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Quantum signal processing (QSP) is a powerful quantum algorithm to exactly implement matrix
polynomials on quantum computers. Asymptotic analysis of quantum algorithms based on QSP has
shown that asymptotically optimal results can in principle be obtained for a range of tasks, such
as Hamiltonian simulation and the quantum linear system problem. A further benefit of QSP is
that it uses a minimal number of ancilla qubits, which facilitates its implementation on near-to-
intermediate term quantum architectures. However, there is so far no classically stable algorithm
allowing computation of the phase factors that are needed to build QSP circuits. Existing methods
require the usage of variable precision arithmetic and can only be applied to polynomials of relatively
low degree. We present here an optimization based method that can accurately compute the phase
factors using standard double precision arithmetic operations. We demonstrate the performance of
this approach with applications to Hamiltonian simulation, eigenvalue filtering, and the quantum
linear system problems. Our numerical results show that the optimization algorithm can find phase
factors to accurately approximate polynomials of degree larger than 10, 000 with error below 10−12.

I. INTRODUCTION

Recent progress in quantum algorithms has enabled
construction of efficient quantum circuit representations
for a large class of non-unitary matrices, which signif-
icantly expands the potential range of applications of
quantum computers beyond the original goal of efficient
simulation of unitary dynamics envisaged by Benioff [2]
and Feynman [10]. The basic tool for representation of
non-unitary matrices and hence of non-unitary quantum
operators is called block-encoding [12]. It describes the
process in which one embeds a non-unitary matrix A into
the upper-left block of a larger unitary matrix UA, and
then expresses the quantum circuit in terms of UA.

Computation of matrix functions, i.e., evaluation of
F (A), where F (x) is a smooth (real-valued or complex-
valued) function, is a central task in numerical linear al-
gebra [17]. Numerous computational tasks can be per-
formed by generating approximations to matrix func-
tions. These include application of a broad range of oper-
ators to quantum states: e.g., e−itA for the Hamiltonian
simulation problem; e−βA for the thermal state prepara-
tion problem; A−1 for the matrix inverse (also called the
quantum linear system problem, QLSP); and the spec-
tral projector of A for the principal component analysis,
to name a few.

Several routes to construct a quantum circuit for f(A)
have been developed. These include methods using phase
estimation (e.g., the HHL algorithm [16] for the matrix
inverse), the method of linear combination of unitaries
(LCU) [3, 7], and the method of quantum signal pro-
cessing (QSP) [12, 21, 23]. Among these methods, QSP
stands out as so far the most general approach capable
of representing a broad class of matrix functions via the
eigenvalue or singular value transformations of A, while
using a minimal number of ancilla qubits. The basic idea
of QSP is to approximate the desired function F (x) by

a polynomial function f(x), and then find a circuit to
encode f(A) exactly (assuming an exact block-encoding
UA). Treating the block-encoding UA as an oracle, the
application of QSP has given rise to asymptotically op-
timal Hamiltonian simulation algorithms [8, 14]. Appli-
cations have also been made to solving QLSP [12, 13],
and to eigenvalue filtering [20]. In particular, the eigen-
value filtering approach of Ref. [20] does not directly
approximate A−1, but approximates a spectral projec-
tion operator, leading also to a quantum algorithm for
solving QLSP with near-optimal complexity without the
need of involving complex procedures such as variable
time amplitude amplification [1].

Despite these fast growing successes, practical appli-
cation of QSP on quantum computers, whether these
are near- or long-term machines, still faces a significant
challenge. A QSP circuit is defined using a series of
adjustable phase factors. Once these phase factors are
known, the QSP circuit can be directly implemented us-
ing UA together with a set of multi-qubit control gates
and single qubit phase rotation gates. However, the in-
verse problem, i.e., finding the phase factors associated
with a given polynomial function f(x) is extremely diffi-
cult, to the extent that in practice very few applications
of QSP have been made to date. The original work of
Low and Chuang [21] demonstrated the existence of the
phase factors but was not constructive. Initial efforts to
find constructive procedures were not encouraging. Thus
it was reported in [8] that it was prohibitive to obtain
a QSP circuit of length that is larger than 30 for the
Jacobi-Anger expansion [21] of the Hamiltonian simula-
tion problem, and concluded “the difficulty of computing
the angles needed to perform the QSP algorithm pre-
vents us from taking full advantage of the algorithm in
practice, so it would be useful to develop a more efficient
classical procedure for specifying these angles”.

The first constructive procedure to find phase factors
was given in [12], with a procedure which requires a recur-
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sive solution of roots of high degree polynomials to high
precision, counting multiplicities of the roots. There-
fore this procedure is not stable for representing high
degree polynomials using QSP. Significant improvement
has recently been made by Haah [13], who proposed a
numerical algorithm to compute phase factors up to or-
der ∼ 1000, provided that all arithmetic operations can
be computed with sufficiently high precision. Specifi-
cally, the number of classical bits needed for this scales as
O(d log(d/ε)), where d is the degree of the polynomial f ,
and ε is the target accuracy. Therefore the algorithm is
still not classically numerically stable (a numerically sta-
ble algorithm should use no more than O(poly log(d/ε))
classical bits) [18]. Haah’s algorithm was implemented in
Ref. [13] using Mathematica and employing the variable
precision arithmetic capability of this. The running time
is observed to be O(d3).

In this paper, we demonstrate that the phase factors
can be accurately determined with standard double pre-
cision arithmetic operations, even when the degree of
the polynomial f(x) is very high (& 10, 000) and when
a very high precision (L∞ error of function approxima-
tion . 10−12) is required. We achieve this with a stan-
dard optimization approach that only minimizes a loss
function, rather than recursively determining the phase
terms. This minimization involves the multiplication of
matrices in SU(2) and is thus numerically stable. We iter-
atively refine the phase factors to minimize the loss func-
tions. However, since the optimization of the phase fac-
tors is a very nonlinear procedure, the initial guess must
be carefully chosen. Indeed, if we randomly select the
initial guess, the accuracy of the resulting phase factors
is usually very low. We also find that under proper condi-
tions, the QSP phase factors exhibit an inversion symme-
try structure with respect to the center. This should be
respected in the initial guess and preserved throughout
the optimization procedure. We combine these two fea-
tures to provide a simple, and yet highly effective choice
of the initial guess.

We demonstrate here the performance of our optimiza-
tion based approach to determine the phases for QSP
algorithms with examples for Hamiltonian simulation,
eigenstate filtering, and matrix inversion. We show that
our algorithm can significantly outperform existing ap-
proaches using variable precision arithmetic operations
[11, 13]. Numerical observation indicates that the com-
putational cost of our method scales only quadratically
as O(d2), while the number of classical bits used remains
constant (using the standard double precision, i.e., 64
bits, arithmetic operations) as d increases.

We note that the previous algorithms for finding the
phase factors require an analytic expansion of the smooth
function F (x) into polynomials. For instance, the Jacobi-
Anger expansion is used for Hamiltonian simulation
[13, 21]. When F (x) is defined only on a sub-interval of
[−1, 1], as for, e.g., matrix inversion, where F (x) = 1/x
is not well defined at x = 0, one must first find an ap-
proximate smooth function and then perform expansion
with respect to this approximate smooth function. Both

steps introduce additional approximations and lead to
inefficiencies in implementation. As an alternative, we
propose here to use the Remez exchange algorithm [25]
to directly find the minimax approximation to F (x) on
[−1, 1] or a given sub-interval. Our numerical evidence
shows that this not only streamlines the process of find-
ing QSP factors, but that the use of the Remez algorithm
can also lead to polynomials of significantly lower degree.

Besides the inversion symmetry, we also find that the
phase factors used for approximating smooth functions
can decay rapidly away from the center. We find that
the decay of the phase factors is directly linked to the
decay of the coefficients in the Chebyshev expansion of
the target function. This enables us to design a “phase
padding” procedure, which identifies an initial guess of
the QSP phase factors for a high degree polynomial, given
the corresponding phase factors for a relatively low de-
gree polynomial.

Throughout this paper we shall use the following no-
tation: N = 2n,M = 2m, and [N ] = { 0, 1, . . . , N − 1 },
with n the number of logical qubits (also called system
qubits), and m the number of qubits added to construct
the unitary UA. We shall refer to the latter as the “ancilla
qubits for block-encoding”, which is to be distinguished
with additional ancilla qubits needed for quantum signal
processing. Td and Rd are Chebyshev polynomials of de-
gree d of the first and second kind respectively. For a
matrix A, the transpose, Hermitian conjugate and com-
plex conjugate are denoted by A>, A†, A∗, respectively.

II. REVIEW OF QUANTUM SIGNAL
PROCESSING

II.1. Block-encoding and qubitization

Block-encoding is a general technique to encode a non-
unitary matrix on a quantum computer. Let A ∈ CN×N
be an n-qubit Hermitian matrix. If we can find an (m+
n)-qubit unitary matrix U ∈ CMN×MN such that

UA =

(
A ·
· ·

)
(1)

holds, i.e., A is the upper-left matrix block of UA, then
we may get access to A via the unitary matrix UA. In
particular,

A = (〈0m| ⊗ In)UA (|0m〉 ⊗ In) . (2)

In general, the representation (2) may not exist, e.g.,
when the operator norm ‖A‖2 is larger than 1. So the
definition of block-encoding should be relaxed as follows
[12, 21]: if we can find α, ε ∈ R+, a state |G〉 ∈ CM , and
an (m+ n)-qubit matrix UA such that

‖A− α (〈G| ⊗ In)UA (|G〉 ⊗ In) ‖ ≤ ε, (3)

then UA is called an (α,m, ε)-block-encoding of A. Here
|G〉 is referred to as the signal state (for block-encoding).
Then Eq. (2) gives a (1,m, 0)-block-encoding of A with
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|G〉 = |0m〉. If UA is Hermitian, it is called a Hermi-
tian block-encoding. In particular, all the eigenvalues of
a Hermitian block-encoding UA are ±1. For simplicity of
presentation, in the following we present the explicit con-
struction of block-encoding and qubitization for Hermi-
tian UA. We shall then briefly discuss the generalization
to non-Hermitian UA and refer the reader to Appendix C
for full details of this.

As an example, assume that A is written as the lin-
ear combination of Pauli operators [3, 7] with real coeffi-
cients, as

A =
∑
l∈[M ]

clUl, cl ≥ 0. (4)

Here Ul is a multi-qubit Pauli operator, which is unitary
and Hermitian. We assume the availability of two oracles.
The first one is the (m+ n)-qubit select oracle:

USEL =
∑
l∈[M ]

|l〉 〈l| ⊗ Ul. (5)

USEL implements the selection of the unitary Ul on con-
ditioned on the state of the m-qubit signal register. The
second is the m-qubit prepare oracle that generates a
specific superposition of the m-qubit signal states (note
that |l = 0〉 ≡ |0m〉):

UPREP |0m〉 =
1√
‖c‖1

∑
l∈[M ]

√
cl |l〉 , (6)

where the 1-norm is ‖c‖1 =
∑
l∈[M ] |cl|. Then defining

UA = (U†PREP ⊗ In)USEL(UPREP ⊗ In), (7)

we may verify that UA is a (‖c‖1 ,m, 0)-Hermitian block
encoding of A.

We also define

UΠ = 2 |0m〉 〈0m| ⊗ In − Im ⊗ In. (8)

Both UΠ and UA are unitary and Hermitian. Then Jor-
dan’s lemma [19] states that the entire Hilbert space
H = CMN can be decomposed into orthogonal sub-
spaces Hj invariant under UΠ and UA, where each Hj
has dimension 1 or 2. Restricted to each irreducible two-
dimensional subspace Hj , with a properly chosen basis
denoted by Bj , the matrix representations of UΠ and UA
are

[UΠ]Bj =

(
1 0
0 −1

)
, [UA]Bj =

 λj −
√

1− λ2
j

−
√

1− λ2
j −λj

 .

(9)
Here λ ∈ [−1, 1], and a potential phase factor in the off di-
agonal elements of [UA]Bj can be absorbed into the choice
of the basis. It is worth noting that we can always choose
[UΠ]Bj to be a σz matrix. Given the eigendecomposition

α−1A =
∑
j∈[N ] λj |ψj〉 〈ψj |, there are exactly N such

two-dimensional subspaces Hj of the full Hilbert space

H. Each subspace is associated with a vector |0m〉 |ψj〉
in the (m+ n)-qubit space and Eq. (9) gives

(〈0m| ⊗ In)UA |0m〉 |ψj〉 = λj |ψj〉 = α−1A |ψj〉 . (10)

Each subspace Hj is also the invariant subspace of the
operator Ω := UΠUA, which is referred to as the iterate
[22]. Furthermore, when restricted to Hj , the iterate Ω

is a rotation matrix with eigenvalues e±i arccos(λj). Then
the combined space ⊕j∈[N ]Hj forms a 2N -dimensional
subspace of H. This introduces an additional ancillary
qubit, so that the total number of qubits is now n+m+
1. Each eigenvalue λj is associated with two branches
and hence with an SU(2) matrix via the mapping λj =
cos θj 7→ e±iθj . This technique is called qubitization [22].

Although the decomposition in Eq. (9) formally in-
volves the eigenvalue λj of A and the proper basis Bj , it
is important that we do not necessarily need the eigende-
composition of A explicitly. In fact, the key advantage of
qubitization is that one can perform the eigenvalue trans-
formations for all eigenvalues simultaneously by means of
the quantum signal processing approach.

II.2. Quantum signal processing

Given the above constructions of block-encoding and
qubitization, quantum signal processing (QSP) then con-
siders the following parameterized circuit consisting of d
iterates and d+ 1 rotations that are interleaved in alter-
nating sequence:

UΦ̃ =

[
d−1∏
i=0

(eiφ̃iUΠUΠUA)

]
eiφ̃dUΠ . (11)

Here φ̃i ∈ R, and Φ̃ = (φ̃0, . . . , φ̃d) is the vector of phase
factors that will specify the polynomial f(x) approximat-
ing the desired function F (x). The use of the notation

φ̃ here is due to the fact that there are multiple sets of
phase factors, which can be deduced from each other. In
this section we use different notations such as φ̃, φ, ϕ to
distinguish these phase factors, and record their relation
explicitly.

We now summarize the construction of these phase fac-
tors for a non-unitary but Hermitian operator A, accord-
ing to the approach of Ref. [12]. For any φ̃ ∈ R and
n-qubit state |ψ〉, we have

eiφ̃UΠ |0m〉 |ψ〉 = eiφ̃ |0m〉 |ψ〉 .

For any m-qubit state |⊥m〉 satisfying 〈0m| ⊥m〉 = 0, we
have

eiφ̃UΠ |⊥m〉 |ψ〉 = e−iφ̃ |⊥m〉 |ψ〉 .

Therefore

UΠ = −ieiπ2 UΠ .
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We may then absorb UΠ into the rotation matrix as

UΦ̃ = (−i)d

[
d−1∏
i=0

(eiϕiUΠUA)

]
eiϕdUΠ . (12)

Here we have redefined the phase factors as ϕi = φ̃i + π
2

for i = 0, . . . , d − 1, and ϕd = φ̃d. The global phase
factor (−i)d can be optionally discarded and we shall do
so below.

Then we may readily check that the matrix eiϕUΠ has
a (1, 1, 0)-block-encoding as illustrated in Fig. 1. Here
the control gate represents an (m+ 1)-qubit Toffoli gate
(with the usual convention that open circles represent
the target qubit being flipped when the control bits are
zero).

|0〉 e−iϕσz|0m〉|ψ〉

FIG. 1: Quantum circuit for block-encoding eiϕUΠ . The
three distinct groups of lines represent 1,m,n qubits,

respectively.

Using the circuit in Fig. 1, we may then implement the
(n+m)-qubit unitary operator UΦ̃ of Eq. (12) using only
one additional ancilla qubit and the circuit in Fig. 2 [11].

Ref. [11] investigated the general question as to which
class of functions can be block-encoded by UΦ̃ for some
choice of phase factors. First, each Hj is an invariant
subspace of UΦ̃. So the upper-left element of UΦ̃ acting
on Hj is a function of the eigenvalue λj . Thus we see
that qubitization reduces the problem of representing a
matrix function on an n-qubit system to a representation
problem in SU(2), which can be carried out on classical
computers. We now state main theorem of QSP from
Ref. [11] below in Theorem 1.

Theorem 1. (Quantum Signal Processing in SU(2)
[11, Theorem 3]) For any P,Q ∈ C[x] and a positive
integer d such that (1) deg(P ) ≤ d,deg(Q) ≤ d − 1, (2)
P has parity (d mod 2) and Q has parity (d−1 mod 2),
(3) |P (x)|2 + (1 − x2)|Q(x)|2 = 1,∀x ∈ [−1, 1]. Then,
there exists a set of phase factors Φ := (φ0, · · · , φd) ∈
[−π, π)d+1 such that

UΦ(x) = eiφ0σz

d∏
j=1

[
W (x)eiφjσz

]
=

(
P (x) iQ(x)

√
1− x2

iQ∗(x)
√

1− x2 P ∗(x)

) (13)

where

W (x) = ei arccos(x)σx =

(
x i

√
1− x2

i
√

1− x2 x

)
.

The proof of Theorem 1 is constructive and, as shown
explicitly in Ref. [11], it yields an algorithm to com-
pute the phase factor vector Φ once the polynomials
P,Q ∈ C[x] are given. The algorithm of Ref. [11] is sum-
marized in Appendix G (Algorithm 5, with modifications
to enhance the numerical stability). We note that these
phase factors are unique, modulo certain trivial equiva-
lence relations (Appendix A).

In order to connect Theorem 1 with the representation
of UΦ̃ in Eq. (11), we consider the matrix representation
of UΦ̃ restricted to Hj , let x = λj , and use the following
identity

ei arccos(x)σx = e−iπ4 σz

(
x −

√
1− x2

√
1− x2 x

)
eiπ4 σz .

(14)

Hence to connect Eq. (13) with Eq. (11), we have φ̃0 =

φ0 − π
4 , φ̃d = φd + π

4 , and φ̃i = φi for 1 ≤ i ≤ d − 1.

Therefore, the relation between the phase factors {φi}di=0

in Theorem 1 (Eq. (13)) and the phase factors {ϕi}di=0

appearing in UΦ̃ of Eq. (11) and in the implementation
of the QSP circuit in Fig. 2, is given by

ϕi =


φ0 + π

4 , i = 0,

φi + π
2 , 1 ≤ i ≤ d− 1,

φn + π
4 , i = d.

(15)

II.3. Representing general matrix polynomials

Now given a degree d polynomial P (x) ∈ C[x] satis-
fying the requirement of Theorem 1, for any (α,m, 0)
Hermitian-block-encoding of A, the circuit in Fig. 2
yields a (1,m + 1, 0)-block-encoding of P (A/α). With
some abuse of notation, we shall denote both this block-
encoding of the polynomial function of A and the associ-
ated QSP circuit by UΦ. The QSP circuit uses d queries
of UA and O((m+ 1)d) other primitive quantum gates.

We should remark that the condition (3) in Theorem 1
imposes very strong constraints on P,Q that are nontriv-
ial to satisfy. Therefore we consider the following cases
separately on how to construct QSP circuits in practice.

Case 1. In many applications, we are interested in
computing f(A/α), where f(x) is a real polynomial. It
is stated in [11, Theorem 5] that for f ∈ R[x] satisfy-
ing (1), (2) and |f(x)| ≤ 1,∀x ∈ [−1, 1], there exists
P ∈ C[x], Q ∈ R[x] such that Re[P (x)] = f(x). The
choice of P,Q may not be unique. This only gives the
block-encoding of P (A/α). In order to obtain the block-
encoding of f(A/α), we can use the linear combination
of unitaries (LCU) technique to separate the real and
imaginary parts of P (x) as follows. Note that

f(x) =
1

2
(P (x) + P ∗(x)). (16)

If the upper-left entry of UΦ(x) is P (x) as in Eq. (13),
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|0〉 e−iϕdσz e−iϕd−1σz · · · e−iϕ0σz

|0m〉
UA UA

· · ·

|ψ〉 · · ·

FIG. 2: Quantum circuit for quantum signal processing of a general matrix polynomial with a Hermitian block-encoding UA.

then

U∗Φ(x) = e−iφ0σz

d∏
j=1

[
W ∗(x)e−iφjσz

]
=

(
P ∗(x) −iQ∗(x)

√
1− x2

−iQ(x)
√

1− x2 P (x)

)
Here U∗Φ(x) is the complex conjugation of UΦ(x), and
hence its upper-left entry of is P ∗(x). From

W ∗(x) = eiπ2 σzW (x)e−iπ2 σz ,

we find that U∗Φ(x) = U−Φ(x), where the negative phase
factors are defined by

− Φ :=
(
−φ0 +

π

2
,−φ1, · · · ,−φd−1,−φd −

π

2

)
, (17)

which simply negates each phase factor except for φ0 and
φd. In order to find a block-encoding of 1

2 (UΦ + U−Φ),
we can introduce one additional ancilla qubit to the sig-
nal register. The prepare oracle UPREP is simply the
Hadamard gate H. Fig. 3 gives the circuit for the
(1,m + 2, 0)-block-encoding of f(A/α). This technique
is also called the addition of block-encodings [12]. Note
that according to Eq. (15), the negative phase factors −Φ
should be implemented using the circuit in Fig. 2 with

ϕi =


−φ0 + 3π

4 , i = 0,

−φi + π
2 , 1 ≤ i ≤ d− 1,

−φd − π
4 , i = d.

(18)

|0〉 H • H

|0m+1〉
UΦ U−Φ

|ψ〉

FIG. 3: Quantum circuit for block-encoding of f(A/α) using
LCU to separate real and imaginary parts of f(x). The

three horizontal lines represent 1,m+ 1,n qubits,
respectively. The circuits UΦ, U−Φ, are shown, after proper

transformation of the phase factors, in Fig. 2.

Case 2. The real polynomial f(x) in case 1 is assumed
to have definite parity. For a general real polynomial
without parity constraints, we may use the decomposi-
tion

f(x) = feven(x) + fodd(x), (19)

where feven(x) = 1
2 (f(x) + f(−x)), fodd(x) =

1
2 (f(x) − f(−x)). If |f(x)| ≤ 1 on [−1, 1], then
|feven(x)|, |fodd(x)| ≤ 1 on [−1, 1], and feven(x), fodd(x)
can be each constructed using the circuit in Fig. 3. In-
troducing another ancilla qubit and using the same form
of the LCU circuit in Fig. 3 (the UΦ, U−Φ circuits should
be replaced by the QSP circuits for even and odd parts,
respectively), we find a (2,m + 3, 0)-block-encoding of
f(A/α). Equivalently, we have a (1,m + 3, 0)-block-
encoding of 1

2f(A/α).
Case 3. The most general case is that f(x) ∈ C[x] is

a complex polynomial. Let f(x) = g(x) + ih(x) where
g, h ∈ R[x] are the real and imaginary parts of f(x), re-
spectively. We remark that even when h = 0 (i.e., f(x) is
a real polynomial), the associated polynomial P (x) might
have a non-vanishing imaginary component. Therefore
in general we cannot expect to find phase factors that
simultaneously encode g(x) + ih(x), even if f(x) has def-
inite parity. Hence we need to use LCU once again to
find the block-encoding of f through the linear combi-
nation of block-encodings of g and ih, respectively. As-
suming |g(x)|, |h(x)| ≤ 1 on [−1, 1], following case 2, we
have a (2,m+3, 0)-block-encoding of g(A/α) denoted by
Ug. Similarly a circuit of the form in Fig. 4 gives the
(2,m+ 3, 0)-block-encoding of ih(A/α) denoted by Uih.

|0〉 H Z • H

|0m+1〉
UΦ U−Φ

|ψ〉

FIG. 4: Quantum circuit for block-encoding of ih(A/α) using
linear combination of unitaries. The three lines represent
1,m+ 1,n qubits, respectively. The circuit UΦ, U−Φ, after

proper transformation of the phase factors, is given in Fig. 2.

We can use the LCU circuit of the form in Fig. 3,
with the UΦ, U−Φ circuits now replaced by Ug and Uih,
respectively, to ensure that the prepare oracle is still the
Hadamard gate. This gives a (4,m+4, 0)-block-encoding
of f(A/α).

We now make some general remarks on the block-
encoding of matrix polynomials. First, while LCU is
a general technique for implementing addition of block-
encodings, when block-encoding a real polynomial as in
case 1 above, one can actually save an ancilla qubit by
taking advantage of the special structure of QSP cir-
cuits (see Appendix B). A similar implementation ex-
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ists for an imaginary polynomial, using a Z gate as in
Fig. 4. This reduces the number of additional ancilla
qubits by 1 for all cases discussed above, and the num-
ber of ancilla qubits then matches the results in [12].
Second, although the concept of qubitization and QSP
were introduced here for Hermitian block-encodings in
order to make use of Jordan’s lemma, all the construc-
tions shown above can be generalized to non-Hermitian
block-encodings. One possible procedure to achieve this
is described in Appendix C, which requires only use of
one additional ancilla qubit. We note here that an al-
ternative procedure is to use the quantum singular value
transformation, which removes the need of this ancilla
qubit and leads to a slightly simpler circuit, as well as
allowing treatment of the case when A is not a Hermi-
tian matrix [12]. For simplicity all further discussion in
this paper assumes that an (α,m, 0)-block-encoding UA
is available. When the block-encoding itself is not error-
free, i.e., UA is an (α,m, ε)-block-encoding of A, the cu-
mulative error in the QSP circuit can also be analyzed.
We refer readers to [11, 12] for more details.

II.4. Direct methods for finding phase factors

According to Section II.3, case 1 is the most impor-
tant step, since cases 2 and 3 can simply be obtained
from applying case 1 repeatedly and using the LCU tech-
nique. In fact, the proof of Theorem 5 in [11] also pro-
vides a constructive method for finding the phase fac-
tors, as follows. Given a properly normalized real poly-
nomial with definite parity f(x), one may first recon-
struct complementing polynomials B(x), C(x) ∈ R[x] to
form P = f + iB,Q = C satisfying the requirement in
Theorem 1. This can be done by solving all the roots
(including multiplicities) of the polynomial 1−f(x)2 [11,
Lemma 6]. Then one can use a reduction method to find
the phase factors. This procedure will be referred to as
the GSLW method. This procedure is exact if all float-
ing point arithmetic operations can be performed with
infinite precision, but is numerically unstable with stan-
dard double precision arithmetic operations. One dis-
advantage of the GSLW method is that it is based on
the Taylor expansion of high order polynomials, which
can be numerically highly unstable when the degree of
polynomials becomes large.

To improve the numerical stability of the GSLW
method, another algorithm was proposed in [13], which
we will refer to as the Haah method. In the Haah method,
the polynomials defined on [−1, 1] are mapped to the unit
circle via the transformation x 7→ e±i arccos(x), and then
extended to the complex plane. Such treatment is equiv-
alent to a Chebyshev polynomial expansion, which im-
proves the numerical stability over the GSLW method
which uses the standard basis {1, x, x2, . . .}. Then, a
similar reduction procedure is used to deduce the phase
factors. However, one still needs to find the roots of a
polynomial of high degree, and the number of classical
bits required for this is O(d log d), where d is the degree

of polynomial.
In both the GSLW method and the Haah method, the

phase factors are obtained from a single shot calculation.
Therefore we refer to them as the direct methods for find-
ing phase factors. This is in contrast to the optimization
based method to be introduced below, which finds the
phase factors via an iterative procedure.

The performance of the GSLW method has also been
improved by a more recent work [5] after this paper was
posted. The improved method of [5] is still based on di-
rect factorization of polynomials. However, it is found
that the numerical stability can be empirically improved
using a method called “capitalization”, which adds a
small perturbation to the leading order term of the tar-
get polynomial. Together with another technique called
“halving”, the method of [5] can find a sequence with
more than 3000 phase factors with double precision arith-
metic operations. This result indicates that the sensitiv-
ity of the phase factors with respect to perturbation of
the target polynomials is still not well understood. Our
optimization-based algorithm below presents a very dif-
ferent approach to determining the phase factors, which
can achieve machine precision directly without perturb-
ing the target polynomials and which is thus not limited
by stability of such procedures. We show that with the
optimization approach up to 10,000 phase factors can be
determined with error less than 10−12.

III. OPTIMIZATION BASED METHOD FOR
FINDING PHASE FACTORS

Both the GSLW and the Haah methods are limited
by the usage of root-finding and matrix reduction proce-
dure, which result in the numerical instability when the
degree of polynomials becomes large. Here we consider
an alternative strategy to find the phase factors, by direct
minimization with respect to a certain distance function,

L(Φ) := dist {Re [〈0 |UΦ (x)| 0〉] , f(x)} . (20)

In practice, the distance function will be characterized
by the mean squared loss over discrete sample points.
When L(Φ∗) is zero, we obtain the desired phase factors
through the minimizer Φ∗. This strategy bypasses the
difficulty of constructing the complementing polynomials
that relies on the high-precision root-finding procedure.
Because the computation of the gradient and the Hessian
matrix of the objective function only involve the matrix
multiplications in SU(2), which is a numerically stable
procedure, the optimization scheme is expected to sig-
nificantly improve the robustness of the algorithm. This
will be verified by our numerical tests. It also ensures an
efficient optimization.

In the following discussion, we use P,Q as the poly-
nomials involved in the QSP unitary matrix in Eq. (13).
Let Cd+1 ⊂ [−π, π)d+1 be the irreducible set of phase
factors with d + 1 entries. The pair of polynomials
P (x), Q(x) ∈ C[x] satisfying conditions in Theorem 1
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determines a unique set of phase factors Φ ∈ Cd+1 (see
Appendix A).

We again only consider a properly normalized real
polynomial with definite parity f(x) as in case 1 of Sec-
tion II.3. Because the form of Q(x) is not of interest, we
may restrict Q(x) ∈ R[x].

III.1. Symmetry property of the phase factors

Given a set of QSP factors Φ, let the inverse phase
factors be defined as

Φ− = (φd, φd−1, · · · , φ0). (21)

The inverse phase factors should not be confused with
the negative phase factors −Φ in Eq. (17).

Theorem 2 states that when we choose Q(x) to be a
real polynomial, the phase factors are symmetric under
inversion.

Theorem 2 (Inversion Symmetry). 1) If Φ = Φ−,
then Q ∈ R[x]. 2) If Q ∈ R[x], then we may choose
Φ ∈ Cd+1 such that Φ = Φ−.

Proof. 1): Obviously,

UΦ−(x) = eiφdσz

d∏
j=1

[
W (x)eiφd−jσz

]
= UΦ(x)>

=

(
P (x) iQ∗(x)

√
1− x2

iQ(x)
√

1− x2 P ∗(x)

)
.

(22)

Then, the statement that Φ is invariant under inversion
implies that Q(x) = Q∗(x) ∈ R[x].
2): If Q ∈ R[x], then UΦ(x) = UΦ(x)> =
UΦ−(x). Expand P,Q in terms of Chebyshev poly-

nomials, i.e., P (x) =
∑
j pjTj(x),

√
1− x2Q(x) =∑

j qj
√

1− x2Rj−1(x). After a change of variable x =
cos θ, P,Q are transformed to Fourier series in terms
of cos(jθ) and sin(jθ) respectively. The continuation
θ 7→ 2π − θ extends the QSP unitary consisting of
P,Q to a U(1) → SU(2) function, after identifying θ
with eiθ ∈ U(1). Moreover, the parity constraint im-
plies that this function only has non-zero coefficients
j = −d,−d + 2, · · · , d − 2, d with respect to eijθ. Ap-
pendix A shows that the set of phase factors is unique,
up to the equivalence relation for the irreducible set Cd+1.
So Φ = Φ− up to equivalence relations. In particular, we
may choose the phase factors such that Φ = Φ−.

As an example, let P (x) = Td(x), Q(x) = Rd−1(x), the
corresponding QSP phase factors are Φ = (0, 0, · · · , 0︸ ︷︷ ︸

d+1

).

For P (x) = iTd(x), Q(x) = Rd−1(x), the phase factors
are Φ = (π4 , 0, · · · , 0︸ ︷︷ ︸

d−1

, π4 ). In both cases, the polynomial Q

is real. Thus, it is evident that the phase factors satisfy
the inversion symmetry in Theorem 2.

The symmetry property allows us to reduce the num-
ber of degrees of freedom by a factor of 2, and also moti-
vates the symmetric construction of phase factors in the
optimization procedure later. The appearance of two π/4
factors in the example above can be justified by Lemma 3,
which shows that the action of these phase factors inter-
changes the real and imaginary parts of the polynomial
P up to a sign.

Lemma 3. Given a set of QSP phase factors Φ, the
following relations hold point-wise for x ∈ [−1, 1],

Re [〈0|UΦ(x)|0〉] = −Im
[
〈0|e−iπ4 σzUΦ(x)e−iπ4 σz |0〉

]
,

Im [〈0|UΦ(x)|0〉] = Re
[
〈0|e−iπ4 σzUΦ(x)e−iπ4 σz |0〉

]
.

Proof. Factorize the QSP unitary as UΦ = a0I + a1σz +
a2σx + a3σy. The algebra of Pauli matrices implies
that e−iπ4 σzUΦe

−iπ4 σz = a0e
−iπ2 σz +a1e

−iπ2 σzσz +a2σx +
a3σy = −ia0I−ia1σz+a2σx+a3σy. Then, the conclusion
follows.

III.2. Choice of objective function

If the target smooth function f(x) is not a polyno-
mial, we first approximate f(x) using a polynomial, and
then feed the polynomial into the QSP solver. We would
stress that this preprocessing step of polynomial approx-
imation is necessary for the success of the optimization
method. If we directly feed a non-polynomial function
f(x) into the objective function, then generally the equa-
tion L(Φ) = 0 does not have a solution. Numerical evi-
dence indicates that the landscape of the objective func-
tion is very complex and the optimization procedure can
easily get stuck in one of the many local minima. On
the other hand, for any polynomial satisfying conditions
in Theorem 1, there always exists a set of QSP factors
Φ∗ so that L(Φ∗) = 0. Our numerical results indicate
that starting from a proper initial guess, the optimiza-
tion procedure can be very robust.

Since Q(x) is not involved in the distance function,
we may require Q(x) ∈ R[x] and impose the inversion
symmetry constraint (Theorem 2) on the phase factors.
Under this constraint, the phase factors Φ = (φ0, . . . , φd)
have dd+1

2 e degrees of freedom for optimization. As a
result, it is reasonable to choose the approximation as a
polynomial f of degree d with parity (d mod 2), which
has the same number of adjustable coefficients. Theo-
rem 1 and Theorem 2 together guarantee the existence of
symmetric phase factors Φ such that Re [〈0|UΦ(·)|0〉] = f .
In this case, the optimization over Φ towards the mini-
mum value of the distance function can be viewed as a
polynomial interpolation taking the QSP parameteriza-
tion. These features suggest that the mean squared loss
in terms of d̃ := dd+1

2 e sample points on (0, 1] provides
an accurate enough characterization of distance function.
Therefore, we can write objective function for optimiza-
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tion as

L(Φ̂) =
1

d̃

d̃∑
j=1

|Re [〈0|UΦ(xj)|0〉]− f(xj)|2 , (23)

where for Φ̂ = (φ0, . . . , φd̃−1) ∈ [−π, π)d̃,

Φ =

{
(φ0, · · · , φd̃−1, φd̃−1, · · · , φ0) d is odd,
(φ0, · · · , φd̃−2, φd̃−1, φd̃−2, · · · , φ0) d is even.

(24)

We choose xj = cos
(

(2j−1)π

4d̃

)
, j = 1, . . . , d̃ as the pos-

itive roots of the Chebyshev polynomial T2d̃(x). The-
orem 4 shows that using the Chebyshev nodes, the ac-
curacy of the polynomial approximation can be directly
measured in terms of the objective function (the proof is
given in Appendix D).

Theorem 4. Suppose we have the following expansions:

f(x) =

d∑
j=0

αjTj(x), fΦ(x) =

d∑
j=0

βjTj(x),

where fΦ(x) = Re [〈0 |UΦ (x)| 0〉]. If the discrete samples

are chosen to be positive roots of T2d d+1
2 e

(x) and L(Φ̂) ≤
ε, then we have

max
j=1,...,d

|αj − βj | ≤ 2
√
ε.

Note that the optimal phase factors are not necessar-
ily unique. This is because the real part of P does not
uniquely determine P,Q, even when assuming Q is real.
Nonetheless, we only need to find one set of phase factors
Φ∗ to accurately encode f(x).

Our optimization problem can be viewed as variational
quantum circuit (more specifically, similar to the quan-
tum approximate optimization algorithm (QAOA) [9]),
in which one set of quantum gates (those associated with
σx) are fixed. Due to the complex energy landscape, a
good initial guess is necessary for the performance of the
optimizer.

III.3. Generating approximation polynomials

In order to generate a polynomial to approximate f to
a given degree, we consider in this work two efficient ap-
proaches: the Fourier-Chebyshev expansion method and
the Remez method.

For a real smooth function F on the interval [−1, 1],
we find its polynomial approximation in terms of Cheby-
shev polynomial of the first kind, i.e., F (x) ≈ f(x) =∑d
j=0 cjTj(x). The Fourier approach uses the fast

Fourier transformation (FFT) to efficiently evaluate the
coefficients via a quadrature

cj ≈
(2− δj0)

2K
(−1)j

2K−1∑
l=0

F (− cos θl) e
ijθl (25)

where θl = πl/K, 0 ≤ l ≤ 2K − 1, and K is the number
of quadrature points.

We may alternatively consider optimization with re-
spect to the L∞ norm. In fact, we may even restrict the
interval of approximation to be a subset [a, b] ∈ [−1, 1].
In this case, an approximation polynomial can be ob-
tained by solving the optimal approximation problem in
terms of the L∞ norm

f = argmin
f∈R[x],deg(f)≤d

max
x∈[a,b]

|F (x)− f(x)|. (26)

The Remez algorithm [6, 25] allows efficient solution of
Eq. (26). This is an iterative method consisting of two
steps. In the first step, we find the coefficients of f from
d+ 2 points sampled from the interval by solving a set of
linear equations. The second step involves adjusting d+2
samples from coefficients solved in the first step. We can
also use the Remez algorithm to solve for f using parity
constraint. Full details are given in Appendix E.

III.4. Choice of initial point

The objective function in the optimization model of
Eq. (23) is highly non-convex, rendering the global mini-
mum hard-to-find. Numerical tests given in Section IV.4
illustrate that the solver can easily get stuck in a lo-
cal minimum if we initiate it randomly, confirming the
complexity of the landscape. Another possible choice of
the initial phase factors is Φ = (0, 0, . . . , 0, 0). Then the
components of QSP matrix are Chebyshev polynomials
P (x) = Td(x) and Q(x) = Rd−1(x). However, straight-
forward computation shows that in this case we have
∇L(Φ̂) = 0, i.e., Φ̂ is a stationary point, and obviously

L(Φ̂) 6= 0.
Our main observation is that if we slightly modify the

initial point as

Φ =
(π

4
, 0 . . . , 0,

π

4

)
∈ Rd+1, (27)

or correspondingly, the symmetrized version

Φ̂0 =
(π

4
, 0 . . . , 0

)
∈ Rd̃, (28)

then a gradient-based algorithm can reach a global min-
imum in all cases shown in Section IV. According to the
discussion in Section III.1, this corresponds to the ini-
tial guess with P (x) = iTd(x) and Q(x) = Rd−1(x).
The intuitive reason for choosing such an initial point
is that we are interested in the real part of P (x). The
choice in Eq. (27) ensures that Re[P (x)] = 0, which
is unbiased with respect to the function to be approx-
imated. On the other hand, the seemingly natural choice
Φ = (0, 0, . . . , 0, 0) gives P (x) = Td(x), which is a heavily
biased initial guess of the real component. The theoret-
ical study of the landscape around such an initial guess
justifying the effectiveness of such a choice of the initial
guess will be the focus of future work.
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III.5. Algorithm

We use a quasi-Newton method to perform numerical
optimization of the phase factors. Compared to the New-
ton type method, we find that a quasi-Newton method
such as the L-BFGS method [26, Chapter 5] leads to fast
convergence without any need to evaluate the Hessian
matrix, for which the computational cost would scale as
O(d3). Appendix F describes the L-BFGS algorithm,
which is applied to the symmetry-reduced phase factors
according to Eq. (23). Using the initial phase factors in

Eq. (28), the Hessian matrix HessL(Φ̂0) is a constant
matrix regardless of approximation polynomial f . More
specifically, we have

HessL(Φ̂0) =

{
2I d is odd,
diag(2, . . . , 2, 1) d is even.

(29)

The inverse of this Hessian matrix will be fed into the
L-BFGS algorithm. In Algorithm 1 below we describe
how to compute optimal phase factors corresponding to
a given polynomial. The complete procedure to approx-
imate a generic complex-valued function as polynomial
components is presented in Algorithm 2.

ALGORITHM 1: Function: Φ̂ = QSPBFGS(Φ̂0, f, ε)

Input: An initial vector Φ̂0, a real polynomial f of degree
d and error tolerance ε.

Choose d̃ = d d+1
2
e points xj = cos( (2j−1)π

4d̃
) as the positive

roots of Chebyshev polynomial T2d̃.

Construct objective function L(Φ̂) using Eq. (23).
Choose the initial approximation of inverse Hessian B0 us-
ing Eq. (29).
Set t = 0
while L(Φ̂) > ε do

Obtain Φ̂t+1 by updating Φ̂t via L-BFGS algorithm.
Set t = t+ 1.

end while
Return: Φ̂t

ALGORITHM 2: Finding phase factors for the polynomial
approximation of a smooth function f over interval [a, b]

Input: A complex-valued function F ∈ C∞[a, b], a non-
negative integer d and error tolerance ε.

Find polynomial f ∈ C[x] of degree at most n which ap-
proximates f over the interval [a, b]. One can obtain such
polynomial via the Fourier-Chebyshev expansion approach
or the Remez algorithm [6, 25].
Scale f by a constant factor α.
Denote fj , j = 1, 2, 3, 4 as real/imaginary and even/odd
part of f/α.

Set Φ̂0 = (π
4
, 0, . . . , 0) ∈ Rd̃.

Solve Φ̂j = QSPBFGS(Φ̂0, fj , ε) for each component.

Return: Φ̂j , j = 1, 2, 3, 4 and factor α.

IV. NUMERICAL RESULTS

We present a number of tests to examine the effective-
ness of the optimization based method compared to the
previous direct methods. We implement the direct al-
gorithms designed in [12] and [13] (denoted here as the
GSLW and Haah methods, respectively). All numerical
tests are performed on an Intel Core 4 Quad CPU at
2.30 GHZ with 8 GB of RAM. Our method is imple-
mented in MATLAB R2018b, while the GSLW and the
Haah method are written in Julia 1.2 for its better sup-
port for high-precision arithmetic. Our implementation
(optimization, GSLW, Haah) can be downloaded from
the Github repository1.

We utilize the BigFloat type to achieve variable pre-
cision arithmetic and internal routines in Julia for the
root-finding procedures. In Appendix G, we present the
details of algorithms used for comparison and state some
modifications to enhance the numerical stability. The
stopping criterion is

max
j=1,...,d̃

|Re [〈0 |UΦ (xj)| 0〉]− f(xj)| < ε (30)

for both the GSLW method and our optimization
method. The Haah method is terminated when the re-
sulting factors are ε-close to the target polynomial of de-
gree d for values on the d-th roots of unity. We set ε to
be 10−12. We highlight the critical feature that all of the
arithmetic in our optimization algorithm is performed us-
ing only double-precision floating-point numbers. This is
a remarkable advantage in terms of computation cost and
numerical stability compared to the direct algorithms,
which have to make use of variable precision arithmetic
operations. In fact, our numerical results indicate that
even with variable precision arithmetic operations, both
the GSLW and the Haah method still struggle to find the
phase factors accurately when the degree of polynomial
becomes large (& 500).

IV.1. Hamiltonian Simulation

A Hermitian matrix H with bounded norm ‖H‖2 ≤
1 has the spectral decomposition H =

∑
j λj |j〉〈j|.

The Hamiltonian simulation with duration τ through
H is then given by f(H) = e−iτH =

∑
j e
−iτλj |j〉〈j|.

Implementation of Hamiltonian simulation is thus de-
termined by the phase factors that approximate the
smooth complex-valued function f(x) = e−iτx. Since
this is smooth on the interval [−1, 1], its polynomial
approximation can be generated from the Jacobi-Anger
expansion[3]:

e−iτx = J0(τ) + 2
∑
k even

(−1)k/2Jk(τ)Tk(x)

+ 2i
∑
k odd

(−1)(k−1)/2Jk(τ)Tk(x).
(31)

1 https://github.com/qsppack/QSPPACK

https://github.com/qsppack/QSPPACK
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Here Jk’s are the Bessel functions of the first kind. The
L∞ error to truncate the series up to order d is bounded
by

2

∞∑
k=d+1

|Jk(τ)| ≤ 2

∞∑
k=d+1

(
e|τ |
2

)k
k−k

. e−d
∞∑

k=d+1

1

k!

(
e|τ |
2

)k
< ee|τ |/2−d.

(32)

Thus, the truncated series up to d ≈ e|τ |/2 + log(1/ε0)
leads to an approximation whose truncation error is
bounded by ε0. In our simulation, we simply choose
d = 1.4|τ | + log(1/ε0), where ε0 = 10−14, to make the
truncation error negligible compared to the error caused
by other factors. We denote such an approximation for
Hamiltonian simulation with duration τ by fτ .

We compare our method with the GSLW and Haah
methods on the polynomial given by Eq. (31). For each
τ , we divide fτ into real and imaginary parts, and per-
form algorithms separately according to case 3 in Sec-
tion II.3. Then, we sum up the CPU time and the error
together of each part as final results. We divide the co-
efficients of fτ by a constant factor 2 to ensure |fτ | ≤ 1
for x ∈ [−1, 1]. The CPU time and the number of bits
utilized to perform arithmetic are displayed in Fig. 5(a)
and Fig. 5(b), respectively, together with polynomial fits
to the data for large τ values in Fig. 5(a) (the points for
small τ values are in the pre-asymptotic regime and are
excluded in the fits).

We display results for τ up to 500 since the direct
methods become very inefficient for larger values of τ .
In particular, the GSLW method fails to yield phase fac-
tors with required accuracy ε = 10−12 when the degree
d of fτ is larger than 369. We contribute the failure to
the instability of Julia’s internal root-finding procedure.
We observe that the CPU time of our proposed method
scales as τ2, while it scales as τ3 for the Haah method.
Moreover, for both the GSLW and the Haah method the
number of bits required is linear in τ , while our opti-
mization method is seen to be numerically stable in all
calculations with use of only standard double precision
arithmetic operations, i.e., the number of bits is indepen-
dent of τ .

To further demonstrate the capability of our method,
we test our algorithm with τ up to 5000. When τ = 5000,
the polynomial degree d is 7033. The computational cost
for evaluating the real and imaginary parts of fτ is given
in Fig. 6. We also display in Table I the L∞ error (i.e. the
maximum error) between the polynomial given by QSP
phase factors and e−iτx, to verify the robustness of our
method and the effectiveness of our choice of the stopping
criterion. The CPU time still scales asymptotically as
τ2, in agreement with our expectations since the per-
iteration cost of the optimization procedure is O(d2).
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FIG. 5: Resource costs in determining QSP phase factors for
the Hamiltonian simulation problem. Red dots, blue

triangles and green squares correspond to the results by
using Haah, GSLW and our optimization method,

respectively. (a) CPU time(s) spent by each algorithm as a
function of duration τ , together with polynomial fits in the

large τ region. The degree of polynomial is
d = 1.4|τ |+ log(1/ε0), with ε0 = 10−14. The slope of the red

(gray) and the blue (dark gray) lines is 3, representing
CPU time = const · τ3. The slope of the green (light gray)

line is 2, representing CPU time = const · τ2. (b) Number of
bits used to store floating-point numbers and perform

arithmetic. We show results for the GSLW method only up
to τ = 240 since it fails to generate accurate phase factors

for larger τ .

τ 100 150 200 300 500 800
real 6.1e-13 7.9e-13 1.1e-12 2.4e-13 4.7e-13 3.6e-13

imaginary 1.1e-12 2.3e-13 3.3e-13 3.2e-13 2.8e-13 5.9e-13
τ 1000 1500 2000 3000 4000 5000

real 5.6e-13 5.5e-13 5.5e-13 7.2e-13 1.2e-12 9.4e-13
imaginary 4.2e-13 5.9e-13 9.0e-13 7.3e-13 9.0e-13 1.5e-12

TABLE I: L∞ error of the optimization algorithm for
determining QSP phase factors for Hamiltonian simulation
as a function of τ . The degree of truncated polynomial is

d = 1.4|τ |+ log(1/ε0) with ε0 = 10−14.
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FIG. 6: CPU time(s) required using the optimization
algorithm for determining QSP phase factors for

Hamiltonian simulation, shown as a function of τ . Blue dots
(green triangles) correspond to the real (imaginary) part of
fτ of degree d = 1.4|τ |+ log(1/ε0) with ε0 = 10−14. The

slope of the red line is 2, representing CPU time = const · τ2.

IV.2. Eigenstate filtering function

In order to prepare an eigenstate corresponding to a
known eigenvalue, we consider the following 2k-degree
polynomial

fk(x,∆) =
Tk(−1 + 2x

2−∆2

1−∆2 )

Tk(−1 + 2 −∆2

1−∆2 )
. (33)

Suppose H is a Hermitian matrix with an eigenvalue λ
that is separated from other eigenvalues by a gap ∆ > 0.
Let H̃ = (H − λI)/(α+ |λ|) and ∆̃ = ∆

2α . It was proven
in [20] that

‖fk(H̃, ∆̃)− P̂λ‖2 ≤ 2e−
√

2k∆̃, (34)

where P̂λ is the projection operator onto the eigenspace
corresponding to λ. Furthermore, fk, which is referred to
as the eigenstate filtering function, is the optimal poly-
nomial for filtering out the unwanted information from
all other eigenstates.

For this demonstration we assume λ = 0, and α = 1.
We choose ∆ = 0.1, 0.05, 0.01, 0.005 and test our algo-
rithm with different target filter values k. Eq. (34) indi-
cates that k∆ controls the accuracy of the approximation.
For each ∆ we choose k such that k∆ = 3, 5, 10, 15, 20, 25,
respectively. The largest polynomial in this example is
d = 10, 000. The coefficients of polynomials are divided
by
√

2 to avoid instabilities during optimization (see Sec-
tion IV.5 for reasons to scale the function). The results
are summarized in Fig. 7 and Table II. From the figure
we observe that the optimization method performs sta-
bly in all cases, with CPU time scaling as k2. These
results are compared with the corresponding results for
the direct methods of GSLW and Haah in Fig. 8, for ∆
ranging from 0.005 to 0.1. This comparison is made only

for k∆ = 3, since we observe that direct methods strug-
gle to treat larger values of k∆. It is evident that the
optimization algorithm also shows superior performance
to the direct methods in this example.

In particular, the Haah method fails to solve the QSP
phase factors with required accuracy ε = 10−12 when ∆
is less than 0.01. The weaker performance of the Haah
method compared to (our modified) GSLW method ob-
served in Fig. 8 can be attributed to the following reasons.
We note that Julia’s internal root-finding routine has diffi-
culty finding all the roots of a polynomial when its degree
is high, even when variable precision arithmetic opera-
tions are used. The performance of the GSLW and Haah
methods can thus depend on the dataset, since they ap-
ply the root-finding procedure to different polynomials.
We observe that sometimes the GSLW method can reach
a polynomial of higher degree than the Haah method,
and sometimes it is the other way around. We remark
that the degree of polynomial fed into the Haah method
is twice as large as that fed into the GSLW method,
since the variable x is replaced by (z + 1/z)/2 in the
Haah method. This increases the difficulty for the Haah
method to solve phase factors successfully. By contrast,
our modified implementation of the GSLW method (Ap-
pendix G) expands the polynomial in the Chebyshev ba-
sis, which significantly increases its stability, making its
performance comparable to Haah’s.
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FIG. 7: CPU time(s) using the optimization algorithm for
determining the set of phase factors for the eigenstate filter,
shown as a function of k∆. The degree of each polynomial is
2k. The slope of each line is 2, reflecting the quadratic cost

CPU time = const · k2.

IV.3. Matrix inversion

Consider the quantum linear problem A|x〉 = |b〉 where
A is a Hermitian matrix whose condition number is κ.
Then the eigenvalues of A are distributed within the in-
terval Dκ := [−1,−1/κ] ∪ [1/κ, 1]. The solution |x〉 can
be constructed via matrix inversion, using QSP to gen-
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∆
k∆

3 5 10 15 20 25

0.1 3.4e-14 5.2e-13 1.1e-13 1.1e-12 8.9e-14 8.5e-13
0.05 3.2e-14 4.9e-13 1.1e-13 1.1e-12 1.0e-13 8.4e-13
0.01 4.7e-14 4.9e-13 1.7e-13 1.1e-12 2.2e-13 8.1e-13
0.005 2.1e-13 5.6e-13 2.1e-13 1.2e-12 4.7e-13 8.8e-13

TABLE II: L∞ error of the optimization algorithm for
determining the QSP phases for the eigenstate filter defined

in Eq. (33).
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FIG. 8: CPU time(s) of the optimization algorithm (green
squares) compared with direct (GSLW and Haah) algorithms

(blue triangles and red dots, respectively) for determining
QSP phases for the eigenstate filter, shown as a function of

1/∆. The degree of each polynomial is 2k = 6/∆. The
slopes of the red (gray) and blue (dark gray) lines are 3,

corresponding to a cubic cost in τ . The slope of the green
(light gray) line is 2, corresponding to a quadratic cost in τ .

erate the action of A−1. For this we need a polynomial
approximation of 1/x on the interval Dκ. We consider
two options here. The first is to generate a polynomial
approximation of 1/x on Dκ by extending the function to
the interval [−1, 1] via an approximate function, as out-
lined in Section III.2 above. The second is to apply the
Remez algorithm [6, 25] directly to the interval Dκ. The
first approach was pursued in [7], where the following odd
extension was proposed

g(x) :=
1− (1− x2)b

x
. (35)

Then, the truncated sum of Chebyshev polynomials

f(x) = 4

d∑
j=0

(−1)j
∑b
i=j+1

(
2b
b+i

)
22b

T2j+1(x) (36)

is ε0-close to 1/x on Dκ by choosing b =
⌈
κ2 log( κε0 )

⌉
and

d =
⌈√

b log( 4b
ε0

)
⌉
. In the test made here ε0 is set to be

10−14.
In the second approach using the Remez algorithm, our

goal for the matrix inversion problem is to directly con-

struct an odd polynomial that approximates f(x) = 1/x
on Dκ. More generally, we note that if A is positive
definite and Dκ = [1/κ, 1], then we may approximate
f by extending it to a function that is either even or
odd. Since this paper focuses on the problem of finding
the phase factors for approximating a smooth function
in general, we will consider both the even and odd ex-
tensions below. For the current instance f(x) = 1/x, we
gradually increase the degree d until the value of f(x)
obtained by the Remez algorithm approximates 1/x over
Dκ with L∞ error below ε0. Fig.9 compares the polyno-
mial given by the Fourier-Chebyshev method, Eq. (36),
with that generated by the Remez method, for κ = 20
and ε0 = 10−3.
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FIG. 9: Comparison of the form of polynomials given by the
Fourier-Chebyshev method, Eq. (36), with those generated

by the Remez method, for odd and even parities. The
degree of the truncated polynomial here is 611 and degrees
of the even (odd) approximation polynomials generated by

the Remez method are 76 (111). The approximation
polynomials are divided by 80 for this plot.

In this example we choose κ = 10, 20, . . . , 50. We test
our algorithm with ε0 = 10−14 on polynomials given by
Eq. (36) and generated by the Remez algorithm with
odd and even parity, respectively. The CPU time asso-
ciated with each polynomial approximation is presented
in Fig. 11. We also compare the optimization method
with the GSLW and the Haah method on the polynomi-
als with lower degrees. We choose ε0 = 10−6 and generate
polynomials by the Remez algorithm with odd and even
parity. The results of the comparison are demonstrated
in Fig. 10, while the degrees of the polynomials given
by each method are shown in Table III. Similar to the
case of eigenstate filtering polynomials, we find that the
GSLW and Haah methods cannot reach the target accu-
racy when the degree of the polynomial becomes large.
Hence we reduce the accuracy in order to decrease the
polynomial degrees here.

Table III indicates that use of the Remez method can
significantly reduce the degree of polynomials needed
to approximate 1/x, with a reduction of to a factor of
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2 ∼ 3. We find that the even polynomial approximation
is slightly less expensive than the odd expansion. This
is due to the fact that an even extension has smaller
gradient near the origin, compared with that of the odd
extension, as shown in Fig. 9. Our proposed optimiza-
tion method performs well on these examples, yielding
phase factors robustly, with computational cost scaling
quadratically with respect to κ. The largest polynomial
degree d = 4035.

κ 10 20 30 40 50
Truncation of g(x) (ε0 = 10−14) 759 1559 2375 3201 4035

Odd Remez (ε0 = 10−14) 303 607 911 1215 1519
Even Remez (ε0 = 10−14) 280 560 840 1020 1400
Odd Remez (ε0 = 10−6) 125 249 373 499 623
Even Remez (ε0 = 10−6) 104 206 310 412 516

TABLE III: Degrees of approximation polynomials with
accuracy ε0 given by an odd smearing function in Eq. (36)

and the Remez method with odd and even parity,
respectively.

101 2 × 101 3 × 101 4 × 101

100

101

102

103

CP
U 

tim
e(

s)

Haah odd
Haah even
GSLW odd
GSLW even
Opt model odd
Opt model even

FIG. 10: CPU times for approximating 1/x over Dκ via
QSP as a function of κ for the optimization method,

compared with the corresponding times for the GSLW and
Haah methods. Lines labelled “even” (“odd”) represent the
results of approximating polynomials given by the Remez

method with even (odd) parity. The slopes of the two lowest
lines are 2, corresponding to quadratic cost in κ, while the

slopes of all other lines are 3, corresponding to cubic cost in
κ. The line corresponding to the result by using Haah

method to solve odd polynomials is not shown in the figure
because only two data points are generated due to the

numerical instability.

IV.4. Impact of the initial point

To demonstrate the complexity of the optimization
landscape, we report the final value of the objec-
tive function starting from randomly generated points
for the Hamiltonian simulation problem. For τ ∈
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FIG. 11: Comparison of CPU time(s) of optimization
algorithm for approximating 1/x over Dκ via QSP as a

function of κ for the two different methods of finding the
optimal polynomial. The red (gray) line represents the

result of approximating the polynomial with the Fourier
method, Eq. (36), the blue (dark gray) and the green (light

gray) lines represent the CPU time of results of
approximating the polynomial using the Remez method with

odd and even parity, respectively. All lines have slope 2,
corresponding to quadratic cost in κ.

{100, 200, 300, 400, 500}, we choose the target polynomial

f(x) = J0(τ)/2 +

d∑
k even

(−1)k/2Jk(τ)Tk(x) (37)

as an approximation to cos(τx)/2. The initial points
are uniformly distributed in [−π, π)d+1. We run the
L-BFGS algorithm until it converges or the number of
iteration reaches 200. Fig. 12 summarizes the perfor-
mance of the algorithm under random initialization. We
see that most of the calculations get stuck in local min-
ima with a relatively large objective value, confirming
the complexity of the landscape. Furthermore, the dif-
ficulty of finding a good solution increases with the de-
gree of the polynomial. By comparison, if we start from
Φ = (π4 , 0, . . . , 0,

π
4 ), the algorithm will converge within

dozens of iterations to the global minimum with the ob-
jective function very close to 0.

IV.5. Sensitivity analysis

We further analyze the robustness of the method by
reporting the condition number of the Hessian matrix
HessL(Φ̂∗) at the optimal point. The condition number
of the Hessian matrix is an indicator reflecting the sensi-
tivity of the optimizer with respect to small perturbations
of the target function.

We compute here the Hessian condition number for the
three optimization problems presented above in Sections
IV.1 - IV.3. Interestingly, we observe that the condition
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FIG. 12: Loss of optimization method initiated with
randomly generated points. The target polynomial is defined

as the truncated polynomial of Jacobi-Anger expansion of
degree d = 1.4|τ |+ log(1/ε0) with ε0 = 10−14. “Random-k”
represents that we start from k different initial points and

select best result.

number is mostly affected by L∞ norm of the target poly-
nomial, rather than by its degree or by its parameters.
Thus, each problem can be exemplified by one polyno-
mial with a given degree and parameters. To investigate
how the norm affects Hessian condition number, we scale
the L∞ norm of the given polynomial to 1 − η. Fig. 13
shows the scaled Hessian condition numbers as a func-
tion of η. As η → 0+, we find that the condition number
increases as η−γ with γ > 1 in all three cases. This indi-
cates that when ‖f‖∞ is close to 1, the optimizer can be
very sensitive to perturbations in f . When ‖f‖∞ is below
1, the enhanced stability implies that these phase factors
can be used as an initial guess for a slightly perturbed
target polynomial, which will be discussed in detail in
Section V. Furthermore, scaling the target polynomial f
to ensure that ‖f‖∞ ≤ 1− η for some given threshold η
is also preferable. Such scaling of the target polynomial
was also suggested in the root-finding procedures of the
direct algorithms in order to ensure numerical stability
[13].

V. DECAY OF PHASE FACTORS FROM THE
CENTER AND PHASE FACTOR PADDING

In addition to the symmetry structure discussed in Sec-
tion III.1, for smooth target functions, we observe that
the QSP phase factors decay rapidly away from the cen-
ter. To illustrate the decay and also the symmetry, we
plot several examples in Fig. 14. After subtracting the
π/4 factor on both ends of the phase factors, we observe
that the decay of the phase factors closely follows the
decay of the Chebyshev coefficients (defined only on the
positive axis in Fig. 14).

Theorem 5 states that for phase factors with relatively
small magnitudes, the optimal phase factors can be ex-
pressed approximately analytically in terms of the co-
efficients of the Chebyshev polynomial expansion. The
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FIG. 13: Condition number of the Hessian matrix at the
optimum of the objective function L(Φ̃) defined in Eq. (23),
shown for three different target polynomials studied in this
work. (a) Real (Imaginary) part of truncated Jacobi-Anger

expansion in Eq. (31), where τ = 200 and d = 312
(represented by red dots and yellow downward triangles,

respectively). (b) Eigenstate filter defined in Eq. (33) with
k = 300, ∆ = 0.05 (represented by blue triangles). (c) Even
polynomial approximation of 1/x on Dκ=20 generated by the
Remez method (represented by green squares). Polynomials

are scaled by a constant factor such that ‖f‖∞ = 1− η,
where η is the x-axis. The slope is 1.4 for the yellow (top)

line and 1.15 for all others.

proof is given in Appendix H.

Theorem 5. Let Φ ∈ Cd′ be a set of symmetric QSP

phase factors. Define φ̃j := φj − π
4 (δj,0 + δj,d′−1) and

Φ̃ := (φ̃0, · · · , φ̃d′−1). Define a polynomial

gΦ(x) := −

d′−1∏
j=0

cos φ̃j

×


d∑
j=0

2 tan
(
φ̃j

)
T2d+1−2j(x) , d′ = 2d+ 2

tan
(
φ̃d

)
+

d−1∑
j=0

2 tan
(
φ̃j

)
T2d−2j(x) , d′ = 2d+ 1.

(38)

Then for sufficiently small
∥∥∥Φ̃
∥∥∥

1
, there exists a constant

C > 0 such that the desired QSP component fΦ(x) :=
Re [〈0 |UΦ (x)| 0〉] satisfies

‖fΦ(x)− gΦ(x)‖∞ ≤ C
∥∥∥Φ̃
∥∥∥3

1
. (39)

According to Theorem 5, one can directly deduce ap-
proximate values of the phase factors from the coefficients
of the Chebyshev expansion. For example, when d′ is

even, φ̃j ≈ − arctan(c2d+1−2j/2) ≈ −c2d+1−2j/2 holds

up to O(‖Φ̃‖31). For smooth functions, the Chebyshev
coefficients decay at least super-algebraically (i.e., faster
than any polynomial decay) [4]. So the phase factors also
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FIG. 14: Magnitude of coefficients of the polynomial f in
the Chebyshev basis (light gray) and the corresponding
phase factors (after subtracting π/4 on both ends, dark

gray), for the three different problems studied in this work.
We shift the x-axis to more clearly illustrate the symmetry
property of the phase factors. Coefficients that are zero due

to parity are omitted. (a) Real part of truncation of the
Jacobi-Anger expansion in Eq. (31), with τ = 200 and
d = 312. (b) Eigenstate filter defined in Eq. (33), with

k = 300, ∆ = 0.05. (c) Even polynomial approximation of
1/x on Dκ=20 as generated by the Remez method.

decay super-algebraically away from the center. The uni-
formly small phase factors can be realized by rescaling
the function f to f/β, with β being a large number. We
remark that our numerical results in Fig. 14 do not rely
on such a scaling factor. A more precise characterization
of the decay of the phase factors will be a focus of future
work.

One possible usage of the decay property of the phase
factors is as follows, which we refer to as a “phase
padding” procedure. Suppose we have solved the QSP
phase factors corresponding to a polynomial approxima-
tion f1 of relatively low degree to a real-valued function f
with definite parity. In order to improve the accuracy of
the approximation, another small term f2 of higher poly-
nomial degree is needed to be added to approximate f to-
gether with f1. Therefore, a natural question is whether
we can reuse the phase factors associated with f1 to gen-
erate that of f1 + f2 ≈ f .

To solve this problem, one needs to increase the dimen-
sion of Φ, since the degree of the polynomial has been
increased and hence also the number of phase factors.
Due to the symmetry structure, we may consider the fol-

lowing symmetrically padded phase factors and further
show that the symmetrical padding operation preserves
the desired part of the QSP.

Definition 6 (l-padded phase factors). Let Φ =
(φ0, · · · , φd) ∈ Cd+1 be symmetric QSP phase fac-
tors. Then, the corresponding l-padded phase fac-
tors in Cd+2l+1 are given by Φl := (π4 , 0, · · · , 0︸ ︷︷ ︸

l−1

, φ0 −

π
4 , φ1, · · · , φd−1, φd − π

4 , 0, · · · , 0︸ ︷︷ ︸
l−1

, π4 ).

Theorem 7. Given a set of symmetric phase factors
Φ and a nonnegative integer l, its l-padded phase fac-
tors preserve the real part of the upper-left component
of the QSP unitary matrix, i.e., Re [〈0 |UΦ (x)| 0〉] =
Re [〈0 |UΦl (x)| 0〉] ,∀x ∈ [−1, 1].

Proof. Using Lemma 3, it is equivalent to prove the equal-
ity

Im [〈0|UΦ(x)|0〉] = Im
[
〈0|W (x)lUΦ(x)W (x)l|0〉

]
for symmetric phase factors Φ. Insert the resolution of
identity,

r.h.s. =Im
[
Tl(x)2P (x)− 2(1− x2)Rl−1(x)Tl(x)Q(x)

−(1− x2)Rl−1(x)2P ∗(x)
]

=(T 2
l (x) + (1− x2)R2

l−1(x))Im[P (x)]

=Im[P (x)] = l.h.s.

Here we have used Q ∈ R[x] according to Theorem 2.

To demonstrate the usage of this phase padding pro-
cedure, we consider the approximation of cos(τx)/2,
namely, the real part of Eq. (31) scaled by a constant
factor 2. First, an integer d0 is chosen such that the
truncated series up to d0 is a rough approximation of
cos(τx)/2. Meanwhile, the corresponding phase factors
are solved by optimization. Then we gradually increase
the size of the problem by an even number l, i.e., adding
l/2 more terms of higher order polynomials. In order
to reuse the phase factors, the initial guess in step k is
lifted from the phase factors solved in the previous step,
i.e., the polynomial approximation of degree d0+(k−1)l.
The procedure is repeated until the degree meets a maxi-
mal criterion d1, which generates an accurate polynomial
approximation of cos(τx)/2.

The parameters in numerical implementations are set
to be τ = 500, d0 = 500, l = 10, d1 = 600. The L∞ er-
ror before the optimization (i.e., only using phase factor
padding) and after the optimization in each step is shown
in Fig. 15, while Table IV compares the computational
cost between optimizations initiated with and without
padding. We observe that the polynomial given by the
lifted phase factors is already close to the target polyno-
mial. This means that the lifted phase factors provide a
good initial guess close to the global minimum.
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FIG. 15: L∞ error between the polynomial obtained from
the lifted phase factors, and the target polynomial, as a

function of the degree d of the latter. Blue triangles
represent the error before optimization, and green squares

represent the error after optimization. The target
polynomial here is the truncated polynomial of Jacobi-Anger

expansion of degree d.

d 510 520 530 540 550
with padding 19.9 19.7 16.9 16.4 12.2

without padding 21.8 21.2 22.5 22.6 23.5
d 560 570 580 590 600

with padding 9.37 4.69 3.18 3.17 3.19
without padding 24.2 26.1 28.5 28.3 27.7

TABLE IV: CPU times for optimizations initiated with and
without phase padding (see text). The target polynomial

here is the truncated polynomial of Jacobi-Anger expansion
of degree d.

VI. DISCUSSION

We have demonstrated that using an optimization
based approach, we can efficiently and accurately eval-
uate the phase factors needed to build QSP circuits for
generation of unitary representations of non-unitary op-
erations. Taken together with the QSP formalism of Refs.
[11, 21], this approach now provides efficient and accurate

constructive procedures to implement QSP and thereby
removes a crucial bottleneck for the application of QSP
in quantum algorithms. We expect that our method will
be useful for a wide range of matrix functions of inter-
est to quantum algorithms, including the broad classes
of Hamiltonian simulation, generation of thermal states,
and linear algebra problems. The optimization approach
was found to be superior to previous direct methods that
rely on a reduction procedure in which numerical errors
are accumulated and amplified. Instead of employing a
reduction procedure, our approach is based on optimiza-
tion of a distance function that quantifies the difference
between the target polynomial and the QSP representa-
tion of this, with the QSP phases as variable parameters.
We identified two key features for success of the optimiza-
tion based method: first, the choice of the initial guess,
and second, preservation of the symmetry structure of the
phase factors. We found that a simple choice of the ini-
tial guess can be surprisingly effective, despite the com-
plexity of the global landscape of the objective function.
This indicates that a better understanding of the local
energy landscape connecting the initial guess to the op-
timal phase factors is needed. Our study also reveals the
connection between two seemingly unrelated objects in
the QSP construction, namely, the decay of phase factors
from the center, and the decay of the Chebyshev coeffi-
cients of the target function. More precise characteriza-
tion of this connection will be a useful future research
direction, together with further work to understand the
energy landscape of the objective function.
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Appendix A: Uniqueness of phase factors

We refer to the representation in Eq. (13) as appeared in [12, Theorem 3] as GSLW’s representation. There is
another equivalent form proposed in [13], which we call it Haah’s representation. Under Haah’s representation, the
QSP unitary is

UΦ̂(x) = eiσzφ̂0

d∏
j=1

[
eiσzφ̂j/2W (x)e−iσzφ̂j/2

]
= eiσz(φ̂0+φ̂1/2)

d−1∏
j=1

W (x)eiσz(φ̂j+1−φ̂j)/2

W (x)e−iσzφ̂d/2 (A1)

where φ̂d+1 := 0. Compared to Eq. (13), the transformation between two representations is evident, i.e., T :

[−π, π)d+1 → Cd+1, Φ̂ 7→ Φ such that φ0 = φ̂0 + φ̂1

2 , φj =
φ̂j+1−φ̂j

2 , ∀j = 1, · · · , d − 1 and φd = −φ̂d/2. The
irreducible set Cd+1 is defined as the image of this linear transformation. The uniqueness of Haah’s phase factors
in [−π, π)d+1 was proved in [13, Theorem 2], which considers a formally more general class of polynomial functions
U(1) → SU(2). The bijection T implies the uniqueness of GSLW’s phase factors in Cd+1. It is evident that the
2π-periodicity of Haah phase factors lead to a pair of ±π shifts in the corresponding GSLW phase factors. Then, if
we define the equivalence relation Φ ∼ Ψ when φk = ψk,∀k 6= i, j and φi = ψi + π, φj = ψj − π, the irreducible set is
the quotient space Cd+1 ≡ [−π, π)d+1/ ∼.

Appendix B: Reducing one ancilla qubit for representation of real polynomials

|0〉 H e−iϕdσz Z e−iϕd−1σz · · · Z e−iϕ0σz H

|0m〉
UA UA

· · ·

|ψ〉 · · ·

FIG. 16: Quantum circuit for quantum signal processing of real matrix polynomials with a Hermitian block-encoding UA.

We explain here why the additional ancilla qubit needed for representing real polynomials in Section II.3, case 1
as a result of the linear combination of two QSP circuits, is in fact not needed and can be avoided. Specifically, this
ancilla qubit can be combined with the first ancilla qubit in Fig. 2. To see why this is the case, note that the phase
factors for U−Φ in Eq. (18) can be obtained by taking the phase factors for UΦ in Eq. (15), and perform the mapping
ϕi 7→ −ϕi + π(1 − δid), i = 0, . . . , d. In other words, we negate ϕi and add π to all but the d-th entry. Negating
the phase can be implemented by feeding |1〉 instead of |0〉 to the signal state, and adding π to the phase can be
implemented via a σz gate associated with φ0, . . . , φd−1.

We may verify that by slightly modifying Fig. 2, the circuit in the box with dashed line in Fig. 16 in fact implements

|0〉 〈0| ⊗ UΦ + |1〉 〈1| ⊗ U−Φ,

which is the select oracle, Eq. (6). Therefore, using the Hadamard gate as the prepare oracle (Eq. (5)) as before, the
circuit Fig. 16 provides a (1,m+ 1, 0)-block-encoding of f(A/α), which saves one ancilla qubit.

Appendix C: Quantum signal processing with a non-Hermitian block-encoding matrix

Let A be an n-qubit Hermitian matrix, but its (α,m, 0)-block-encoding UA is not Hermitian. We can still perform
QSP by introducing an additional ancilla qubit. To this end, we first generate an (α,m + 1, 0)-block-encoding of A
that is Hermitian. Define an (m+ n+ 1)-qubit controlled block-encoding as

V ′A := |0〉〈0| ⊗ UA + |1〉〈1| ⊗ U†A, (C1)

which uses both UA and U†A. We also introduce the swap operation S := σx ⊗ Im. Then

U ′A := (S ⊗ In)V ′A = |1〉〈0| ⊗ UA + |0〉〈1| ⊗ U†A (C2)
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is Hermitian. Define an (m+ 1)-qubit signal state for block-encoding

|G〉 := |+〉 |0m〉 =
1√
2

(|0〉+ |1〉)|0m〉, (C3)

then

(〈G| ⊗ In)U ′A(|G〉 ⊗ In) =(〈G| ⊗ In)V ′A(|G〉 ⊗ In)

=
1

2
(〈0m| ⊗ In)UA(|0m〉 ⊗ In) +

1

2
(〈0m| ⊗ In)U†A(|0m〉 ⊗ In)

=
1

2
A+

1

2
A† = A.

In the last equality, we used that A is a Hermitian matrix. This proves that U ′A is indeed an (α,m+1, 0)-block-encoding
of A. Define

U ′Π = (2|G〉〈G| − Im+1)⊗ In, (C4)

we may use Jordan’s lemma to simultaneously block-diagonalize U ′Π, U
′
A. In particular, the matrix representation in

Eq. (9) still holds, which provides the qubitization of A.
Then QSP representation in Eqs. (11) and (12) can be directly obtained by substituting UΠ → U ′Π, UA → U ′A. The

circuit is given in Fig. 17. In the second line, the Hadamard gate converts the |+〉 state in the signal state into |0〉
and back in order to apply the (m + 2)-qubit Toffoli gate. The swap operation can be implemented via a single σx
gate. The last Hadamard gate in the second line is not present, in order to measure in the |±〉 basis set according to
the signal state |G〉.

|0〉 e−iϕdσz · · · e−iϕ0σz

|+〉 H H • σx · · · H

|0m〉
UA U†A

· · ·

|ψ〉 · · ·

FIG. 17: Quantum circuit for quantum signal processing with a non-Hermitian block-encoding matrix. The circuit in the box
enclosed by the dashed line should be repeated d times, each time with a different phase factor. The last Hadamard gate in

the second line is removed if measurements are to be made in the |±〉 basis set.

Appendix D: Proof of Theorem 4

We first review some basic facts of the Chebyshev polynomial. The Chebyshev polynomials are two sequences
of polynomials which can be defined by trigonometric functions. For each d ∈ N and x ∈ [−1, 1], the Chebyshev
polynomial of the first kind is defined as Td(x) = cos(d arccos(x)) and that of the second kind is Rd(x) = sin((d +
1) arccos(x))/ sin(arccos(x)). Both Td and Rd are polynomials of degree d. We will focus on the properties of
Chebyshev polynomials of the first kind in the following context and call Td’s Chebyshev polynomials for simplicity.

Define the weighted inner product as (f, g)w :=
∫ 1

−1
f(x)g(x) dx√

1−x2
on the space L2

w([−1, 1]). Then Chebyshev

polynomials are orthogonal polynomials on [−1, 1] with respect to the inner product (·, ·)w, and form a complete basis
on the space L2

w([−1, 1]).

Lemma 8. Any function g ∈ L2
w([−1, 1]) can be uniquely expressed as a series of Chebyshev polynomials,

g(x) =
∑
j∈N

cjTj(x), where cj =
2− δj0
π

(g, Tj)w.

By substituting x → cos θ, the series in terms of Chebyshev polynomial becomes the Fourier series of periodic
function g(cos θ). The roots of Chebyshev polynomials are called Chebyshev nodes, e.g.,

{
cos
(

2j−1
2d π

)
: j = 1, · · · , d

}
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are Chebyshev nodes of Td. Chebyshev polynomials satisfy the discrete orthogonality

d∑
j=1

Tm(xj)Tn(xj) = d
1 + δm,0

2
δm,n (D1)

where d > b(m+ n)/2c is an integer and xj ’s are Chebyshev nodes of Td.

Proof. (Theorem 4) Let d̃ = dd+1
2 e, then 2d̃ > d. Apply the Cauchy–Schwarz inequality, we have

d̃∑
j=1

|f(xj)− fΦ(xj)| ≤

√√√√√d̃

d̃∑
j=1

|f(xj)− fΦ(xj)|2 =

√
d̃2L(φ) ≤ d̃

√
ε, (D2)

where xj = cos
(

(2j−1)π

4d̃

)
, j = 1, . . . , d̃ are positive roots of Chebyshev polynomial T2d̃(x). For a fixed integer t ≤ d,

d̃∑
j=1

(f(xj)−fΦ(xj))Tt(xj) =

d̃∑
j=1

d∑
m=0

(αm−βm)Tm(xj)Tt(xj) =

d∑
m=0

(αm−βm)

d̃∑
j=1

Tm(xj)Tt(xj) =

d∑
m=0

(αm−βm)ηmt,

(D3)

where by discrete orthogonality in Eq. (D1) and symmetry, ηmt = d̃
1+δm,0

2 δm,t. Thus we have

|αm − βm| ≤
2

d̃

d̃∑
j=1

|(f(xj)− fΦ(xj))Tm(xj)| ≤ 2
√
ε (D4)

for any m = 0, . . . , d.

Appendix E: Remez Method

We would like to solve for the best approximation polynomial in terms of the L∞ norm

f∗ = argmin
f∈R[x],deg(f)≤d

max
x∈[a,b]

|F (x)− f(x)|. (E1)

In addition, the approximation problem encountered in this work requires that the approximation polynomial has a
definite parity. Hence, we need to focus on the best approximation problem, over the linear combination of a general
basis of functions {g1(x), . . . , gN (x)} other than {1, x, . . . , xd}. In this paper we choose N = dd+1

2 e, where d is the
degree of the approximation polynomial we would like to generate. A series of functions {g1(x), . . . , gN (x)} is said
to satisfy the Haar condition on a set X, if each gj(x) is continuous and for every N points x1, . . . , xN ∈ X, the N
vectors vj := (g1(xj), . . . , gN (xj)), 1 ≤ j ≤ N are linearly independent [15]. As an example, the Haar condition holds
if we choose gj(x) = T2j−1(x) (or T2j−2(x)) and X ⊂ (0, 1]. Solution of the best approximation problem over such a
basis will yield the best odd (even) approximation polynomial. Imposing the Haar condition simplifies the solution
of the generalized approximation problem.

The optimal approximate polynomial f∗ over the linear combination of functions {g1(x), . . . , gN (x)} can be found
via the Remez exchange method summarized in Algorithm 3, which computes a series of approximation polynomials
on discrete sets. The polynomials ft generated by the Remez algorithm converge uniformly to the optimal polynomial
f∗ with linear convergence rate. For a large range of functions F , the convergence rate can be improved to be
quadratic. We refer the reader to [6, Chapter 3] for more details related to the Remez method.

Appendix F: L-BFGS Algorithm

In numerical optimization, the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm is a quasi-Newton method
for solving unconstrained optimization problems [26, Chapter 5]. The BFGS method stores a dense n× n matrix to
approximate the inverse of Hessian matrix. It updates this approximation by performing a rank two update using
gradient information along its trajectory. Limited-memory BFGS (L-BFGS) approximates the BFGS method by
using a limited amount of computer memory [26, Chapter 5]. In particular, it represents the inverse of Hessian
matrix implicitly by only a few vectors. For completeness, we summarize the procedure for the L-BFGS method in
Algorithm 4.
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ALGORITHM 3: Remez method for solving the best approximation polynomial

Input: An interval [a, b] ⊂ R, target function F , a basis {g1, . . . , gN} satisfying the Haar condition, N + 1 initial points
a ≤ x0 ≤ · · · ≤ xN ≤ b.

Set t = 0.
while stopping criterion is not satisfied do

Set t = t+ 1.
Solve the linear equation for a1, . . . , aN and ∆

N∑
j=1

ajgj(xk)− F (xk) = (−1)k∆, k = 0, . . . , N.

Denote ft(x) =
∑N
j=1 ajgj(x) and residual r(x) = F (x)− ft(x).

r(x) has a root zj ∈ (xj−1, xj) for j = 1, . . . , N . Set z0 = a and zN+1 = b.
Let σj = sgn(r(xj)). Find yj = argmaxy∈[zj ,zj+1] σjr(y) for each j = 0, . . . , N .

if ‖r(x)‖∞ > maxj |r(yj)| then
Choose

y = argmax
y∈[a,b]

|r(y)|.

Replace a yk ∈ {y0, . . . , yN} by y in such a way that the values of r(y) on the resulting ordered set still satisfies

r(yj)r(yj+1) < 0, j = 0, . . . , N − 1.

end if
Replace {x0, . . . , xN} by {y0, . . . , yN}.

end while
Output: an approximation to the best approximation polynomial ft(x)

Appendix G: Implementation details of the direct methods for finding phase factors

For completeness we provide here our implementation of the direct methods for computing phase factors, i.e.,
the GSLW method and the Haah method. The codes are written in Julia v1.2.0. Although advanced root-finding
algorithm with guaranteed performance [24] is suggested in the Haah method [13], this is a theoretical result and
hard to implement. We utilize instead the function roots in the PolynomialRoots package in Julia to find the roots of
polynomials. For both GSLW and Haah methods, we perform calculations with variable precision arithmetic (VPA)
using the BigFloat data type. The numbers of bits R used in our numerical tests are empirical parameters whose
values are chosen to minimize CPU time while maintaining accuracy. We first take R to be a large number and
then gradually decrease it, until the algorithm fails to yield phase factors with sufficient accuracy. The algorithm is
considered as a failure on an example if it cannot generate accurate enough phase factors, i.e., within the specified
tolerance, despite the arithmetic being performed under increasingly high precision. Specifically, we choose R = 3d
for the GSLW method and R = 4d for the Haah method in the Hamiltonian simulation, R = 2d for both methods
for the eigenstate filtering function, and R = 50κ for both methods in the matrix inversion problem. Here d is the
degree of the polynomial. Note that the polynomials encountered in the matrix inversion subsection approximate 1/x
on Dκ = [1/κ, 1].

Our implementation of the GSLW algorithm proposed in [12] is summarized in Algorithm 5. To avoid stability
issues caused by inaccurate roots, a root s is regarded as a real (pure imaginary) number if the magnitude of its
imaginary (real) part is smaller than machine precision (ε = 10−16 in our implementation). Similarly, s is rounded to
1 if |1 − s| < ε. We evaluate the coefficients of B(x) and C(x) with respect to the Chebyshev basis by discrete fast
Fourier transform (FFT) to enhance numerical stability. The reduction procedure in the loop is also performed based
in the Chebyshev basis. We observe that compared to the original implementation of the GSLW method in [11], the
use of the Chebyshev basis significantly improves the numerical stability of the algorithm. Since in the examples in
this work we primarily consider situations where only P is required, we employ a zero polynomial as the input for the
second polynomial Q̃.
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ALGORITHM 4: Function: φ = L-BFGS(φ0, L,m,B0)

Input: Initial point φ0, objective function L(φ), a nonnegative integer m and initial approximation of inverse Hessian B0.

Set t = 0
while stopping criteria does not meet do

Compute gt = ∇L(φt), set q = gt
for i = t− 1, . . . , t−m do

Set αi = ρis
>
i q

q = q − αiyi
end for
r = B0q
for i = t−m, . . . , t− 1 do
β = ρiy

>
i r

r = r + si(αi − β)
end for
Set search direction dt = −r.
Find a step size γt using backtracking line search.
Set

φt+1 = φt + γtdt,sk = φt+1 − φt,

yt = gt+1 − gt,ρt =
1

s>t yt
.

Set t = t+ 1.
end while
Return: φt
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ALGORITHM 5: GSLW method

Input: A nonnegative integer d, real polynomials P̃ and Q̃ satisfying condition (1) – (2) of Theorem 1 and P̃ 2(x) + (1 −
x2)Q̃2(x) ≤ 1, ∀x ∈ [−1, 1]. A nonnegative integer R indicates the number of bits on which high-precision arithmetic is
performed.

Step 1: Find the complementary polynomials

Solve all roots of 1−P 2(x)− (1− x2)Q2(x). Denote S as the multiset that contains roots of 1−P 2(x)− (1− x2)Q2(x) with
their algebraic multiplicity. Find the following subsets of S

S0 = {s ∈ S|s = 0}, S(0,1) = {s ∈ S|s ∈ (0, 1)},
S[1,∞) = {s ∈ S|s ∈ [1,∞)}, SI = {s ∈ S|Re(s) = 0, Im(s) > 0},
SC = {s ∈ S|Re(s) > 0, Im(s) > 0}.

Define
Z(x) = Kx|S0|/2

∏
s∈S(0,1)

√
x2 − s2

∏
s∈S[1,∞)

(
√
s2 − 1x+ is

√
1− x2)

∏
s∈SI

(
√
|s|2 + 1x+ i|s|

√
1− x2)

∏
(a+bi)∈SC

(cx2 − (a2 + b2) + i
√
c2 − 1x

√
1− x2),

(G1)

where K is the absolute value of the coefficient of the highest order of polynomial 1− P 2(x)− (1− x2)Q2(x), c = a2 + b2 +√
2(a2 + 1)b2 + (a2 − 1)2 + b4.

Z(x) can be written in the form Z(x) = B(x) + i
√

1− x2C(x) for B, C ∈ R[x]. B and C are required complementing

polynomials if B has same parity as P̃ while C has opposite parity, otherwise we replace Z(x) by Z(x)(x+ i
√

1− x2).

Calculate coefficients of B and C and define P (x) := P̃ (x) + iB(x), Q(x) := Q̃(x) + iC(x). Then |P (x)|2 + (1− x2)|Q(x)|2 =
1, ∀x ∈ [−1, 1].

Step 2: Matrix reduction

Set t = d.
while deg(P ) > 0 do

Denote coefficients of highest order of P and Q as pt and qt−1, respectively. We have |pt| = |qt−1|. Choose φt ∈ R such
that e2iφt = pt/qt−1.

Replace P and Q by

Pnew(x) = e−iφt

(
xP (x) +

pt
qt−1

(1− x2)Q(x)

)
(G2)

and

Qnew(x) = e−iφt

(
pt
qt−1

xQ(x)− P (x)

)
. (G3)

Set t = t− 1.
end while
Choose φ0 ∈ R such that eiφ0 = P (1). Set φj = π

2
for j = 1, 3, . . . , t− 1, φj′ = −π

2
for j′ = 2, 4, . . . , t.

Output: QSP phase factors Φ = (φ0, . . . , φd) satisfying

UΦ(x) = eiφ0σz

d∏
j=1

[
W (x)eiφjσz

]
=

(
P̃ (x) + iB(x) (iQ̃(x)− C(x))

√
1− x2

(iQ̃(x) + C(x))
√

1− x2 P̃ (x)− iB(x)

)
(G4)
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The Haah method proposed in [13] is summarized in Algorithm 6. Here a Laurent polynomial of degree d represents

polynomials having the form P (z) =
∑d
j=−d pjz

j , pj ∈ C , |pd| + |p−d| 6= 0. A complex-valued function P is said to

be real-on-circle if P (z) ∈ R, ∀|z| = 1.

Suppose two real polynomials P̃ (x) and Q̃(x) satisfy the requirements of Algorithm 5, they can be converted to
desired input of Algorithm 6 through the formula

A(z) = P̃

(
z + z−1

2

)
, B(z) =

z − z−1

2i
Q̃

(
z + z−1

2

)
. (G5)

If A(z) and B(z) are generated by this formula, we may only compute d+1 terms E0, E1(t), . . . , Ed(t) from coefficients
C2d

2k , k = −d,−d+ 2, . . . , d such that

A(z) + iB(z) ≈ 〈+|E0E1(z) · · ·Ed(z) |+〉 , ∀z ∈ U(1). (G6)

[13] proved that in this case matrix Pj computed in the algorithm are of form

Pj = eiσzφ̂j/2 |+〉 〈+| e−iσzφ̂j/2, j = 1, . . . , 2d, (G7)

and there exists φ̂0 such that E0 = eiσzφ̂0 . The transformation formula between Φ̂ = (φ̂0, . . . , φ̂d) and QSP phase
factors Φ are given in Appendix A. In practice we take B(z) = 0 since we are not interested in the second polynomial

Q̃. As the rational approximation procedure in Step 1 is designed to bound the error theoretically and hard to
implement, in practice we round the coefficients of (1 − ε/3)A(z) and (1 − ε/3)B(z) with small magnitude to zero
instead of taking rational approximation.



25

ALGORITHM 6: Haah method

Input: A real parameter ε ∈ (0, 0.1), a nonnegative integer R indicates the number of bits on which high-precision arithmetic

is performed and a complex-valued Laurent polynomial A(eiθ) + iB(eiθ) =
∑d
k=−d ζke

ikθ such that
(1) A and B are real-on-circle polynomials,
(2) |A(eiθ)|2 + |B(eiθ)|2 ≤ 1, ∀θ ∈ R,
(3)A(eiθ) and B(eiθ) have definite parity as a function of θ.

Step 1: Denote d = deg(A). Taking rational approximations of each coefficient of (1−ε/3)A(z) and (1−ε/3)B(z) up to error
ε

30d
. Coefficients with magnitude smaller than ε

30d
should be rounded to zero. Parity properties of A and B should be kept

during rounding procedure. Denote resulting rational real-on-circle polynomials as a(z) and b(z), respectively. Coefficients
of a and b should be store as rational numbers. Denote n = deg(a) and n′ = deg(1− a(z)2 − b(z)2).
Step 2: Find all roots of 1 − a(z)2 − b(z)2. Denote S as the multiset that contains roots of 1 − a(z)2 − b(z)2 with their
algebraic multiplicity.

Step 3: Define e(z) = z−b
n′
2
c∏

s∈S
|s|<1

(z − s) and constant α = 1−a(z)2−b(z)2
e(z)e(1/z)

. Define complementary polynomials c(z) and

d(z) as

c(z) =
√
α
e(z)− e(1/z)

2i
, d(z) =

√
α
e(z) + e(1/z)

2
. (G8)

Evaluate c(z) and d(z) on D = 2dlog2(2n+1)e points

{e2πik/D|k = 0, . . . , D − 1} (G9)

by computing e(z) and e(1/z) via factorized form rather than direct expansion.
Step 4: Compute 2-by-2 complex matrices C2n

2k ,−n ≤ k ≤ n such that

n∑
k=−n

C2n
2k z

k = a(z)I + b(z)iσx + c(z)iσy + d(z)iσz

via discrete fast Fourier transform.
Step 5:
for m = 2n, 2n− 1, . . . , 1 do

Compute

Pm =
(Cmm )†Cmm

Tr((Cmm )†Cmm )
, Qm =

(Cm−m)†Cm−m
Tr((Cm−m)†Cm−m)

. (G10)

Define Em(z) = zPm + z−1(I − Pm). Compute coefficients

Cm−1
k = Cmk−1Qm + Cmk+1Pm, k = −m+ 1,−m+ 3, . . . ,m− 3,m− 1. (G11)

end for
Define E0 = C0

0 .
Output: E0, E1(z), . . . , E2n(z) satisfying

|A(z2) + iB(z2)− 〈+|E0E1(z) · · ·E2n(z) |+〉 | ≤ ε, ∀z ∈ U(1). (G12)

Appendix H: Proof of Theorem 5

First consider d′ = 2d+ 2. According to Lemma 3, it is equivalent to prove∥∥∥∥∥∥Im
[
〈0|UΦ̃(x)|0〉

]
+

2d+1∏
j=0

cos
(
φ̃j

)
·
d∑
j=0

(
−2 tan

(
φ̃j

))
T2d+1−2j(x)

∥∥∥∥∥∥
∞

≤ 1

6

∥∥∥Φ̃
∥∥∥3

1
+O

(∥∥∥Φ̃
∥∥∥5

1

)
(H1)

For simplicity, we drop the tilde in phase factors. Divide the QSP phase factors into two groups symmetrically,
Φl = (φ0, · · · , φd), Φr = Φ−l , Then, UΦ(x) can be expressed in terms of the product of two QSP matrices,

UΦ(x) = UΦl(x)W (x)UΦr (x) = eiφ0σz

d∏
j=1

[
W (x)eiφjσz

]
W (x)

d−1∏
j=0

[
eiφd−jσzW (x)

]
eiφ0σz . (H2)
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Each QSP unitary can be equivalently written as

UΦl(x) =

 d∏
j=0

cos(φj)

 (1 + it0σz)

d∏
j=1

[W (x) (1 + itjσz)] , (H3)

where tj := tan(φj) ∼ O(φj). Then, the contributions up to O(‖Φ‖41) come from selecting up to three σz’s in the
expansion,

UΦl(x)∏d
j=0 cos(φj)

=W (x)d +

d∑
j=0

itjσzW (x)d−2j −
∑
j1<j2

tj1tj2W (x)d−2(j2−j1)

−
∑

j1<j2<j3

itj1tj2tj3σzW (x)d−2(j1+j3−j2) +O(‖Φ‖41).

(H4)

Here we have used the following relation repeatedly

W (x)σz = σzW (x)−1.

After taking imaginary part of the upper-left component in Eq. (H2), it is evident that only odd orders in φj ’s have
nonvanishing contributions according to Eq. (H4). Furthermore, using that UΦr = U>Φl , we have

Im [〈0 |UΦ(x)| 0〉]∏2d+1
j=0 cos(φj)

=

d∑
j=0

2tjT2d+1−2j(x)−
d∑
j=0

∑
j1<j2

2tjtj1tj2T2d+1−2(j+j2−j1)(x)

−
∑

j1<j2<j3

2tj1tj2tj3T2d+1−2(j1+j3−j2)(x) +O(‖Φ‖51).

(H5)

Let sj := sin(φj). It implies the expected bound,∥∥∥∥∥∥Im [〈0|UΦ(x)|0〉]−
2d+1∏
j=0

cos (φj) ·
d∑
j=0

2 tan (φj)T2d+1−2j(x)

∥∥∥∥∥∥
∞

≤ 2

(
1

2
+

1

6

) d∑
j1,j2,j3=0

|sj1sj2sj3 |+O(‖Φ‖51)

≤ 4

3
(‖Φ‖1 /2)

3
+O

(
‖Φ‖51

)
=

1

6
‖Φ‖31 +O

(
‖Φ‖51

)
.

(H6)

This proves Eq. (39) for even d′.
Then prove the case d′ = 2d+ 1. The QSP unitary is again divided symmetrically and we drop the tilde in phase

factors for simplicity. Define Φl = (φ0, · · · , φd−1), Φr = Φ−l

UΦ(x) = UΦl(x)W (x)eiφdσzW (x)UΦr (x) = cos(φd)UΦl(x)W (x)2UΦr (x)︸ ︷︷ ︸
1©

+ i sin(φd)UΦl(x)W (x)σzW (x)UΦr (x)︸ ︷︷ ︸
2©

(H7)

Similar to expansion in Eq. (H4), we conclude the following bounds,∥∥∥∥∥∥Im [〈0| 1©|0〉]−
2d∏
j=0

cos(φj) ·
d−1∑
j=0

2tjT2d−2j(x)

∥∥∥∥∥∥
∞

≤ 2

(
1

2
+

1

6

)d−1∑
j=0

|sj |

3

+O
(
‖Φ‖51

)
≤ 1

6
‖Φ‖31 +O

(
‖Φ‖51

)
,

∥∥∥∥∥∥Im [〈0| 2©|0〉]−
2d∏
j=0

cos(φj) · tan(φd)

∥∥∥∥∥∥
∞

≤ sd
4
‖Φ‖21 +

sd
48
‖Φ‖41 +O(‖Φ‖61) ≤ 1

4
‖Φ‖31 +O

(
‖Φ‖51

)
.

(H8)

Using the triangle inequality, we prove Eq. (39) when d′ is odd.
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