of E = 0.2 kV/cm. Com-
pared to Fig. 3 (a), the M = 0 band lies roughly 5 MHz
above the M = ±1 band for I = 0. With increasing laser
intensity, the energy gap between the M = 0 band and
the M = ±1 band keeps increasing. The energy of the
target trapping state does not cross any of the M = ±1
states any more.

The level crossings seen in Fig. 3 (a) result from the
fact that the AC-Stark shift of the target trapping state
is larger than the energy splitting between the nearest
neighbor hyperfine levels. With larger laser detuning,
the differential AC-Stark shift is greatly reduced. For
example, for a detuning of ∆v′=0 = 2π × 200 GHz as
shown in Fig. 3 (b), the level crossings between the target
trapping state and the other states in the J = 1 manifold
disappear for the laser intensity regime shown here. As
shown in Fig. 3 (d), a static electric field separates the

M = 0 band from the M = ±1 band. This further
decreases M-state admixtures and improves coherence.

In the following discussion of dynamic polarizabili-
ties, we describe the detuning as near-resonance when
∆v′ < 2π × 10 GHz and as medium-detuned otherwise.
According to the above discussion, the static electric field
is always turned on for the near-resonance cases and not
mandatory for the far-detuned cases. This setup makes
our results independent of the laser intensity in a broad
intensity regime for both cases.

V. MAGIC CONDITIONS FOR MULTIPLE
ROTATIONAL STATES

We may identify magic trapping frequencies by search-
ing for crossings among the frequency-dependent dy-
namic polarizability curves of different rotational states.
We start the discussion with the dynamic polarizabilities
αJ near the resonance from which we extract the parallel
and perpendicular background polarizabilities αbg,‖ and
αbg,⊥ and the transition width Γ0,v′ . Given the values
of αbg,‖, αbg,⊥, and Γ0,v′ , it is proved analytically and
verified by our numerical calculations that there exists
a “near” magic frequency window for multiple rotational
states in the medium-detuned regime between vibrational
poles. By tuning the static electric field, a true triple
magic frequency is found for the J = 0, J = 1, and
J = 2 target trapping states for the 87Rb133Cs molecule.

A. Near-Resonance Dynamic Polarizabilities

In the near-resonance regime, we fix the strength of
the static electric field to be E = 0.2 kV/cm. The angle
between the laser polarization and the magnetic field is
denoted θ. In this case, the dynamic polarizabilities αJ=0

of the J = 0,M = 0 target trapping state and αJ=1 of the
J = 1,M = 0 target trapping state can be approximated
using [67] by

αJ=0 = −3πc2

2ω3
v′

Γ0,v′

3∆v′
+

1

3
αbg,‖ +

2

3
αbg,⊥, (8)

and

αJ=1 = −3πc2

2ω3
v′

[cos2(θ)

3

Γ0,v′

∆v′ + 2Bv + 2Bv′
+ (9)

3 + cos2(θ)

15

Γ0,v′

∆v′ + 2Bv − 4Bv′

]
+

2 cos2(θ) + 1

5
αbg,‖ +

4− 2 cos2(θ)

5
αbg,⊥,

respectively. Here, the parameters Bv and Bv′ corre-
spond to the rotational constants for the v = 0 vibra-
tional state of the X1Σ+ potential and the v′ = 0 vibra-
tional state of the b3Π0 potential. The transition width
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FIG. 4: The dynamic polarizabilities near the resonance tran-
sition to the v = 0 vibrational state of the b3Π0 potential. A
magnetic field of strength B = 181 G and a static electric field
of strength E = 0.2 kV/cm are applied in the z-direction. The
driving laser polarization is (a) parallel and (b) perpendicu-
lar to the external static fields. The black circles and red
squares correspond to the numerical results of the dynamic
polarizabilities of the J = 0 and J = 1 target trapping state.
The black solid lines and the red solid lines correspond to the
analytical results generated using the Eqs. (8) and (9). The
green upper triangle in Panel (b) marks the crossing between
the black circles and red squares.

Γ0,v′ can be calculated via

Γ0,v′ =
ω3
v′

3πε0~c3
|µ0,v′ |2 (10)

where the µ0,v′ is the transition dipole momentum be-
tween the v = 0 vibrational state of the X1Σ+ po-
tential and the v′ vibrational state of the b3Π0 poten-
tial. The parallel and perpendicular background po-
larizabilities αbg,‖ and αbg,⊥ contain the contributions
from all the far-detuned rovibronic states with Ω = 0
and Ω = 1, respectively [63–65]. For 87Rb133Cs, we
find Bv = 2π × 0.490 GHz, Bv′ = 2π × 0.510 GHz,
Γ0,v′=0 = 2π×15.5 kHz, αbg,‖ = h×0.127 kHz/(W/cm2),

and αbg,⊥ = h × 0.0340 kHz/(W/cm2). Experimentally,
these values can be extracted by fitting the measured
dynamic polarizability curves near the poles.

Figure 4 shows the dynamic polarizabilities for laser
polarizations parallel and perpendicular to the magnetic
field direction in the near-resonance regime. The symbols
correspond to the numerical results and the lines show
the analytical results generated using Eqs. (8) and (9).
The agreement in both cases is excellent. As can be seen,
there is no crossing between the αJ=0 curve and the αJ=1

curve in the near-resonance regime for θ = 0◦. Accord-
ing to Eq. (9), the dynamic polarizability αJ=1 can be
tuned by varying the polarization direction of the driv-
ing laser. For example, for θ = 90◦, the term in the first

row of Eq. (9) inside the square bracket vanishes and the
pole structure at ∆v′=0 = −2π × 2.00 GHz is missing,
as shown by the red squares in Fig. 4 (b). In addition,
the pole at ∆v′=0 = 2π × 1.06 GHz is slightly narrower
compared to the θ = 0◦ case. In this case, the αJ=1

curve crosses the αJ=0 curve at the magic detuning of
2π × 2.68 GHz, as shown by the green upper triangle in
Fig. 4 (b). The value of the polarizability at the magic
detuning is −h × 2.71 kHz/(W/cm2). The negative po-
larizability indicates that the molecules can be trapped
at the nodal point of an optical lattice where the laser
intensity is the local minimum. This trapping condition
is beneficial for also minimizing heating and loss from
incoherent photon scattering.

B. Multiple Magic Frequency Window

For arbitrary J , we derive the general formula for the
dynamic polarizability near the resonance transition to
one of the states of the b3Π0 potential,

αJ = −3πc2

2ω3
v′

[
AJ(θ)

Γ0,v′

∆v′ + LJ
+BJ(θ)

Γ0,v′

∆v′ +RJ

]
(11)

+ [AJ(θ) +BJ(θ)]αbg,‖ + [1−AJ(θ)−BJ(θ)]αbg,⊥,

where the pole positions LJ of the left branch and RJ of
the right branch read

LJ = J(J + 1)Bv − [J(J − 1)− 2]Bv′ , (12)

and

RJ = J(J + 1)Bv − [(J + 1)(J + 2)− 2]Bv′ , (13)

respectively. The angular factors AJ(θ) and BJ(θ) in
Eq. (11) are,

AJ(θ) =



(J + 1)(J − 1)

2(2J + 1)(2J − 1)
+

J2 + 1

2(2J + 1)(2J − 1)
cos2(θ) J > 0

0 J = 0,

(14)

and

BJ(θ) =
(J + 2)(J + 1)

2(2J + 3)(2J + 1)
+ (15)

J(J + 1)

2(2J + 3)(2J + 1)
cos2(θ).

By Taylor-expanding the right hand side of Eq. (11) with
respect to LJ and RJ , we obtain,

αJ = [AJ(θ) +BJ(θ)]

(
−3πc2

2ω3
v′

Γ0,v′

∆v′
+ αbg,‖ − αbg,⊥

)
+

(16)

αbg,⊥ + TJ(∆v′ , θ),
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where the remaining term TJ(∆v′ , θ) reads,

TJ(∆v′ , θ) =
3πc2

2ω3
v′

Γ0,v′

∆2
v′

[AJ(θ)LJ +BJ(θ)RJ ] + (17)

O
(

Γ0,v′L2
J

∆3
v′

)
+O

(
Γ0,v′R2

J

∆3
v′

)
.

Based on Eq. (16), we can always find a detuning ∆v′,cr

such that,

αJ = αbg,⊥ + TJ(∆v′,cr, θ), (18)

where,

∆v′,cr =
3πc2

2ω3
v′

Γ0,v′

αbg,‖ − αbg,⊥
. (19)

For the transitions with ∆v′,cr lying in the medium-
detuned regime, i.e., |∆v′,cr| � |LJ |, |∆v′,cr| � |RJ |, and
|∆v′,cr| � Γ0,v′ , the remaining term TJ(∆v′,cr, θ) can be
neglected. In this case, both the θ-dependence and the J-
dependence of αJ in Eq. (18) disappear, indicating that
the frequency-dependent dynamic polarizabilities of all
rotational states pass through the same fixed point; the
trap is magic for all rotational states at this laser de-
tuning. The multiple magic frequency is approximately
given by Eq. (19) and the value of the dynamic polariz-
ability is approximately equal to the background perpen-
dicular dynamic polarizability αbg,⊥.

Figure 5 (a) shows the triple crossing magic frequency
for αJ with J = 0, 1, and 2 near the resonance tran-
sition to the v′ = 0 vibrational states of the b3Π0 po-
tential. The three curves cross each other in the detun-
ing window of 2π × 216 GHz to 2π × 219 GHz, as high-
lighted in Fig. 5 (b). Evaluating Eq. (19) using the values
of the transition width and the background polarizabili-
ties obtained in Sec. V A, the predicted magic frequency
corresponds to a detuning of 2π × 240 GHz. The dif-
ference comes from the higher order corrections in the
remaining term TJ(∆v′ , θ). The range of the αJ val-
ues in Fig. 5 (b) is consistent with the value of αbg,⊥ as
calculated in Sec. V A. Even though the three curves
do not intersect each other at the same frequency, their
values are very close in the frequency window shown in
Fig. 5 (b). The percent difference |αJ − αJ′ | /|αJ′ | for
any pair of J and J ′ in Fig. 5 (b) is less than 0.6% within
the detuning range of 2π×3 GHz, which makes the magic
trapping condition robust to uncertainty in the trapping
laser frequency. This near triple magic frequency win-
dow can be tuned to a true triple magic frequency by
adding a weak static electric field. Figure 5 (c) shows
that the three curves cross at ∆v′=0 = 2π × 218.22 GHz
for E = 0.13 kV/cm. The value of the polarizability at
this detuning is αJ = h× 0.03392 kHz/(W/cm2).

Our theory also predicts that the triple magic fre-
quency window also holds for higher rotational states.
Figure 6 shows the αJ curves up to J = 4 for the parallel
driving case in the presence of the static electric field of
strength E = 0.13 kV/cm. It can seen that all the values

216 217 218 219
∆v′=0/(2π) (GHz)

33.4

33.6

33.8

34

α J/h
 [H

z/
(W

/c
m

2 )]

216 217 218 219
∆v′=0/(2π) (GHz)

-300 -150 0 150 300 450 600
∆v′=0/(2π) (GHz)

-100
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α J/h
 [H

z/
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/c
m

2 )]

αJ=0
αJ=1
αJ=2

E=0 (a)

E=0

(b) (c)

E=0.13kV/cm

FIG. 5: The triple magic conditions for J = 0, 1, and 2
rotational states near the resonance transition to the v = 0
state of the b3Π0 potential. A magnetic field B = 181G is
applied in the z-direction. The laser polarization is parallel
to the magnetic field. The circles mark the crossings between
different curves in (b) and (c). The static electric field is
vanishing in (a) and (b). A finite static electric field of E =
0.13 kV/cm is applied along the z-direction in (c). A near
triple magic condition exists in (b) and a true triple magic
condition exists in (c).
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FIG. 6: The dynamic polarizabilities near the resonance tran-
sition to the v = 0 vibrational state of the b3Π0 potential for
multiple rotational states up to J = 4. A magnetic field of
B = 181 G and a static electric field of E = 0.13 kV/cm are
applied in the z-direction. The laser polarization is parallel to
the z-axis. The insets show the zoom-in of the “near magic”
frequency window in which the polarizabilities of many rota-
tional state are either crossing or close to each other.



8

of αJ are very close to αbg,‖ in the same magic frequency
window as discussed before. A further zoom-in of the
magic frequency window, shown in the inset of Fig. 6, in-
dicates that αJ=3 and αJ=4 almost run parallel to αJ=2

and, consequently, do not pass through the triple magic
frequency point for the αJ=0,1,2 curves. The higher rota-
tional states make the contribution from the remaining
term TJ(∆v′,cr, θ) more important due to larger values
of |LJ | and |RJ |. Thus, no crossings among the polariz-
ability curves of higher J values are expected within the
magic frequency window.

The similarity of the αJ curves in the medium-detuned
regime with increasing J values is explained by the
asymptotic behavior of the angular factors AJ(θ) and
BJ(θ) in Eqs. (14) and (15) in the large J limit. Ex-
panding AJ(θ) and BJ(θ) in terms of 1/J , we obtain,

AJ(θ) =
1 + cos2(θ)

8
+O

(
1

J2

)
, (20)

and,

BJ(θ) =
1 + cos2(θ)

8
+

sin2(θ)

8J
+O

(
1

J2

)
. (21)

With increasing J , the leading order terms of both AJ(θ)
and BJ(θ) are independent of the value of J ; hence the
expression for αJ in Eq. (16) becomes the same for all J ,
neglecting the remaining TJ(∆v′ , θ) term. Thus, for large
J , the various αJ curves are close and almost parallel to
each other in the medium-detuned regime. Combining
the true triple magic condition for the lower J values and
the similarity between αJ for higher J values, leads to
a “near magic” trapping window for multiple rotational
states that should be possible to realize experimentally.

The θ-independence of αJ within the multiple magic
frequency window is also verified by our numerical re-
sults. Figure 7 shows the dynamic polarizability αJ=1 for
angles between 0◦ and 90◦. All the curves nearly cross
the same point around the detuning of 2π × 218 GHz.

Based on all the results and observations discussed
above, we conclude that the existence of the multiple
magic frequency window presents a frequency region of
a few gigahertz within which the system is super robust
with respect to the fluctuations of the trapping laser fre-
quency and the polarization direction for arbitrary ro-
tational states. Within this window long-rotational co-
herences should be possible on multiple rotational tran-
sitions in the 87Rb133Cs molecule.

C. Criteria for the Multiple Magic Frequency
Window

The existence of the multiple magic frequency window
relies on the condition that the remaining TJ(∆v′ , θ) term
in Eq. (18) is much smaller than the αbg,⊥ and thus can
be neglected. Taking the leading order term of TJ(∆v, θ)
in Eq. (17), the condition |TJ(∆v′,cr, θ)| � |αbg,⊥| yields

-300 0 300 600
∆v′=0/(2π) (GHz)

-100

0

100

200

α J=
1/h

 [H
z/

(W
/c

m
2 )]

E=0.13kV/cm

FIG. 7: The dynamic polarizabilities αJ=1 near the resonance
transition to the v′ = 0 vibrational state of the b3Π0 potential
for various driving laser polarization directions. The angle θ
is scanned from 0◦ to 90◦ in 5◦ increments. A magnetic field
of B = 181 G and a static electric field of E = 0.13 kV/cm
are applied in the z-direction.

a lower bound on the transition width Γ0,v′ in terms of
the background polarizabilities and rotational constants,

Γ0,v′ � 2ω3
v′

3πc2

(
αbg,‖ − αbg,⊥

)2
|αbg,⊥|

√
B2

v +B2
v′ . (22)

For 87Rb133Cs molecules near the narrow transitions to
the bottom of the b3Π0 potential, the right hand side
of Eq. 22 is equal to 2π × 0.125 kHz. As the transition
linewidth Γ0,v′ decreases with increasing v′, this condi-
tion puts a constraint on the number of vibrational poles
around which the multiple magic frequency window ex-
ists.

Figure 8 shows αJ for J = 1, 2, and 3 near the
v′ = 1, 2, and 3 vibrational poles at the bottom of
b3Π0 potential. With increasing v′, the transition is nar-
rower and the triple crossing moves towards the pole of
αJ . The transition widths are Γ0,v′=1 = 2π × 6.84 kHz
for the v′ = 1 pole and Γ0,v′=2 = 2π × 1.44 kHz for
the v′ = 2 pole. Triple crossings can be seen around
∆v′=1 = 2π × 120 GHz for the v′ = 1 vibrational pole
(Fig. 8 (a)) and around ∆v′=2 = 2π × 22 GHz near the
v′ = 2 vibrational pole (Fig. 8 (b)). For v′ = 3, the tran-
sition width Γ0,v′=3 is 2π × 0.206 kHz which is already
close to the lower bound. Thus, no triple crossings can
be seen in Fig. 8 (c).

D. Imaginary Polarizability in the Magic Trapping
Window

Light-induced decoherence of rovibrational levels of a
polar molecule is often characterized by the imaginary
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FIG. 8: The dynamic polarizabilities of the J = 0, 1, and
2 rotational states near the resonance transitions to the (a)
v′ = 1, (b) v′ = 2, and (c) v′ = 3 vibrational states of the
b3Π0 potential. A magnetic field of B = 181 G is applied in
the z-direction. No static electric field is applied. The black
solid, red dashed, and blue dotted lines correspond to the
dynamic polarizabilities of J = 0, 1, and 2 rotational states,
respectively. A near triple magic condition exists in (a) and
(b) but not in (c).

part of the polarizability [81], which accounts for losses
due to spontaneous emission and other decay mechanism
of intermediate electronically excited states. Here, we
evaluate the imaginary part of the complex molecular
dynamic polarizability α(~ω,~ε) as

α(~ω,~ε) = (23)

1

ε0c

∑
f

(Ef − ihγf/2− Ei)

(Ef − ihγf/2− Ei)2 − (~ω)2
× |〈f |~dtr · ~ε|i〉|2 ,

assuming that each of these intermediate Ef state has a
photon-induced coupling to the electronic ground state
line width γf equal to 6 MHz, the atomic line width of
Rb 5p(2P) state. This assumption is justified by previ-
ous calculations of the imaginary polarizability of rovi-
brational levels of ground state KRb molecules [76] and
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-Im
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FIG. 9: The imaginary polarizabilities for the v = 0, J = 0,
J = 1 and J = 2, M = 0 states of the X1Σ+ potential near
the resonance transitions to the lower vibrational states of the
b3Π0 potential for σz polarization of the trapping light.

a comparison of αimag with an experimentally measured
value [81]. The sum over f in Eq. 23 is limited to transi-
tions to relativistic electronic excited potentials that dis-
sociate to either a singly excited Rb or a singly excited
Cs atom.

Figure 9 shows the calculated imaginary part of the
polarizability of the v = 0, J = 0, 1, 2 X1Σ+ states as
functions of laser frequency. By construction the imagi-
nary part is negative. It is several orders of magnitude
smaller than the real part. The resonances in the graph
correspond to poles due to the lowest vibrational v′ of the
Ω = 0 relativistic component of the b3Π0 potential. For
a detuning of ∆v′=0 = 2π × 218 GHz close to the triple
magic frequency shown in Fig. 5, the value of the imagi-
nary part of the polarizability is 1.0×10−9 kHz/(W/cm2).
For comparison, the polarizability at this detuning is
αJ = h× 0.03392 kHz/(W/cm2), as stated earlier.

VI. DISCUSSION

Although all the results above are derived by consid-
ering transitions to the b3Π0 potential, similar results to
Eqs. (18) and (19) are found for Ω = 1 potentials with
αbg,⊥ replaced by αbg,‖ and vice versa. These observa-
tions indicate that any rovibrational pole that is associ-
ated with a resonance transition to the state with quan-
tum number Ω can be used to cancel the contributions
to the rank-2 dynamic polarizability tensor from all the
other far-detuned states with the same quantum num-
ber Ω. What remains is the contribution to the dynamic
polarizability from the states with different Ω. This can-
cellation happens at a frequency that is independent of
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the rotational quantum number J and the polarization
direction of the laser.

Even though the derivation of the equations in Sec. V B
is “universal”, i.e. independent of the molecule species,
the existence of the magic frequency window does require
certain conditions to be fulfilled. For example, Eq. (22)
gives us a lower bound on the transition width. For
heavier molecules, such as 87Rb133Cs, this condition can
be satisfied near the narrow transitions to the bottom
of b3Π0 potential, since the spin-orbit coupling effect is
stronger and the rotational constants, Bv and Bv′ , are
smaller. For 23Na87Rb, we also find that the magic fre-
quency window exists near the narrow transitions to the
b3Π0 potential. However, compared to 87Rb133Cs, the
window only exists near the v′ = 0 and v′ = 1 vibra-
tional poles and missing near the v′ = 2 pole.

Here, we emphasise that the condition on the lower
bound of the transition width given by Eq. (22) is not
the only criteria for the existence of the multiple magic
frequency window. Eq. (22) allows the multiple magic
frequency window to also be found near to broad tran-
sitions. However, in this case, the predicted magic fre-
quency position in Eq. (19) cannot be larger than the
energy spacing between two nearest neighbor vibrational
poles (i.e., |∆v′,cr| � |ωv′±1 − ωv′ |). This condition puts
an upper bound for the transition width,

Γ0,v′ � 2ω3
v′

3πc2
∣∣αbg,‖ − αbg,⊥

∣∣× |ωv′±1 − ωv′ | , (24)

where the “+/−” should be used for the posi-
tive/negative value of αbg,‖ − αbg,⊥. This condition is
very easily satisfied near the narrow transitions, however,
it needs to be examined near to the broad ones. This
condition implies that we need to be in the “medium-
detuned” regime to find the multiple magic frequency
window.

We expect that our analytical formulas can be used for
heteronuclear dimers other than RbCs and NaRb. To de-
termine magic conditions for three and more rotational
levels of the X potential of other alkali-metal molecules
one needs to know the lifetime of the v=0 b3Π0 state, the
rotational constant of the ground state, the vibrational
spacings of the b3Π0 potential, and the background dy-
namic polarizability at the transition frequency to the
b3Π0 potential. We only carefully studied RbCs and
NaRb, as we could use potentials from the literature and
computed all other characteristics ourselves.

Although the existence of the multiple magic frequency
windows needs to be checked case-by-case, the results de-
rived in this work will greatly benefit the search for them.
In experiments, the background values of the polarizabil-
ities and the transition widths can both be straightfor-

wardly measured. According to Eq. (19), the magic de-
tuning can then be predicted based entirely upon these
measured values.

VII. CONCLUSION

We have investigated magic-wavelength trapping of ul-
tracold bialkali molecules in the vicinity of weak optical
transitions from the vibrational ground state of the X1Σ+

potential to low-lying rovibrational states of the b3Π0

potential, focussing our discussion on the 87Rb133Cs
molecule. We have shown that a magic trapping fre-
quency window for multiple rotational states exists be-
tween two nearest neighbor vibrational poles, far away
from any rotational poles. Within this window, the laser
trapping is “near magic” for multiple rotational states si-
multaneously and is exactly magic for pairs of neighbor-
ing rotational states at specific laser frequencies. More-
over, the “near magic” frequency window can be tuned
to a true magic frequency for the lowest three rotational
states by applying an experimentally accessible DC elec-
tric field. This true triple magic condition is expected to
be useful for future studies of synthetic spin-1 systems
using ultracold molecules.

We have derived a set of criteria that must be fulfilled
to ensure the existence of such magic frequency windows
and have also presented an analytic expression for the
position of the frequency window in terms of a set of ex-
perimentally measurable parameters. These will provide
a straightforward, self-consistent approach to search for
the magic trapping frequency window in future experi-
ments. We expect the realization of optical traps which
are simultaneously magic for multiple rotational states
will enable the implementation of highly tunable models
in quantum magnetism [57] and the mapping of many
rotational levels onto a synthetic dimension [75]. More
broadly, our work is relevant in settings where there is
a need to control the relative polarizabilities of different
molecular rotational states, facilitating, for example, the
study of Hopf insulators in dipolar systems [82].
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[36] T. Takekoshi, L. Reichsöllner, A. Schindewolf, J. M. Hut-
son, C. R. Le Sueur, O. Dulieu, F. Ferlaino, R. Grimm,
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