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State-of-the-art classical neural networks are observed to be vulnerable to small crafted adver-
sarial perturbations. A more severe vulnerability has been noted for quantum machine learning
(QML) models classifying Haar-random pure states. This stems from the concentration of measure
phenomenon, a property of the metric space when sampled probabilistically, and is independent of
the classification protocol. In order to provide insights into the adversarial robustness of a quantum
classifier on real-world classification tasks, we focus on the adversarial robustness in classifying a
subset of encoded states that are smoothly generated from a Gaussian latent space. We show that
the vulnerability of this task is considerably weaker than that of classifying Haar-random pure states.
In particular, we find only mildly polynomially decreasing robustness in the number of qubits, in
contrast to the exponentially decreasing robustness when classifying Haar-random pure states and
suggesting that QML models can be useful for real-world classification tasks.

I. INTRODUCTION

Quantum machine learning (QML) protocols, by ex-
ploiting quantum mechanics principles, such as superpo-
sition, tunneling, and entanglement [1], have given hope
of outperforming their classical counterparts, even with
noisy intermediate-scale quantum (NISQ) [2] hardware in
the near-term [3]. For classification tasks where statisti-
cal patterns can be revealed in complex feature spaces,
the high-dimensional Hilbert space of sizable quantum
systems offers a naturally advantageous starting ground
for QML models. However, many state-of-the-art clas-
sical machine learning models, such as deep neural net-
works with complicated internal feature mappings, have
been shown vulnerable to small crafted perturbations to
the input, namely adversarial examples [4, 5|. These
are intentional worst-case perturbations to the original
samples with an imperceptible difference that are nev-
ertheless misclassified by the classifier. This not only
raises questions as to why well-performing classifiers suf-
fer from such instabilities but also poses security threats
to machine learning applications that emphasize relia-
bility, such as in spam filtering [6]. To understand this
unreliable behavior, the transferability of these attacks
across different architecture and the robustness against
perturbations has led to extensive investigations in the
classical machine learning community in recent years [7—
9]. Notably, some geometric and probabilistic arguments,
based on curvatures of decision boundaries [10] and the
concentration of measure [11-15], have been employed
to quantify the risk of adversarial attacks in various set-
tings. It has been shown that any classifier will have
an adversarial robustness that is increasingly reduced by
the dimension of the space on which it classifies, given the
concentration of measure phenomenon in certain metric
probability spaces [11]. This has raised attention in the

QML community where the models take advantage of the
high dimensionality of quantum systems [16-19]

The concentration of measure is a phenomenon that
describes the fact that, in certain metric probability
spaces, points tend to gather around the boundaries of
subsets having at least one half of the probability mea-
sure. As a result, there is generically a high probability
of obtaining values close to the average for any reason-
ably smooth function that is evaluated on the distribu-
tion [20-24]. This means that when samples are selected
from such a concentrated space, the confidences predicted
by the classifier tends to accumulate around the critical
value separating the correct and incorrect classes. As
such, small targeted perturbations can then easily move
the samples across the decision boundary. In particular,
it has been recognized that this phenomenon can lead to
extreme vulnerabilities of any quantum classifier on high-
dimensional Haar-random pure states [16]. Nevertheless,
there is no indication of whether such vulnerability ex-
ists when classifying on a subset of encoded pure states
in a realistic task, such as using a quantum classifier on
classical images encoded in pure states.

In this paper, we approach the task of classifying quan-
tum states from a geometric perspective. The quantum
classifier divides the Hilbert space into subsets, each of
which belongs to a certain class. We use this perspective
here to study aspects of the problem that are relevant
to practical applications of QML. In a practical classifi-
cation task, such as in recognizing natural images, the
samples to be classified can be generated from a Gaus-
sian latent space by one of a number of commonly-used
generative models [25-30]. The success of these models
for real-world data generation ensures that the focus on
QML models classifying a subset of encoded pure states,
where these states are sampled from a distribution that
is smoothly mapped from a Gaussian latent space [15],



will yield insight into the vulnerability of QML models
in a real-world classification task. This contrasts with the
previous analysis of the vulnerabilities when classifying
Haar-random pure states [16].

We demonstrate that the adversarial robustness over
this generated distribution decreases as O(1/4/n) in the
number of qubits n, with the scaling measured in the
trace norm. This decline in the robustness is mild, indi-
cating a quantum classifier can be robust to attacks on
high dimensional quantum states. In contrast, when con-
sidering prediction-change adversarial settings where the
inputs are pure states drawn Haar-randomly, we show
that the robustness decreases as O(1/2") in the number
of qubits n, implying extreme vulnerabilities to attacks
in high-dimensional quantum systems. This second case
parallels the result of reference [16], which considered
error-region adversarial settings and found the robust-
ness also decreases as O(1/2™) here. However, we argue
that the extreme vulnerability in this setting is not of
concern in practice, since the states to be classified are
always sampled from a distribution over some subsets of
states, rather than from the Haar-random distribution
over the entire set of pure states.

The rest of the paper is structured as follows. In Sec-
tion II, we introduce the set-ups and preliminaries in
both classical and quantum adversarial attacks. In Sec-
tion III, we describe the prediction-change adversarial
setting, which is often more relevant to real-world classi-
fication tasks than the previously employed error-region
adversarial setting. We then derive the prediction-change
adversarial robustness of any quantum classifier on Haar-
randomly distributed pure states and explain its practical
limitations. In Section IV, we derive the main results on
the adversarial robustness of any quantum classifier clas-
sifying a smoothly generated distribution over a subset
of encoded pure states of interest, and propose a feasible
modification to any quantum classifier to lower bound
unconstrained adversarial robustness. In Section V, a
summary and discussion of the derived robustness over
the two types of distribution are presented.

II. BACKGROUND

A. Classical Adversarial Attacks

Classical adversarial attacks were introduced to ana-
lyze the instability of deep neural networks caused by a
small change to the input sample. Classically, the confi-
dence is often quantified as the probability corresponding
to the label class in the output normalized discrete dis-
tribution, e.g., the largest softmax value in the output
vector in a multi-class logistic-regression convolutional
neural network. As numerically shown in various works,
such an attack results in a significant drop in the con-
fidence in the correct class [4, 8, 31, 32], and may also

bring a significant increase in the confidence in the incor-
rect class [5]. So far, some arguments have been proposed
to explain the vulnerabilities of various classifiers to ad-
versarial attacks and their transferability [5, 14, 33-35],
yet no conclusive consensus has been established [36].

The most common type of adversarial attack is the eva-
sion attack where the adversary does not interfere with
the training phase of a classifier and perturbs only the
testing samples [7]. The adversary can devise white-box
attacks if it possesses total knowledge about the classi-
fier architecture, or otherwise, it can devise black-box at-
tacks relying on the transferability [7, 8]. We shall focus
on white-box evasion attacks.

We introduce some notations and definitions used in
this paper. Let (X,d,u) denote the sample set X' with
a metric d and a probability measure p. The notation
x < i denotes that a sample x is drawn with a proba-
bility measure p. £ denotes the countable label set. For
a subset S C X, we let d(z,S) = inf{d(z,y)ly € S}
and let B.(z) = {2’|d(z,2") < €} be the e-neighborhood
of x, where d is the metric on X. We also let S, =
{z|d(z,S) < €} be the e-expansion of S. h is a hypoth-
esis or a trained classifier that maps each x € X to a
predicted label [ € L. ¢ is the ground-truth function
that maps each € X to a correct label [ € L. h!
denotes the set of samples classified as label [, namely
h' = {z € X|h(z) = 1}. The error region M is the set
of samples on which the hypothesis disagrees with the
ground-truth, namely M = {z|h(z) # c(z)}. We define
the risk as R(h,c) = Pry,[h(z) # c(z)] = p(M).

The two relevant types of evasion attacks studied here
are based on the error region and the prediction change.
In an error-region attack, the ground-truth function c
is accessible and an attack occurs when a perturbation
in the sample causes h to disagree with c. In contrast,
a prediction-change attack emphasizes the instability of
h: an attack occurs when a perturbation results in a
different prediction by h, and c is irrelevant. The precise
definitions of these two types of attacks are as follows.

Definition 1 . The error-region adversarial risk under
e-perturbation is the probability of drawing a sample such
that its e-neighborhood intersects with the error region,

RER(h,e,p) = Pr (3’ € B(@)|h(a') # ela')).

Pr
T

Definition 2 . The prediction-change adversarial risk
under e-perturbation is the probability of drawing a sam-
ple such that its e-neighborhood contains a sample with a
different label,

RPC(h,x) = Pr 3’ € Be(a)|h(z) # h(a),
T—p
equivalently,

RPC(h,p) = Pr | min{d(e/,2)[h(') # h(x)} < e

T—p |z’'eX



In either type of attack, we call the nearest misclassi-
fied examples as the adversarial examples. We say that h
is more robust if the induced risk of either type is lower
for a certain e-perturbation. We shall refer to the mini-
mal e-perturbation to x resulting in an adversarial exam-
ple as the adversarial perturbation or the robustness of
with h. In contrast, we shall quantify the adversarial ro-
bustness of h as the size of € necessary for the adversarial
risk of h to be upper bounded by some constant. The
main result of this paper is an upper bound on the ad-
versarial robustness of any quantum classifier when the
input states are smoothly generated from a Gaussian la-
tent space.

B. Quantum Adversarial Attacks

For our work, a quantum classifier is a quantum chan-
nel £ that assigns labels | with some set of positive-
operator-valued measures (POVMs) {II;}. The quan-
tum classifier takes in an ensemble of identically pre-
pared copies of a state and assigns the state a label .
The confidence of a prediction is quantified as the expec-
tation value of the POVM for the prediction [, namely
tr(E(p)I;) for an input density matrix p. We do not
consider the number of copies of a state that is required
to implement any specific quantum classification proto-
col. To measure the perturbation size, the natural choice
of metric on quantum states — the trace distance — can
be shown to generate an upper bound on the difference
between their quantum classification confidence (see Ap-
pendix A), which implies that no small variation can in-
duce a large swing in the predictive confidence. This
property of the trace distance is a consequence of its in-
terpretation as the achievable upper bound on the total
variation distance [37] between probability distributions
arising from measurements performed on those quantum
states [38]. Furthermore, we show in Appendix A that
the Hilbert-Schmidt norm, the Bures distance, and the
Hellinger distance between two quantum states all gen-
erate a similar upper bound. As a result, in quantum
adversarial attacks, the adversary either perturbs the
states near the decision boundary minimally to seek mis-
classification, or aims to maximize confidence change to
any state with associated perturbations that are upper
bounded by some considerable size in these norms, as il-
lustrated in Figure 1. Our work analyzes primarily the
risks due to the former objective. In Appendix B, we also
propose a method for the latter objective exploiting the
reversibility of parametrized quantum circuits (see e.g.
[39, 40]). We note that the latter adversarial setting is
justified, since in order to assess the security of a classi-
fier under attack, it is reasonable — given a feasible space
of modifications to the input data — to assume that the
adversary aims to maximize the classifier’s confidence in
wrong predictions, rather than merely perturbing mini-

mally in size [8].

FIG. 1. The solid curve depicts the decision boundary of
a quantum classifier. The states in blue are classified in a
different class from the states in red. The metric is the trace
distance. The trace distance between any pair of states gener-
ates an upper bound on the difference between their quantum
classification confidences. Thus p*, the state closest to the
decision boundary, is the ideal target of a prediction-change
adversarial attack if the adversary aims to achieve misclas-
sifications with minimal perturbations. On the other hand,
if the adversary aims to maximize confidence change to any
state with associated perturbations of size up to D, then all
states between the dashed lines can be perturbed to be mis-
classified, while all other states can be perturbed to get closer
to the boundary, resulting in overall decreased confidence in
predicting the correct class. The concentration of measure
phenomena implies that for a sufficiently large class, samples
tend to lie near the decision boundary.

There are two natural set-ups of adversarial attacks in
QML that can be specified. The first is when the in-
put data to the classifier is already quantized and any
data transmitted through the quantum communication
network comes from an untrusted party. In this case, the
adversary, who may be the sender or an interceptor, can
perform an attack either by perturbing each of the trans-
mitted density matrices, or by intercepting a fraction of
the copies of the state and substituting them entirely (see
Appendix A). In a broader context, our analysis can be
extended to include the instability of classifying quantum
states subject to decoherence. We focus on this first set-
up in the current paper. The second set-up is when the
input to the quantum classifier is classical. The quan-
tum classifier encodes the classical data before classify-
ing. Since the adversary is perturbing the classical input
data, it is effectively attacking classically. If one views
such a quantum classifier as a black-boxed hypothesis
function that maps each input to a class, any classifier-
agnostic classical analysis of adversarial robustness can
then be directly applied. For example, reference [10] an-
alyzes the robustness of any classifier against random or
semi-random perturbations, provided the curvature of
the decision boundary is sufficiently small, while refer-
ence [15] analyzes the adversarial robustness of any clas-
sifier when classical input vectors are smoothly mapped
from a Gaussian latent representation.



C. Quantum Data Encoding

We now explain the feature maps used throughout the
paper. Considering a normalized positive vector u of
length n, without loss of generality, we intuitively re-
fer to it as a gray-scale image with n pixels in this pa-
per. We focus on a particular set of encoding schemes
where the normalized gray-scale value of each pixel,
ie, u; € [0,1],i = 1,...,n, is featurized into a qubit-
encoding state |¢;). The product state |¢) to be classified
is a tensor product state of these qubit-encoded pixels in
the 2"-dimensional Hilbert space [41-44], namely

) = (é) |6i) = (§n§) [cos (gu) 10) + sin (gu) |1>} _
S (1)

The qubit-encoding states, Eq. (1), do not require a quan-
tum random access memory (QRAM) [45] and are effi-
cient in time to prepare. Other schemes including ampli-
tude encoding (see e.g., [46]) are not considered here. We
note that some of our results are general and independent
of the encoding scheme. We further generalize Eq. (1) to
qudits. In this case each pixel is mapped to a Hilbert
space of higher dimension d > 2, with the coefficient of
the j-th component of the i-th qudit state given by

‘¢i>j = <(j: i) cos?™I (g%) sin/ ™! (gm) . (2

These qudit states are special cases of what are known as
spin-coherent states [41], and the qubit states in Eq. (1)
correspond to d = 2.

D. Concentration of Measure Phenomenon

To describe this phenomenon, let ¥ C X be a Borel
set [47]. The concentration function, defined as

1
a@=1- gt [ 2 5. @
has a smaller value when more points are aggregated in
the e-expansion of a sufficiently large set X, for a fixed e.
Informally, a space X exhibits a concentration of measure
if a(e) decays very fast as € grows, and we shall refer to it
as a concentrated space. This is true for a simple exam-
ple — the standard Gaussian distribution (R, £, N'(0,1)).
Looking at the Borel set ¥ = (—00,0) whose probabil-
ity measure is 1/2, the cumulative density outside its
e-expansion, namely R\ X, = (e, +00), decreases at least
as fast as exp(—€2/2) by the tail bound [48]. One can in-
voke isoperimetric inequality [49] to show that this clus-
tering occurs around any Borel set with measure at least
1/2 and applies to any canonical m-dimensional Gaus-
sian measure in the Euclidean space (see Appendix G).

More formally, a family of N-dimensional spaces with
corresponding concentration functions ay(-) is called a
(k1, ko)-normal Lévy family if an(€) < k1 exp(—k3e2N),
where k; and k; are particular constants. Consequently,
the measure is more concentrated for a higher dimen-
sion. Two notable normal Lévy families are SU(N) and
SO(N), both of which are equipped with the Hilbert-
Schmidt norm L? and the Haar probability measure v
[50, 51]. An implication of this phenomenon is that when
points z are drawn from a highly concentrated space, for
any function f varying not rapidly, we have f(z) =~ (f)
with high probability. Lévy’s Lemma [20, 21| constitutes
a specific example of this.

E. Related Work

The work in [11] considered any normal Lévy family
and derived the robustness for error-region adversarial
attacks. The results show that for a nice classification
problem [52], if p(M) = Q(1), the size of perturbations
must be O(1/v/N) in order to have the error-region ad-
versarial risk upper bounded by some constant, where N
is the dimension of the concentrated space. References
[12, 13] studied some specific concentrated spaces and
revealed the same scaling.

Reference [16] transforms the classification of pure
states |¢) into that of unitaries U in |¢) = U|0) for
some fixed initial state |0). These quantum classifiers
then classify samples drawn from SU(N) equipped with
the Haar probability measure v and the Hilbert-Schmidt
norm, which is a (v/2,1/4)-normal Lévy family. There-
fore, if (M) > 0, the necessary condition on the per-
turbation size for the error-region adversarial risk to be
bounded above by 1 — ~ for some € [0,1] is O(1/V/'N).
Precisely, to have REE(h, ¢,v) < 1—7, the e-perturbation
to any unitary must be upper bounded as [53]

4 V2 V2
e < N In (M(M) +4|1n (7) .4

III. PROBLEMS WITH PRACTICAL
CLASSIFICATIONS

The result in Eq. (4) claims that when classifying uni-
taries in SU(N) with the Haar measure, given that an
adversary can devise white-box attacks and pu(M) not
exponentially suppressed by N, the robustness of any
quantum classifier decreases polynomially in the dimen-
sion of the input N. This is daunting since the input has
a dimension N = d" exponential in the number of qudits.

To apply any result related to Eq. (4), a ground-truth
function ¢ on SU(N) is needed to obtain the risk pu(M).
However, ¢ may not be easily defined in a real-world ma-



chine learning task. For instance, it is challenging to
define what constitutes a mistake for visual object recog-
nition. After adding a perturbation to an image, it likely
no longer corresponds to a photograph of a real physical
scene [54]. Furthermore, it is difficult to define the labels
for images undergoing gradual semantic change. All of
these factors complicate the evaluation of p(M). It thus
motivates us to focus on prediction-change adversarial
risks (see e.g., [10, 13, 54]) in order to avoid requiring
access to the ground-truth. The following theorem and
corollary then apply.

Theorem 1. Let SU(N) be equipped with the Haar mea-
sure v and the Hilbert-Schmidt norm L?. For any hypoth-
esis h : SU(N) — L that is not a constant function, let
n € [0,1/2] determine the measure of the dominated class
such that v(h') <1 —mn,Vl € L. Suppose U € h', V ¢ h!
and a perturbation U — V occurs, where |[U—=V || < e. If
the prediction-change adversarial risk RFC (h,v) < 1—7,
then € must satisfy

e < \/g In <2\77/§> +,|ln (2\V/§> . (5

It is evident from Eq. (5) that the upper bound on the
size of the perturbation € is suppressed as the dimension
N of the space increases. It is also suppressed when the
measure of the dominated class (1 — 7) decreases and
when the tolerance on the adversarial risk (1 — «) de-
creases.

Corollary 1 . With p = U|0X0|Ut and o = V|0)0|VT,
Eq. (5) translates to a necessary upper bound in the trace
norm between the pure-state density matrices

4 —n
lp = ol < A =Q(d™).

With the qudit encoding in Eq. (2), a naive translation of
this necessary upper bound to that in the £* norm of the
encoding vectors u and v gives,

2 2\ @ om
[u—vl1 < 771608_1 [(1 - N)“)

where N = d" and \; = [In(2v/2/n)]"/? + [In(2v/2/7)]"/?
with n and vy defined in Theorem 1.

— Q(d"% Vi),

The proofs can be found in Appendix D and E. The in-
terpretation of Theorem 1 and Corollary 1 is clear: given
that no class occupies Haar-measure 1, any quantum clas-
sifier on quantum states is more vulnerable to prediction-
change adversarial attacks on higher-dimensional pure
states drawn Haar-randomly, with the robustness decay-
ing exponentially in the number of qudits.

In what follows, we apply this theorem to a practical
task by presenting two perspectives on the application,
in order to illustrate the limitations of the theorem. Sup-
pose that the objective of the practical task is to classify

a subset of quantum states, for example, the pure prod-
uct states in Section II C that encode images displaying
a digit 0 or 1. On one hand, if we label unitaries not
related to an actual image, together with unitaries asso-
ciated with noisy images not displaying a digit O or 1, in a
third-class, this class will have measure 1, since the set of
all unitaries that evolve the initial |0) to some final pure
product state |¢) has Haar measure 0 in SU(N) [55]. For
example when n = 1, this can be seen by recognizing that
the encoded states {|¢)} correspond to only a fraction of
the circle going through |0) and |1) on the Bloch Sphere.
This labeling renders Theorem 1 useless for any h trained
in this way because n = 0. On the other hand, if we
train a binary h to classify half of SU(N), including uni-
taries corresponding to 0-digit images, to [ = 0, and the
other half, including unitaries corresponding to 1-digit
images, to [ = 1, then n = 1/2. Using Eq. (5) then gives
O(1/+/d") robustness against prediction-change adver-
sarial attacks, again suggesting extreme vulnerabilities
in high dimensions.

However, the interpretation of this result is not of prac-
tical interest, for the following reasons. We emphasize
that in applying Theorem 1 or Eq. (4), the notion of ad-
versarial risks by Definition 2 represents the probability
of perturbing a Haar-randomly selected unitary by some
€ to its adversarial example. It does not represent, for in-
stance, the probability of perturbing a particular unitary
associated with a real image to its adversarial example,
nor does it represent the risk of attacking a unitary drawn
from any other distribution over some subset. Therefore,
if the task is to train and generalize a quantum classifier
on a subset of quantum states with some distribution,
this theorem cannot claim vulnerabilities that are expo-
nential in the number of qudits. It is also noted that, as
far as how Eq. (4) and Theorem 1 are formulated, the
perturbed states cannot be mixed states since these are
mapped from |0)(0] by a completely positive and tracing
preserving (CPTP) maps rather than by unitaries. In
Section IV, we shall see that this is an example of an
in-distribution attack, which applies to scenarios where
both the original and perturbed states are pure.

IV. CLASSIFICATIONS ON GENERATOR
OUTPUT DISTRIBUTIONS

A. Concentration in Generated Distributions

In practice, one is interested in the performance of a
classifier on a distribution over some subset of mean-
ingful samples, such as the subset of images displaying
digits including the MNIST data set. It is this distribu-
tion on which the adversarial risk should be computed
in order to infer the extent of the vulnerability. To en-
sure that the probability measure on the classifier-input
space covers meaningful samples, we resort to approxi-



mating the distribution over meaningful samples using
the image of a smooth generator function on a concen-
trated latent space, trained on samples of interest [15].
Following convention, we refer to the latter as a real-data
manifold. Such a generator can be a Normalizing Flow
model [25-27] or the generator of a Generative Adversar-
ial Network (GAN) [28-30], both with a Gaussian latent
space, trained on the same data set that the classifier will
be trained on. A generative model serving this purpose
is also referred to as a spanner [56]. In this way, a major
fraction of the samples in the generator output S can be
related to samples of interest, despite the fact that, the
smoothness of the generator may introduce some sam-
ples off the real-data manifold, such as those undergoing
gradual semantic change during interpolations. This gen-
erative set-up can be generalized to multiple generators
on the same latent space. However, each generator maps
to a disjoint part of the real-data manifold, overcoming
the problem of covering the off real-data manifold when
the latent space is globally connected [57]. This gener-
alization requires relaxing the demand that w(0) = 0 in
the Eq. (6) below. As a result, no data off the real-data
manifold is generated in S.

The reason that we require the latent space to be con-
centrated is so that we can study the concentration of
samples in the generator-output space resulted from the
concentration of the latent space. This connection is
made by the assumption that the generator is smooth, in
the sense that it admits a modulus of continuity (i.e., it is
uniformly continuous), namely if there exists a monotone
invertible function w(-) such that

l9(2) = g()l < w(llz = 2'[|2),

where ||-|| is the metric equipped by the image of g. This
is a weaker condition than the Lipschitz continuity which
results when w(-) is a linear function. In this paper, we
assume w(-) to yield a tight upper bound in Eq. (6), and
we demand w(7) to be small for small 7 for a smooth
generator. The idea is that any tendency to concentra-
tion of measure in the latent space is preserved by such
a smooth mapping to its image, and the generated sam-
ples then follow a modified concentrated distribution. We
can imagine that if some pairs of latent variables from
different classes are within distance b across the class
boundary in the generator domain, their generator im-
ages must be accordingly within distance at most w(b)
across the boundary. This can also display a clustering.
Although the tendency to cluster is preserved, the ex-
tent to which the points in the generator image gather
is mediated by the modulus of continuity. A tight up-
per bound with w(-) that yields distances larger than the
typical distances in the output space means that gener-
ated samples can be further apart, and vice versa. As
far as adversarial robustness is concerned, a larger w(-)
is then favorable since it implies that larger perturba-
tions are needed to definitively perturb a larger number

Vz,2' € Z,  (6)

of generated samples across decision boundaries.

In generating these to-be-classified samples, the fact
that a large probability density resides near the deci-
sion boundary is not at odds with a trained classifier
that predicts training samples with high confidence. The
training samples comprise only a subset of the support of
the generator-output distribution. High confidence train-
ing samples result from the classifier drawing the deci-
sion boundaries away from them. When such a decision
boundary encloses a sufficiently large measure, it then
inevitably encounters large probability densities — as dic-
tated by the concentration of measure phenomenon on
these distributions — that do not contribute to training.
As a result, when generalizing to test samples that are
similar to the training samples, some test samples may
locate near the boundary and be the vulnerable targets
to adversarial attacks.

B. Robustness of QML Models

We consider the quantum adversarial attack set-up
where the input to the classifier is already quantized and
transmitted through a quantum communication network.

Let our latent space Z be, for example in this paper,
the R™ with the Euclidean metric #? and the canonical
m-dimensional Gaussian measure N,, = N(0, I,;,) so it is
a concentrated space. Let z < N, in Z. Suppose that a
smooth generator g : Z — § C X is trained to generate
a distribution £ of concern, such as some distribution
of natural images, on a subset S of X. For a sample
g(z) € S, we then have £(g(2)) = N (2).

Incorporated in the generator g = g o0 g1, g1 maps the
latent space to a subset of n-pixel natural images, g, then
encodes the natural image into a density matrix defined
in Eq. (2). That is, g(2) = |¢(2)X¢(2)| = p(z) € S € &,
where § — the image of g — is a subset of all density
matrices X. The metric on density matrices is the trace
norm L' unless otherwise specified. The probability mea-
sure &, which is a distribution mapped by ¢ from the
m-dimensional Gaussian measure N,, on Z, is only sup-
ported on S over density matrices capturing the natural
image distribution. Any quantum classifier h then clas-
sifies the d™ x d" density matrices in (X, L', &). Let us
denote the intermediate stage — the set of images with
n pixels (normalized vectors with length n) — as Z, then
the corresponding measure on Z can be denoted as & o gs.
The metric on T is, for instance, the /! norm. Diagram-
matically, these mappings are

Z2 T2 SsCcx — L.
— h
g

It is noted that smoothness is a desirable property of
generative models. It is hinted at gradual transitions in
the features in the generated samples, which imply that



the generator has learned relevant factors of variation
[58]. We are then justified in assuming that the real-
data manifold on Z can be covered by a smooth genera-
tor g1 (see e.g., [26-30]). In what follows, we show that
the overall generator g, mapping from Z to the real-data
manifold in the set of density matrices X, is also smooth.

Proposition 1 . Assuming that g1 : Z — I is smooth
with a modulus of continuity w1 () and the qudit encoding
scheme, Eq. (2), is applied, then the generator g = gs o
g1: 22— 8 C X is also smooth and admits a modulus of
continuity w(-) that is lower bounded as

w(r) > \/1 — cos2n(d—1) (%wl (7’)), VT > 0.

The proof can be found in Appendix F. In terms of the
scaling with respect to n and d, when wi(-) scales as
Q(1), for instance, when g; is Lipschitz continuous (e.g.,
the generator in [59, 60]), Proposition 1 implies that the
modulus of continuity of the overall generator g, i.e., w(-),
scales as Q(1/d/n). Tt is desirable to enforce Lipschitz
continuity on some generators, for example when impos-
ing spectral normalization [61] on the generator of a GAN
to improve training [60].

A distinction can be made concerning whether the ad-
versarial example o must be also in the subset S. If so,
the adversarial attack is called in-distribution, since the
attacker only looks for an adversarial example within the
data manifold §. Otherwise, we call it an unconstrained
adversarial attack since the perturbation is arbitrary in
X, i.e., it is not confined to the data manifold. We state
the precise definitions, based on prediction-change adver-
sarial risks in Definition 2, as follows.

Definition 3 . An in-distribution adversarial attack, or
a data-manifold attack, attempts to find the perturbation

gin(p) = ggg{llg(z +7) = pllilh(g(z + 7)) # h(p)}
= gleig{llv = pllilh(o) # hip)},

which is within the data manifold (S,L*,¢).
an in-distribution adversarial risk,

RPC(h,&) = Pr _[ein(p) < €in) -
p=€

It induces

Definition 4 . An unconstrained adversarial attack at-
tempts to find

€unc(p) = min{|lo — pll1|h(o) # h(p)},

which is in (X, L') not restricted to the data manifold S.
It induces an unconstrained adversarial risk,

€unc

REC (h,§) = Rfc(h,f) = pP:_rg [Eunc(p) < €]

It is noted that when the generator is surjective on
X, ie., S = X, there is no distinction between the two

types of attacks.The set-ups in Theorem 1 and Eq. (4)
consider classifying on the subset of all pure-state den-
sity matrices in X on which a Haar-random distribution
v is supported. Since this requires both the original and
perturbed states be pure, the adversarial risks are consid-
ered in-distribution, although we shall see in Section IV B
that the same upper bound applies to the unconstrained
robustness for a general quantum classifier.

In-distribution Adversarial Robustness

The following theorem, depending on the distribution
to be classified as well as the specific classical-data gen-
erator g; in terms of wy(+), then applies.

Theorem 2 . Let h : X — L be any quantum clas-
sifier on the set of density matrices. Considering in-
distribution adversarial attacks on the image of g, if
€(hY)) < 1/2,V1, i.e., the classes are not too unbalanced,
then for the prediction-change risk RZS(M €) < 1—7, the
distance between two density matrices €;, must satisfy

€in < w ( In (;)) : (7)

where w(-) is the modulus of continuity in Proposition 1.
The proof can be found in Appendix G. This result is
independent of the quantum data encoding scheme. It
can be generalized to quantum classifiers with arbitrary
decision boundaries, but in this case, the necessary up-
per bound on the in-distribution robustness will not have
a closed-form (see Appendix G). This upper bound is
saturated when Eq. (6) is tight and the quantum classi-
fier induces linearly separable regions in the latent space,
namely when h o g is a linear function on Z, giving rise
to the maximally robust quantum classifier. The non-
saturation of this upper bound when class regions are not
linearly separable in Z can be seen in the example of the
standard Gaussian in Section IID above. Suppose one
looks at ¥/ = (—o0, —20) U (0,20) for some ¢ > 0, which
has the same probability measure 1/2 as ¥ = (—o00,0)
but is not linearly separable in R. The measure out-
side the d-expansion of ', ie., R\ X5 = (39, 4+00), is
smaller than that outside of the §-expansion of ¥, namely
R\ X5 = (J,+0), implying more concentration outside
and near ¥’ than X.

The non-saturation of this upper bound for non-
linearly separable classification regions in Z also implies
that it is prone to misclassification with an increasing
number of equiprobable classes. The proof for cases
with at least 5 equiprobable classes can be found in Ap-
pendix G. Informally, more equiprobable classes lead to
more boundaries, enclosing classes with sufficiently large
total measure, that border distinct classes. Then within



a fixed distance beyond more of those boundaries, there
are more samples subject to some prediction change.

We note that this upper bound is usually not satu-
rated in practice, since a quantum classifier is usually
linear, such as a parametrized quantum circuit and a
unitary tensor network, while the generator g is usually
non-linear, given that g; is usually non-linear and g, the
quantum feature map, is non-linear. Classically, some
highly-nonlinear state-of-the-art neural networks have ro-
bustness one or two orders of magnitude smaller in the
£2 norm on some data sets than the corresponding upper
bound derived with similar arguments [15]. It would be
interesting to examine the amount of deviation from the
upper bound for QML models in future works.

Theorem 2 implies that when the quantum states to be
classified encode classical data generated with a modulus
of continuity scaling as (1), the in-distribution robust-
ness of any quantum classifier decreases polynomially in
the number of qudits n and increases polynomially in the
qudit dimension d. To see this, we first note that accord-
ing to Proposition 1, when w;(-) = (1), which applies
to generators such as those enforcing Lipschitz continu-
ity, w(-) is lower bounded by a function that scales as
Q(y/d/n). This means that the upper bound on the per-
turbation size €;,, between any two in-distribution states,
i.e., the right hand side of Eq. (7), is then asymptotically
bounded from below by +/d/n.

As such, the vulnerability increases slightly with a
larger number of qudits n and by contrast, decreases
slightly with qudits of higher dimension d > 2. When
the encoded classical data manifold comes from gener-
ators for which Lipschitz continuity is not enforced, it
requires numerical approximations of the modulus of con-
tinuity wi (+) to determine its scaling in the output space,
before obtaining the robustness scaling. Compared to
Theorem 1 where samples are Haar-random pure states,
the states to be classified here, which characterise the ad-
versarial risk, are similar to those considered in practical
tasks. Specifically, they are a subset of encoded states
with a distribution smoothly generated from a Gaussian
latent space. Theorem 2 demonstrated that, contrary to
previous claims [16], there is no guarantee that quan-
tum classifiers are exponentially more vulnerable to in-
distribution attacks in higher-dimensional Hilbert space.
We shall now show that the theorem applies to uncon-
strained attacks as well.

Unconstrained Adversarial Robustness

Unconstrained adversarial attacks are arbitrary per-
turbations in X to a sample p. In a broader context
in which the instability of the quantum classifier is con-
cerned, this may derive from density matrices subject
to decoherence in a classification task. It is clear that
Eunc(p) < €in(p),¥p € X and thus, it holds by changing

the in-distribution perturbations in Theorem 2 to uncon-
strained ones, and the same bound in Eq. (7) applies.

We argue that there does not exist a tighter upper
bound that holds for general quantum classifiers for un-
constrained robustness. Consider a particular family
of quantum classifiers that project any state onto the
data manifold, namely to map any state to its closest
in-distribution state, before classifying. These classi-
fiers can be shown to satisfy 1/2¢;,(p) < eunc(p) <
em(p),Yp € X [62]. Even in the worst case where
cunc(p) = 1/2€in(p),¥p € X, their unconstrained ro-
bustness is as large as half of the in-distribution one.
We stress that, although robust, such a quantum classi-
fier is inefficient in our setting since there is no apparent
tractable way to obtain the closest pure product state to
an arbitrary state.

Inspired by this strategy, we propose that one can con-
struct a family of efficient quantum classifiers & on n-
qubit density matrices X with unconstrained robustness
Eunc(p) lower bounded for any p € X. To be specific, we
construct h from any h with the following procedure.

Let the original sample p € S be a pure product-state
density matrix with n qudits as in Eq. (1). A perturba-
tion €,y = € leads to a sample o € X. First, we perform
single qubit tomography on every qubit of ¢ to recon-
struct a product-state density matrix from these single
qubits. We denote this mapping as P : X — X, 0 —
iy tryjziy(0). Subsequently, we numerically fit the
pixel values {s;} to P(o) to find its closest density ma-
trix ¢ within our data manifold S. We use a symbol &
to represent the density matrix attained from this pro-
cedure. ¢ is then replacing o when fed to the quantum
classifier h. We have the following theorem,

Theorem 3 . For every n-qubit p € S C X, let p be the
density matriz within the data manifold attained from

the above procedure. For any quantum classifier h, let
h: X — L be such that h(p) = h(p), then

()2 e
2-2 <1 — E”}?) < €unc(p) < €inl(p),

where ne =n for even n and ne =n+ 1 for odd n.

The proof can be found in Appendix H. We note that the
procedure can be applied to any product state encoding
scheme. This procedure yields an explicit lower bound
to the unconstrained adversarial perturbation when it is
possible to estimate the in-distribution adversarial per-
turbation by, for example, sampling in the latent space
[63] or gradient descent search in the latent space [56] be-
fore mapping to the density matrices. This h constructed
from h amounts to a feasible tomographic preprocessing
of input states. It guarantees that the unconstrained ro-
bustness of each sample p is bounded from below and
may be used as a defense strategy against unconstrained
adversarial attacks in practice. However, we note that



Sl-vy lp—oalls < lu— v <
RFC(h,v) 4d~"Ny = Q(d™) 2n o5 [(1 —2d ")) 7<d31>n] =Q(d%/n)
REC(h,&)| w(X2) > \/1 — cos2n(d=1) (Zw; (A2)) = Q (ﬁ) wi (A2) = Q1)

Table I. Summary of the adversarial robustness, namely the size of perturbations necessary for the adversarial risk to be upper
bounded by some constant, of any quantum classifier obtained within the prediction-change adversarial attack setting. In this
setting, the prediction-change adversarial risk over the Haar-random distribution v (Rfc(h, v)) and over a smoothly generated
distribution & (RFC (h, £)) are both upper bounded by (1—~) (column 0). d denotes the qudit dimension in Eq. (2) and n denotes
the number of encoded qudits or the length of the encoding vectors (number of pixels in the image classification example).
Parameters \; and A are defined as A1 = [In(2v/2/n)]"? + [In(2v/2/7)]"/? and A2 = y/In (7/(272)). Row 1 summarizes the
adversarial robustness when a pure state p sampled from the Haar-random distribution v is perturbed to a state o. The
robustness is shown both in the trace norm (column 1), as well as in its translation to the robustness measured in the ¢! norm
of the set of encoding vectors (from Corollary 1 of Theorem 1) (column 2). Both upper bounds decrease exponentially in n.
Row 2 summarizes the adversarial robustness when a pure state p sampled from a smoothly generated distribution £ from a
Gaussian latent space is perturbed to a state o (column 1), and the robustness when the intermediately generated vector u is
perturbed to v (column 2) (from Proposition 1 and Theorem 2). Note that when the robustness in adversarially perturbing a
vector scales as (1), e.g., when the intermediate vectors are generated Lipschitz continuously, that in perturbing an encoded

pure state scales as Q(/d/n).

when n is large, this lower bound can be several orders
of magnitude smaller than the upper bound.

V. DISCUSSION

A summary of the upper bounds on the prediction-
change adversarial robustness over pure states sampled
from the Haar-random distribution v and a smoothly
generated distribution &, is presented in Table I.

In this work, we first showed the prediction-change ad-
versarial robustness over Haar-randomly distributed pure
states, and compared this with the previously demon-
strated error-region robustness of [16] over the same dis-
tribution. Both types of adversarial robustness show sim-
ilar extreme vulnerabilities exponential in the number of
qudits. However, in this work we have argued that these
vulnerabilities for Haar-random pure states are not of
practical interest. This is because, in practice, the adver-
sarial risk of a quantum classifier should be computed on
a distribution over some subset of meaningful states, such
as a subset of qubit encoding states featurizing some im-
ages, in order to infer the extent of the vulnerability. In
general, practical quantum classification tasks classify a
subset of encoded states with some commonly used qubit
encoding scheme. For such tasks, we have shown that
we can use the concentration of measure phenomenon to
derive the robustness of any quantum classifiers in situa-
tions where the distribution of states to be classified can
be smoothly generated from a Gaussian latent space, as
quantified in Eq. (6). In this situation, we have shown
that one finds only a mildly polynomially decreasing ro-
bustness in the number of such encoded qubits, specifi-

cally with scaling as O(4/1/n) in the trace norm.

As noted for Theorem 2, it is the upper bound on the
perturbation size necessary for the adversarial risk to be
bounded from above that scales as £2(y/1/n). This up-
per bound is usually not tight and the actual adversar-
ial robustness could therefore be smaller. We have also
proposed a feasible modification of any quantum classi-
fier with product-state inputs — namely, by performing
single qubit tomography before numerically fitting the
closest encoded qubit state — to obtain a lower bound
on the unconstrained robustness and to defend against
unconstrained adversarial attacks.

Most importantly, our analysis provides QML proto-
cols some relief from adversarial attacks in real-world
tasks. For example, when classifying on some qubit states
encoding MNIST images, the robustness decreases only
as O(y/1/n), in contrast to the extreme vulnerability
of quantum classifiers in classifying Haar-random pure
states (Theorem 1 and [16]). In future, it will be inter-
esting to experimentally compare the adversarial robust-
ness of particular QML models for real-world data on a
distribution of states smoothly mapped from a Gaussian
latent space with the bounds that we have derived here.

We note that the polynomially decreasing robustness
in n is derived from the qudit encoding scheme. The
concentration of measure due to the Gaussian isoperi-
metric inequality for the latent space only contributes to
the argument of Eq. (7). It will be interesting to investi-
gate whether a different encoding scheme can give better
scaling in the robustness, and also to determine whether
quantum data that derives naturally from a distribution
other than the Haar-random distribution is robust to at-
tacks. In Appendix B, we propose a method to perform



white-box adversarial attacks on classically intractable
input states with QML models. It will be interesting to
further explore white-box attacks, assuming that the ad-
versary is capable of devising these. In practice, with
current NISQ-era hardware, it will also be useful to ex-
amine how robust QML models are against adversarial
attacks under noise and decoherence.
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APPENDICES

Appendix A: Confidence Difference and Distance
between States

We show that the predictive confidence difference in
any QML protocol is upper bounded by the distance be-
tween the input density matrices up to some constant
factor, where this distance is measured in the trace norm
L', the Hilbert-Schmidt norm L?, the Bures distance, or
the Hellinger distance.

Considering density matrices p and o, the trace norm
between them is defined to be |p — |1 = tr(|p — o).
Consider a set of POVMs {II;} and a quantum channel
& such that E(p) = ), MipMJ and ), MJMZ =1. We
have,

tr(E(p)) — tr(E(o

<ZM —0 M*Hl>
=tr <(p —0) Z MZTHlMi>

= tr((p - 0)€" (1))

We note that £* is the dual map of £ and {€*(II;)} is still
a set of POVMs, since £*(II;) is hermitian, non-negative
because tr(p€*(II;)) = tr(E(p)IL;) > 0, and complete be-
cause y . MZ.THZM,» =3, M;Mi =1.

For each particular measurement, we can expand in
its eigenbasis £*(I;) = >, bk|or)ok| = D4 brPr. Let
{|¥:)} and {A;} be the eigenbasis and eigenvalues of
(p—0),s0 ||p—oalli = >, |\l € [0,2]. We then expand
E (L) = 3, ; x beainlvi)af, (¥;] such that 3 |ai]* =
1,Vk and >, b, = tr(£*(I;)) > 0 due to the non-
negativity. We have

tr((p —0)€" (L)) = p—0) Y bra|v)ai ()

.k
= bptr [ > ammal (l(p
k i
=D bilail*Ai < bl — ol
i,k k

= tr(&7 (L)) [lp = alh.

— )¢

(A1)
Therefore,
[tr(E(p)IL) — tr(E(0)IL)| < tr(E7(IL))[|p — o1

When tr(€*(11;)) is not too large the above inequality
suggests that the confidence change will be small when
the trace norm between the two density matrices is small.
However, tr(€*(I1;)) may be very large in high dimensions
and in that case, the upper bound becomes very weak.
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We resort instead to the physical interpretation of trace
distance being a generalization of the classical total vari-
ation distance. The trace distance between two quantum
states is an achievable upper bound on the total vari-
ation distance between probability distributions arising
from measurements performed on those states [38]:

%m—lh—fmeJH

where the maximization is over all POVMs {II;} and the
factor of 2 is to restrict the maximal trace distance to be
1. Using the contractive property of the trace norm under
any CPTP map, we conclude that the trace norm consti-

tutes an upper bound to the sum of confidence changes
of all POV Ms:

> ltr(E(p = o)IL)| < [IE(p)

l

—O'Hll

—&E@)lh <llp—oal (A2)

Considering the Hilbert-Schmidt norm defined as
Ip = oll} = til(p — 0)?), if we regard |p — ofl» as
the inner product of the two vectors (1,1,---,1) and
(IXoly IA1]s <+, |[An=1]), then from the Cauchy-Schwarz
inequality we find ||p — o|i < V/N|p — oll2. But this
bound is very weak in high dimensional Hilbert space.
A better upper bound is given in [64] that ||p — o1 <
2VR||p — o||2, where R = rank(p)rank(o)/[rank(p) +
rank(c)]. This implies that, even when one state is full
rank, if the other state is low rank, then the Hilbert-
Schmidt norm is of the same order of magnitude as the
trace norm. This is the case when we consider any pertur-
bation to an encoded pure state density matrix p whose
rank is 1. Combined with Eq. (A2), we arrive at a similar
upper bound,

Z|tr

Considering the Bures distance defined as ||p—o||% =
2(1—=+/F(p,0)), it is an extension to mixed states of the
Fubini-Study distance for pure states [65]. We have

1 2
lo=ol <21 (1= 5o~ ol )

1
= 2\/||P —olip = Zllp ol < 2llp - olls,

p)IL;) — tr(€(o)IL)| < 2VR|p — o2

where the first inequality is proven in [65, 66] and satu-
rated for pure states. Therefore, together with Eq. (A2),
we conclude that

Z [tr(€

Finally, considering the Hellinger distance defined as
lp—oll} =2—2tr(\/py/o), it is shown that ||p—o||p <

p)IL) — tr(E(o)IL)| < 2[p—ols.  (A3)



llo — o|lg [65] and thus, the same upper bound applies
by changing ||p — ol|g to ||p — o||m in Eq. (A3).

In QML, if p and o are close in these norms and are
separated by any class boundary, say between class | = s
and class [ = t, then tr(E(p)Ily) > tr(E(o)I,) while
tr(E(p)I;) < tr(€(o)I;). This suggests that no small
perturbation to density matrices in these norms can sig-
nificantly change the measurement outcome and thus, al-
ter the prediction, unless the original sample is near the
boundary. In other words, viewing tr(€(p)Il,) as the con-
fidence of predicting [ = s, it implies that no small per-
turbations can result in a high-confidence sample in one
class perturbed to a low-confidence sample in the same
class, or a high-confidence sample in a different class.

Appendix B: Adversarial Attacks Exploiting
Quantum Classifier Reversibility

We propose a method to perform adversarial attacks
in our first set-up in Section II B on quantized data. This
method can be carried out on a quantum hardware when
the computation is classically intractable. We assume
a noiseless QML model for this analysis, so the quan-
tum channel is unitary. Considering, for example, the
unitary tree tensor network (TTN) in [39] among other
types of parametrized unitary quantum circuits, the ad-
versary can run it reversely starting from a density ma-
trix with any designated wrong class label [ = t such
that tr(o’Il;) = 1 while tr(o'Il;x) = 0. Any qubit
that is traced out in the forward direction is initialized
to an arbitrary state and passes through the network in
the reverse direction. The output of the reversal circuit
is a set of density matrices {Ufo’U} = {0} such that
tr(UoU'L,) = 1 whereas tr(UocUTII;z;) = 0. Thus, this
set of density matrices will be classified in the wrong
class by the POVM II; with high-confidence. Suppose
that the original samples are {p} in the class s # ¢ and
tr(UpU'Tl,) = 1/2+6 with some 6 € (0,1/2]. The adver-
sary then replaces an e-portion of the transmitted quan-
tum states {p} with the {o} to attack the receiver.

To achieve a prediction change, the adversary demands
tr(U[(1 — €)p + ea]U'TL,) < 1/2. This requires

e>1—— (B1)

which means that the portion of {p} being substituted
with {o} increases with higher-confidence of {p}. We
note that this effectively creates a perturbation of size

lp=1(1=e)p+eollli > €Y |tr(U(p—o)UL)]
l
- 6[Zw(UpUTHl) +(1- tr(UpUTHt))]
14t
= €[2 — 2tr(UpU'TL,)] > e(1 + 26),
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where the first inequality follows from Eq. (A2). As a
result, a misclassification by the attack demands a per-
turbation of size ||p — [(1 — €)p + €o]||1 > 20 where we
substituted in Eq. (B1).

Appendix C: Proof of Eq. (4)

We present a condensed proof based on the proof to
Theorem 3.7 in [11]. Let e1 > /1/(Nk2)In (k1/pu(M))
and €3 > \/1/(Nk2)In (k1/v). Then the concentration
function satisfies a(e1) < u(M) and a(ez) < . As such,
by directly applying Part 2 of Theorem 3.2 in [11], we
conclude REE(h,c,v) > 1 — v for € = ¢; + €3. It can be
shown that SU(N) is a (v/2, 1/4)-normal Lévy family and
so k1 = v/2 and kg = 1/4 [16]. The contrapositive state-
ment on REF(h c,v) < 1 — v then gives the necessary
condition Eq. (4).

Appendix D: Proof of Theorem 1

Proof. We let €1 > +/1/(Nk2)In(2k1/n) and e >
V/1/(Nk2)In (2k1/7), then the concentration function
satisfies a(e1) < n/2 and a(ez) < /2. Therefore, by ap-
plying Part 1 of Theorem A.2 in [11], we conclude that
for € = e; + €3, RPY(h,v) > 1 — . For completeness, we
present our explained version of the proof below.

Let € = €; + €. By assumption that v(h!) < 1-n,VI €
L, it can be easily verified by contradiction that 3l; € £
st. v(hh) € (n/2,1/2]. Let B¢ = X\ h. On one
hand, we know that v(ht) > 1/2 > a(e;) where the last
inequality is given by our assumption. We prove by con-
tradiction that v(h%) > 1/2. Suppose not, then we have
for S = X\ AL, v(S) = 1—wv(h) > 1/2. Then by
the definition of the concentration function in Eq. (3),
v(Se,) > 1 — afer). Combining with what we obtained
that v(ht) > a(e;), we have v(S.,) + v(h'*) > 1. Thus,
Jz € v(S.,) Uv(h!). This implies Jy € S|d(y,z) < €.
But this same y must also be in hl;l since the same z is
also in h!*. However, this raises a contradiction since S
and hlg1 are disjoint by definition, i.e., fyly € S,y € hlel1
Now, v(ht) > 1/2 means, by the definition of the con-
centration function in Eq. (3), as well as the assumption
that /2 > a(ez), we have v(hlt) > 1 — ale) > 1 — /2.

On the other hand, knowing that v(h'*“) > 1/2, we
have that V(hlelgc) > 1 — v/2 followed by simply replac-
ing the hill in the previous sentence with h:C since
they both have measure at least 1/2. We then also
have v(hi+*“) > 1 — ~/2. Hence, using the inequality
p(Ny Ay) > 3" ) u(A;)— (n—1), one can conclude that
v(hlr N AC) > 1 — 7 and so, by the prediction-change
risk’s definition, RFC (h,v) > v(hh NALC) > 1 — 4.

It can be shown that SU(N) is a (v/2, 1/4)-normal Lévy
family and so k; = /2 and ky = 1/4 [16]. The contra-




positive statement on RFC(h,v) < 1 — 7 then gives the
necessary condition Eq. (5). O

Appendix E: Proof of Corollary 1

Proof. We have from Theorem 1 that the necessary con-
dition for RFC(h,v) < 1 — v on SU(N) is |[U — V|2 <
VA/NX; where A\ = [[In(2v/2/7)]Y/2 + [In(2v2/7)]V/?].
Let o = V|0)0|VT. From the Proof of Theorem 3 in [16],
we have ||[U — V|3 > 2N(1 — |{(¢[¢)|). The Fuchs—van de
Graaf inequality for pure states is

2-2 F(p,O')S||,0—O'||1=2v1—F(p,0'), (El)

where the fidelity F(p, o) = [(¢|¢)|?. Based on Eq. (E1),
we obtain

2NT(p,0)?
(14 [{@l¥)])

where T is the trace distance. As such, we need

2N(1 = [{¢lP)]) = > NT(p,0)%,

4 VN
\/NM > [|U = V]2 > VNT(p,0) = THP‘UHL

which gives ||p — oljy <4/NX; =4d " \;.

We translate this upper bound on the distance between
two density matrices to that between their encoding vec-
tors g1(z) and g1(z'). Altogether with the necessary con-
dition and Eq. (E1), we have

44N > p—olli > 2-2y/Flp,0). (2

For density matrices p, o € X respective to two images,
we have p = |9)¢| = @, [0:) Q; (¢i| = &, [0:)Xil =
), pi and 0 = Q, [¥i)¥i| = @), 04, which are mapped
from images g1 (z) = 5 and g;(2') = t, respectively. All i-
indices run from 1 to n. And |¢;) and |4;) are featurized
from pixels of value s; and t;, respectively. It can be
shown by induction that

F(p,0) = HCOSQ(d_l) (|SZ‘ - Mg) . (E3)
i

For d = 2, we have that F(p,0) = tr(Q), pi &, 0:) =
[1, tr(pios) = TL;Kdila)? = T1;co8(|si — ti|m/2). It
then suffices to show (¢;|1;) = cos?!(|s; — t;|m/2) for
the qudit encoding d > 2. We drop all 7/2 factors and
the subscripts i in s; and t; hereafter. Suppose for d = k,
we have (¢;|1;) equal to

SILEEA P =3 (4 sind (5 sin/ 1
Z( >cos (s) cos® 7 (t) sin? ™ (s) sin? " (¢) (B4
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Then for d = k + 1, we have (¢;|¢;) equal to

L ‘ ‘ 4 '
Z ( : 1> cos™ 179 () cos 19 () sin? 71 (s) sind 1 (¢)
j—

k
= cos(s) cos(t) Z B (j f 1) cost =9 (s) cost I (1)

k+1

sin? =1 (s) sin? 71 (¢) | + sin(s) sin(¢) Z(l - 5)

=2
( . 1) cosP 179 (s) cos* 17 (¢) sin? 72 (s) sind (1) |
j—

(E5)

where 8= (k+1—j)/k.

Identifying the two expressions in the square brackets
as both equal to Eq. (E4), we obtain the desired outcome
{¢i]h;) = cos®(s —t), and the induction completes.

Combining Eq. (E2) and Eq. (E3), we have

4d7 "N\ > 2 -2 H cos? ! (|sz — mg)

> 2 — 2cos(d™Hn 721@ — il T
> - 5 )

(E6)

where the last inequality follows from the inequality
cos" (>, xi/n) > [, cos(x;). It can be readily shown for
n > 2 using the following trick. Consider any pair z; and
z; and let x,, be their arithmetic average so x; = z,, +d
and z; = 2, — d for some d # 0. Then cos(z;) cos(z;) =
c08(Zyy +d) cos(2y, —d) = €082 () —sin?(d) < cos? ().
Therefore, one can maximize the overall cosine product,
while maintaining the sum of the arguments, by replacing
any pair cos(z;) and cos(z;) with cos(z,,) and cos(z,),
and successively replacing every pair till every factor con-

verges to cos(),; x;/n) with the same argument.
Solving for >, |s; — ti| = ||g1(2) — ¢91(2’)||x in Eq. (E6)
yields the upper bound on the perturbation size in (Z, ¢1).
O

Appendix F: Proof of Proposition 1

Proof. We decompose g into gz o g1 where g; : (Z,¢?) —
(Z,¢') is desired to be smooth in practice. It can be
generalized to ¢ norm on Z and similar proof follows
since the /P norm of any given vector does not grow with
p. We have [|g1(2) — g1 (2|1 S wi(]|]z = 2'||2), ¥z, 2" € Z.

We show that it is also smooth for the qudit encoding
go 1 (Z,0Y) — (X,LY) as in Eq. (2). Applying the qudit
feature map and similar to that in Appendix E, it can be
shown that

Yis
lp = ol =2, [t = [Teos2@ (jsi —#l3).  (F)

K2




Since w(-) is used in an upper bound in Theorem 2,
we need to obtain the scaling of a lower bound to w(-).
The w(-) that forms a tight upper bound in Eq. (6) must
have w(||z — 2’||2) upper bounding Eq. (F1) for arbitrary
2,2 € Z. Hence, it is equivalent to find the scaling of a
lower bound to Eq. (F1). That is, we have Vz,2' € Z,

w(llz = #[l2) 2 2\/1 T eos@ (1si — )

. 2\/1 ~costaon (El=td)
= n 2
=21 costi-0n (- ou(2) = n ()l

where the second inequality follows from the inequality
cos"™ (>, x;i/n) > T, cos(x;) proven for Eq. (E6). Since
the above inequality holds for any z,z’ such that ||z —
Z'||la = 7 for any 7, and since we assume w(-) forms a
tight upper bound in Eq. (6), g is smooth with

w(r) > \/1 — cos?n(d=1) (%wl (T))7 Vr > 0.

In terms of the scaling with respect to n and d, if
wi(-) = (1), such as when g7 is Lipschitz continuous,

we have w(-) = Q(y/d/n). O

Appendix G: Proof of Theorem 2

Proof. If letting ¢;, > w(

V7/2exp(—

In[n/(292)]), then v >
w™(€n)?/2). By the definition of the gen-
erator and the latent space, we have N,(¢7'(p)) =
£(p), Vp € & C X. Let us define hi, {p €
ht|d(p,U;jx;h?) < €;,} which is the set of density matri-
ces that are at positive distance at most €;, from Uj;ﬁihj ,
then following Definition 3,

R (h¢€) h(p)} < €inl

= Nim(g™H (UihL,),

= Pr fmin{o — pll (o) #

= &(U;hl,))
(G1)

since h', are disjoint for different class i. Hence, it can be
shown that RCY(h,&) > 1 —~ when £(h) < 1/2,Vi from
Theorem 1 in [15]. The contrapositive yields the neces-
sary condition Eq. (7). For completeness, we present our
condensed version of the proof below.

We write the cumulative distribution function of

the standard Gaussian distribution A/(0,1) as ®(z) =
1/v2r [ exp(—u?/2)du.
Theorem 4 (Gaussian isoperimetric inequality)[20, 49].
Let N, be the canonical Gaussian measure on R™. Let
> C R™ be any Borel set and let 3. = {z € R™|32' €
Y st ||z =22 <€}t If Npp(2) = ®(a) then Ny (Ee) >
D(a+e).
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Lemma 1 [15]. Let p € [1/2,1], we have for all n > 0,

D@ ) 1) > 1- (1) 5o ¥,

Ifp=1-1/K for K>5 and n > 1, we have

(1_%)%] >1—\[ 2ol
(G3)

We first introduce the following sets in the la-
tent space (R™, (2 N,,): H' = g~ '(h%) and H!, =
{z € Hid(2,U;jxH7) < w'(ey)}. We note that
H' |JU;.iH7 is the set of points that are at distance at
most wt(€;,) from U;2; H. Then by Theorem 4 applied
with ¥ = U]?g,H- and a = ay; = PN, (UJ#H ), we
have No, (H2,) +Nop (Uji HY ) > <I>(a¢, +w ™ (ein))- Re-
arranging, Nm(H ) > ®(ay; +w (ein)) — Playg). As
H', are disjoint for different class i, we have

(G2)

(P~

m(UiHL) D(api +w (€im)) — (I)(aaéi)] :

Mw

=1

By the definition of w(-), we have g(H',) C h,. It leads
t0 Non(g~1(h,)) = Nin(HL,) and Nop(Uzg—i(A,)) >
N (U;HY,). Therefore, we obtain the result for arbitrary
decision boundary,

WV
]~

Nm(uzg_l (P(asﬁi + w_l(em)) - (I)(aii)] .
i=1
Equivalently by Eq. (G1),
K
REC(1,€) > ) [®(agi +w ™ (€n)) — Plax)] -
i=1

Suppose £(h') = Nop(H') < 1/2 and Ny, (U2 H?) >
1/2,¥i. Using Eq. (G2) in Lemma 1 in the second in-
equality below,

K
RET (6 =) [@

(Ui ™ (ein)
T Nt
>§_:[1— 1= N (U HY ))\Ee“(””
h N (Usa)]
~ (1= /5 i 1~ N (U]

—w T (e)?
=1—4/= = >1—7,
\V 2° v



provided that v > /7/2exp(—w™!(€;n)?/2). The con-
trapositive yields the results in our Theorem 2 that ¢;, <
w(y/In [7/(29?)]) is necessary for REY(h, &) <1 —1.

When there are at least 5 equiprobable classes [15],
substituting Eq. (G3) in Lemma 1 into the above inequal-
ity yields

- 2

Hence, the in-distribution robustness of h decreases with
the number of equiprobable classes.

Alternatively, a numerically looser upper bound on
€in can be derived from the fact that (R™, ¢ N,,) re-
sembles a normal Lévy family but the concentration
function decays independently of N. By Theorem 4,
any Borel set ¥ there such that A,,(X) = ®(a) satis-
fies Nip(Ze) > ®(a + €). In particular, for all Borel
sets A with measure at least 1/2, we have a > 0 and
thus, 1 — Npn(Ae) < 1 — ®(e) < exp(—e?/2) where the
last inequality follows from the Gaussian tail bound.
By definition of the concentration function in Eq. (3),
a(e) = sup {1l — Ny (A} < exp(—€2/2).

By substituting the statement and the proof of Theo-
rem 1 with k; = 1 and ky = 1/v/2 and N = 1, we have
the following. Let n € [0,1/2] be such that N,,(H!) =
E(RY) <1—n, VI € L. If €5, > w(y/In(4/42)++/In(4/72)),
then by acting w=!(), which is a strictly increasing func-
tion, on both sides, we obtain w™(e;,) > /In(4/42) +
v/In(4/n?). This implies that ngl(em)(thm) >1—7.
Since R591(6i7l)(h,Nm) < RFPY(h,€) (this is equivalent
to g(H',) C h,), it therefore implies RY (h,&) > 1 —1~.
The contrapositive yields, for sz (h,§) < 1—7, it is nec-
essary to have €, < w(y/In(4/72) + v/In(4/1?)). When
n = 1/2, it can be verified that this necessary upper
bound is looser than that in Theorem 2 for the same ~.

O

Appendix H: Proof of Theorem 3

Proof. We have the mapping to obtain a product state
density matrix P: X — X, 0 — @);_; trj; 0 where n
is the number of qubits. This is not a CPTP map on the
set of d" x d" density matrices X since it is non-linear.
Nonetheless, it can be viewed as a CPTP map A on X®"
as A 1 XO" — X, 0% 5 tryj2([0%"];) where [0®"];
denotes the i-th copy of o, which involves only partial
tracing. In particular, for a product state p®* with the
integer a > 1, A(p®?) = p.

Consider p € S C X an n-qubit density matrix, namely
p=g(z) for some z € Z. Let 0 € X. We have

lo = P(@)lh = [A(®™) = A@®M)ly < 0% — 0",
<2/ T=F(p", 0% = 2,/1= Flp, 0",
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where the first inequality follows from the contractive
property of the trace norm under any CPTP map and the
last equality follows from the multiplicativity of fidelity
with respect to tensor products. By Eq. (E1), we have
F(p,o) > (1 —|lp — o|/1/2)?. Substituting in, we obtain

||p—P<a>|1s2¢1—(1—”p‘2"”1) |

Let & € S be the closest in-distribution sample to P(o),
which can be found by fitting parameters {s;} in Eq. (1).
Therefore, ||P(c) —&|1 < ||[P(c) — p||. We then obtain

lp =&l < llp— P(o)llL + [ P(o) — 5llx

Recall that for the quantum classifier h, h(c) = h(5).
Taking minimum over all ¢ such that h(c) # h(p) (i.e.,

h(@) # h(p));

€in(p) < min{|[p — |1}

we obtain

emlp) < 4\/1 - (1 - 5"";(’)))2”. (H3)

Notice that to obtain an inequality between €;,(p) and
eunc(p) like in Eq. (H3), it is sufficient to have Eq. (H2)
hold after taking the minimum, and it is not necessary
to have Eq. (H1) hold for a generic o. Since for n-qubit
density matrices which are separable with respect to some
equal bipartition of the system, denoted as {p;}, form a
dense subset [67], we can effectively realize the same min-
imum in Eq. (H2) over o € {py} such that h(o) # h(p)
instead. For equal bipartite states, the number of copies
to make a CPTP map A’ acting on them to obtain P(o)
reduces to n/2 if n is even and reduces to (n + 1)/2 if
n is odd. For instance, given a 4-qubit ¢ whose qubit
1 is only entangled with 2 and qubit 3 is only entan-
gled with 4, A'(0®?) = tryy 3)(0) ® trs.43(0) = P(o) =
A(p®*). Therefore, we can replace the exponent 1/(2n)
in Eq. (H3) with 1/n for even n and 1/(n+1) for odd n.

We recall e,nc(p) < €in(p), ¥p € X and rearrange,

. 2 Ne
2-2 (1 - &”1(6”)) < €unc(p) < €in(p),

where n, = n for even n and n, =n + 1 for odd n. [
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