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We obtain worst case performance guarantees for p = 2 and 3 QAOA for MAXCUT on uniform
3-regular graphs. Previous work by Farhi et al. obtained a lower bound on the approximation ratio
of 0.692 for p = 1. We find a lower bound of 0.7559 for p = 2, where worst case graphs are those with
no cycles ≤ 5. This bound holds for any 3 regular graph evaluated at particular fixed parameters.
We conjecture a hierarchy for all p, where worst case graphs have with no cycles ≤ 2p+1. Under this
conjecture, the approximation ratio is at least 0.7924 for all 3 regular graphs and p = 3. In addition,
using an indistinguishably argument we find an upper bound on the worst case approximation ratio
for all p, which indicates classes of graphs for which there can be no quantum advantage for at least
p < 6.

I. INTRODUCTION

In the rapidly developing field of quantum technology,
near term quantum devices [1] are the focus of much in-
terest. Such noisy intermediate scale quantum (NISQ)
devices lack error correction and have imperfect gate
implementations and environmental isolation, which re-
strict them to implementing only low depth algorithms.
Even with these constraints, can such a device display
quantum advantage?

One algorithm suitable for NISQ devices is the quan-
tum approximate optimization algorithm (QAOA), a hy-
brid quantum classical combinatorial optimization algo-
rithm [2]. In QAOA, a classical computer optimizes 2p
angles parameterizing an ansatz wavefunction by query-
ing a near term quantum device. This wavefunction en-
codes an approximate solution to some combinatorial op-
timization problem. For p → ∞, it is known that the
ansatz wavefunction encodes the exact solution, which
follows from the adiabatic theorem [3]. For finite p, the
picture is less clear. What p is needed to outperform the
best classical algorithm? Asking such questions leads to
competition between quantum and classical algorithms
[4]. For example, a QAOA algorithm for E3LIN2 [5] with
quantum advantage was answered by an improved clas-
sical algorithm [6], which prompted an improved QAOA
version without advantage [7].

One can find worst case performance guarantees for
particular classes of problem instances in QAOA. Ap-
proximate solutions to a problem achieve some fraction
C of the exact solution, called the approximation ratio.
A worst case performance guarantee bounds this approx-
imation ratio from below. If the minimum approximation
ratio Cmin obtained from the quantum algorithm is larger
than the value for the best classical algorithm, then the
quantum algorithm has quantum advantage, as it will
produce better approximate answers for all instances. It
is important to ask what this worst case performance
guarantee Cmin is for QAOA as a function of p.

In this paper, we apply QAOA to the NP-hard graph
partitioning problem of MAXCUT [8], which partitions
some graph into two sets by cutting a maximum number
of edges. We will find that the worst case performance

guarantee for 3-regular graphs and p = 2 is C2 ≥ 0.7559,
confirming the observation of [2] and improving on the
original result for p = 1 of C1 ≥ 0.692, as expected. Un-
der a conjecture that graphs with no “visible” cycles are
worst case, we find C3 ≥ 0.7924 for p = 3. Additionally,
we use an argument where fixed p QAOA cannot dis-
tinguish between large cycles of even and odd length to
find an upper bound on expectation values, which upper
bounds the minimum approximation ratio.

The paper is structured as follows. Section II reviews
QAOA applied to the MAXCUT problem. Section III and
IV details how expectation values and the approximation
ratio can be computed efficiently for any bounded degree
graph for fixed values of p. Section V computes the worst
case performance guarantee for the p = 1 and 2 cases.
Sections VI - IX discuss some of the implications of the
worst case performance, and Section X concludes with
discussion and interesting future directions.

II. THE MAXCUT PROBLEM AND QAOA

The MAXCUT problem is defined as follows. Given a
graph G with vertices V and edges E, the vertices are
partitioned into two sets labeled by, say, + or−. The goal
is to find the partition of vertices such that a maximal
number of edges have one vertex in each set. Restated,
a solution to the MAXCUT problem separates a graph G
into two subgraphs by cutting the maximum number of
edges.

This problem is encoded in qubits as follows. For each
vertex, assign a qubit. Given vertices 〈i〉 and edges 〈ij〉
for a graph G, the maximum cut is given by the maximal
eigenstate of the objective function

Ĉ =
∑
〈ij〉

1

2

(
1− σ̂izσ̂jz

)
. (1)

Each term is a clause representing an edge of the graph
G, with an eigenvalue of 1 if the edge is cut, and 0 if the
edge is not. Because Ĉ is made of a sum of commuting
Pauli σ̂z terms, any eigenstate is a product state, and
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the maximal state can be simply read out in the Z basis.
The partitioning of vertices is obtained by assigning each
vertex according to a Z measurement outcome ±1.

One method of computing an approximate maximal
state of Ĉ is the quantum approximate optimization algo-
rithm (QAOA) [2; 9–14]. QAOA optimizes a variational
wave function by maximizing the expectation value of
the objective function with respect to a set of parame-
ters {γ}, {β}

F (γ, β) = 〈γ, β|Ĉ|γ, β〉,
Fmax = MAX

γ,β
: F (γ, β).

(2)

The state preparation and evaluation of the expecta-
tion value 〈Ĉ〉 can be done on a small quantum device,
while the optimization of variational parameters {γ}, {β}
can be performed on a classical computer. The QAOA
ansatz wave function |γ, β〉 is defined as [2]

|γ, β〉 = e−iβpB̂e−iγpĈ(. . . )e−iβ1B̂e−iγ1Ĉ |+〉 (3)

where B̂, the “mixing Hamiltonian”, is defined as B̂ =∑
i σ̂

i
x and |+〉 is the equally weighted superposition state

or analogously the largest eigenstate of B̂. Ellipses repre-
sent p iterations of unitarily evolving the wavefunction al-
ternatively with generators Ĉ and B̂. In the limit p→∞
the optimal state |γ, β〉 approaches the exact maximal
state [2].

Given an approximate wavefunction with expectation
value 〈Ĉ〉, the state can be repeatedly measured m times
in the Z basis to find a bit string whose expectation value
evaluates to at least 〈Ĉ〉(1 − 1/m) as an approximate
MAXCUT solution. This is due to the phenomena of con-
centration, wherein the variance of expectation values is
much smaller then the expectation value itself [12].

The approximation ratio for MAXCUT is

C(γ, β) =
F (γ, β)

Cmax
(4)

where Cmax is the maximum number of edges cut for
an ideal partition of a particular graph G. A number
in between 0 and 1 measures how close the variational
state is to the exact maximal state. A larger number in-
dicates better performance, as bitstrings from the mea-
surement procedure will have a better MAXCUT value. If
Fmax = Cmax then the variational state is the exact
maximal state, and the approximation ratio is 1. Note
that in practice, Cmax may not be known, so bounding
the approximation ratio from below requires Cmax to be
bounded from above.

III. FIXED-p ALGORITHM

It was found by Farhi et al. in 2014 [2] that for fixed
graph degree ν and particular value of p, the numerical

difficulty of simulating QAOA evolution grows at most
doubly exponentially in p, and linearly with number of
vertices N . In the interests of fixing notation and making
the present paper self-contained let us begin by repeating
the derivation of [2] here.

The expectation value F (γ, β) is

F (γ, β) =
∑
〈ij〉

f〈ij〉(γ, β)

with f〈ij〉(γ, β) =
1

2

〈
γ, β

∣∣1− σ̂izσ̂jz∣∣γ, β〉, (5)

where the expectation value F (γ, β) has been broken into
a sum of terms f〈ij〉(γ, β) corresponding to individual
edges 〈ij〉. For a particular value of p, each value of
f〈ij〉(γ, β) may be computed as

1

2
− 1

2
〈+|(. . . )eiγpĈeiβpB̂σ̂izσ̂

j
ze
−iβpB̂e−iγpĈ(. . . )|+〉 (6)

where ellipses denote the action of the other 2p− 2 gen-
erators.

In the Heisenberg picture, this expectation value can
be computed for any value of N . The first generator B̂
rotates each objective function clause as

σ̂izσ̂
j
z → (cos(2βp)σ̂

i
z + sin(2βp)σ̂

i
y)×

(cos(2βp)σ̂
j
z + sin(2βp)σ̂

j
y), (7)

keeping the Heisenberg rotated operator local to the span
of the two sites i, j. Terms σ̂kz σ̂

l
z in the second generator

Ĉ commute and cancel unless the edges j, k overlap with
i or j. In that case, the σ̂y are rotated into σ̂x and
σ̂z by terms σ̂kz σ̂

i
z, growing to a span supporting 3 sites

i, j, k for terms such as σ̂kz σ̂
i
yσ̂

j
y. Repeating this one layer

deeper can rotate Pauli operators on site k, and so forth.
From this argument, it can be seen that after p steps,
the operator will have a support over a subgraph with
vertices at most p edges away from the initial vertices
i, j.

Given a graph G and edge 〈ij〉, in order to compute
a value f〈ij〉(γ, β) one may truncate the graph to an
induced subgraph only including vertices which are at
most p edges away from either i or j, and the presence
of the other vertices does not contribute to the expec-
tation value. We denote such a subgraph of edge 〈ij〉
within graph G to depth p as Gp〈ij〉. For a fixed p and

graph degree ν, there are a finite number of unique sub-
graphs. For 3-regular graphs, where there are exactly
3 edges incident on vertex, and for p = 1 there are 3
subgraphs, with at most 6 vertices; for p = 2, there are
123 subgraphs with at most 14 vertices; for p = 3, there
are 913,088 subgraphs with at most 30 vertices. See Ap-
pendix B for more details, and the supplemental Table
[15] for enumerated subgraphs for p = 1 and 2. We will
focus on 3-regular graphs, but these results generalize to
other graphs with small bounded degree.
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FIG. 1. An example graph with subgraph assignments for
p = 1. Each edge (red) exists in a subgraph of edges and
vertices a distance p ≤ 1 away (grey circle). Edges within
1 step of the red edge (black) uniquely define the subgraph
assignment of the edge. For this graph, there are 4 instances
of subgraph 0 (“the tree”), 10 instances of subgraph 1 (“single
triangle”) and one instance of subgraph 2 (“two triangles”).
The subgraph of each edge is labeled on the edge. A more
detailed visual of this decomposition is shown in Fig. 2.

As a technical note, because only vertices within p
steps of the edge 〈ij〉 need be considered to compute
f〈ij〉(γ, β), such expectation values may be efficiently cal-
culated in the Schrödinger picture. Because a σ̂zσ̂z oper-
ator only spreads to a span over the subgraph, one need
only apply unitary operators over the subgraph. If the
wavefunction is evolved in the Schrödinger picture un-
der these unitaries, the state on all other sites remains
an unentangled |+〉 product state, and thus one can con-
sider the wavefunction only acting on the reduced Hilbert
space of the n vertices of the subgraph. This allows com-
putation with the order 2n values of the wavefunction on
the subgraph, instead of the order 4n values from a gen-
eral operator acting on the subgraph in the Heisenberg
picture, or order 2N values of the wavefunction on the
entire graph.

The procedure for computing the expectation value
F (γ, β) for a particular graph G of bounded degree ν
and fixed p is as follows. For each edge 〈ij〉, identify the
subgraph Gp〈ij〉 of all edges and vertices within p steps of

i and j (See Fig. 1). This defines a collection of sub-
graphs {Gp〈ij〉|〈ij〉 ∈ G}, one for each edge, for which each

f〈ij〉(γ, β) can be computed in parallel. This collection
of subgraphs can be further decomposed by counting the
number Nλ(G) of each kind of subgraph λ, Sλ ∈ {S}

in the collection of all subgraphs of depth p, with each
edge of the graph given a particular subgraph assignment
〈ij〉 → λ. The expectation value is then

F (γ, β) =
∑

subgraphs λ

Nλ(G)fλ(γ, β) (8)

where fλ(γ, β) is the expectation value of the center edge
of the λth subgraph.

IV. LOWER BOUNDS ON THE THE
APPROXIMATION RATIO

A performance guarantee for QAOA can be obtained
by computing a lower bound of the approximation ratio
Cp(G) = FM/CM of any graph, then finding the graph(s)
with the lowest lower bound. Such a lower bound is given
by the ratio of a lower bound on the maximum expecta-
tion value FM , and an upper bound on the best MAXCUT
value CM .

A. Lower bound on the maximum expectation
value FM

The value FM is bounded from below by:

FM = MAX
γ,β

: F (γ, β) ≥
∑
λ

Nλ(G)fλ (9)

where fλ ≡ fλ(γ, β) is the expectation value of the center
edge of the particular subgraph λ, chosen for a particular
set of values (γ, β).

The sum on the right hand side of eq. (9) is guaranteed
to be less than or equal to the global maximum Fmax,
which simultaneously optimizes (γ, β) for all clauses. We
may choose the set of values for which to compute fλ; we
use the following set of angles

p = 1 : {γ1, β1} = {35.3◦, 22.5◦}, (10)

p = 2 : {γ1, β1, γ2, β2} = {28.0◦, 31.8◦, 51.4◦, 16.8◦}.

These values are one of the optima for the tree subgraph,
which does not have any cycles (see Fig. 1 bottom left).
For more details on this choice of angles, see Section VI.

B. Upper bound on the MAXCUT value CM

It is hard to find the exact MAXCUT value CM , which
is after all one of the objectives of the QAOA algorithm.
Fortunately, it suffices to find an upper bound of CM to
yield a lower bound on the approximation ratio. Equiva-
lently, we may find a lower bound on the number of uncut
edges in a partition of a graph, RM (G), to find the upper
bound on the number of cut edges CM = N(G)−RM (G).
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FIG. 2. A lower bound on the approximation ratio can be found by a decomposition into subgraphs. Any graph G (center)
can be decomposed into the subgraph graph Hp. A lower bound on the expectation value is given by a sum over all subgraphs
(Eq. (8)) where the center edge is in red. An upper bound on the MAXCUT value is found by careful counting of uncut edges. A
particular edge (green) appears five times in H1 (left) and nine times in H2 (right). A subgraph contributes to the sum (15)
if the green edge participates in an odd length cycle of a subgraph. For this particular graph environment, 3 of 5 subgraphs
contribute for p = 1 and all 9 subgraphs contribute for p = 2; Eq. (15) is 3/5 for p = 1 and 452/495 for p = 2.

While these two views are equivalent, we find it more
convenient to count uncut edges.

The lower bound on the number of uncut edges can be
found by considering only local structure of a graph. Lo-
cally, there is some amount of “visible” frustration, which
force a minimum number of edges to remain uncut. For
example, a triangle of three vertices requires at least one
edge uncut. Additional edges may remain uncut due to
global structure which is not “visible” locally. We will
use the local structure of a graph to get the tightest pos-
sible lower bound on the number of uncut edges. While
other simpler methods such as SDP relaxations [16] find
upper bounds on the MAXCUT value, they do not use local
structure, as will be necessary for the proof. This locally
computed MAXCUT bound generalizes that of [2] beyond
p = 1. The bound will be done in three steps, each of
which tighten the bound.

As a first step, a trivial underestimate of the number of
uncut edges is that no edges remain uncut in the graph,
and so the MAXCUT value is bounded from above by the
number of edges in the graph. This bound is not tight,
and does not take into account any of the structure of the
graph.This trivial bound can be tightened by considering
local structure.

As a next step, consider for a graph G, a graph Hp
which is a collection of disconnected subgraphs Gp〈ij〉, one

for each edge 〈ij〉 in G. An example of this decomposition
is shown in Fig. 2. Heuristically, the graph Hp “sees” the
local structure of G out to a distance p.

Each edge 〈ij〉 in G appears in multiple subgraphs of
G and therefore of Hp. It appears in the subgraph Gp〈ij〉
as the center edge, but it also appears in all subgraphs
Gp〈kl〉 whose center edge 〈kl〉 is ≤ p steps from edge 〈ij〉.
Because distance is symmetric, the number of edges in
subgraph Gp〈ij〉 is equal to the number of subgraphs in

which 〈ij〉 appears.
The subgraphs in which edge 〈ij〉 appears are thus

identified by all edges within a distance 2p, because dis-
tance is symmetric. The first p steps identify the sub-
graph assignment of the center edge, while the second p
steps identify the subgraph assignment of the edges 〈kl〉
within a radius p of 〈ij〉 containing edge 〈ij〉.

We call the surroundings G2p〈ij〉 which fix the sub-

graph assignment of adjacent edges to depth p the graph
environment of edge 〈ij〉. The set of all possible graph
environments of depth p is the set of all unique combi-
nations of subgraph assignments on the edges of all sub-
graphs of depth p. It is also all possible combinations of
subgraphs that an edge 〈ij〉 can appear in. This set of
graph environments allows for a search through all pos-
sible local graph structures, without needing to be con-
cerned with the global structure of the arbitrarily larger
graph.

The six subgraph environments for p = 1 are shown in
Fig. 3. There are three combinations of subgraph assign-
ments for subgraph 0, “the tree” (Fig. 3a,b,c), two com-
binations of subgraph assignments for subgraph 1, “single
triangle” (Fig. 3d,e), and one combination for subgraph
2, “two triangles” (Fig. 3f).

These graph environments restrict which subgraph as-
signments are allowed to be adjacent. For instance, con-
sider subgraph 2, “two triangles”. There is only one
graph environment in which it is the center edge, and
the adjacent edges must be assigned to subgraph 1, “one
triangle”. Thus, every instance of subgraph 2 in a graph
must have at least 4 instances of subgraph 1. Equiva-
lently, the set of graph environments are the set of all
possible combinations of subgraphs which an edge can
appear in. Some example graph environments for p = 2
are shown in Fig. 4.

The set of graph environments is a subset of all sub-
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FIG. 3. The six p = 1 graph environments, which fix edges to
particular subgraphs, as shown by edge labels. Black edges
are of the center subgraph, while grey edges are choice of
subgraph environment, and red is the special center edge.
These graph environments mean that certain subgraphs can-
not appear in isolation, and there are adjacency restrictions
for certain subgraphs.

graphs of depth 2p. It is a subset because subgraphs of
depth 2p may have cycles of length more than 2p + 1,
which the subgraph assignements of depth p cannot dis-
tinguish. Because of this fact, the set of all graph envi-
ronments is equivalent to the set of subgraphs of depth
2p, subject to the constraint of no cycles greater than
2p+ 1 in the minimum cycle basis [17].

Now, consider any partition P of vertices of the of
graph G, including the MAXCUT partition M . The par-
tition leaves some edges 〈ij〉 uncut, denoted by the char-
acteristic function rP

rP 〈ij〉 =

{
1, if edge 〈ij〉 is uncut in the partition P of G
0, otherwise.

The number of uncut edges in G given partition P is the
sum over edges RP (G) =

∑
〈ij〉 rP 〈ij〉.

Similarly, consider any partition P of vertices of the
graph Hp, including its MAXCUT partition M. An edge
of Hp is labeled by the index of its parent edge 〈ij〉 in
G, as well as the center edge 〈kl〉 of the subgraph it par-
ticipates in. The partition P leaves some edges 〈ij〉 of
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FIG. 4. Some example graph environments for p = 2 graphs.
Subgraph edges fixed by the environment are shown by edge
labels. (a,b) show two example environments for subgraph 5,
while (c,d) show some example environments for subgraphs
11 and 15.

the subgraph Gp〈kl〉 uncut. These cuts are labeled by the

characteristic function rP

rP
〈kl〉
〈ij〉 =


1, if edge 〈ij〉 is uncut in the partition

P of subgraph Gp〈kl〉
0, if edge 〈ij〉 is cut in the partition

P of subgraph Gp〈kl〉 or if 〈ij〉 6∈ Gp〈kl〉.

The number of uncut edges in Hp given partition P is
the sum over edges

RP(Hp) =
∑
〈ij〉

∑
〈kl〉

rP
〈kl〉
〈ij〉 .

The MAXCUTM of G induces a partition of Hp, M 7→ I,
in which each vertex of Hp is assigned to the same set as
its parent vertex in G. This implies that all copies of cut

edges in M of G are cut in Hp, eg rI
〈kl〉
〈ij〉 = rM〈ij〉 ∀〈kl〉 ∈

G.
The set of cuts of Hp is a superset of the cuts of G be-

cause the vertices of G appear multiple times in Hp. The
number of uncut edges in the MAXCUT of Hp is therefore
bounded above by the number of uncut edges in the par-
tition I induced by the MAXCUT of G: RM(Hp) ≤ RI(Hp).

Additionally, each edge 〈ij〉 of G appears N(Gp〈ij〉)
times in Hp. This number is bounded from above by
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the largest possible subgraph N(Spλ′). For p = 1, every
subgraph has exactly 5 edges. For p = 2, the largest
subgraphs have 13 edges.

Using the fact that the number of times each edge 〈ij〉
appears in Hp is bounded, and solutions on Hp can be
induced from G, we may bound the number of uncut
edges in the MAXCUT of G from below. For p = 1 we may
write the following inequalities

RM(H1) ≤ RI(H1) =
∑
〈ij〉,〈kl〉

rI
〈kl〉
〈ij〉

=
∑
〈ij〉,〈kl〉

rM 〈ij〉 = 5
∑
〈ij〉

rM 〈ij〉

⇒ 1

5
RM(H1) ≤ RM (G). (11)

Similarly, for p = 2,

RM(H2) ≤ RI(H2) =
∑
〈ij〉,〈kl〉

rI
〈kl〉
〈ij〉

=
∑
〈ij〉,〈kl〉

rM 〈ij〉 ≤ 13
∑
〈ij〉

rM 〈ij〉

⇒ 1

13
RM(H2) ≤ RM (G). (12)

Because Hp is separated into disconnected subgraphs,
it is simple to find the MAXCUT partition of Hp for any
size graph. This method of computing upper bounds on
the MAXCUT value reproduces that of [2]. The bound on
the MAXCUT used in [2] counted the number T of isolated
triangles (“single triangle” subgraphs) and S of crossed
squares (“two triangle” subgraphs). Each isolated tri-
angle and crossed square will have one uncut edge, so
a 3-regular graph with n vertices and 3n/2 edges has at
least S+T uncut edges and thus at most 3n/2−S−T cut
edges. Similarly, the number of p = 1 subgraphs present
in H1 are then functions of S and T . Specifically, there
are S subgraphs of type 2 (“two triangle”), and 4S + 3T
subgraphs of type 1 (“single triangle”). Each of these
subgraphs has one uncut edge, and so Eq. (11) upper
bounds the maxcut of G to 3n/2− (S+4S+3T )/5. This
bound is looser than that obtained from directly counting
S and T in G because H1 mistakes some of the crossed
squares for isolated triangles. For p = 2 the number of
edges per subgraph in H2 varies and use of Eq. (12) will
give looser bounds.

The third and final step for finding a tighter bound for
p > 1 can be found by considering the local structure of
subgraphs Gp〈kl〉. This requires the following fact: if an

edge of some graph G participates in no odd length cycles,
it must be cut in the MAXCUT solution. This is a conse-
quence of balance in signed graphs [18]. This condition
is labeled by the characteristic function:

δ
〈kl〉
〈ij〉 =


1, if edge 〈ij〉 in subgraph Gp〈kl〉

participates in at least one odd length cycle

0, otherwise.

FIG. 5. An example of the function δ
〈kl〉
〈ij〉 on an example graph.

Here, δ = 1 for dark edges, which participate in odd cycles of
length 3 or 5. Similarly, δ = 0 for light edges which do not
participate in odd length cycles. This can occur even if the
graph has odd length cycles, because parts of the graph are
connected by only a single edge.

An example of this function on a graph is shown in Fig. 5.
For large connected graphs, δ = 1 for almost every

edge, suggesting this function is not very interesting for
graphs with few “loose edges”, where a loose edge is de-
fined as an edge connecting a vertex of degree one to
the graph. However, the subgraphs Gp〈kl〉 have many

loose edges (See the supplemental Table [15]). Given
some subgraph Gp〈kl〉 with MAXCUT solution M, this im-

plies rM
〈kl〉
〈ij〉 = rM

〈kl〉
〈ij〉δ

〈kl〉
〈ij〉 .

With this fact, let us follow the same procedure as
above, inducing a solution I on subgraph Gp〈kl〉 from the

MAXCUT solution M on graph G, with rI
〈kl〉
〈ij〉 = rM 〈ij〉. It

is simple to see that there exists a different partition I ′
for which

rI′
〈kl〉
〈ij〉 = rI

〈kl〉
〈ij〉 when δ

〈kl〉
〈ij〉 = 1,

rI′
〈kl〉
〈ij〉 = 0 when δ

〈kl〉
〈ij〉 = 0.

The partition I ′ exists based on the fact that δ = 0
only on “loose edges” of a subgraph that are only con-
nected by a single edge, and thus the loose edges can be
solved independently from the rest of the subgraph.

These facts lead to a chain of inequalities, where the
sum is partitioned into edges which participate in odd
length cycles, and those that do not

RI(Gp〈kl〉) =
∑
〈ij〉

(
rI
〈kl〉
〈ij〉δ

〈kl〉
〈ij〉 + rI

〈kl〉
〈ij〉(1− δ

〈kl〉
〈ij〉 )

)
≥ RI′(Gp〈kl〉) =

∑
〈ij〉

(
rI′
〈kl〉
〈ij〉δ

〈kl〉
〈ij〉 + rI′

〈kl〉
〈ij〉(1− δ

〈kl〉
〈ij〉 )

)
=
∑
〈ij〉

rM 〈ij〉δ
〈kl〉
〈ij〉

≥
∑
〈ij〉

rM
〈kl〉
〈ij〉 = RM(Gp〈kl〉). (13)

The first step is from the partitionM′ having a larger
MAXCUT than M; the second step is from properties and
definitions of the partition M′ as induced from M as
induced from M . The third step is from the MAXCUT
partition M being larger than the partition M′.
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Next consider the following inequality:

∑
〈kl〉

∑
〈ij〉 rM

〈kl〉
〈ij〉

N(Gp〈kl〉)
≤
∑
〈ij〉

rM 〈ij〉

∑
〈kl〉

δ
〈kl〉
〈ij〉

N(Gp〈kl〉)

 , (14)

which follows from Eq. (13). It gives a lower bound on
a weighted sum over edges present in the MAXCUT of G.
The maximum coefficient in the parenthesis is

MAX
〈ij〉

:
∑
〈kl〉

δ
〈kl〉
〈ij〉

N(Gp〈kl〉)
=

1

µp
(15)

for some yet undetermined factor µp. This term gives the
contribution from the worst-case graph environment and
implies:

∑
〈kl〉

∑
〈ij〉 rM

〈kl〉
〈ij〉

N(Gp〈kl〉)
≤
∑
〈ij〉

∑
〈kl〉

rM 〈ij〉δ
〈kl〉
〈ij〉

N(Gp〈kl〉)
≤ 1

µp

∑
〈ij〉

rM 〈ij〉.

(16)
It thus suffices to search through every possible graph

environment and thus every possible combination of sub-
graphs an edge can participate in to find the worst-case
graph environment which gives 1/µp. Equation (15) ul-
timately bounds how much each edge is counted in the
sum over subgraphs.

For p = 1 there are 6 possible graph environments
(shown in Fig. 3). The worst-case graph environment is
Fig. 6a, which is the central edge of two triangles. In this
graph environment, the edge 〈ij〉 participates in an odd
length (triangle) cycle in five subgraphs which each have
five edges, and so Eq. (15) sums to 1. Thus, µ1 = 1.

For p = 2 there are a large number of graph environ-
ments. Like the p = 1 case, the value µ2 can be found
by searching through every possible combination of sub-
graphs an edge can participate in, e.g. all graph environ-
ments, and finding the largest value of the sum. This
search can be simplified by avoiding trivial instances of
graph environments. If the edge 〈ij〉 does not partici-
pate in an odd length cycle in the subgraph where it is
the center edge, it will not participate in an odd length
cycle in any other subgraph of the graph environment.
This excludes all subgraphs for which the center edge is
the only connection between two sides, such as the tree
graph, and so reduces the number of graph environments
to a manageable amount. Under this exclusion, there are
1002191 graph environments to search for p = 2.

Evaluating the sum from Eq. (15) for each graph en-
vironment finds 117 for which µ2 < 1. The worst case
graph environment is shown in Fig. 6c. The central edge
participates in an odd length cycle for all thirteen of the
subgraphs it appears in; one subgraph has 13 edges, four
have 12 edges, and eight have 9 edges, and so Eq. (15)
gives µ2 as:

1

13
+

4

12
+

8

9
=

152

117
=

1

µ2
. (17)

(a) (b)

(c) (d) (e) (f) (g) (h) (i)

FIG. 6. The worst case graph environments which bound the
value of µp for (a) p = 1 and (b) p = 2, found by enumeration
of all possible graph environments. These particular graph en-
vironments count the contribution of the central (red) uncut
edge the maximal amount. There are 7 graph environments
which have a larger sum than (b), shown as (c-i), which are
excluded due to additional uncut edges.

However, for this graph environment and the six fol-
lowing as ordered by Eq. (15) (Fig. 6c-i) we can evaluate
the weighted sum on the right hand side of (14) directly.
We find that these graphs have at least one additional
uncut edge in the MAXCUT partition. For example, for
subgraph environment 6c, the center edge plus the two
additional uncut edges give the weighted sum on the right
hand side of (14) as 152/117 + 95/126 + 95/126 < 3, and
similar for Fig. 6d-i. Thus, these graph environments
may be excluded to get a tighter bound on R(G).

The eighth graph environment (Fig. 6b) has only one
uncut edge in a MAXCUT solution and so sets µ2. The
central edge participates in an odd length cycle for all
thirteen of the subgraphs it appears in; five of these sub-
graphs have 13 edges, and eight have 11 edges. Using
Eq. (15), this worst-case graph environment bounds µ2

to be µ2 = 143/159. Equation (16) thus simplifies to a
lower bound on the number of uncut edges in a graph G,

using the fact that R(Gp〈kl〉) =
∑
〈ij〉 r

〈kl〉
〈ij〉 and similar for

r〈ij〉

143

159

∑
〈kl〉

R(G2〈kl〉)
N(G2〈kl〉)

≤ RM (G). (18)

The constant µp serves as a guarantee that uncut edges
in G are not over counted in the sum over subgraphs
Gp〈kl〉. Equivalently, the number of cut edges is a sum

over subgraphs

CM ≤
∑
λ

Nλ(G)cλ ; cλ = 1− 143

159

R(Sλ)

N(Sλ)
, (19)

where cλ is the local MAXCUT fraction for subgraph λ. Val-
ues for cλ are enumerated in the supplemental Table [15]
of subgraphs. This combinatoric search emphasises a the-
sis of the paper: there could be some unexpected graph
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structure (as here) which in fact is a worst-case graph
that can’t be generated from simple intuition. Thus, any
proof of performance guarantees must be combinatoric in
nature.

C. Bounding the approximation ratio as a fraction
of sums

The numerator FM is a lower bound and the denom-
inator CM is an upper bound and so a fraction of sums
serves as a lower bound on the approximation ratio

Cp(G) ≥
∑
λNλ(G)fλ∑
λNλ(G)cλ

. (20)

Values for fλ and cλ for the enumerated subgraphs
of p = 1, 2 and fixed degree ν = 3 are shown in the
supplemental Table [15], and details of the computation
of fλ are shown in appendix A.

As an example, consider the graph shown in Fig. 1.
Each edge is labeled by the index of the unique subgraph
identified from Gp〈ij〉. For p = 1, there are 4 instances

of subgraph 0 (“the tree”), 10 instances of subgraph 1
(“single triangle”), and 1 instance of subgraph 2 (“two
triangles”). For p = 2 there are 6 different kinds of sub-
graphs. Equation (20) lower bounding the approximation
ratio for p = 1 becomes

C1(G) ≥ 4f0 + 10f1 + f2
4c0 + 10c1 + c2

. (21)

Using the supplemental Table [15] of subgraphs, one
can look up the expectation values and local MAXCUT val-
ues. The upper bound on the MAXCUT value is 12.8 ≥ 12,
the exact value, and the approximation ratio for this par-
ticular graph will be at least C1 ≥ 0.759 and C2 ≥ 0.808
for p = 1 and 2, respectively.

In this way, a lower bound on the approximation ra-
tio of any graph can be found. This lower bound is
rather pessimistic, as it chooses seemingly arbitrary an-
gles (γ, β). However, the particular choice of angles given
by Eq. (10) appear to still have large expectation values
for all subgraphs. This fact will be discussed later.

V. WORST CASE FOR 3-REGULAR GRAPHS

What is the worst case approximation ratio for a par-
ticular fixed value of p and given set of graphs {G}?
There exists some graph G∗ ∈ {G} which can be chosen
maliciously such that the maximal approximation ratio
C(G∗) is minimal in {G}. This graph G∗ represents a
problem instance for which a QAOA device with fixed p
has the worst performance. Any other graph will have a
larger approximation ratio and thus this worst case is a
performance guarantee on QAOA.

Näıvely, finding such a graph G∗ is hard. The number
of possible graphs is exponential in the number of ver-
tices and we are interested in the general performance
for arbitrarily large graphs, so a simple search through
many graphs will not work. Because of this, a more care-
ful approach must be taken to find lower bounds on the
approximation ratio. Two methods are presented below.

The first method obtains a lower bound by finding
worst case combinations of subgraphs which may or may
not form a consistent graph. By considering more and
more complicated combinations of subgraphs, one can
get a tighter bound from below on the minimum approx-
imation ratio. This is the approach used for the original
p = 1 bound by Farhi et al. [2].

The second method presents a graph hierarchy which
finds that the class of graphs with no cycles less then 4
(for p = 1) or 6 (for p = 2) are worst case. This is done
by finding that, given a graph G, there always exists a
new graph G′ with a smaller or equal approximation ratio.
This is done by replacing edges with a subgraph to reduce
the number of small cycles in the graph.

A. Lower bounds for p = 1

Instead of finding the exact approximation ratio of the
worst case graph, one can instead bound the worst case
approximation ratio from below, by only including sub-
graphs with a small approximation ratio. This is an ex-
tension of the original analysis of Farhi et al. [2]. By
Eq. (20) a lower bound can be found by decomposing a
graph G into subgraphs of a particular set {Sλ}. Consider
the inequality

F

C
≤ f ′

c′
⇔ F

C
≤ F + f ′

C + c′
≤ f ′

c′
(22)

for all f, c, F, C > 0. In context of Eq. (20), the terms
are expectation values F, f and local MAXCUT values C, c
of two sets of subgraphs. One can order all subgraphs Sλ
by their own local approximation ratio Cλ = fλ/cλ and
constructively add subgraphs, starting with the subgraph
with the smallest local approximation ratio.

By Eq. (22), including only the worst subgraph of a
graph, or excluding the best subgraph, gives a lower
bound on the global approximation ratio. Including any
other subgraph with a larger local approximation ratio
will only increase the value, and excluding a subgraph
with a larger local approximation ratio will only decrease
the value.

Taking Fig. 1 as an example graph, one can order the
local approximation ratios f0/c0 ≤ f2/c2 ≤ f1/c1. Suc-
cessive lower bounds on the approximation ratio of the
graph can be found by including more and more sub-
graphs, eg

4f0
4c0
≤ 4f0 + f2

4c0 + c2
≤ 4f0 + 10f1 + f2

4c0 + 10c1 + c2
≤ C1(G). (23)
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(a)                                                 (b)                                                 

FIG. 7. Edge replacements for p = 1 and p = 2 graphs. Given
an edge E, the edge is replaced by this subgraph, where red
dashed indicates the original edge. The left replacement has
no cycles ≤ 3, while the right has no cycles ≤ 5, appropriate
for p = 1 and p = 2, respectively.

Adding additional subgraphs to the count gets a larger
lower bound on the approximation ratio of the graph. If
the graph G was worst case, then this ordering results in
a strict lower bound on the approximation ratio.

The worst case graph will include some number of each
subgraph in its count Nλ(G∗). It is simple to iterate
through the 3 possible subgraphs as enumerated in the
supplemental Table [15] to find that subgraph 0, the tree,
is minimal, with f0/c0 = 0.692/1.000. Thus, the approx-
imation ratio for the worst case graph G∗ is bounded from
below by only including the minimal subgraph

C1(G) ≥ Cmin ≥ 0.692. (24)

The analysis for the minimum approximation ratio for
the p = 1 case ends here. This is because there are
graphs which only include the tree subgraph, which have
no cycles less than 4. The minimum approximation ratio
Cmin ≤ C(G) for any graph G by definition; however,
Cmin ≤ C([tree]) = 0.692, and so the exact minimum
approximation ratio for p = 1 is this value. This is the
analysis of Farhi et al. [2]: they observe that the worst
graph is made only of the tree subgraph, then observe
that such a graph exists. This analysis does not hold for
the p = 2 case.

B. Graph hierarchy for p = 1

Before continuing to the more difficult p = 2 case,
let us introduce a hierarchy of graphs for p = 1 where,
heuristically, graphs with fewer small cycles have a
smaller approximation ratio. We will show that, given
a graph G, one can always find a new graph G′ with
C1(G) ≥ C1(G′) unless the graph is of a specific class
of graphs with no cycles of length ≤ 3. We denote such
graphs as “1-tree graphs”, which are constructed only out
of the p = 1 tree subgraph (See Fig. 1 bottom left and
Fig. 9). Similar graphs can be defined for p-tree graphs,
which have no cycles of length ≤ 2p+ 1.

Given a graph with small cycles, a new graph can be
found with a worse approximation ratio, which proves
inductively that the graph with no small cycles is the
worst case graph via recursion. Given a worst case can-
didate graph G which is not a 1-tree, a 1-tree graph can
be shown to have a smaller approximation ratio by recur-
sion G → G′ → G′′ → · · · → G[1-tree] = G∗. Thus, 1-tree
graphs have a lower approximation ratio then any other
graph. Let us continue by proving the graph reduction
G → G′.

For a graph G, choose an edge E which participates
in at least one cycle of length 3. Then, replace the edge
with the 6-vertex subgraph of Fig. 7a. This creates a
new graph G′, where the cycle of length 3 that the original
edge participated in is replaced with a new cycle of length
7. An example is shown in Fig. 8. Let us prove that this
new graph has a smaller approximation ratio.

When this edge is replaced, the graph is modified and
so the subgraphs Gp〈ij〉 of surrounding edges may also be

modified. To prove the graph reduction, we must show
that this replacement reduces the approximation ratio for
all possible modifications of edges. All possible combina-
tions of subgraph assignments to the edges of Gp〈ij〉 is the

set of graph environments of an edge, and so one may
prove the graph reduction by checking some condition
for all possible graph environments.

A subset of graph environments are the relevant graph
environments, which only include edges whose subgraph
assignment is modified under replacement of the center
edge. For p = 1, there are 4 relevant graph environ-
ments, as replacing the central edge of Fig. 3a,b,c does
not change the subgraph assignment of its surroundings.
Thus, the graph reduction will involve checking a condi-
tion for all possible relevant graph environments.

Now, consider replacing a particular edge of some
graph G with the subgraph of Fig. 7a yielding a graph
G′. The edges of the graph can be partitioned into two
sets: edges which are replaced or have their subgraph as-
signment modified by the replacement procedure, which
are found in the relevant graph environment, and edges
which are not modified. The edges which are not mod-
ified have expectation values which sum to F and local
MAXCUT sum C, and the edges which are replaced or mod-
ified have expectation value sum f and local MAXCUT sum
c. The replaced or modified edges have a new expectation
value sum f ′ and local MAXCUT sum c′, which include the
additional 10 edges of the replacement operation. Now,
consider the following clauses and their implication
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(a)

1

2

1

1

0

0

0

0

0

(b)

FIG. 8. An example edge replacement operation. The red
center edge in some graph environment (a) is replaced with
10 edges and 6 vertices (b), removing the original size-3 cycle.
The new graph with the replaced edges will have a smaller ap-
proximation ratio. Two additional edges’ subgraphs (labeled)
are also modified.

A :
F

C
≤ f

c
,

B :
f

c
≥ f ′ − f

c′ − c
,

C :
F + f

C + c
≥ F + f ′

C + c′
,

A ∧ B ⇒ C. (25)

Clause A is a restriction on choice of edge E. One
must choose an edge such that, if the replaced or modified
edges are removed from the count of subgraphs, the ap-
proximation ratio will decrease. By Eq. (22), this choice
of edge will always exist by the ordering of subgraphs.

Clause B is a condition on modifying subgraph assign-
ments of an edge and its surroundings under replacement.
This can be checked for every graph environment. For
c′− c > 0, which is the case when adding more edges un-
der replacement, this clause is equivalent to f/c ≥ f ′/c′,
that the new subgraph has a smaller local approximation
ratio. Clause B generalizes to other graph modifications,
such as reducing a 3 cycle to a single vertex.

Clause C compares the lower bound approximation ra-
tios for the graphs G and G′ before and after a replace-
ment procedure. The inequality states that the approxi-
mation ratio of the new graph will be smaller. If clause
A and B are True, then the new graph has a smaller ap-
proximation ratio, which proves the graph reduction for
a particular choice of edge replacement.

As an example, consider Fig. 8, performing an edge re-
placement within some graph with the particular graph
environment of Fig. 3e. Here, there are 3 edges whose
subgraph assignments will be replaced or modified by the
replacement procedure, specifically the three edges of the
triangle. Two edges have a subgraph assignment of 1
(single triangle), and one has subgraph assignment of 2

(a) (b)

FIG. 9. An example graph reduction. Each edge of some
original graph G (a) is iteratively replaced with a 6 vertex
subgraph, until eventually every edge is replaced to find a
worst-case graph G[1-tree] (b).

(two triangles). After the procedure, there are 11 copies
of subgraph 0 (the tree), and one copy of subgraph 1 (an
edge of a triangle): two from the original graph environ-
ment, plus an additional 10 from the cut replacement of
Fig. 7. Using the supplemental Table [15] of subgraphs,
one can compute

f = 1.911; f ′ = 8.253; c = 2.4; c′ = 11.8

It is simple to check that these values satisfy clause B
of Eq. (25). To prove that there always exists a graph
reduction G → G′, one can check all 4 of the relevant
graph environments. It is found that clause B is true for
all relevant environments. Thus, it is shown that, given
a graph G, a new graph G′ can be constructed which
will have a smaller or equal approximation ratio, done by
replacing edges to remove cycles of length 3 in the graph.
This creates a hierarchy of graphs for which graphs with
fewer small cycles have a smaller approximation ratio

C(G) ≥ C(G′) ≥ · · · ≥ C(G[1-tree]) = 0.6924, (26)

here proved for the p = 1 case and consistent with the
lower bound and original results [2]. An example graph
reduction to a 1-tree is shown in Fig. 9. This hierarchy
holds for the fixed angles of Eq. (10), and so this perfor-
mance guarantee holds for any graph evaluated at these
fixed angles.

C. Lower bounds for p = 2

Finding a lower bound for p = 2 is more complicated,
because each edge lives in a larger graph environment.
These larger graph environments mean that the simple
lower bound method for p = 1 is no longer exact. This is
because the subgraph assignment of an edge constrains
the subgraph assignments of neighboring edges, as there
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are only a finite number of graph environments. As an
example, consider Fig. 3f, which is the only p = 1 graph
environment for the two triangle subgraph 2. Any graph
which includes this subgraph must by necessity also in-
clude at least 4 instances of subgraph 1 (an edge of a
triangle). One cannot construct a graph out of just sub-
graph 2 for p = 1.

More generally, even though one may have some count
of subgraphs Nλ, there is no guarantee that there exists
a graph which has that particular count Nλ 6= Nλ(G)
∀G. A similar constraint holds for p = 2: neighboring
and next-nearest neighboring edges may be constrained
to particular configurations of subgraph assignments, due
to the finite numbers of graph environments.

The worst case graph is constructed out of some count
of each kind of subgraph. A lower bound on its approx-
imation ratio can be found by only including a certain
subset of its subgraphs with a small local approximation
ratio, even though the subset may not have an associated
graph. As a first step, one can ignore this constraint and
search through the 123 unique p = 2 subgraphs of the
supplemental Table [15] to find the subgraph with the
smallest local approximation ratio. This is shown in Fig.
10a, with f7/c7 = 0.4258/0.8571 = 0.4968. By the ar-
gument of Section V A, adding any kind of any other
subgraph will increase the approximation ratio, and so
this number serves as a lower bound on the minimum
approximation ratio for the p = 2 case.

However, as is clear from inspecting this subgraph, it is
impossible to construct a graph out of only this subgraph.
This means that any graph which includes this subgraph
will also include some combination of other subgraphs,
the inclusion of which increases the approximation ratio.

Thus, this lower bound is loose, as no graph can be
constructed with this approximation ratio, but any graph
is guaranteed to have a larger approximation ratio. In
fact, this bound is so loose that it is below the original
p = 1 bound, which still holds for p = 2. This contrasts
with the p = 1 case, where there were graphs constructed
out of only the worst case subgraph and the bound was
tight.

The next step in tightening this bound is to search
through larger graph environments which also identify
the subgraphs of the four neighboring edges to find a
larger minimum approximation ratio. This graph envi-
ronment is shown in Fig. 10b, and has an approximation
ratio lower bounded by 0.7431, with two kinds of sub-
graphs. Again, it is impossible to construct a full graph
out of just this graph environment: the outer edges are
not allowed to be built of those two subgraphs, and thus
any graph will have a strictly larger approximation ratio.

Including graph environments one step larger identifies
edges out to a depth 2 and finds the graph environment of
Fig. 10c, with an approximation ratio of at least 0.7461.
Beyond this limit, it becomes infeasible to find larger
graph environments, due to the rapid growth in their
number.

Note that, unlike the simpler p = 1 case, one cannot

(a) (b)

(c)
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FIG. 10. The three first worst case graph environments for
p = 2. For N = 1 (a), the approximation ratio is 0.4886. For
N ≤ 5 (b), it is 0.7376. For N ≤ 14 (c), it is 0.7424. Each of
these graph environments serves to find the lower bound on
the approximation ratio of the worst case graph.

get an exact lower bound, and is instead recursively im-
provable by searching through larger and larger graph
environments. In the next Section we consider how to
approach the exact lower bound from above using the
graph hierarchy.

D. Graph hierarchy for p = 2

Let us proceed by repeating the graph hierarchy argu-
ment of p = 1 for the p = 2 case. This case is complicated
by having many more potential graph environments, be-
cause each subgraph is sensitive to a larger portion of its
surroundings. Given a graph G, a new graph G′ can be
found with C2(G) ≥ C2(G′). As in the p = 1 case, this
is done by choosing a specific edge and replacing it with
that of in Fig. 7b, which is a subgraph of 16 vertices and
25 edges.

Similarly to the p = 1 case, one can show that this
graph reduction G → G′ leads to a smaller approxima-
tion ratio by doing an edge replacement for every possi-
ble relevant graph environment, and checking the clauses
of Eq. (25) for each. When an edge is replaced, edges
up to two steps away from the replaced edge may have
their subgraph assignments changed, as such subgraphs
include all vertices within two steps of their center edge.
Thus, one must check all p = 2 graph environments.
These can be found via the methods of Section B, finding
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all p = 4 subgraphs subject to the constraint that there
are no cycles > 5 in the minimum cycle basis [17].

However, there are at least 30 billion p = 2 graph envi-
ronments, which is found by estimating a combinatorial
lower bound on the number of graph environments for the
p = 2 tree subgraph. Instead, we find only the relevant
graph environments. These relevent graphs are found by
attempting to enumerate all relevant p = 4 subgraphs in
parallel starting with p = 3 seed subgraphs, only includ-
ing edges whose subgraph assignment is modified under
center edge replacement. There are found to be 7058 such
relevant graph environments; some examples are shown
in Fig. 4.

The proof of graph reduction for p = 2 is as follows.
For each relevant p = 2 graph environment, replace
the special center edge and check the clauses A ∧ B of
Eq. (25). We find that clause B is not satisfied for every
relevant graph environment; however, there are no rele-
vant graph environments for which A (the condition on
choice of edge) is False and B is True. This puts a condi-
tion on choice of edge to be replaced: one must choose an
edge such that A is True, by only choosing edges whose
inclusion increases the approximation ratio, for which B
will be True.

This confirms the graph hierarchy for p = 2. For each
graph G with some cycles of length ≤ 5, choose an edge
and surrounding relevant graph environment G2p〈ij〉 which,

upon removing it from the calculation of the approxima-
tion ratio, decreases the approximation ratio. This is
forced by clause A of Eq. (25). Upon replacing this edge
with the 16-vertex edge replacement subgraph, the new
graph G′ will be guaranteed to have a smaller (or equal)
approximation ratio.

Inductively, this constructs a graph where every edge
is replaced by the subgraph of Fig. 7 and has no cycles
of length ≤ 5, constructed only out of the tree subgraph.
The expectation value of the tree subgraph and thus min-
imum approximation ratio is

C2 ≥ 0.7559. (27)

where worst case graphs are 2-trees, which have no cycles
≤ 5. This is consistent with the observation in [2].

In this Section, we have found worst case approxima-
tion ratios for p = 1 and 2 QAOA. Extending the origi-
nal methods of [2], we find a recursively improvable lower
bound of C2 ≥ 0.7424, by considering larger and larger
graph environments. Unlike the p = 1 case, this lower
bound cannot be made exact due to the adjacency re-
strictions implicit in the construction of graph environ-
ments. Using a recursive graph reduction and combi-
natoric proof, we find that 2-tree graphs, which have no
cycles ≤ 5, are exactly worst case. For every graph which
is not a 2-tree graph, a new graph can be found with a
smaller approximation ratio by finding some particular
edge and replacing it with a 16 vertex subgraph which
has no cycles ≤ 5. Applied recursively, this eventually

γ1 β1 γ2 β2
35.3◦ 22.5◦ - -
144.7◦ 22.5◦ - -
215.3◦ 67.5◦ - -
324.7◦ 67.5◦ - -

28.0◦ 31.8◦ 51.4◦ 16.8◦

28.0◦ 31.8◦ 231.4◦ 73.2◦

152.0◦ 31.8◦ 128.6◦ 73.2◦

152.0◦ 31.8◦ 308.6◦ 16.8◦

208.0◦ 58.2◦ 51.4◦ 73.2◦

208.0◦ 58.2◦ 231.4◦ 16.8◦

332.0◦ 58.2◦ 128.6◦ 16.8◦

332.0◦ 58.2◦ 308.6◦ 73.2◦

TABLE I. The anglar parameters for the 4 degenerate maxima
of the p = 1 tree subgraph, and 8 degenerate maxima of the
p = 2 tree subgraph. The expectation value of the objective
function of any 3 regular graph evaluated at any of these
angles is equal, and the approximation ratio is guaranteed to
be above 0.6924 and 0.7559, respectively.

turns every edge of the original graph into one of these
subgraphs, which is a worst case 2-tree graph.

VI. FIXING VARIATIONAL PARAMETERS

We have shown that every graph G has an approxima-
tion ratio of C2 ≥ 0.7559. However, this result is more
general. The choice of angles (γ, β), instead of being op-
timized for the particular graph, is fixed to a particular
choice given by Eq. (10). This means that this perfor-
mance guarantee is stronger: For fixed angles and any
graph G, the bound still holds

C1

(
G, {35◦}, {22◦}

)
≥ 0.6924, (28)

C2

(
G, {28◦, 31◦}, {51◦, 17◦}

)
≥ 0.7559. (29)

This particular set of angles is useful for experiments:
using them with any graph guarantees a particular ap-
proximation ratio without the need of a classical opti-
mizer back end. Additionally, we find numerically that
gradient descent optimization from these angles finds the
global optimum for almost every graph.

It is clear why these angles were chosen: this set of
angles is optimal for the worst case p-graphs. The min-
imum approximation ratio is found by minimizing over
the set of all graphs while maximizing over angles. Any
other choice of angles may have been valid, but may not
have resulted in a tight minimum approximation ratio
or even have the graph hierarchy be true. In fact, this
particular choice of angles generates expectation values
on subgraphs which are close to the global maximum of
each subgraph, which can be seen comparing rows 3 and
5 in the supplemental Table [15] of subgraphs. There is
no reason a priori for this to be so.
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We also find that these angles are not unique. The
landscape of expectation values F (γ, β) is periodic mod-
ulo 2π in γ and modulo π/2 in β. This is due to SU(2)
and Z2 symmetry (see Appendix A for details). Within
these bounds, we find 4 degenerate maxima for p = 1,
and 8 degenerate maxima for p = 2. The angles for the
p = 1 and 2 tree subgraph are shown in Table I. Further,
we find that for each subgraph, the expectation value of
the center edge of that subgraph is the same evaluated
at each of the 8 angles of any other subgraph.

This means that for all graphs, the expectation value
of the objective function will be the same for each of the
4 angular maxima of any subgraph; for example,

C1(G, 35◦, 113◦) = C1(G, 145◦, 23◦) ≥ 0.6924 (30)

for any graph and p = 1, within numerical precision, and
so forth for the additional 2 angles of Table I. Any of
these angles provide a good starting point for an experi-
mentalist needing good variational parameters.

VII. CONJECTURE: p-TREE GRAPHS ARE
WORST CASE

We found that replacing an edge with a subgraph with
no small cycles results in a smaller approximation ratio
for the p = 1, 2 cases. It is reasonable to expect that this
behaviour should extend to larger p. This naturally leads
to the following conjectures

Graph hierarchy conjecture: For any fixed p,

graph G, and fixed angles ~γ, ~β optimal to the tree sub-
graph, there exists an edge replacement with a subgraph
generalized from Fig. 7 which results in a graph with a
smaller approximation ratio.

In other words, there is a hierarchy of graphs, for which
graphs with many small cycles less than 2p+2 will have a
better quality QAOA result than graphs with few cycles.
This is shown to be true for p = 1 and 2 in Section V B
and V D. For larger p the edge replacement must be a
larger subgraph with no cycles less than 2p + 2. This
conjecture has two corollaries.

Large loop conjecture: The worst case graphs for
fixed p are p-trees, which have no cycles less than 2p+ 2.

This conjecture is well motivated physically. When
an edge is replaced, the algorithm “sees” less of the full
graph, due to the fact that it only knows of relations be-
tween vertices ≤ p steps away [19]. This lesser knowledge
of the full graph leads to worse answers, as the QAOA
algorithm is then oblivious to improved solutions which
“see” more of the graph. Similarly, having no “visible”
cycles means the algorithm cannot distinguish between
large cycles of even vs. odd length, and thus cannot make

good cut estimates which require this distinction. The
worst case graph for all p would be the Bethe lattice.

Fixed angle conjecture: Any graph evaluated at
fixed angles optimum to the tree subgraph will have an
approximation ratio larger than the guarantee.

Angles optimal to the tree subgraph for larger p (e.g.
an expansion of Table I) should result in MAXCUT an-
swers to any graph approximation ratios guaranteed to be
above some value. These angles could be used as initial
points for optimizers, or even excluding the optimization
loop to compute good answers without feedback. The
computation of these optimal angles for larger p is left
to future work. This conjecture is consistent with the
phenomena of concentration [20], wherein optimal angles
appear to be mostly independent of graph instance.

A. Worst case approximation ratio for p = 3

Under the large loop conjecture, worst case graphs for
p = 3 are 3-trees, with no cycles ≤ 7 and constructed
only out of the 30-vertex tree subgraph, which has no
cycles. Using the same methods for the p = 1 and 2 case
it is possible to compute the expectation value f0 for
this subgraph, which is thus the worst case performance
guarantee for p = 3 under the large loop conjecture. This
subgraph has 30 vertices with a Hilbert space dimension
of 230. Using the symmetries of the tree subgraph, this
can be reduced to a dimension of 1,631,721≈ 220.6, with
an additional factor of 1/2 due to spin flip symmetry (see
Appendix A for details). Optimization of angles using
the methods of Appendix A finds

C3 ≥ 0.7924 (31)

under the large loop conjecture that 3-tree graphs are
worst case for p = 3. In principle, this bound can be made
rigorous by searching through every possible p = 3 graph
environment and checking the inequalities of Eq. (25) for
each. However there are 913,088 unique p = 3 graphs
and a much larger number of graph environments, which
must extend up to 6 steps away from the replaced edge.
While the combinatoric proof is in principle possible as
the task is extremely parallelizable, we leave this chal-
lenging calculation to future work.

VIII. COMPARISON TO CLASSICAL
ALGORITHMS

Here we compare performance bounds to the best clas-
sical algorithms. The most näıve classical algorithm is a
random guess; it is simple to see that this cuts on av-
erage half the edges and so has an approximation ra-
tio of at least 0.5 [21]. It is known that calculating a
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cut with approximation ratio ≥ 16/17 ≈ 0.9412 is NP-
Hard [22]. The algorithm of Goemans and Williamson
[16] gives an approximation ratio of at least 0.8786 using
semidefinite programming, and holds for any graph. For
particular subsets of graphs this approximation ratio can
be higher; for example, planar graphs can be solved effi-
ciently in polynomial time [23]. 3-regular graphs, which
are the subject of this paper, have a lower bound of at
least 0.9326 [24], also using semidefinite programming.

Even comparing to the general Goemans-Williamson
algorithm, p = 2 QAOA does not achieve quantum ad-
vantage, as 0.7559 < 0.8786. This does not discount the
possibility that QAOA has better performance on a sub-
set of graphs than any classical algorithm on the same
subset. Finding such subsets of graphs is challenging
for two reasons. First, for a particular subset of graphs
there may exist some classical algorithm improving on
the Goemans Williamson bound, as for planar graphs or
3-regular graphs, but finding such a specialized algorithm
may be nontrivial. Second, the analysis of the subgraph
structure of the subgraphs of supplemental Table [15] dic-
tates the subset of allowed graphs. By the graph ordering
conjecture, graphs with many cycles will have a better
approximation ratios and thus have the most potential
for finding instances with quantum advantage. Finding
such subsets is beyond the scope of this paper.

It is a curious fact that while the classical algorithms of
this paper might be able to find MAXCUT instances which
have quantum advantage, it may not be possible to solve
those instances classically. This is because sampling bit-
strings from a QAOA wavefunction is in complexity class
#P, and having such an algorithm would collapse the
polynomial hierarchy at the third level [25].

IX. UPPER BOUNDS ON MINIMUM
APPROXIMATION RATIO

While computing the minimum approximation ratio
for p > 3 is challenging, it is reasonable to ask how the
minimum approximation ratio behaves with p. As p →
∞, the approximation ratio approaches 1 in accordance
with the adiabatic theorem [2]. How does it do so? One
way to compute this behavior is to bound the minimum
approximation ratio from above: for a particular p, it can
be at most some value.

One way of finding such a bound is to consider pairs
of graphs which are indistinguishable under some fixed p
QAOA. First, construct a bipartite graph G1 as a tiling
of q-gons with cycles of length q = 2p+ 2. For example,
for p = 1 this is a square ladder, while for p = 2 this is a
hexagonal honeycomb lattice (see Fig. 11). Because all
cycles are of even length, it is simple to find a partition
which cuts every edge, so that Cmax = nedges.

Next, construct a graph G2, which is a tiling of q-gons
with cycles of length q = 2p + 3. As an example, for
p = 1 or 2 this can be seen as pentagons or heptagons
(non-metrically) tiled on some curved surface (see Fig.

?

FIG. 11. p = 2 QAOA cannot distinguish between a tiling
of hexagons (G1) or heptagons (G2), as both are constructed
only from the tree subgraph. Graph G1 has a partition which
cuts every edge, while graph G2 has at least one uncut edge
per heptagon due to the odd length cycles. This puts upper
bounds on the expectation value of the tree graph, and thus
the minimum approximation ratio. This generalizes for all p
and graph connectivity ν.

11). For N q-gons, there are Nq/2 edges. Because the
cycles are of odd length, at least one edge per q-gon must
remain uncut. Each edge is shared by two q-gons and
so for N q-gons there are at least N/2 uncut edges and
Cmax = N(2p+ 2)/2 cut edges.

For both graphs, there are no cycles of length ≤ 2p +
1, which means only the tree subgraph contributes to
the expectation value. Critically, the tree graph cannot
distinguish between the two graphs, even though they
have different MAXCUT values. Consider

C(G1) =
nedgesf0
Cmax

= f0, (32)

the approximation ratio of the bipartite graph G1 is sim-
ply the expectation value of the tree graph, as every edge
is cut. By definition, Cmin ≤ C(G1). One may also com-
pute the approximation ratio of G2, which is bounded
from above by 1.

C(G2) =
nedgesf0
Cmax

=
(2p+ 3)f0
(2p+ 2)

≤ 1. (33)

This bound from above puts an upper bound on the
expectation value f0. In combination, Eq. (32) gives an
upper bound on the minimum approximation ratio

Cmin ≤ C(G1) = f0 ≤
2p+ 2

2p+ 3
. (34)

For p large the bound goes as

Cmin ≤ 1− 1

2p
. (35)
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FIG. 12. Results of the paper: approximation ratios vs. p.
Blue line is the worst case approximation ratio for p = 1, 2, 3;
the p = 3 case (star) assumes the large loop conjecture. Red
dashed are the Goemans-Williamson [16] and 3-regular [24]
bounds. The minimum worst case approximation ratio is
guaranteed to be below the black dashed line, which converges
as 1− 1/2p.

This bound is independent of the graph connectivity
and is consistent with the convergence of 2-regular graphs
observed in [2].

Given a particular malicious MAXCUT instance with no
small cycles, the convergence of QAOA will be inverse
polynomial with a power of at most 1. Note that other
graphs may converge much faster, as this bound only
holds for graphs which have no cycles ≤ 2p + 1, which
are exponentially large in p. This means for a fixed cy-
cle length, after some very large p convergence can be
faster than this bound; the p→∞ behavior occurs only
for the Bethe lattice, which has an infinite cycle length.
The upper bound of Eq. (34) is plotted in Fig. 12. The
computed values for 1, 2, and 3 do not come close to this
limit, as this bound is loose. From Section VIII, the best
classical algorithms for 3-regular MAXCUT have an approx-
imation ratio of at least 0.9326; thus, p must be at least
greater than 5 to have quantum advantage for a general
3-regular graph. This argument is based on a particu-
lar graph feature and the p ≤ 3 guarantees tend below
the bound, and so one might have a more pessimistic es-
timate on p due to special purpose classical algorithms
and performance guarantees which may not saturate the
bounds.

X. CONCLUSION

Bounding the performance of near-term quantum al-
gorithms is critical to understand where, how, and why
quantum computers may gain advantage in the NISQ
era. In this paper, we find a worst case performance
guarantee for p = 2 QAOA solving MAXCUT on 3-regular
graphs. This performance guarantee was found to be
C2 ≥ 0.7559, which holds for any graph evaluated not
just at its optimized angles, but for a fixed set of angles
given by Table I. Because this set of angles is fixed, they
can act as good initial guesses for a classical optimizer
with a guaranteed approximation ratio.

More important than the number itself, the methods
and the particular worst case graphs for which the bound
was derived may be able to motivate particular ensembles
and problem classes of graph instances for which QAOA
exhibits quantum advantage.

The worst case graphs for p = 1 and 2 were proved to
be graphs with no cycles ≤ 2p + 1. This was done via
a graph reduction, replacing an edge with an expanded
subgraph which distances the two original vertices of the
edge and removes small cycles. The QAOA algorithm
can only “see” the structure of a graph within some small
number of steps, and so the effect of the graph reduction
is twofold. In removing and lengthening cycles, due to
its local nature the algorithm cannot distinguish between
large even and odd length cycles. In expanding the edge
into a larger subgraph, the two previously adjacent ver-
tices of the edge are distanced so their previous relation
is obscured to the algorithm.

These two properties stemming from the graph reduc-
tion suggest which graphs may have good QAOA solu-
tions. Good graphs should have many small cycles, and
should have a small-world structure [26] where only a
logrithmic number of steps is necessary to move from
one vertex to any other.

The properties presented here are heuristic and stem
from the graph hierarchy, which is proved for p ≤ 2
but can only be conjectured for p > 2. Future work
remains to find more rigorous specifications and proper-
ties of graphs and problem instances on which it may be
possible to demonstrate quantum advantage in QAOA.
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Appendix A: Computing optimal parameters γ, β

This Appendix details computing the optimal objec-
tive function fλ for particular subgraphs. For each sub-
graph Sλ ∈ {S}, we wish to compute MAX : fλ(γ, β).
First, generate the local objective function for the sub-
graph by including one clause 1

2 (1− σ̂izσ̂jz) per edge 〈ij〉
in the subgraph, and similar for the local objective func-
tion on the special edge 〈0, 1〉 and mixing Hamiltonain

B̂ of σ̂ix for each vertex i in the subgraph. We can com-
pute expectation values exactly, which similarly enables
access to derivatives of the objective function

∂γ1〈Ĉ〉 =
[
∂γ1〈γ, β|

]
Ĉ|γ, β〉+ 〈γ, β|Ĉ

[
∂γ1 |γ, β〉

]
(A1)

∂γ1 |γ, β〉 = −ie−iβpB̂e−iγpĈ(. . . )e−iβ1B̂
(
Ĉeiγ1Ĉ

)
|γ, β〉

and similar for the other γ, β, with ellipsis denoting
the other 2p − 4 generators. With access to both the
exact expectation values and derivatives, parameters
were optimized via a multistart gradient ascent algo-
rithm. For each subgraph, initial parameters were cho-
sen uniformly in parameter space, which is is compact
in {[−π/4, π/4), [−π, π)}p. Note that unlike for general
QAOA, β is periodic modulo π/2, due to Z2 symmetry, eg
σ̂z → −σ̂z. This is because the unitary over the mixing
term

ei(β+π/2)B̂ =
(∏

i

eiπ/2σ̂
i
x
)
eiβB̂ = Ẑ2e

iβB̂ , (A2)

and [Ẑ2, B̂] = [Ẑ2, Ĉ] = 0. For each optimization, 25
random initial parameters were chosen to find a maxima
with high probability. To find all degenerate maxima of
a subgraph, initial parameters were chosen on a mesh,
and each also optimized with gradient descent. At each
step, the parameters are updated to change along the

direction with the largest gradient, with size 0.075|~∇〈C〉|,
where the constant is an implicit choice of the maximum
second derivative. A particular optimization ends when
the expectation value changes by less than 10−5.

For the p = 3 tree, a free optimization was used to
speed up the calculation by reducing the Hilbert space
using symmetry. Every graph has a certain set of isomor-
phisms, eg relabeling of each vertex. These isomorphisms
define swap operators which commute with the genera-
tors B̂ and Ĉ, and thus the eigenvalues are good quan-
tum numbers defining conserved subspaces of the Hilbert
space. The initial wavefunction |+〉 is unchanged under
any relabeling of indices, and so lives in the +1 subspace
of all isomorphisms. While this reduction is in principle
possible for any subgraph, it is particularly simple for
the recognizable swap symmetries of the tree. Swapping
any two “branches” of the tree leaves the wavefunction
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Subgraph 7                                                Subgraph 22

                                Subgraph 2

FIG. 13. Recursively constructing some p = 2 subgraphs.
Starting from some seed p = 1 subgraph (top), edges are
added (arrows) to vertices which do not have 3 edges already,
connecting to new or existing edges. Recursion through all
possibilities finds all subgraphs, up to isomorphisms. The
other two p = 1 subgraphs have larger recursive trees, even-
tually finding all 123 p = 2 subgraphs.

invariant, and so only symmetric combinations remain.
For two vertices (eg p = 0), this is only three states: both
up, both down, and the triplet state. For 6 vertices, there
are 3 isomorphisms: swapping the left or right two ver-
tices, or reflecting the three left with three right. Under
these symmetries there are 21 states. This can be done
recursively by knowing that given two indistinguishable
Hilbert spaces of dimension D, there are only D(D+1)/2
symmetric combinations. Using this, for p = 2 there are
903 states; for p = 3 there are 1,631,721 ≈ 220.6; and
for p = 4 there are 5,325,028,475,403 ≈ 242.3. There is
an additional factor of ≈ 2, as the generators have a Z2

spin flip symmetry σ̂z ↔ −σ̂z. In principle, it may be
possible to simulate the worst case 4-tree exactly, as 41
qubits is within range of classical simulatability, but is
beyond the scope of this work. It is reasonable to expect
that these tree subgraphs can be simulated with tensor
methods [27] up to p ∼ 10.

Appendix B: Subgraph generation for fixed p

In order to efficiently compute expectation values of
graphs, one must go “in reverse” to find all possible sub-
graphs Gp〈ij〉. This appendix details the enumeration of

the set of these subgraphs, denoted as {Sλ}p. First, find
the set of all subgraphs {Sλ}p−1. For example, for p = 1
this is the two-vertex graph connected by an edge; for
p = 2 these are the three p = 1 subgraphs, and so forth,
generated recursively. Next, for each of these subgraphs,

find all the exterior vertices which have less than 3 edges
(see Fig. 13). Then, iterate through adding one, two,
or three edges. One may add one edge connecting two
vertices of the original seed subgraph (Fig. 13 Right),
or add one edge connecting a vertex to a new vertex
(Fig. 13 Middle). Additionally, one may add two edges
connecting two vertices to a new vertex (Fig. 13 Left) or
three edges connecting three vertices to a new vertex (not
shown by Fig. 13). Iterating by adding these graphs to
a heap, additional edges are added until all exterior ver-
tices of the original subgraphs have three edges, and the
heap is empty. This is guaranteed to find all subgraphs,
as it searches through every possible permutation of new
vertices connected to every combination of exterior ver-
tices of the seed subgraph. When constructing all unique
subgraphs, if a subgraph was isomorphic to an already-
discovered graph, it is excluded from the heap.

Using this recursion, there were found to be 3 sub-
graphs for p = 1, 123 subgraphs for p = 2, and 913, 088
subgraphs for p = 3. The p = 1 and p = 2 subgraphs are
enumerated in the supplemental Table [15].
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Index 1, 0
c0 1.000
f0 0.6924

Envs. 1
γ1 35◦

β1 22◦

Index 1, 1
c1 0.8000
f1 0.6369

Envs. 2
f ′1 0.6467
γ1 −211◦

β1 108◦

Index 1, 2
c1 0.8000
f2 0.5813

Envs. 1
f ′2 0.6163
γ1 −28◦

β1 164◦

Index 3, 0
c0 1.000
f0 0.7924

Envs. 1
γ1 156◦

β1 −35◦

γ2 −46◦

β2 −27◦

γ3 −54◦

β3 −14◦

TABLE II. Numerical data for p = 1, 2 and specific p = 3
subgraphs. Row 1 enumerates subgraphs. Row 2 counts the
local MAXCUT value, cutting N of M total edges. Row 3 is the
expectation value for the edge evaluated at the angles of table
I. Row 4 is the number of relevant graph environments which
the subgraph can be in. Row 5 is the maximum expectation
value of the subgraph, optimized at the angles of rows 6+.
Image is the representation of the subgraph; red dashed rep-
resent edges connecting to the rest of the graph, while red
solid represents the special center edge.
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Index 2, 0
c0 1.0000
f0 0.7559

Envs. 1
f ′0 0.7559
γ1 28◦

β1 58◦

γ2 52◦

β2 73◦

Index 2, 1
c1 0.9101
f1 0.6456

Envs. 141
f ′1 0.6620
γ1 −35◦

β1 −75◦

γ2 89◦

β2 −99◦

Index 2, 2
c2 0.8715
f2 0.4541

Envs. 18
f ′2 0.7000
γ1 36◦

β1 46◦

γ2 110◦

β2 33◦

Index 2, 3
c3 1.0000
f3 0.7448

Envs. 1
f ′3 0.7462
γ1 154◦

β1 60◦

γ2 132◦

β2 16◦

Index 2, 4
c4 0.9308
f4 0.7502

Envs. 137
f ′4 0.7509
γ1 208◦

β1 30◦

γ2 51◦

β2 105◦

Index 2, 5
c5 0.9101
f5 0.6300

Envs. 38
f ′5 0.6564
γ1 35◦

β1 −13◦

γ2 −83◦

β2 9◦

Index 2, 6
c6 0.9101
f6 0.6358

Envs. 148
f ′6 0.6605
γ1 −144◦

β1 −76◦

γ2 94◦

β2 −81◦

Index 2, 7
c7 0.8715
f7 0.4258

Envs. 1
f ′7 0.7492
γ1 217◦

β1 42◦

γ2 107◦

β2 −28◦

Index 2, 8
c8 0.9251
f8 0.7919

Envs. 1
f ′8 0.8038
γ1 −33◦

β1 −62◦

γ2 121◦

β2 −106◦

Index 2, 9
c9 0.9308
f9 0.7334

Envs. 12
f ′9 0.7386
γ1 −155◦

β1 29◦

γ2 −133◦

β2 75◦

Index 2, 10
c10 1.0000
f10 0.7339

Envs. 1
f ′10 0.7399
γ1 49◦

β1 18◦

γ2 159◦

β2 40◦

Index 2, 11
c11 0.9308
f11 0.7396

Envs. 112
f ′11 0.7422
γ1 −26◦

β1 30◦

γ2 132◦

β2 75◦

Index 2, 12
c12 1.0000
f12 0.7334

Envs. 1
f ′12 0.7409
γ1 230◦

β1 72◦

γ2 −21◦

β2 −50◦

Index 2, 13
c13 1.0000
f13 0.7902

Envs. 1073
f ′13 0.7959
γ1 151◦

β1 −34◦

γ2 129◦

β2 20◦
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Index 2, 14
c14 0.9308
f14 0.7445

Envs. 11
f ′14 0.7468
γ1 −152◦

β1 −60◦

γ2 51◦

β2 15◦

Index 2, 15
c15 0.9308
f15 0.7445

Envs. 135
f ′15 0.7469
γ1 152◦

β1 60◦

γ2 −51◦

β2 75◦

Index 2, 16
c16 0.9308
f16 0.7442

Envs. 791
f ′16 0.7466
γ1 207◦

β1 −61◦

γ2 50◦

β2 15◦

Index 2, 17
c17 0.9001
f17 0.7125

Envs. 25
f ′17 0.7273
γ1 −213◦

β1 67◦

γ2 116◦

β2 16◦

Index 2, 18
c18 0.9101
f18 0.6047

Envs. 2
f ′18 0.6614
γ1 −39◦

β1 −55◦

γ2 −109◦

β2 70◦

Index 2, 19
c19 0.9101
f19 0.6207

Envs. 18
f ′19 0.6554
γ1 −33◦

β1 11◦

γ2 75◦

β2 80◦

Index 2, 20
c20 0.9001
f20 0.6998

Envs. 157
f ′20 0.7209
γ1 219◦

β1 −59◦

γ2 −126◦

β2 −25◦

Index 2, 21
c21 0.9101
f21 0.6257

Envs. 23
f ′21 0.6590
γ1 147◦

β1 −14◦

γ2 80◦

β2 8◦

Index 2, 22
c22 0.7002
f22 0.5739

Envs. 1
f ′22 0.6666
γ1 115◦

β1 51◦

γ2 79◦

β2 −24◦

Index 2, 23
c23 0.9251
f23 0.7777

Envs. 1
f ′23 0.7840
γ1 30◦

β1 −28◦

γ2 54◦

β2 −106◦

Index 2, 24
c24 0.9251
f24 0.7851

Envs. 45
f ′24 0.7996
γ1 −33◦

β1 −63◦

γ2 −60◦

β2 −74◦

Index 2, 25
c25 0.9251
f25 0.7823

Envs. 1
f ′25 0.7904
γ1 −148◦

β1 −62◦

γ2 57◦

β2 −74◦

Index 2, 26
c26 0.9308
f26 0.7235

Envs. 5
f ′26 0.7341
γ1 129◦

β1 16◦

γ2 20◦

β2 52◦

Index 2, 27
c27 0.9308
f27 0.7282

Envs. 3
f ′27 0.7360
γ1 154◦

β1 −28◦

γ2 133◦

β2 13◦
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Index 2, 28
c28 0.9308
f28 0.7279

Envs. 35
f ′28 0.7358
γ1 26◦

β1 −28◦

γ2 47◦

β2 −103◦

Index 2, 29
c29 0.9308
f29 0.7230

Envs. 6
f ′29 0.7351
γ1 −129◦

β1 −17◦

γ2 159◦

β2 52◦

Index 2, 30
c30 1.0000
f30 0.7222

Envs. 1
f ′30 0.7425
γ1 39◦

β1 51◦

γ2 −71◦

β2 −20◦

Index 2, 31
c31 1.0000
f31 0.7778

Envs. 172
f ′31 0.7833
γ1 27◦

β1 57◦

γ2 49◦

β2 −19◦

Index 2, 32
c32 0.9308
f32 0.7344

Envs. 29
f ′32 0.7390
γ1 −26◦

β1 −61◦

γ2 −48◦

β2 104◦

Index 2, 33
c33 0.9308
f33 0.7340

Envs. 231
f ′33 0.7388
γ1 154◦

β1 61◦

γ2 132◦

β2 −76◦

Index 2, 34
c34 0.9308
f34 0.7286

Envs. 31
f ′34 0.7378
γ1 −130◦

β1 72◦

γ2 160◦

β2 −40◦

Index 2, 35
c35 0.9251
f35 0.7831

Envs. 30
f ′35 0.7852
γ1 152◦

β1 −33◦

γ2 130◦

β2 18◦

Index 2, 36
c36 0.9251
f36 0.7840

Envs. 319
f ′36 0.7866
γ1 152◦

β1 57◦

γ2 −50◦

β2 −19◦

Index 2, 37
c37 0.9251
f37 0.7859

Envs. 1161
f ′37 0.7890
γ1 −29◦

β1 33◦

γ2 −50◦

β2 19◦

Index 2, 38
c38 0.9308
f38 0.7381

Envs. 115
f ′38 0.7431
γ1 28◦

β1 61◦

γ2 −130◦

β2 14◦

Index 2, 39
c39 0.9308
f39 0.7385

Envs. 163
f ′39 0.7433
γ1 28◦

β1 61◦

γ2 230◦

β2 −76◦

Index 2, 40
c40 0.8001
f40 0.7017

Envs. 6
f ′40 0.7206
γ1 −32◦

β1 −68◦

γ2 −64◦

β2 −75◦

Index 2, 41
c41 0.9101
f41 0.5954

Envs. 1
f ′41 0.6528
γ1 −51◦

β1 −7◦

γ2 18◦

β2 −64◦
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Index 2, 42
c42 0.9001
f42 0.6823

Envs. 9
f ′42 0.6885
γ1 35◦

β1 −28◦

γ2 −126◦

β2 21◦

Index 2, 43
c43 0.8001
f43 0.6876

Envs. 6
f ′43 0.6914
γ1 −148◦

β1 −62◦

γ2 54◦

β2 18◦

Index 2, 44
c44 0.8501
f44 0.7641

Envs. 3
f ′44 0.7764
γ1 150◦

β1 −27◦

γ2 −54◦

β2 75◦

Index 2, 45
c45 0.9251
f45 0.7677

Envs. 1
f ′45 0.7739
γ1 152◦

β1 62◦

γ2 −52◦

β2 −105◦

Index 2, 46
c46 0.9182
f46 0.8260

Envs. 58
f ′46 0.8348
γ1 −148◦

β1 −59◦

γ2 55◦

β2 −71◦

Index 2, 47
c47 0.9251
f47 0.7687

Envs. 2
f ′47 0.7827
γ1 −32◦

β1 27◦

γ2 −57◦

β2 15◦

Index 2, 48
c48 0.8501
f48 0.7784

Envs. 9
f ′48 0.7964
γ1 146◦

β1 −27◦

γ2 119◦

β2 15◦

Index 2, 49
c49 0.8501
f49 0.7779

Envs. 56
f ′49 0.7954
γ1 146◦

β1 −27◦

γ2 −61◦

β2 −15◦

Index 2, 50
c50 0.9251
f50 0.7760

Envs. 21
f ′50 0.7868
γ1 32◦

β1 63◦

γ2 −123◦

β2 16◦

Index 2, 51
c51 0.8365
f51 0.8228

Envs. 1
f ′51 0.8624
γ1 −35◦

β1 −65◦

γ2 113◦

β2 −17◦

Index 2, 52
c52 0.9251
f52 0.7729

Envs. 1
f ′52 0.7795
γ1 150◦

β1 62◦

γ2 −53◦

β2 74◦

Index 2, 53
c53 0.9308
f53 0.7131

Envs. 1
f ′53 0.7299
γ1 48◦

β1 −73◦

γ2 −18◦

β2 −39◦

Index 2, 54
c54 0.9308
f54 0.7124

Envs. 2
f ′54 0.7296
γ1 128◦

β1 15◦

γ2 −160◦

β2 36◦

Index 2, 55
c55 0.9308
f55 0.7126

Envs. 3
f ′55 0.7391
γ1 38◦

β1 52◦

γ2 108◦

β2 −71◦
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Index 2, 56
c56 0.9251
f56 0.7645

Envs. 5
f ′56 0.7679
γ1 26◦

β1 59◦

γ2 47◦

β2 −17◦

Index 2, 57
c57 0.9308
f57 0.7122

Envs. 1
f ′57 0.7305
γ1 −129◦

β1 −16◦

γ2 161◦

β2 52◦

Index 2, 58
c58 0.9308
f58 0.7223

Envs. 11
f ′58 0.7334
γ1 −154◦

β1 27◦

γ2 −134◦

β2 −13◦

Index 2, 59
c59 0.9251
f59 0.7674

Envs. 16
f ′59 0.7702
γ1 −26◦

β1 −59◦

γ2 −48◦

β2 17◦

Index 2, 60
c60 0.9308
f60 0.7223

Envs. 7
f ′60 0.7334
γ1 −26◦

β1 28◦

γ2 133◦

β2 77◦

Index 2, 61
c61 0.9308
f61 0.7178

Envs. 9
f ′61 0.7325
γ1 52◦

β1 16◦

γ2 159◦

β2 37◦

Index 2, 62
c62 1.0000
f62 0.7107

Envs. 1
f ′62 0.7825
γ1 −39◦

β1 −50◦

γ2 72◦

β2 −69◦

Index 2, 63
c63 0.9251
f63 0.7722

Envs. 27
f ′63 0.7758
γ1 153◦

β1 −32◦

γ2 −48◦

β2 −18◦

Index 2, 64
c64 0.9251
f64 0.7741

Envs. 177
f ′64 0.7776
γ1 153◦

β1 −122◦

γ2 132◦

β2 108◦

Index 2, 65
c65 1.0000
f65 0.7649

Envs. 10
f ′65 0.7727
γ1 206◦

β1 −57◦

γ2 −133◦

β2 −19◦

Index 2, 66
c66 0.9308
f66 0.7235

Envs. 24
f ′66 0.7349
γ1 51◦

β1 16◦

γ2 −21◦

β2 −38◦

Index 2, 67
c67 0.8501
f67 0.7784

Envs. 37
f ′67 0.7794
γ1 28◦

β1 58◦

γ2 50◦

β2 −18◦

Index 2, 68
c68 1.0000
f68 0.8153

Envs. 90
f ′68 0.8347
γ1 150◦

β1 55◦

γ2 −48◦

β2 −22◦

Index 2, 69
c69 0.8501
f69 0.7775

Envs. 39
f ′69 0.7786
γ1 152◦

β1 −32◦

γ2 −49◦

β2 73◦
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Index 2, 70
c70 0.9251
f70 0.7799

Envs. 136
f ′70 0.7811
γ1 −208◦

β1 58◦

γ2 130◦

β2 108◦

Index 2, 71
c71 1.0000
f71 0.8181

Envs. 576
f ′71 0.8346
γ1 29◦

β1 −35◦

γ2 49◦

β2 −21◦

Index 2, 72
c72 0.9251
f72 0.7818

Envs. 127
f ′72 0.7834
γ1 151◦

β1 −32◦

γ2 130◦

β2 18◦

Index 2, 73
c73 0.9308
f73 0.7316

Envs. 12
f ′73 0.7399
γ1 27◦

β1 62◦

γ2 −130◦

β2 −77◦

Index 2, 74
c74 0.9308
f74 0.7324

Envs. 19
f ′74 0.7403
γ1 −28◦

β1 28◦

γ2 130◦

β2 77◦

Index 2, 75
c75 0.8876
f75 0.7559

Envs. 5
f ′75 0.7960
γ1 142◦

β1 −30◦

γ2 127◦

β2 25◦

Index 2, 76
c76 0.8001
f76 0.6522

Envs. 1
f ′76 0.6660
γ1 −158◦

β1 25◦

γ2 46◦

β2 −78◦

Index 2, 77
c77 0.8501
f77 0.7552

Envs. 2
f ′77 0.7674
γ1 208◦

β1 −64◦

γ2 52◦

β2 14◦

Index 2, 78
c78 0.8365
f78 0.8105

Envs. 1
f ′78 0.8395
γ1 −147◦

β1 −65◦

γ2 242◦

β2 −16◦

Index 2, 79
c79 0.9251
f79 0.7579

Envs. 1
f ′79 0.7657
γ1 −153◦

β1 −63◦

γ2 50◦

β2 15◦

Index 2, 80
c80 0.9182
f80 0.8185

Envs. 8
f ′80 0.8261
γ1 −148◦

β1 −60◦

γ2 55◦

β2 18◦

Index 2, 81
c81 0.9182
f81 0.8207

Envs. 44
f ′81 0.8302
γ1 −32◦

β1 120◦

γ2 −236◦

β2 72◦

Index 2, 82
c82 0.9182
f82 0.8154

Envs. 5
f ′82 0.8213
γ1 −31◦

β1 −59◦

γ2 −53◦

β2 19◦

Index 2, 83
c83 0.8501
f83 0.7621

Envs. 2
f ′83 0.7797
γ1 −148◦

β1 26◦

γ2 −122◦

β2 −14◦
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Index 2, 84
c84 0.9251
f84 0.7605

Envs. 1
f ′84 0.7726
γ1 −149◦

β1 −63◦

γ2 −126◦

β2 −105◦

Index 2, 85
c85 0.8501
f85 0.7694

Envs. 10
f ′85 0.7831
γ1 −32◦

β1 27◦

γ2 −57◦

β2 15◦

Index 2, 86
c86 0.8365
f86 0.8147

Envs. 5
f ′86 0.8584
γ1 −35◦

β1 −66◦

γ2 113◦

β2 74◦

Index 2, 87
c87 0.9308
f87 0.7024

Envs. 1
f ′87 0.7339
γ1 −142◦

β1 −51◦

γ2 107◦

β2 −19◦

Index 2, 88
c88 0.8501
f88 0.7604

Envs. 6
f ′88 0.7639
γ1 −26◦

β1 −59◦

γ2 133◦

β2 −17◦

Index 2, 89
c89 0.9308
f89 0.7067

Envs. 1
f ′89 0.7282
γ1 54◦

β1 14◦

γ2 −21◦

β2 55◦

Index 2, 90
c90 0.9251
f90 0.7639

Envs. 6
f ′90 0.7663
γ1 −153◦

β1 31◦

γ2 48◦

β2 17◦

Index 2, 91
c91 0.8501
f91 0.7615

Envs. 2
f ′91 0.7647
γ1 154◦

β1 −31◦

γ2 133◦

β2 17◦

Index 2, 92
c92 0.9251
f92 0.7556

Envs. 2
f ′92 0.7620
γ1 25◦

β1 59◦

γ2 −134◦

β2 18◦

Index 2, 93
c93 1.0000
f93 0.8017

Envs. 5
f ′93 0.8208
γ1 −152◦

β1 −56◦

γ2 47◦

β2 22◦

Index 2, 94
c94 1.0000
f94 0.8041

Envs. 44
f ′94 0.8203
γ1 −27◦

β1 35◦

γ2 132◦

β2 −21◦

Index 2, 95
c95 0.9251
f95 0.7617

Envs. 10
f ′95 0.7679
γ1 26◦

β1 −32◦

γ2 −134◦

β2 18◦

Index 2, 96
c96 0.9182
f96 0.8127

Envs. 35
f ′96 0.8235
γ1 −152◦

β1 −56◦

γ2 229◦

β2 −110◦

Index 2, 97
c97 0.8501
f97 0.7738

Envs. 5
f ′97 0.7745
γ1 −152◦

β1 −59◦

γ2 −131◦

β2 −17◦
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Index 2, 98
c98 0.9182
f98 0.8109

Envs. 33
f ′98 0.8256
γ1 −29◦

β1 34◦

γ2 132◦

β2 69◦

Index 2, 99
c99 0.8501
f99 0.7734

Envs. 10
f ′99 0.7742
γ1 28◦

β1 −31◦

γ2 −131◦

β2 107◦

Index 2, 100
c100 0.9182
f100 0.8112

Envs. 39
f ′100 0.8220
γ1 −28◦

β1 34◦

γ2 −49◦

β2 −70◦

Index 2, 101
c101 0.8365
f101 0.7943

Envs. 1
f ′101 0.8324
γ1 147◦

β1 66◦

γ2 115◦

β2 −74◦

Index 2, 102
c102 0.8365
f102 0.7976

Envs. 1
f ′102 0.8200
γ1 −149◦

β1 −65◦

γ2 59◦

β2 16◦

Index 2, 103
c103 0.9101
f103 0.8452

Envs. 5
f ′103 0.8548
γ1 −30◦

β1 −59◦

γ2 −51◦

β2 20◦

Index 2, 104
c104 0.9182
f104 0.8026

Envs. 1
f ′104 0.8094
γ1 −31◦

β1 29◦

γ2 −53◦

β2 17◦

Index 2, 105
c105 0.9101
f105 0.8522

Envs. 18
f ′105 0.8608
γ1 −31◦

β1 32◦

γ2 −53◦

β2 20◦

Index 2, 106
c106 0.9182
f106 0.8108

Envs. 4
f ′106 0.8177
γ1 32◦

β1 −30◦

γ2 54◦

β2 72◦

Index 2, 107
c107 0.8201
f107 0.8545

Envs. 1
f ′107 0.8828
γ1 214◦

β1 −62◦

γ2 −119◦

β2 −18◦

Index 2, 108
c108 0.8501
f108 0.7473

Envs. 1
f ′108 0.7669
γ1 148◦

β1 −115◦

γ2 124◦

β2 14◦

Index 2, 109
c109 0.8365
f109 0.8061

Envs. 3
f ′109 0.8538
γ1 35◦

β1 67◦

γ2 68◦

β2 74◦

Index 2, 110
c110 0.9182
f110 0.7917

Envs. 5
f ′110 0.8011
γ1 −26◦

β1 33◦

γ2 133◦

β2 −19◦

Index 2, 111
c111 0.8501
f111 0.7461

Envs. 1
f ′111 0.7541
γ1 −25◦

β1 −61◦

γ2 −45◦

β2 16◦



27

Index 2, 112
c112 0.9182
f112 0.7930

Envs. 1
f ′112 0.8051
γ1 152◦

β1 −33◦

γ2 −46◦

β2 −20◦

Index 2, 113
c113 1.0000
f113 0.7895

Envs. 3
f ′113 0.8079
γ1 −154◦

β1 34◦

γ2 −134◦

β2 −21◦

Index 2, 114
c114 0.8365
f114 0.8068

Envs. 2
f ′114 0.8136
γ1 28◦

β1 −33◦

γ2 −132◦

β2 20◦

Index 2, 115
c115 1.0000
f115 0.8316

Envs. 15
f ′115 0.8667
γ1 −29◦

β1 35◦

γ2 134◦

β2 −23◦

Index 2, 116
c116 0.9182
f116 0.8068

Envs. 4
f ′116 0.8179
γ1 −151◦

β1 −57◦

γ2 −132◦

β2 −110◦

Index 2, 117
c117 0.8365
f117 0.8038

Envs. 3
f ′117 0.8111
γ1 −153◦

β1 −57◦

γ2 −132◦

β2 70◦

Index 2, 118
c118 0.9101
f118 0.8407

Envs. 1
f ′118 0.8475
γ1 150◦

β1 58◦

γ2 −51◦

β2 −20◦

Index 2, 119
c119 0.8201
f119 0.8480

Envs. 1
f ′119 0.8799
γ1 35◦

β1 −27◦

γ2 62◦

β2 73◦

Index 2, 120
c120 0.9101
f120 0.8270

Envs. 1
f ′120 0.8566
γ1 151◦

β1 56◦

γ2 134◦

β2 22◦

Index 2, 121
c121 0.8001
f121 0.8771

Envs. 1
f ′121 0.8935
γ1 −32◦

β1 −61◦

γ2 −57◦

β2 108◦

Index 2, 122
c122 1.0000
f122 0.8340

Envs. 1
f ′122 0.8911
γ1 −28◦

β1 −55◦

γ2 −44◦

β2 −66◦
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