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Abstract

Perdew-Zunger self-interaction correction (PZ-SIC) offers a route to remove self-interaction errors on an

orbital-by-orbital basis. A recent formulation of PZ-SIC by Pederson, Ruzsinszky and Perdew proposes

restricting the unitary transformation to localized orbitals called Fermi-Löwdin orbitals. This formulation,

called the FLOSIC method, simplifies PZ-SIC calculations and was implemented self-consistently using

a Jacobi-like (FLOSIC-Jacobi) iteration scheme. In this work we implement the FLOSIC approach using

the Krieger-Li-Iafrate (KLI) approximation to the optimized effective potential (OEP). We compare the

results of present FLOSIC-KLI approach with FLOSIC-Jacobi scheme for atomic energies, atomization

energies, ionization energies, barrier heights, polarizability of chains of hydrogen molecules etc. to validate

the FLOSIC-KLI approach. The FLOSIC-KLI approach, which is within the realm of Kohn-Sham theory,

predicts smaller energy gaps between frontier orbitals due to the lowering of eigenvalues of the lowest un-

occupied orbitals. Results show that atomic energies, atomization energies, ionization energy as an absolute

of highest occupied orbital eigenvalue, and polarizability of chains of hydrogen molecules between the two

methods agree within 2%. Finally the FLOSIC-KLI approach is used to determine the vertical ionization

energies of water clusters.

I. INTRODUCTION

The Kohn-Sham (KS) formulation of the density functional theory (DFT) is an exact theory

widely used in chemical physics, materials science and condensed matter physics[1]. Its prac-

tical usage requires approximations to the exchange-correlation functional whose accuracy and

complexity determines the accuracy and efficiency of the study. As there is no systematic way

to improve upon the accuracy of exchange-correlation approximations, a large number of density

functional approximations (DFAs) have been been proposed[2, 3]. Practically, all these functionals

suffer from self-interaction-error (SIE) which has restricted the universal application of DFT. The

SIE has been attributed to the problem of excessive delocalization of electrons, low reaction barrier

heights, overestimation of eigenvalues of occupied orbitals, overestimation of polarizabilities of

molecular chains, underestimation of band gaps, etc. In KS-DFT, when the exchange-correlation

functional is approximated, the self-Coulomb energy included in the expression of Coulomb en-
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ergy does not get fully cancelled by the self-exchange in the approximate exchange-correlation

functional. The residual left is the self-interaction energy. For example, for the hydrogen atom or

one electron densities ρiσ of spin σ the sum of Coulomb energy EH and exchange-correlation Exc

is

EH +Exc =
1
2

∫∫
d3r d3r′

ρiσ (~r)ρiσ (~r′)
|~r−~r′|

+ Exc[ρiσ ] = δ . (1)

For the exact functional δ = 0. For approximate functionals, δ is non-zero and represents the

self-interaction error for that functional for the one-electron density.

Several approaches have been proposed to remove the SIE explicitly [4–15]. Early approaches[4,

5] used orbital-wise schemes to eliminate the SIE but used functionals related to Slater’s Xα

method [16]. More common approaches that mitigate SIE include hybrid functionals, which mix

Hartree-Fock exchange using various criteria[17–20]. A large literature on the hybrid functionals

that were introduced by Becke[17] exist, but these approaches are not entirely self-interaction free

and are challenging for extended systems.

A. Perdew-Zunger SIC

In 1981, Perdew and Zunger (PZ)[21] proposed a method to remove the one-electron SIE in

an orbital-wise fashion. This method is the most common approach to explicitly remove the SIE.

PZ-SIC provides the exact cancellation for one-electron self-interaction (SI), but not necessarily

for many-electron SI[22]. In the PZ-SIC method, [21] the orbital-wise SIC to the total energy is

ESIC =−
Nocc

∑
iσ

(
U [ρiσ ]+EDFA

xc [ρiσ ,0]
)
. (2)

Here, U [ρiσ ] and EDFA
xc [ρiσ ,0] are the Coulomb and exchange-correlation energy of the ith occu-

pied orbital, σ is the spin index, Nocc is the number of occupied orbitals, and ρiσ is the orbital

electron density. It is obvious from Eq. (2) that the PZ-SIC corrections make the DFA exact for

any one-electron density. The SIC should vanish for the exact functional. It is unclear if PZ-SIC

satisfies this condition. The exact functional is valid only for ground state densities while the SIC

using the PZ-SIC method is obtained on an orbital-by-orbital basis, that is, using orbital densities

which are noded[23]. The total energy with the PZ-SIC method is given by E = EKS +ESIC. In
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atomic units, EKS is given by

EKS = ∑
iσ
〈ψiσ |−

∇2

2
|ψiσ 〉+

∫
d3r ρ(~r)vext(~r)

+
1
2

∫∫
d3r d3r′

ρ(~r)ρ(~r′)
|~r−~r′|

+Exc[ρ↑,ρ↓]. (3)

Here, vext is the external potential and ρ = ρ↑+ρ↓=∑σ ρσ =∑i,σ fiσ |ψiσ |2 is the electron density,

where fiσ is the occupation of the ψiσ orbital. Atomic units are used throughout this article unless

specified explicitly.

The SI corrected potential seen by an electron in the ith orbital in the PZ-SIC method is

viσ
e f f (~r) = vext(~r)+

∫
d3r′

ρ(~r′)
|~r−~r′|

+ vσ
xc(~r)

−
{∫

d3r′
ρiσ (~r′)
|~r−~r′|

+ viσ
xc(~r)

}
. (4)

Here, the second term is the Coulomb potential due to the electrons and vxc is the exchange-

correlation potential (of DFA). The last two terms in the curly bracket constitute the SIC poten-

tial for the ith orbital vSIC
iσ = −{viσ

C + viσ
xc}, composed of the self-Coulomb and self-exchange-

correlation potentials. Unlike in the standard KS equations, the potential in Eq. (4) is orbital

dependent. This orbital dependence complicates the solution of one-electron equations. For atoms

where the KS orbitals are localized, PZ-SIC provides finite SIC. However, the method is not size

extensive if the KS orbitals are used. The Kohn-Sham orbitals are delocalized for a system made

up of a collection of atoms with large separation between them. These delocalized KS orbitals

give vanishing SIC correction if used in the PZ-SIC method. For extended systems the delocalized

KS orbitals are normalized over the entire volume of the solid and hence orbital-dependent quan-

tities in Eq. (2) approaches zero for such systems. The SIC can be made size extensive by using

localized orbitals, which can be obtained from KS orbitals by unitary transformation. Pederson,

Heaton, and Lin implemented such a SIC scheme and demonstrated the first PZ-SIC calculation

for molecules[24]. In the 1980s, Lin’s group at Wisconsin used a localization approach to im-

plement the PZ-SIC method [24–27]. The orbital-dependent Coulomb and exchange-correlation

energies and potentials in Eq. (4) are computed using local orbitals. The localization approach

by Pederson and coworkers requires that the local orbitals that minimize total energy must satisfy

Pederson’s localization equations given below.

〈φi|Hi−H j|φi〉= λ
i
ji−λ

j
i j = 0. (5)

4



Here Hi is the orbital dependent Hamiltonian, φ are the localized orbitals obtained by unitary

transformation of the KS orbitals ψ , and λ are the Lagrangian multiplier introduced to maintain

the orthogonality constraint. When the total energy is at variational minimum the Lagrangian

multiplier matrix is symmetric.

The variational minimization of PZ-SIC energy requires satisfying N(N − 1)/2 localization

equations where N is the number of occupied orbitals. In 2014, Pederson and coworkers used

Löwdin orthogonalized Fermi-orbitals (FLOs) in the PZ-SIC method. The PZ-SIC using FLOs

reduces the number of unknown parameters needed to describe the unitary transformation and

reduce the number of constraints from N2 to 3N. Before closing this section we note that a

localizing transformation can also be incorporated in the Kohn-Sham formalism using the OEP

method as shown by Körzdörfer and coworkers[28]. This generalized OEP method is also invariant

under unitary transformation of the orbitals. Below we briefly describe the details of the PZ-SIC

using FLOs.

B. Fermi-Löwdin orbital SIC (FLO-SIC)

Recently, Pederson, Ruzsinszky, and Perdew [29] introduced a unitary invariant implementa-

tion of PZ-SIC using Fermi-Löwdin orbitals [30, 31] called the FLO-SIC method. FLO-SIC has

been used interchangeably with PZ-SIC earlier, but FLOs can also be used in other variants of SIC

including OSIC[32], SOSIC[33], and recently introduced local scaling SIC[14] methods. FLO-

SIC makes use of localized Fermi orbitals (FOs) Fiσ which are defined by the transformation of

KS orbitals as

Fiσ (~r) =
∑α ψ∗ασ (~aiσ )ψασ (~r)√

∑α |ψασ (~aiσ )|2
. (6)

Here, ~aiσ are points in space called Fermi-orbital descriptors (FODs). Neglecting the spin index,

the above equation can be rewritten as

Fi(~r) =
Nocc

∑
α

Fiαψα =
ρ(~ai,~r)√

ρ(~ai)
, (7)

where the transformation matrix Fiα is defined as

Fiα =
ψ∗α(~ai)√

ρ(~ai)
. (8)

The FOs are normalized but are not orthogonal. They are orthogonalized using the Löwdin orthog-

onalization method to generate the Fermi-Löwdin orbitals (FLOs) φiσ . Optimal FOD positions are
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found using gradients of the energy with respect to FOD positions using minimization procedures

analogous to geometry optimizations [34, 35]. A number of studies have been conducted using

the FLOSIC method [14, 33, 36–57].

C. Self-consistency in FLO-SIC

Two routes have been used to implement orbital dependent functionals. The first one is the gen-

eralized Kohn-Sham scheme[58] that is widely used to implement hybrid functionals which con-

tain orbital dependent Hartree-Fock exchange. This approach lies outside of the traditional Kohn-

Sham scheme with multiplicative effective potentials. Within the Kohn-Sham scheme, orbital-

dependent functionals are implemented using the optimized effective potential (OEP) method

[59, 60].

The PZ-SIC method can also been implemented using the OEP method. In the OEP method

total energy is minimized with respect to a local-multiplicative potential[59, 60]. This results in

integral equations that are very complex and computationally demanding to solve. Typically the

OEP solution is obtained using simplifications proposed by the Krieger, Li, and Iafrate (KLI)[61].

A few implementations of the PZ-SIC method using the KLI-OEP have been reported[28, 61–66].

For more details about the OEP-PZ-SIC method and its comparison to non-OEP approach we refer

an interested reader to Ref. 28.

Previous implementations of self-consistent FLOSIC used an approach related to Jacobi

rotations[37]. In this approach, an approximate Hamiltonian is first constructed as

H̃mnσ = 〈φmσ |HKS
σ + vSIC

iσ |φnσ 〉 (9)

where HKS
σ is the traditional KS Hamiltonian. (See Ref. 37 for more details.) The FLOs and the

unoccupied virtual orbitals are made orthogonal through pairwise Jacobi rotations which are car-

ried out iteratively until the matrix elements for the ith orbital Hamiltonian between φi and a virtual

orbital vanishes. Alternative schemes such as a unified Hamiltonian [25, 67] and a generalized-

Slater scheme in real space [56] have also been used.

The purpose of this work is to introduce self-consistency in the FLO-SIC method using the

OEP-KLI approximation. We refer to this implementation as FLOSIC-KLI. We compare the re-

sults obtained using FLOSIC-KLI for large number of properties against the Jacobi-rotation ap-

proach to self-consistency (FLOSIC-Jacobi) as well as to the experimental values. We also use
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the present implementation to study the vertical ionization energies of water clusters containing

20 to 30 water molecules. In Section II A we describe the FLOSIC-KLI equations. In Section

III we present results for atomic energies and highest occupied orbital (HOO) eigenvalues as well

as total energies and atomization energies of molecules and compare against the self-consistent

FLOSIC-Jacobi approach as implemented in the FLOSIC code.

II. THEORY AND COMPUTATIONAL DETAILS

A. FLOSIC-KLI equations

The present implementation of PZ-SIC using FLOSIC-KLI closely follows that of Patchkovskii,

Autschbach, and Ziegler[63]. In the KLI approximation, the orbital dependent potential of the PZ-

SIC Equation (Eq. [4]) is replaced by

vσ
e f f (~r) = vext(~r)+

∫
d3r′

ρ(~r′)

|~r−~r′|
+ vσ

xc(~r)+ vKLI
xc,σ (~r) (10)

The KLI contribution to the potential is given by the equations

vKLI
xc,σ (~r) = vS

xc,σ (~r)+
Nσ

∑
i=1

ρ̃iσ (~r)
ρσ (~r)

(xiσ −Cσ ) (11)

ρ̃iσ (~r) = fiσ |φiσ (~r)|2. (12)

In present formulation, φiσ are the FLOs (localized orbitals) described in section I B. It has been

found that using φiσ as Kohn-Sham orbitals leads to poor results[62, 64]. The leading contribution

to the KLI potential is the density-weighted average of the orbital SIC potentials, vS
xc,σ . This term

is similar to the Slater approximation[16] to the average exchange potential and is given as

vS
xc,σ (~r) =

Nσ

∑
i=1

ρ̃iσ (~r)
ρσ (~r)

vSIC
iσ (~r). (13)

The second term in Eq. (11) allows a per-orbital shift in potentials due to the xiσ −Cσ factor.

The magnitudes of the shifts can be determined by enforcing a constraint that the interaction

energy between a given localized electron and the shifted SIC potential, vSIC
iσ (~r)+xiσ −Cσ , equals

the energy of the electron in the average potential:

∫
(vSIC

iσ (~r)+ xiσ −Cσ )ρiσ (~r)d~r =
∫

vKLI
xc,σ (~r)ρiσ (~r)d~r (14)
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Substituting V KLI
xc,σ from Eq. (11) results in a system of linear equations for xiσ :

Nσ

∑
j=1

(δi j fiσ −Mσ
i j)x jσ = vS

iσ − vSIC
iσ , i = 1, ...,Nσ (15)

where

Mσ
i j =

∫
ρiσ (~r)ρ jσ (~r)

ρσ (~r)
d~r, (16)

vS
iσ =

∫
ρiσ (~r)vS

xc,σ (~r)d~r, (17)

vSIC
iσ =

∫
ρiσ (~r)vSIC

iσ (~r)d~r. (18)

From Eqs. (13) and (16-18) it follows

Nσ

∑
i=1

Mσ
i j = 1, (19)

Nσ

∑
i=1

(vS
iσ − vSIC

iσ ) = 0 (20)

In the original KLI approach, the values of the coefficients xiσ are chosen to satisfy

vKLI
xc (~r) = vS

xc,σ (~r)+
Nσ

∑
i=1

ρiσ (~r)
ρσ (~r)

(vKLI
xc,iσ − vSIC

iσ ) (21)

where

vKLI
xc,iσ (~r) =

∫
ρiσ (~r)vKLI

xc,σ (~r)d~r. (22)

In the limit as r→ ∞, ρσ can be expected to be dominated by the highest occupied molecular

orbital (HOMO), ρHOMO
σ . In this limit, it follows that

vDFA
xc,σ (~r)+ vKLI

xc →−
1
r
+ xHOMO

σ − xσ . (23)

Eq. (11) is identical to the KLI-OEP expression if Cσ is chosen as Cσ = xHOMO
σ . For other

choices of Cσ , the potentials differ by a constant. Patchkovskii et al. [63] note difficulties in

defining the HOMO in molecular calculations and find a choice of Cσ = min(xiσ ) to give favor-

able convergence properties. In our calculations, we find using Cσ = max(xiσ ) to give orbital

energies comparable to original FLOSIC-Jacobi calculations and favorable convergence for most

systems tested. Two exceptions were the atomic cases of lithium and sodium, where calculations

failed to converge. In these cases, total energies were calculated using Cσ = min(xiσ ). For the

two problematic cases of lithium and sodium, calculations can be converged by fixing the orbital
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(b) FLOSIC-KLI

FIG. 1. SCF diagrams of FLOSIC-Jacobi and FLOSIC-KLI schemes. Differences highlighted in red for

FLOSIC-Jacobi and green for FLOSIC-KLI.

occupation. This gives the same total energies as by choosing Cσ = min(xiσ ), but in these cases

the lowest unoccupied molecular orbital (LUMO) energy is brought lower than the HOMO, which

is of opposite spin. Since orbital eigenvalues are affected by the choice of Cσ , the HOMO ener-

gies for lithium and sodium are not included in errors reported in section III. The steps to solve

FLOSIC-KLI equations self-consistently and the difference of the FLOSIC-KLI implementation

with FLOSIC-Jacobi scheme are illustrated in Fig. 1.

B. Computational details

All of the results presented in this manuscript are calculated with the FLOSIC code[68, 69],

which is based on the UTEP version of the NRLMOL electronic structure code[70, 71]. The

FLOSIC code inherits the optimized Gaussian basis sets of NRLMOL[72] and an accurate numer-

ical integration grid scheme [70]. The SIC calculations require a finer mesh as orbital densities
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are involved in calculation of orbital-dependent potentials. A default NRLMOL mesh for FLOSIC

calculation, on average, has 25,000 grid points per atom. This results in integration of charge

density that is accurate to the order of 10−8e. All calculations use the Perdew, Burke & Ernzerhof

(PBE) exchange-correlation functional[73] except for the water clusters. Water clusters calcula-

tions were performed using PBE as well as the local spin density approximation (LSDA). For the

LSDA correlation, the Perdew-Wang parameterization[74] was used. A self-consistency conver-

gence tolerance of 10−6 Ha in the total energy was used for all calculations.

FLOSIC calculations require an initial set of trial FOD positions We use previously reported

PBE-optimized FOD positions. These FOD positions were optimized by minimizing the FOD

forces[34] until the convergence criteria of 10−6 Ha on the FLOSIC total energy was met. FOD

positions were not re-optimized for KLI calculations, except for the calculations on hydrogen

chains in section IV. We note that this is an additional approximation. The FOD positions de-

pend on the choice of the Hamiltonian and the exchange-correlation approximation. We have

examined the effect of this approximation by re-optimizing the FODs for atomic systems within

the FLOSIC-KLI scheme. We find that the optimization results in 0.36% change (0.58 milli-

Hartree) in the mean absolute error (MAE) compared to experiment, in each case bringing the

results to better agreement with the FLOSIC-Jacobi results. The largest observed change was a 3

milli-Hartree lowering in the case of the fluorine atom, bringing it within 3 milli-Hartree of the

optimized FLOSIC-Jacobi result. We refer to calculations using the Jacobi-rotation approach

to self-consistency as FLOSIC-Jacobi and calculations using the KLI approximation as FLOSIC-

KLI. A subset of calculations were obtained using only a leading term of the KLI approximation

(Eq. [13]) which we refer to as FLOSIC-Slater. The FOD positions for the water clusters were

obtained using the fodMC code[75].

C. ADSIC guess

The iterative solution of KS or PZ-SIC equations requires an initial guess to start the SCF cycle.

Several choices of initial guess exist. Since its inception in late 80s, the NRLMOL code (on which

the FLOSIC code is based) uses a linear superposition of atomic potentials (SAP) as an initial

guess. The atomic potentials are generated on the fly and a least square fit is used to construct

initial potentials for molecular systems. Our experience is that this choice has worked well for wide

variety of systems. Recently, Lehtola[76] has reviewed the performance of various choices for
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initial guess to initialize the SCF cycle and has concluded that SAP on average performs better than

other choices. Typically in FLOSIC calculations we either start from SAP or from the converged

DFA (SIC-uncorrected) KS orbitals. This has worked well but there are cases where starting DFA

KS density can have incorrect character, for example when molecules are in dissociation limits.

In such case self-consistent FLOSIC calculations can take longer to converge. An alternative if

not better initial SAP for SIC calculations can be generated from the self-interaction corrected

atomic potentials using a suitable SIC method. We construct the SAP using a simple average

density SIC (ADSIC) scheme[66, 77], which is a generalization of the Fermi and Amaldi[78]

method. OEP-KLI-SIC can also be used but we have chosen ADSIC due to its simplicity. The KS

effective potential in ADSIC exhibits the correct −1/r asymptotic. In ADSIC, the self-interaction

corrections to the Coulomb and exchange-correlation potential are given by

V ADSIC
C =VC[ρ]−VC[

ρ

Ne
] =VC

Ne−1
Ne

, (24)

and

V ADSIC
xc =Vxc[ρ]−Vxc[

ρ

Ne
]. (25)

Here, Ne is the number of electrons. This correction can become very small for systems with a

large number of electrons, but here we are using it only to generate atomic potentials. In general,

we have found that using superposition of ADSIC atomic potentials as an initial guess in the self-

consistent FLOSIC calculations usually, but not always, requires fewer iterations to converge than

starting from SAP from DFAs or starting from the converged DFA orbitals.

D. KLI implementation/parallelization

One advantage of the FLOSIC-KLI implementation is that the equations involved are relatively

easy to parallelize. The most expensive step in the self-consistent FLOSIC calculation is the deter-

mination of orbital-dependent potentials, particularly the Coulomb potential, required to compute

the SIC terms. However these potentials are independent of each other and can be easily paral-

lelized. The FLOSIC code, which is parallelized using MPI, adds a second level of parallelization

for these calculations. The construction of the Hamiltonian using the Jacobi-like method of Yang,

Pederson and Perdew[37] is harder to parallelize and creates a bottleneck for larger calculations.

The present FLOSIC-KLI scheme offers easy parallelization and helps in improving scalability.

In the FLOSIC-KLI approach, the SIC potentials and orbital densities are stored to disk after they
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are computed. Subsequently, each processor reads from file V SIC and ρi and the integrals used

to generate M, vS
iσ , and vSIC

iσ (Eqs. 16-18) are then parallelized over batches of grid points. The

contributions from each batch of grid points to the integrals are then reduced across processors.

Construction of the M matrix scales as O(N2
e ) and is thus efficiently parallelized. In contrast, the

Jacobi-like method scales as O(NeN3
b ), where Nb is the number of basis functions in a calculation.

Since ρi which is obtained from the FLO will be localized, we may be able to reduce scaling to

O(Ne) by taking advantage of the sparsity of the density. In the subsequent section we compare the

FLOSIC-KLI approach against the FLOSIC-Jacobi approach of Yang, Pederson and Perdew[37]

using standard datasets previously employed for assessing the performance of FLOSIC method.

We also report new results on the vertical ionization energies of intermediate size water clusters.

III. RESULTS

A. Atoms: Total energies and Eigenvalues

FLOSIC energies for atoms from H-Ar (Z=1-18) are compared against accurate total ener-

gies reported by Chakravorty et al. [79] We report the deviation on a per electron basis as

(E −ERe f )/Ne, where E is the FLOSIC energy and ERe f is the reference energy. We find that

the FLOSIC-KLI results give very close energies compared with the original FLOSIC implemen-

tation, with a mean absolute error (MAE) of 0.161 Ha for FLOSIC-KLI compared to 0.158 Ha for

FLOSIC-Jacobi. The FLOSIC-Slater calculations perform slightly worse in each case, as shown

in Fig. 2, and did not converge for the lithium and sodium atoms. FLOSIC-KLI calculations for

these atoms were converged by using the Cσ =min(xiσ ) factor, as detailed in Sec. II A. Neglecting

these atoms, FLOSIC-KLI, FLOSIC-Jacobi, and FLOSIC-Slater give a MAE of 0.170, 0.167, and

0.192 Ha, respectively.

The vertical ionization potential (vIP) can be obtained from the negative of the highest occu-

pied orbital (HOO) eigenvalue. For the exact exchange-correlation functionals, they are equal[6,

80, 81]. For the approximate functionals, the quality of the asymptotic behavior of the exchange

functionals determines the accuracy of the HOO as an approximation to the vIP. All semi-local

functionals perform poorly in this regard. In Fig. 3 we compare the HOO eigenvalues to ex-

perimental ionization potentials (IPs) [82]. Table I shows the MAEs and mean absolute relative

errors (MAREs) for the FLOSIC-Jacobi and FLOSIC-KLI approaches, as well as the less accu-
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FIG. 2. Atomic total energies (in Ha) for FLOSIC-Jacobi (color), FLOSIC-KLI (color), and FLOSIC-Slater

(color) compared against the reference values of Ref. [79]. (E−ERe f )/Ne is shown, where Ne is the number

of electrons.

TABLE I. MAE (in Ha), and MARE (%) of HOMO eigenvalues compared to experimental IPs [82].

FLOSIC-Jacobi results from [52].

FLOSIC-Jacobi FLOSIC-KLI FLOSIC-Slater

MAE (Ha) 0.026 0.030 0.041

MARE (%) 5.67 6.62 9.44

rate FLOSIC-Slater approximation. These results show good agreement between FLOSIC-Jacobi

and FLOSIC-KLI, with a difference in MARE of less than 1%. FLOSIC-Slater performs slightly

worse with a MARE 3.8% higher than that of FLOSIC-Jacobi.
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FIG. 3. Error in HOMO eigenvalues compared to experimental IPs [82].

B. Atomization energies

FLOSIC-Jacobi and FLOSIC-KLI are also used to calculate the total and atomization energies

(AEs) of a set of 37 molecules taken from the G2/97 test set[83]. In addition, we include the

six molecules from the AE6 test set[84], as well as HBr, LiBr, NaBr, FBr, and Br2. Most of

the geometries were optimized using B3LYP with the 6-31G(2df,p) basis [85]. The geometries

for O2, CO, CO2, C2H2, Li2, CH4, NH3, and H2O were optimized using the PBE functional

and the default NRLMOL basis set. The atomization energy (AE) of a molecule is defined as

AE = ∑
Natoms
i Ei−Emol > 0, where Ei is the energy of individual atoms, Natom is the number of

atoms in the molecule, and Emol is the total energy of the molecule. For the AE6 set, we find that

FLOSIC-KLI has slightly larger MARE (7.51%) compared to FLOSIC-Jacobi (6.82%).

For the larger set of molecules the average errors in calculated AEs for FLOSIC-Jacobi and

FLOSIC-KLI calculations are summarized in Table II. Experimental values are taken from Ref.
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experimental values found in Ref. [82].

82. The MAREs are 9.67% and 10.00% for FLOSIC-Jacobi and FLOSIC-KLI, respectively. Fig-

ure 4 shows a close agreement between two implementations for most systems, except for F2.

TABLE II. Atomization energies for the set of molecules featured in Fig. 4. MAE (kcal/mol) and MARE

(%) are shown.

FLOSIC-Jacobi FLOSIC-KLI

MAE (kcal/mol) 84.29 83.32

MARE (%) 9.67 10.00

Figure 5 plots the differences in total energies between the FLOSIC-Jacobi and FLOSIC-KLI

implementations as a function of number of electrons for all atoms and molecules tested. The plot
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shows a linear behavior, signifying the error per electron to fall within some constant range. When

calculating quantities such as AEs, these differences cancel out.
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FIG. 5. Difference in total energy (in a.u.) between FLOSIC-Jacobi and FLOSIC-KLI calculations as a

function of the number of electrons in the system. Linear fit of data shown as solid line.

IV. POLARIZABILITY OF H2 CHAINS

Most semi-local functionals perform poorly in predicting the response of charge distributions

to electric fields for molecular chains and polymers[86–90]. The polarizabilities predicted by

semi-local functionals are severely overestimated. However, recent work by Aschebrock and

Kümmel shows that meta-GGA functionals constructed by considering KS potential related prop-

erties such as the derivative discontinuity and its density response can provide an accurate de-

scription of polarizabilities[91]. The chains of hydrogen molecules have been extensively used

16



as model systems to examine performance of DFAs in predicting the electric response of molec-

ular chains[53, 86, 92–99]. The overestimation of polarizabilities has been understood as a re-

sult of a missing field-counteracting term in the response part of the XC potentials of semi-local

functionals[86, 92]. Here, we use hydrogen chains to examine how well FLOSIC-KLI compares

with FLOSIC-Jacobi for the polarizabilities of these systems. For this purpose we use finite-field

method with an electric field of h = 1.0∗10−3 a.u. The polarizability is calculated using a second-

order central finite difference approach. The z-component of the polarizability αzz is calculated

as

αzz =
dµz

dFz
=

d2E
d2Fz

=
E(−h)−2E(0)+E(h)

h2 (26)

where h is the z-component of the electric field.

Table III shows the calculated polarizabilities for Hn chains comparing PBE, FLOSIC-Jacobi

and FLOSIC-KLI. We constructed linear chains of hydrogen atoms by placing hydrogen atoms

with alternating distances of 2 and 3 Bohr. Initial FODs were generated by placing a spin-up

and spin-down FOD at the midpoint between each bonded H2 molecule. Polarizabilities were then

calculated using the initial guess as well as by optimizing FODs using a 10−4 Ha/Bohr convergence

criterion. In the case of the H100 chain, the FOD positions were not optimized. Table III shows

the polarizabilities calculated using the initial guess of FODs show a mean average error of 2.7%

compared to the final optimized calculations, and lie between the FOD-optimized calculations and

the MP4 reference calculations.

TABLE III. Polarizabilities αzz of H2 chains. MP4 and CCSD values from Ref. [96]. Mean absolute relative

error (MARE) relative to CCSD(T) calculations for H4−12.

Method H4 H6 H8 H12 H14 H100 MARE(%)

PBE 36.0 69.1 108.4 197.0 243.9 2,600.1 43.1

FLOSIC-KLIa 32.1 56.8 83.6 158.7 173.7 1,417.7 17.3

FLOSIC-KLI 32.1 59.2 88.6 158.5 180.5 20.1

FLOSIC-Jacobi 31.2 60.3 90.5 156.9 194.8 20.3

MP4 29.5 51.9 75.2 127.3 155.0 3.3

CCSD(T) 28.7 50.2 73.4 122.0

a FOD positions in these calculations are not optimized.
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V. HOMO-LUMO GAPS

There has been considerable discussion about the interpretation of Kohn-Sham orbital ener-

gies as electron removal energies or the differences between the orbital energies as the excitation

energies[6, 58, 80, 81, 100–117]. Despite these, the density of states from Kohn-Sham calculations

are often used to interpret experimental observations. DFAs that have explicit orbital dependence,

such as hybrid or meta-GGA functionals, are typically implemented using the generalized Kohn-

Sham scheme[58]. The self-consistent implementation of the PZ-SIC method using the Jacobi

scheme (FLOSIC-Jacobi) is like the generalized KS scheme used for hybrid DFAs or meta-GGAs.

The FLOSIC-KLI method gives a multiplicative effective potential as in the standard KS scheme.

As seen in previous sections, these two implementations of the PZ-SIC give total atomic energies,

atomization energies and polarizabilities that agree within 1-2% . The eigenvalues, especially the
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TABLE IV. HOMO and LUMO eigenvalues for Jacobi and KLI in eV along with the difference in HOMO-

LUMO Gaps. The negative of the HOMO eigenvalues approximate the vertical ionization potentials.

HOMO (eV) LUMO (eV)

Molecule FLOSIC-Jacobi FLOSIC-KLI FLOSIC-Jacobi FLOSIC-KLI Gap Difference

HF -17.82 -17.55 -0.53 -6.28 -6.02

LiF -13.20 -13.44 -1.32 -5.28 -3.72

HCl -13.43 -13.47 -0.90 -5.59 -4.66

LiCl -10.69 -10.72 -1.75 -4.74 -2.97

NaCl -10.06 -10.05 -2.12 -5.33 -3.21

Cl2 -12.89 -12.31 -4.68 -9.16 -5.06

HBr -12.19 -12.11 -1.38 -5.57 -4.27

LiBr -9.84 -9.85 -1.86 -4.64 -2.77

BrF -12.70 -12.44 -4.76 -9.66 -5.15

Br2 -11.67 -11.19 -4.92 -8.84 -4.40

Benzene -9.08 -8.82 -1.40 -3.63 -2.49

Furan -10.36 -10.64 -0.92 -5.65 -4.44

2-Butyne -11.00 -10.98 0.04 -4.12 -4.18

C2H6 -14.30 -14.19 0.10 -4.67 -4.88

C5H5 -1.62 -1.29 4.43 3.29 -1.48

CN− -5.17 -4.79 6.78 2.11 -5.06

N2 -17.24 -16.15 -2.05 -7.44 -6.49

BH3 -14.36 -14.48 -3.01 -8.75 -5.63

Cyclobutane -13.10 -13.08 0.12 -4.51 -4.65

S2 -10.94 -11.08 -4.65 -7.80 -3.01

SiH4 -13.99 -14.01 0.17 -4.91 -5.05

SiO -12.41 -12.04 -2.92 -6.89 -4.34

SO2 -14.48 -14.19 -4.64 -9.99 -5.64

eigenvalues of the unoccupied molecular orbitals (LUMOs), in the two approaches are however

very different. The FLOSIC-Jacobi LUMOs are essentially same as that of the uncorrected func-

tional as the Jacobi scheme does not affect the unoccupied orbitals. As can be seen from Table
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IV and Fig. 7, the FLOSIC-KLI LUMO (and higher unoccupied orbitals) are substantially low-

ered compared to the FLOSIC-Jacobi LUMO. The calculations also show that the eigenvalues of

the core orbitals (especially those of 1s orbitals) are destabilized by several eV in the FLOSIC-

KLI scheme. Since the HOMO eigenvalues between the FLOSIC-Jacobi and FLOSIC-KLI agree

within 1%, the eigen-spectrum in the FLOSIC-KLI scheme is compressed compared to FLOSIC-

Jacobi. This behavior is illustrated in Fig. 7 which shows the difference between the first (lowest)

and the highest occupied eigenvalues in the FLOSIC-Jacobi and FLOSIC-KLI methods. This

means the core electron binding energies if estimated from the absolute eigenvalues of core elec-

trons will differ by several eVs in the two approaches. This would also lead to differences in

the prediction of the core-valence excitations used in simulating near-edge x-ray absorption fine

structure (NEXAFS) spectra by two approaches.

	0

	50

	100

	150

	200

	250

HF LiF HC
l

LiC
l

Na
Cl Cl
2

HB
r

LiB
r

Br
F

Br
2

Be
nz
en

e
Fu
ra
n

2-
Bu

ty
ne

C 2
H 6

C 5
H 5 CN

-

N 2 BH
3

Cy
clo

bu
ta
ne S 2

Si
H 4 Si
O

SO
2

FIG. 7. The difference between the width of occupied eigenvalue spectrum (i.e., the difference in deepest 1s

Core eigenvalue and HOMO eigenvalue) (in eV) between FLOSIC-Jacobi and FLOSIC-KLI calculations.

20



TABLE V. HOMO and LUMO eigenvalues and HOMO-LUMO gaps in eV for water clusters calculated

using FLOSIC-KLI.

HOMO (eV) LUMO (eV) Gap (eV)

H2O Molecules LDA PBE LDA PBE LDA PBE

1 -14.75 -14.27 -6.30 -5.88 8.45 8.39

5 -14.48 -13.95 -6.40 -5.87 8.08 8.07

10 -14.11 -13.60 -6.84 -6.21 7.27 7.39

15 -14.07 -13.56 -7.27 -6.59 6.79 6.96

20 -14.49 -13.91 -7.03 -6.30 7.46 7.61

21 -13.82 -13.31 -7.04 -6.35 6.78 6.96

22 -14.44 -13.91 -7.17 -6.47 7.27 7.44

23 -13.97 -13.49 -7.12 -6.44 6.85 7.05

24 -14.24 -13.74 -7.21 -6.51 7.03 7.23

25 -14.17 -13.63 -7.01 -6.28 7.16 7.35

26 -14.08 -13.56 -7.18 -6.46 6.90 7.10

27 -14.23 -13.75 -7.21 -6.51 7.02 7.24

28 -14.25 -13.71 -7.27 -6.51 6.98 7.20

29 -14.21 -13.68 -7.24 -6.50 6.97 7.18

30 -13.97 -13.64 -7.45 -6.70 6.51 6.95

VI. IONIZATION POTENTIALS OF WATER CLUSTERS

We have used the present methodologies to obtain the vertical ionization potentials of water

clusters from (H2O)21 to (H2O)30. The geometries of these clusters are from the recent study by

Rakshit[118] and coworkers. These authors performed a large scale search for the putative minima

of water clusters using Monte Carlo basin paving approach with a polarizable Thole-Type model

for force field. These geometries were further refined at the MP2/aug-cc-pVTZ level of theory.

The FLOSIC-KLI calculations were performed on the most stable water clusters at MP2/aug-cc-

pVTZ level. The FODs for these clusters were obtained using the fodMC code[75]. No further

optimizations of FODs were performed. To examine how well this approach works for the proper-

ties of water clusters studied herein, we optimized the FODs using FLOSIC code for the (H2O)20
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cluster. We find that the forces on the FODs are very small and the optimization changes the

HOMO eigenvalue by 0.4%. The HOMO and the LUMO eigenvalues of water clusters along with

HOMO-LUMO gap are presented in Table V. The vertical ionization potentials are the absolute

values of the HOMO eigenvalues. The ionization potentials of (H2O)21-(H2O)30 water clusters

are in the range 13.8 eV to 14.4 eV and do not show systematic variation with respect to size.

Recently, Akter and coworkers[119] studied small water clusters using PZSIC and locally scaled

self-interaction methods. They found that the vertical ionization potentials obtained as an absolute

of the HOMO eigenvalue within the FLOSIC-LSDA scheme show systematic overestimation of

approximately 2 eV when compared with CCSD(T) ionization potentials. By adding this shift,

FLOSIC-KLI ionization potentials are in good agreement with CCSD(T) energies. Likewise,

the PBE FLOSIC-KLI HOMO-LUMO gaps are in the range of 6.7 eV to 7.6 eV. For the wa-

ter molecule the HOMO-LUMO gap is 8.39 eV. Thus there is about 1 to 1.4 eV reduction of the

HOMO-LUMO gap from water molecule to water clusters containing 20-30 water molecules.

VII. CONCLUSION

To summarize, we have implemented the FLOSIC method using the optimized effective po-

tentials with the Krieger-Li-Iafrate (KLI) approximation. The implementation was tested by com-

puting the atomic energies, atomization energies, the eigenvalues and the ionization potentials

using standard data sets, polarizabilities of hydrogen chains and comparing the results with those

obtained using the FLOSIC-Jacobi method of Yang, Pederson and Perdew[37]. It is found that

the FLOSIC-KLI approach gives results that are in close agreement within 1-2% of the FLOSIC-

Jacobi method. We have also used the FLOSIC-KLI scheme to predict the vertical ionization

energies of water clusters.

The FLOSIC-KLI is a desirable approach for larger calculations as it allows more efficient and

scalable parallelization than the FLOSIC-Jacobi method. Another desirable feature of FLOSIC-

KLI approach is that it provides self-interaction corrected virtual orbitals. The virtual orbitals are

required for the calculation of excitation energies using the time-dependent density functional or

for magnetic anisotropy calculations using the Pederson-Khanna method[120]. Such applications

will be investigated in the future.

22



VIII. ACKNOWLEDGEMENTS

Authors acknowledge Profs. Mark Pederson, Koblar Jackson and Yoh Yamamoto for reading

the manuscript and helpful comments. Authors acknowledge support by the US Department of

Energy, Office of Science, Office of Basic Energy Sciences, as part of the Computational Chemical

Sciences Program under Award No. DE-SC0018331.

IX. DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author

upon reasonable request.

[1] R. O. Jones, Density functional theory: Its origins, rise to prominence, and future, Rev. Mod. Phys.

87, 897 (2015).

[2] J. P. Perdew and K. Schmidt, Jacob’s ladder of density functional approximations for the exchange-

correlation energy, in AIP Conference Proceedings, Vol. 577 (AIP, 2001) pp. 1–20.

[3] M. A. Marques, M. J. Oliveira, and T. Burnus, Libxc: A library of exchange and correlation func-

tionals for density functional theory, Computer Physics Communications 183, 2272 (2012).

[4] I. Lindgren, A statistical exchange approximation for localized electrons, Int. J. Quantum Chem. 5,

411 (1971).

[5] M. S. Gopinathan, Improved approximate representation of the hartree-fock potential in atoms, Phys.

Rev. A 15, 2135 (1977).

[6] J. P. Perdew, R. G. Parr, M. Levy, and J. L. Balduz Jr, Density-functional theory for fractional particle

number: derivative discontinuities of the energy, Physical Review Letters 49, 1691 (1982).

[7] U. Lundin and O. Eriksson, Novel method of self-interaction corrections in density functional calcu-

lations, Int. J. Quantum Chem. 81, 247 (2001).

[8] P. Mori-Sánchez, A. J. Cohen, and W. Yang, Many-electron self-interaction error in ap-

proximate density functionals, The Journal of Chemical Physics 125, 201102 (2006),

https://doi.org/10.1063/1.2403848.

23



[9] N. I. Gidopoulos and N. N. Lathiotakis, Constraining density functional approximations to yield

self-interaction free potentials, The Journal of Chemical Physics 136, 224109 (2012).

[10] D.-K. Seo, Self-interaction correction in the LDA+U method, Phys. Rev. B 76, 033102 (2007).

[11] T. Tsuneda, M. Kamiya, and K. Hirao, Regional self-interaction correction of density functional the-

ory, J. Comput. Chem. 24, 1592 (2003), https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.10279.

[12] G. Borghi, A. Ferretti, N. L. Nguyen, I. Dabo, and N. Marzari, Koopmans-compliant functionals and

their performance against reference molecular data, Physical Review B 90, 075135 (2014).

[13] O. A. Vydrov and G. E. Scuseria, A simple method to selectively scale down the self-interaction

correction, J. Chem. Phys. 124, 191101 (2006), https://doi.org/10.1063/1.2204599.

[14] R. R. Zope, Y. Yamamoto, C. M. Diaz, T. Baruah, J. E. Peralta, K. A. Jackson, B. Santra, and J. P.

Perdew, A step in the direction of resolving the paradox of Perdew-Zunger self-interaction correction,

J. Chem. Phys. 151, 214108 (2019), https://doi.org/10.1063/1.5129533.

[15] T. Tsuneda and K. Hirao, Self-interaction corrections in density functional theory, The Journal of

Chemical Physics 140, 18A513 (2014), https://doi.org/10.1063/1.4866996.

[16] J. C. Slater, A simplification of the Hartree-Fock method, Physical Review 81, 385 (1951).

[17] A. D. Becke, A new mixing of Hartree-Fock and local density-functional theories, J. Comp. Phys.

98, 1372 (1993), https://doi.org/10.1063/1.464304.

[18] H. Iikura, T. Tsuneda, T. Yanai, and K. Hirao, A long-range correction scheme for

generalized-gradient-approximation exchange functionals, J. Chem. Phys. 115, 3540 (2001),

https://doi.org/10.1063/1.1383587.

[19] J. Jaramillo, G. E. Scuseria, and M. Ernzerhof, Local hybrid functionals, J. Comp. Phys. 118, 1068

(2003).

[20] R. Baer, E. Livshits, and U. Salzner, Tuned range-separated hybrids in density functional theory,

Annual review of physical chemistry 61, 85 (2010).

[21] J. P. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for

many-electron systems, Phys. Rev. B 23, 5048 (1981).

[22] A. Ruzsinszky, J. P. Perdew, G. I. Csonka, O. A. Vydrov, and G. E. Scuseria, Density functionals that

are one- and two- are not always many-electron self-interaction-free, as shown for H+
2 , He+2 , LiH+,

and Ne+2 , J. Chem. Phys. 126, 104102 (2007), https://doi.org/10.1063/1.2566637.

[23] D. Hofmann and S. Kümmel, Self-interaction correction in a real-time Kohn-Sham scheme: Access

to difficult excitations in time-dependent density functional theory, The Journal of chemical physics

24



137, 064117 (2012).

[24] M. R. Pederson, R. A. Heaton, and C. C. Lin, Density-functional theory with self-

interaction correction: Application to the lithium moleculea), J. Chem. Phys. 82, 2688 (1985),

https://doi.org/10.1063/1.448266.

[25] R. A. Heaton, J. G. Harrison, and C. C. Lin, Self-interaction correction for density-functional theory

of electronic energy bands of solids, Phys. Rev. B 28, 5992 (1983).

[26] M. R. Pederson, R. A. Heaton, and C. C. Lin, Local-density Hartree-Fock theory of elec-

tronic states of molecules with self-interaction correction, J. Chem. Phys. 80, 1972 (1984),

https://doi.org/10.1063/1.446959.

[27] M. R. Pederson and C. C. Lin, Localized and canonical atomic orbitals in self-interaction corrected

local density functional approximation, The Journal of Chemical Physics 88, 1807 (1988).

[28] T. Körzdörfer, S. Kümmel, and M. Mundt, Self-interaction correction and the optimized effective

potential, Journal of Chemical Physics 129, 10.1063/1.2944272 (2008).

[29] M. R. Pederson, A. Ruzsinszky, and J. P. Perdew, Communication: Self-interaction correc-

tion with unitary invariance in density functional theory, J. Chem. Phys. 140, 121103 (2014),

https://doi.org/10.1063/1.4869581.

[30] W. L. Luken and D. N. Beratan, Localized orbitals and the Fermi hole, Theor. Chem. Acc. 61, 265

(1982).

[31] W. L. Luken and J. C. Culberson, Localized orbitals based on the Fermi hole, Theor. Chem. Acc. 66,

279 (1984).

[32] O. A. Vydrov, G. E. Scuseria, J. P. Perdew, A. Ruzsinszky, and G. I. Csonka, Scaling down the

Perdew-Zunger self-interaction correction in many-electron regions, J. Chem. Phys. 124, 094108

(2006), https://doi.org/10.1063/1.2176608.

[33] Y. Yamamoto, S. Romero, T. Baruah, and R. R. Zope, Improvements in the orbitalwise scaling down

of Perdew-Zunger self-interaction correction in many-electron regions, The Journal of Chemical

Physics 152, 174112 (2020), https://doi.org/10.1063/5.0004738.

[34] M. R. Pederson, Fermi orbital derivatives in self-interaction corrected density func-

tional theory: Applications to closed shell atoms, J. Chem. Phys. 142, 064112 (2015),

https://doi.org/10.1063/1.4907592.

[35] M. R. Pederson and T. Baruah, Chapter eight - self-interaction corrections within the fermi-orbital-

based formalism (Academic Press, 2015) pp. 153 – 180.

25



[36] D.-y. Kao and M. R. Pederson, Use of Löwdin orthogonalised Fermi orbitals for

self-interaction corrections in an iron porphyrin, Molecular Physics 115, 552 (2017),

https://doi.org/10.1080/00268976.2016.1225992.

[37] Z.-h. Yang, M. R. Pederson, and J. P. Perdew, Full self-consistency in the fermi-orbital self-

interaction correction, Phys. Rev. A 95, 052505 (2017).

[38] D.-y. Kao, K. Withanage, T. Hahn, J. Batool, J. Kortus, and K. Jackson, Self-consistent self-

interaction corrected density functional theory calculations for atoms using fermi-löwdin or-

bitals: Optimized fermi-orbital descriptors for li–kr, J. Chem. Phys. 147, 164107 (2017),

https://doi.org/10.1063/1.4996498.

[39] D.-y. Kao, M. Pederson, T. Hahn, T. Baruah, S. Liebing, and J. Kortus, The role of self-interaction

corrections, vibrations, and spin-orbit in determining the ground spin state in a simple heme, Mag-

netochemistry 3, 31 (2017).

[40] M. R. Pederson, T. Baruah, D.-y. Kao, and L. Basurto, Self-interaction corrections ap-

plied to mg-porphyrin, c60, and pentacene molecules, J. Chem. Phys. 144, 164117 (2016),

https://doi.org/10.1063/1.4947042.

[41] K. Sharkas, L. Li, K. Trepte, K. P. K. Withanage, R. P. Joshi, R. R. Zope, T. Baruah, J. K. Johnson,

K. A. Jackson, and J. E. Peralta, Shrinking self-interaction errors with the Fermi-Löwdin orbital self-

interaction-corrected density functional approximation, J. Phys. Chem. A 122, 9307 (2018), pMID:

30412407, https://doi.org/10.1021/acs.jpca.8b09940.

[42] R. P. Joshi, K. Trepte, K. P. K. Withanage, K. Sharkas, Y. Yamamoto, L. Basurto, R. R. Zope,

T. Baruah, K. A. Jackson, and J. E. Peralta, Fermi-Löwdin orbital self-interaction correction to mag-

netic exchange couplings, J. Chem. Phys. 149, 164101 (2018), https://doi.org/10.1063/1.5050809.

[43] A. I. Johnson, K. P. K. Withanage, K. Sharkas, Y. Yamamoto, T. Baruah, R. R. Zope, J. E. Peralta, and

K. A. Jackson, The effect of self-interaction error on electrostatic dipoles calculated using density

functional theory, J. Chem. Phys. 151, 174106 (2019), https://doi.org/10.1063/1.5125205.

[44] J. Batool, T. Hahn, and M. R. Pederson, Magnetic Signatures of Hydroxyl- and Water-Terminated

Neutral and Tetra-Anionic Mn12-Acetate, Journal of Computational Chemistry 40, 2301 (2019).

[45] J. Vargas, P. Ufondu, T. Baruah, Y. Yamamoto, K. A. Jackson, and R. R. Zope, Importance of self-

interaction-error removal in density functional calculations on water cluster anions, Phys. Chem.

Chem. Phys. 22, 3789 (2020).

26



[46] K. Trepte, S. Schwalbe, T. Hahn, J. Kortus, D.-Y. Kao, Y. Yamamoto, T. Baruah, R. R.

Zope, K. P. K. Withanage, J. E. Peralta, and K. A. Jackson, Analytic atomic gradients

in the Fermi-Löwdin orbital self-interaction correction, J. Comput. Chem. 40, 820 (2019),

https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.25767.

[47] K. A. Jackson, J. E. Peralta, R. P. Joshi, K. P. Withanage, K. Trepte, K. Sharkas, and A. I. Johnson,

Towards efficient density functional theory calculations without self-interaction: The Fermi-Löwdin

orbital self-interaction correction, J. Phys. Conf. Ser. 1290, 012002 (2019).

[48] K. P. K. Withanage, S. Akter, C. Shahi, R. P. Joshi, C. Diaz, Y. Yamamoto, R. Zope, T. Baruah,

J. P. Perdew, J. E. Peralta, and K. A. Jackson, Self-interaction-free electric dipole polarizabilities for

atoms and their ions using the Fermi-Löwdin self-interaction correction, Phys. Rev. A 100, 012505

(2019).

[49] C. Shahi, P. Bhattarai, K. Wagle, B. Santra, S. Schwalbe, T. Hahn, J. Kortus, K. A. Jackson, J. E.

Peralta, K. Trepte, S. Lehtola, N. K. Nepal, H. Myneni, B. Neupane, S. Adhikari, A. Ruzsin-

szky, Y. Yamamoto, T. Baruah, R. R. Zope, and J. P. Perdew, Stretched or noded orbital densi-

ties and self-interaction correction in density functional theory, J. Chem. Phys. 150, 174102 (2019),

https://doi.org/10.1063/1.5087065.

[50] K. P. K. Withanage, K. Trepte, J. E. Peralta, T. Baruah, R. Zope, and K. A. Jackson, On the question

of the total energy in the Fermi-Löwdin orbital self-interaction correction method, J. Chem. Theory

Comput. 14, 4122 (2018), pMID: 29986131, https://doi.org/10.1021/acs.jctc.8b00344.

[51] K. Sharkas, K. Wagle, B. Santra, S. Akter, R. R. Zope, T. Baruah, K. A. Jackson, J. P.

Perdew, and J. E. Peralta, Self-interaction error overbinds water clusters but cancels in struc-

tural energy differences, Proceedings of the National Academy of Sciences 117, 11283 (2020),

https://www.pnas.org/content/117/21/11283.full.pdf.

[52] Y. Yamamoto, C. M. Diaz, L. Basurto, K. A. Jackson, T. Baruah, and R. R. Zope, Fermi-löwdin

orbital self-interaction correction using the strongly constrained and appropriately normed meta-gga

functional, The Journal of Chemical Physics 151, 154105 (2019), https://doi.org/10.1063/1.5120532.

[53] S. Schwalbe, T. Hahn, S. Liebing, K. Trepte, and J. Kortus, Fermi-Löwdin orbital self-interaction

corrected density functional theory: Ionization potentials and enthalpies of formation, J. Comput.

Chem. 39, 2463 (2018), https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.25586.

[54] S. Schwalbe, L. Fiedler, T. Hahn, K. Trepte, J. Kraus, and J. Kortus, PyFLOSIC - python based

Fermi-Löwdin orbital self-interaction correction (2019), arXiv:1905.02631 [physics.comp-ph].

27



[55] S. Romero, Y. Yamamoto, T. Baruah, and R. R. Zope, Local self-interaction correction method with

a simple scaling factor, Physical Chemistry Chemical Physics 23, 2406 (2021), 2010.08921.

[56] C. M. Diaz, P. Suryanarayana, Q. Xu, T. Baruah, J. E. Pask, and R. R. Zope, Implementation of

Perdew–Zunger self-interaction correction in real space using Fermi–Löwdin orbitals, The Journal

of Chemical Physics 154, 084112 (2021).

[57] S. Akter, Y. Yamamoto, R. Zope, Rajendra, and T. Baruah, Static dipole polarizabilities of polyacenes

using self-interaction-corrected density functional approximations, The Journal of Chemical Physics

(Accepted) , 00 (2021).

[58] A. Seidl, A. Görling, P. Vogl, J. Majewski, and M. Levy, Generalized Kohn-Sham schemes and the

band-gap problem, Physical Review B - Condensed Matter and Materials Physics 53, 3764 (1996).

[59] R. T. Sharp and G. K. Horton, A variational approach to the unipotential many-electron problem,

Physical Review 90, 317 (1953).

[60] J. D. Talman and W. F. Shadwick, Optimized effective atomic central potential, Physical Review A

10.1103/PhysRevA.14.36 (1976).

[61] J. B. Krieger, Y. Li, and G. J. Iafrate, Systematic approximations to the optimized effective potential:

Application to orbital-density-functional theory, Phys. Rev. A 46, 5453 (1992).

[62] J. Garza, J. A. Nichols, and D. A. Dixon, The optimized effective potential and the self-interaction

correction in density functional theory: Application to molecules, J. Chem. Phys. 112, 7880 (2000),

https://doi.org/10.1063/1.481421.

[63] S. Patchkovskii, J. Autschbach, and T. Ziegler, Curing difficult cases in magnetic properties pre-

diction with self-interaction corrected density functional theory, J. Chem. Phys. 115, 26 (2001),

https://doi.org/10.1063/1.1370527.

[64] S. Patchkovskii and T. Ziegler, Phosphorus nmr chemical shifts with self-interaction free, gradient-

corrected dft, J. Phys. Chem. A 106, 1088 (2002), https://doi.org/10.1021/jp014184v.

[65] X. Chu and S. I. Chu, Self-interaction-free time-dependent density-functional theory for molecular

processes in strong fields: High-order harmonic generation of H2 in intense laser fields, Physical

Review A - Atomic, Molecular, and Optical Physics 10.1103/PhysRevA.63.023411 (2001).

[66] C. Legrand, E. Suraud, and P. Reinhard, Comparison of self-interaction-corrections for metal clusters,

Journal of Physics B: Atomic, Molecular and Optical Physics 35, 1115 (2002).

[67] S. Lehtola and H. Jónsson, Variational, self-consistent implementation of the Perdew-Zunger self-

interaction correction with complex optimal orbitals, J. Chem. Theory Comput. 10, 5324 (2014),

28



pMID: 26583216, https://doi.org/10.1021/ct500637x.

[68] R. R. Zope, T. Baruah, and K. A. Jackson, FLOSIC 0.2, based on the NRLMOL code of M. R.

Pederson.

[69] Y. Yamamoto, L. Basurto, C. M. Diaz, R. R. Zope, and T. Baruah, Self-interaction correction to

density functional approximations using Fermi-Löwdin orbitals: methodology and parallelization,

unpublished.

[70] M. R. Pederson and K. A. Jackson, Variational mesh for quantum-mechanical simulations, Phys.

Rev. B 41, 7453 (1990).

[71] K. Jackson and M. R. Pederson, Accurate forces in a local-orbital approach to the local-density

approximation, Phys. Rev. B 42, 3276 (1990).

[72] D. Porezag and M. R. Pederson, Optimization of Gaussian basis sets for density-functional calcula-

tions, Phys. Rev. A 60, 2840 (1999).

[73] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys.

Rev. Lett. 77, 3865 (1996).

[74] J. P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation

energy, Phys. Rev. B 45, 13244 (1992).

[75] S. Schwalbe, K. Trepte, L. Fiedler, A. I. Johnson, J. Kraus, T. Hahn, J. E. Peralta, K. A. Jackson, and

J. Kortus, Interpretation and Automatic Generation of Fermi-Orbital Descriptors, Journal of Compu-

tational Chemistry 40, 2843 (2019).

[76] S. Lehtola, Assessment of initial guesses for self-consistent field calculations. superposition of

atomic potentials: Simple yet efficient, Journal of chemical theory and computation 15, 1593 (2019).

[77] I. Ciofini, H. Chermette, and C. Adamo, A mean-field self-interaction correction in density functional

theory: implementation and validation for molecules, Chemical physics letters 380, 12 (2003).

[78] E. Fermi and E. Amaldi, Le orbite [infinito] s degli elementi, Vol. 6 (Reale Accademia d’Italia, 1934)

p. 119.

[79] S. J. Chakravorty, S. R. Gwaltney, E. R. Davidson, F. A. Parpia, and C. F. p Fischer, Ground-state

correlation energies for atomic ions with 3 to 18 electrons, Phys. Rev. A 47, 3649 (1993).

[80] C.-O. Almbladh and U. von Barth, Exact results for the charge and spin densities, exchange-

correlation potentials, and density-functional eigenvalues, Phys. Rev. B 31, 3231 (1985).

[81] J. P. Perdew and M. Levy, Comment on “Significance of the highest occupied Kohn-Sham eigen-

value”, Phys. Rev. B 56, 16021 (1997).

29



[82] A. Kramida, Yu. Ralchenko, J. Reader, and NIST ASD Team, NIST Atomic Spectra Database (ver.

5.6.1), [Online]. Available: https://physics.nist.gov/asd [2018, July 25]. National Institute

of Standards and Technology, Gaithersburg, MD. (2018).

[83] L. A. Curtiss, K. Raghavachari, G. W. Trucks, and J. A. Pople, Gaussian-2 theory for

molecular energies of first- and second-row compounds, J. Chem. Phys. 94, 7221 (1991),

https://doi.org/10.1063/1.460205.

[84] B. J. Lynch and D. G. Truhlar, Small representative benchmarks for thermochemical calculations, J.

Phys. Chem. A 107, 8996 (2003), https://doi.org/10.1021/jp035287b.

[85] National Institute of Standards and Technology, NIST Computational Chemistry Comparison and

Benchmark Database NIST Standard Reference Database Number 101 Release 19, April 2018, Edi-

tor: Russell D. Johnson III http://cccbdb.nist.gov/ DOI:10.18434/T47C7Z.

[86] S. J. A. van Gisbergen, P. R. T. Schipper, O. V. Gritsenko, E. J. Baerends, J. G. Snijders, B. Cham-

pagne, and B. Kirtman, Electric field dependence of the exchange-correlation potential in molecular

chains, Phys. Rev. Lett. 83, 694 (1999).

[87] O. Gritsenko, S. Van Gisbergen, P. Schipper, and E. Baerends, Origin of the field-counteracting term

of the kohn-sham exchange-correlation potential of molecular chains in an electric field, Physical

Review A 62, 012507 (2000).

[88] P. Mori-Sánchez, Q. Wu, and W. Yang, Accurate polymer polarizabilities with exact exchange

density-functional theory, The Journal of chemical physics 119, 11001 (2003).

[89] B. Kirtman, S. Bonness, A. Ramirez-Solis, B. Champagne, H. Matsumoto, and H. Sekino, Calcula-

tion of electric dipole (hyper) polarizabilities by long-range-correction scheme in density functional

theory: A systematic assessment for polydiacetylene and polybutatriene oligomers, The Journal of

chemical physics 128, 114108 (2008).

[90] J. Vargas, M. Springborg, and B. Kirtman, Electronic responses of long chains to electrostatic fields:

Hartree-fock vs. density-functional theory: A model study, The Journal of Chemical Physics 140,

054117 (2014).

[91] T. Aschebrock and S. Kümmel, Ultranonlocality and accurate band gaps from a meta-generalized

gradient approximation, Phys. Rev. Research 1, 033082 (2019).

[92] S. Kuemmel, L. Kronik, and J. P. Perdew, Electrical response of molecular chains from density

functional theory, Physical review letters 93, 213002 (2004).

30



[93] H. Sekino*, Y. Maeda, and M. Kamiya, Influence of the long-range exchange effect on dynamic

polarizability, Molecular Physics 103, 2183 (2005).

[94] R. Baer and D. Neuhauser, Density functional theory with correct long-range asymptotic behavior,

Physical review letters 94, 043002 (2005).

[95] C. D. Pemmaraju, T. Archer, D. Sánchez-Portal, and S. Sanvito, Atomic-orbital-based approximate

self-interaction correction scheme for molecules and solids, Phys. Rev. B 75, 045101 (2007).

[96] A. Ruzsinszky, J. P. Perdew, G. I. Csonka, G. E. Scuseria, and O. A. Vydrov, Understanding and

correcting the self-interaction error in the electrical response of hydrogen chains, Phys. Rev. A 77,

060502 (2008).

[97] N. T. Maitra and M. Van Faassen, Improved exchange-correlation potential for polarizability and

dissociation in density functional theory, Journal of Chemical Physics 126, 191106 (2007).

[98] T. Körzdörfer, M. Mundt, and S. Kümmel, Electrical response of molecular systems: the power of

self-interaction corrected kohn-sham theory, Phys. Rev. Lett. 100, 133004 (2008).

[99] J. Messud, Z. Wang, P. M. Dinh, P.-G. Reinhard, and E. Suraud, Polarizabilities as a test of localized

approximations to the self-interaction correction, Chemical Physics Letters 479, 300 (2009).

[100] J. F. Janak, Proof that δE
δni

= ε in density-functional theory, Physical Review B 18, 7165 (1978).

[101] M. Levy, J. P. Perdew, and V. Sahni, Exact differential equation for the density and ionization energy

of a many-particle system, Phys. Rev. A 30, 2745 (1984).

[102] P. Politzer and F. Abu-Awwad, A comparative analysis of Hartree-Fock and Kohn-Sham orbital en-

ergies, Theoretical Chemistry Accounts 99, 83 (1998).

[103] R. Stowasser and R. Hoffmann, What do the Kohn-Sham orbitals and eigenvalues mean?, Journal of

the American Chemical Society 121, 3414 (1999).

[104] D. P. Chong, O. V. Gritsenko, and E. J. Baerends, Interpretation of the Kohn-Sham orbital energies

as approximate vertical ionization potentials, Journal of Chemical Physics 116, 1760 (2002).

[105] M. Grüning, A. Marini, and A. Rubio, Density functionals from many-body perturbation theory: The

band gap for semiconductors and insulators, Journal of Chemical Physics 124, 10.1063/1.2189226

(2006).

[106] A. J. Cohen, P. Mori-Sánchez, and W. Yang, Fractional charge perspective on the band gap in density-

functional theory, Phys. Rev. B 77, 115123 (2008).

[107] A. M. Teale, F. De Proft, and D. J. Tozer, Orbital energies and negative electron affinities from

density functional theory: Insight from the integer discontinuity, Journal of Chemical Physics 129,

31



10.1063/1.2961035 (2008).

[108] P. Mori-Sánchez, A. J. Cohen, and W. Yang, Localization and delocalization errors in density func-

tional theory and implications for band-gap prediction, Phys. Rev. Lett. 100, 146401 (2008).

[109] W. Yang, A. J. Cohen, and P. Mori-Sánchez, Derivative discontinuity, bandgap and lowest unoccupied

molecular orbital in density functional theory, Journal of Chemical Physics 136, 10.1063/1.3702391

(2012).

[110] L. Kronik, T. Stein, S. Refaely-Abramson, and R. Baer, Excitation gaps of finite-sized systems from

optimally tuned range-separated hybrid functionals, J. Chem. Theory Comput. 8, 1515 (2012).

[111] E. J. Baerends, O. V. Gritsenko, and R. Van Meer, The Kohn-Sham gap, the fundamental gap and

the optical gap: The physical meaning of occupied and virtual Kohn-Sham orbital energies, Physical

Chemistry Chemical Physics 15, 16408 (2013).

[112] R. Van Meer, O. V. Gritsenko, and E. J. Baerends, Physical meaning of virtual kohn-sham orbitals

and orbital energies: An ideal basis for the description of molecular excitations, Journal of Chemical

Theory and Computation 10, 4432 (2014).

[113] J. P. Perdew, W. Yang, K. Burke, Z. Yang, E. K. Gross, M. Scheffler, G. E. Scuseria, T. M. Henderson,

I. Y. Zhang, A. Ruzsinszky, H. Peng, J. Sun, E. Trushin, and A. Görling, Understanding band gaps

of solids in generalized Kohn-Sham theory, Proceedings of the National Academy of Sciences of the

United States of America 114, 2801 (2017).

[114] J. P. Perdew and A. Ruzsinszky, Density-functional energy gaps of solids demystified, European

Physical Journal B 91, 10.1140/epjb/e2018-90083-y (2018).

[115] E. J. Baerends, Density functional approximations for orbital energies and total energies of molecules

and solids, Journal of Chemical Physics 149, 54105 (2018).

[116] E. J. Baerends, On derivatives of the energy with respect to total electron number and orbital occu-

pation numbers. A critique of Janak’s theorem, Molecular Physics 118, e1612955 (2020).

[117] R. W. Godby and R. J. Needs, Metal-insulator transition in Kohn-Sham theory and quasiparticle

theory, Physical Review Letters 62, 1169 (1989).

[118] A. Rakshit, P. Bandyopadhyay, J. P. Heindel, and S. S. Xantheas, Atlas of putative minima and low-

lying energy networks of water clusters n= 3–25, The Journal of Chemical Physics 151, 214307

(2019).

[119] S. Akter, Y. Yamamoto, C. M. Diaz, K. A. Jackson, R. R. Zope, and T. Baruah, Study of self-

interaction errors in density functional predictions of dipole polarizabilities and ionization energies

32



of water clusters using Perdew-Zunger and locally scaled self-interaction corrected methods, Journal

of Chemical Physics 153, 10.1063/5.0025601 (2020).

[120] M. R. Pederson and S. N. Khanna, Magnetic anisotropy barrier for spin tunneling in Mn12O12

molecules, Phys. Rev. B 60, 9566 (1999).

33


