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Non-Hermitian dynamics has been widely studied to enhance the precision of quantum sensing;
and non-reciprocity can be a powerful resource for non-Hermitian quantum sensing, as non-
reciprocity allows to arbitrarily exceed the fundamental bound on the measurement rate of any
reciprocal sensors. Here we establish fundamental limits on signal-to-noise ratio for reciprocal and
non-reciprocal non-Hermitian quantum sensing. In particular, for two-mode linear systems with two
coherent drives, an approximately attainable uniform bound on the best possible measurement rate
per photon is derived for both reciprocal and non-reciprocal sensors. This bound is only related to the
coupling coefficients and, in principle, can be made arbitrarily large. Our results thus demonstrate
that a conventional reciprocal sensor with two drives can simulate any non-reciprocal sensor. This
work also demonstrates a clear signature on how the excitation signals affect the signal-to-noise
ratio in non-Hermitian quantum sensing.

I. INTRODUCTION

An important task in quantum science and technology
is to investigate the precision limit of quantum sensing
and devise protocols to attain it. Non-Hermitian
dynamics [1–24] has attracted much interest in recent
years for their possibility in enhancing quantum sensing.
Most of the key results refer to the intriguing non-
Hermitian degeneracy property known as the exceptional
point (EP), at which not only the eigenenergies but
also the eigenstates coalesce [25–42]. Near the EP, the
eigenenergies have a diverging susceptibility on small
parameter changes, which is leveraged for sensing weak
signals. When utilizing EP sensors, fine tunings of the
system parameters are needed. Moreover, the real effect
of EP sensors should be assessed by taking full account
of noise effects and/or realistic measurements owing to
the fact that the coalescence of eigenstates may suppress
the diverging susceptibility of eigenenergies [8–10].

Recently there have been several theoretical results
calculating the signal-to-noise ratio (SNR) and the
quantum Fisher information of EP sensors [7–10]. It
has been demonstrated in [8] that amplification or
gain is a necessary ingredient for enhancing signal
powers but there is no fundamental utility using an
EP sensor. Furthermore, non-reciprocity [8, 43–48],
where the magnitude of the coupling between two modes
has directionality, was demonstrated to be a powerful
resource for quantum sensing. This was concluded by
first deriving fundamental bounds on the measurement
rate that constrains any reciprocal two-mode systems
including reciprocal EP sensors, and then demonstrating
that breaking reciprocity allows to arbitrarily exceed the

bounds restricting reciprocal sensors [8]. It is worth
stressing that non-reciprocity has nothing to do with EP.

Inspired by [8], we derive fundamental bounds on
the SNR for linear coupled-mode non-Hermitian systems
with two coherent drives, instead of the one drive used
in previous works. Focusing on two-mode systems, we
show that with two coherent drives, a uniform bound on
the best possible measurement rate per photon, which
determines the best possible rate of SNR growing in
time per photon, can be derived for both reciprocal and
non-reciprocal sensors. This bound is approximately
attainable and only related to the coupling coefficients
and can, in principle, be made arbitrarily large. Our
results show that conventional reciprocal sensors with
two coherent drives, which can be relatively easy to
implement with current technology, can simulate any
non-reciprocal sensor. Moreover, the introduction of two
drives provides a clear signature on understanding how
the SNR relates to the excitation signals.

The paper is organized as follows. In Section II, we
describe the generic non-Hermitian setup in terms of the
Heisenberg-Langevin equations and depict the SNR and
the measurement rate per photon to be used explicitly.
A general bound on non-Hermitian sensing is derived in
Section III, and then we apply the result to two-mode
systems in Section IV. We then investigate how the drive
frequencies affect the measurement rate per photon in
Section V. Section VI concludes the paper.
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FIG. 1. (Color online) A generic non-Hermitian linear mode
setup. The circles denote resonant linear modes that interact
according to the effective non-Hermitian Hamiltonian H̃[ε],
where the parameter ε is an infinitesimal disturbance to be
measured. The linear modes are coupled to dissipative baths
via gain (red) and loss (blue) processes. Two coherent drives
are injected into mode 1 (â1) and mode 2 (â2) through two
waveguides, respectively. The reflected field from mode 1 is
measured by a homodyne detection.

II. NON-HERMITIAN SENSING

A. A generic non-Hermitian setup

A generic linear non-Hermitian sensing setup is shown
in Fig. 1. This is a generalized version of non-Hermitian
sensing systems in previous works [1, 2, 8, 35, 40, 41],
which takes into account the noise effects associated with
the dissipative dynamics and a realistic measurement
process. We sketch the main dynamics as follows, and
details can be found in Appendix A.

Let â′i denote the canonical bosonic annihilation
operator of the ith mode, i = 1, 2, · · · , N . The
N ×N matrix H̃[ε] denotes the effective non-Hermitian
Hamiltonian of N resonant modes, where the parameter
ε describes an infinitesimal change in the effective
Hamiltonian H̃[ε]. The aim of employing non-Hermitian
dynamics is to sense this infinitesimal change ε.

Without loss of generality, we couple the modes i (i =
1, 2) to a transmission line or a waveguide, respectively,
through which a coherent drive with amplitude βi and
frequency wdr,i is injected. The coupling coefficient
between mode i and the corresponding waveguide is ki,
for i = 1, 2. We now assume that wdr,1 = wdr,2. First,
work in a rotating frame at the drive frequency wdr,1,
and let âi = â′ie

iwdr,1t. Then choose a frequency reference

such that the real part of H̃11[0] = 0. The full dynamics
can be described by the Heisenberg-Langevin equations

[8, 49]:

˙̂ai =i∆âi − i
∑
j

(H̃ij [ε]− i
k1

2
δi1δj1 − i

k2

2
δi2δj2)âj

− iδi1
√
k1β1 − iδi2

√
k2β2

− iδi1
√
k1B̂

in
1 − iδi2

√
k2B̂

in
2

− i
√

2(

NY∑
j=1

YijĈ
in†
j +

NZ∑
j=1

ZijD̂
in
j ).

(1)

Here, βi can be taken real and positive without loss
of generality, and ∆ depicts the detuning of the drive
frequency from the mode 1 resonance frequency wm. The
terms on the third line and fourth line in Eq. (1) describe

the noise effects. The noises B̂in
j (j = 1, 2) denote

the accompanied quantum noises of the coherent drives
coming from the input-output waveguides, whereas Ĉ in

j

(D̂in
j ) are quantum noises arising from dissipative baths

depicting the gain (loss) processes with specific mode-
bath coupling coefficients described by the matrix Y (Z).

In order to ensure linearity and the Markovian nature
of the full dynamics, B̂in

j , Ĉ in
j and D̂in

j are assumed to be
quantum Gaussian white noises [49]. We thus have

〈Q(t)Q†(t′)〉 = (n̄thQ + 1)δ(t− t′),

〈Q†(t)Q(t′)〉 = n̄thQδ(t− t′),

and

〈Q(t)Q(t′)〉 = 0,

where Q ∈ {B̂in
j , Ĉ

in
j , D̂

in
j }, and there are no correlations

between different noise operators. The average 〈·〉
represents the mean over the state of the bath degrees
of freedom, and n̄thQ represents the average thermal
occupancy of bath Q. In the following, we focus on the
vacuum noise, i.e., n̄thQ = 0, while the formalism can be

generalized to classical cases with n̄thQ � 1.

B. SNR and measurement rate

As in [8], we take the standard figure of merit SNR
or the equivalent measurement rate per photon, which
determines the rate of SNR growing in time per photon
to evaluate the sensitivity of measuring ε. We start with
specifying the homodyne measurement [20, 50] which
has been demonstrated being an optimal strategy if the
driving field is sufficiently large [8].

The reflected field in the waveguide coupling to mode 1
is described by B̂out, and from the standard input-output
theory [49] it obeys

B̂out(t) = β1 + B̂in
1 (t)− i

√
k1â1(t),
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where B̂out(t) is related to â1(t) with a dissipative rate
k1. Since we have assumed that the parameter change
ε is small, the dependence of the mean value of the
output field B̂out(t) on ε is linear. Here, we focus on
the steady state values of the averages, by assuming that
the measurement duration is sufficiently long such that
any transient effects can be ignored or averaged out. We
thus have

〈B̂out〉ε ' 〈B̂out〉0 + λε, (2)

where λ is to be determined and possibly complex, and
〈·〉ε denotes the average calculated using Eq. (1), and 〈·〉0
denotes the average calculated using Eq. (1) with ε = 0.

The homodyne detection is employed to extract the
information of ε from the output field B̂out(t). The
homodyne current operator is

Î(t) ,

√
k1

2

(
eiφB̂out(t) + e−iφB̂out†(t)

)
. (3)

We choose the phase φ as φ = − arg λ, following [8].
This smart choice makes all the information of ε be
contained in the real part of eiφB̂out, and thus intuitively
it is the best to measure the corresponding quadrature
described by Eq. (3). In practice, we prefer to integrate

the homodyne current Î(t) to average away the effects of
noise, denoting this as

m̂(τ) ,
∫ τ

0

dtÎ(t).

For the steady state averages in the long-τ limit, from
Eqs. (2) and (3), the signal power of the small parameter
change ε is

S = [〈m̂(τ)〉ε − 〈m̂(τ)〉0]2 = 2k1ε
2|λ|2τ2. (4)

Since we are interested in an infinitesimal parameter
change, as long as the non-Hermitian parameter change
vanishes in the limit of ε → 0, the noise power of the
integrated homodyne current in the long-time τ limit can
be defined as

N , 〈δm̂(τ)δm̂(τ)〉0,

where

δm̂ = m̂− 〈m̂〉0.

Note that what we are really interested in is the
SNR, given a fixed number of photons used in the
measurement. We thus define the measurement rate per
photon Γ̄meas, which quantifies the resolving power of
weak continuous measurement in terms of the SNR per
photon as

S
N
· 1

n̄tot
,
ε2

k2
1

τ
Γmeas

n̄tot
,
ε2

k2
1

τ Γ̄meas, (5)

where n̄tot ,
∑
i〈â
†
i 〉〈âi〉 denotes the total average photon

number in all modes. Note that we have neglected

the incoherent photons injected by the bath. This
is reasonable because on the one hand the injected
incoherent photons are independent of the coherent
drives; On the other hand, if the coherent drives are
sufficiently large, the coherent drive-induced photons
dominate the total photon number. The appearance of
the factor k−2

1 in Eq. (5) is mainly for the the convenience
of comparison with results in [8] [see Eq. (16) therein].
From Eq. (5), it can be seen that in the long-time limit,
the SNR per photon grows linearly with time τ in terms
of the measurement rate per photon Γ̄meas.

III. GENERAL BOUND OF NON-HERMITIAN
SENSING

For stable non-Hermitian dynamics, we can derive a
general limit on the measurement rate per photon or
the corresponding SNR per photon whose details can be
found in Appendix B.

Without loss of generality, we assume that the
parameterized non-Hermitian Hamiltonian has the form

H̃[ε] = H̃[0] + εV, (6)

where V is an N×N matrix which describes the coupling
of the parameter ε to the unperturbed non-Hermitian
Hamiltonian H̃[0].

If the dynamics is stable, it is convenient to solve
Eq. (1) in the frequency domain in terms of the zero-
frequency transfer matrix

χ̃∆(ε) , ik1

(
∆I − H̃[ε] + i

K1

2
+ i

K2

2

)−1

,

where

K1ij = k1δi1δj1 and K2ij = k2δi2δj2.

Define the unperturbed transfer matrix

χ∆ , χ̃∆(0).

As demonstrated in [8, 10], to obtain a full analysis
of the sensitivity, not only the divergent eigenenergy
susceptibility of H̃[ε] on ε should be considered, but

also the left and right eigenvectors of H̃[ε] have to be
taken into account, as the coalescence of the different
eigenvectors may suppress or even cancel out the
singular behavior of the divergence of the eigenenergy
susceptibility.

From Eqs. (1) and (2), the linear response coefficient
λ can be derived as

λ = i
β1

k1
(χ∆V χ∆)11 + i

√
k2

k1

β2

k1
(χ∆V χ∆)12. (7)

Combining Eqs. (4) and (7), the signal power becomes

S = 2k1ε
2τ2
∣∣∣β1

k1
(χ∆V χ∆)11 +

√
k2

k1

β2

k1
(χ∆V χ∆)12

∣∣∣2.
(8)
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The noise power can be calculated from the quantum
Gaussian white noise properties as

N =
k1τ

2

(
1 +

4

k1
(χ∆Y Y †χ∆†)11

)
. (9)

The first term here is the unavoidable shot noise, while
the second term depends on how the gain processes are
realized with coupling to dissipative baths.

We can optimize the mode-bath coupling matrices to
minimize the noise power. The minimized noise power
can be found as

Nmin =
k1τ

2

(
1 + 2Ξ ·Θ(Ξ)

)
, (10)

where

Ξ(∆) , −(χ∆
11 + χ∆∗

11 ) + |χ∆
11|2 +

k2

k1
|χ∆

12|2,

and Θ(·) is the Heaviside step function. Note that our
aim is to investigate the best possible measurement rate
per photon in non-Hermitian sensing. In [8], it has

been proved that for any fixed H̃[0], one can always
construct mode-bath couplings (Y and Z) to attain the
minimum noise power. A possible realization was also
proposed, e.g., a two-mode non-reciprocal sensor can be
implemented by coupling to an effective chiral waveguide
which can be realized by using dynamic modulation and
engineered dissipation [47, 48, 51–53].

From Eq. (1), the total average photon number in all

modes induced by the coherent drives is

n̄tot =
1

k1
β2

1(χ∆†χ∆)11 +
k2

k2
1

β2
2(χ∆†χ∆)22

+

√
k1k2

k2
1

β1β2

(
(χ∆†χ∆)12 + (χ∆†χ∆)21

)
.

(11)

By combining Eqs. (5) with (8)-(11), we obtain a general
bound for the measurement rate per photon:

Γ̄meas ≤ Γ̄opt =
k2

1

ε2
· S
Nmin

1

τ
· 1

n̄tot
. (12)

With this fundamental bound Γ̄opt one can compare the
best possible performance of sensors with different non-
Hermitian Hamiltonians.

IV. TWO-MODE NON-HERMITIAN SENSORS

Now we apply the general bound (12) on several typical
kinds of two-mode systems which have been extensively
studied in the context of EP sensors [40–42]. However,
we stress that our results have nothing to do with EP.

Suppose that the coupling matrix in Eq. (6) is V =

1
2σx, with σx being the usual Pauli matrix

(
0 1
1 0

)
. The

best possible measurement rate per photon of two-mode
sensors Γ̄2-opt can be straightforwardly calculated from
Eqs. (8) -(12) as

|χ∆
11|2|χ∆

12 + χ∆
21|2 + 2

√
ηp<{χ∆

11(χ∆
12 + χ∆

21)(χ∆∗2
12 + χ∆∗

11 χ
∆∗
22 )}+ ηp2|χ∆2

12 + χ∆
11χ

∆
22|2

|χ∆
11|2 + |χ∆

21|2 + 2
√
ηp<{χ∆

12χ
∆∗
11 + χ∆∗

21 χ
∆
22}+ ηp2(|χ∆

12|2 + |χ∆
22|2)

k1

1 + 2ΞΘ(Ξ)
, (13)

where p = β2

β1 is the ratio of the amplitudes of the

coherent drives, and η = k2
k1

.

If there is only one drive involved as the case in [8],
then p = 0 and η = 0. From Eq. (13) we can obtain
the main result in [8] [see Eq. (27) therein]. However,
if there are two coherent drives, the amplitude ratio p
can be made arbitrarily large and is independent of χ∆

ij .
Thus, from Eq. (13) we have

Γ̄2-opt →
|χ∆2

12 + χ∆
11χ

∆
22|2

|χ∆
12|2 + |χ∆

22|2
· k1

1 + 2ΞΘ(Ξ)
, as p→∞.

(14)
Note that if the non-Hermitian sensor is reciprocal,

the magnitudes of the coupling between the two modes
are the same, i.e., |H̃12| = |H̃21|, and this implies that

|χ∆
12| = |χ∆

21|. For non-reciprocal sensors, |H̃12| 6= |H̃21|
and |χ∆

12| 6= |χ∆
21|, accordingly. From Eq. (14), it can be

seen that there is no term χ∆
21 involved. Thus, as long

as the amplitude ratio p is sufficiently large, a unified
form of the bound on the best possible measurement rate

per photon can be derived no matter whether the non-
Hermitian sensor is reciprocal or non-reciprocal.

The bound in Eq. (14) can be further simplified under
the condition |χ∆

12| � max{|χ∆
11|, |χ∆

22|, 1}. This can be
seen as

|χ∆2
12 + χ∆

11χ
∆
22|2

|χ∆
12|2 + |χ∆

22|2
· k1

1 + 2ΞΘ(Ξ)

=
|χ∆2

12 + χ∆
11χ

∆
22|2

|χ∆
12|2 + |χ∆

22|2
· k1

1 + 2(−2<{χ∆
11}+ |χ∆

11|2 + η|χ∆
12|2)

→ 1

2
· 1

η
· k1, as |χ∆

12| → ∞.

In practice, to approximately attain the uniform bound

Γ̄2-opt =
1

2
· k1

k2
· k1 (15)

for non-Hermitian sensing, one can first choose physical
parameters such that

|χ∆
12| � max{|χ∆

11|, |χ∆
22|, 1} (16)
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holds. Then choose p such that

p� |χ∆
12|3(|χ∆

12|+ |χ∆
21|) (17)

to ensure the limit p→∞ in Eq. (14) being valid.
It can be seen that Γ̄2-opt in Eq. (15) depending on

the ratio of the coupling coefficients k1 and k2, can,
in principle, be made arbitrarily large. This is quite
different from the results in [8], where the measurement
rate of reciprocal systems with only one coherent drive is
fundamentally bounded. In this sense, we demonstrate
that non-reciprocal sensors, which are viewed as powerful
resources for quantum sensing, can be simulated by
conventional reciprocal sensors with two coherent drives.
In practice, reciprocal sensors may be much easier to
implement than non-reciprocal sensors.

Now let us first account for the condition (17). Note
that the optimal measurement rate in [8] is given under
the situation where the measurement noise is at the
shot noise level. However, it can be calculated that in
attaining Γ̄2-opt, the measurement noise is no longer shot
noise, but contains noise emanating from the coupling
between the coherent drive and mode 2. Thus, to ensure
that Γ̄2-opt exceeds the optimal bound in [8], on the one
hand the ratio k1/k2 should be large. On the other
hand, the coupling coefficient k2 should be small while
p = β2

β1
sufficiently large, so that little noise is introduced

through mode 2, while the excitation signals through
mode 2 dominate in the total signal power.

To see how the condition (16) relates to physical
parameters, such as the detuning, dissipative rates
and coupling coefficients explicitly, we consider typical
non-Hermitian mode systems which have been studied
extensively in the literature.

A. Reciprocal case

First, we consider a reciprocal system in the form

H̃recip[0] =

(
−iγ12 J
J −iγ22

)
, (18)

where J is the Hermitian coupling between the modes,
while γi (i = 1, 2) describe the possible gain/loss
processes (depending on the sign) acting locally on each
mode. It can be verified that if

∆ ≈ 0, ki + γi ≈ 0, (19)

and

k1 � |J | � max{|∆|, |ki + γi|} (for i = 1, 2), (20)

the condition (16) holds. Details can be found in
Appendix C. This corresponds to a setup where the
coherent drives are resonant with the linear modes, the
Hermitian coupling J between the modes is relatively
weak, and the two modes are locally subject to gain,
where γi < 0 and γi ≈ −ki.
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FIG. 2. (Color online) The measurement rate per photon
Γ̄2-opt/k1 versus the detuning ∆/k1. Blue dashed: one-drive
reciprocal system with gain, described by Eq. (18) with k2 =
0, γ1 = −0.99k1, γ2 = −0.011k1 and J = 0.16k1. Red solid:
two-drive reciprocal system with gain, described by Eq. (18)
with k2 = 0.01k1, γ1 = −0.99k1, γ2 = −0.011k1, J = 0.16k1
and β2/β1 = 30.

A concrete example is illustrated in Fig. 2 for Γ̄2-opt/k1,
which, around the resonant frequency, exceeds the
fundamental limit for reciprocal systems with only a
single drive in [8]. However, for a fixed non-Hermitian
system with γ1 = 0, γ2 = 0.2k1 and J = 0.2k1, no
matter how k2 and β2/β1 are adjusted, the performance
of the measurement rate with only one drive cannot be
improved by two excitation drives. The main reason
is that amplification or gain from a local bath is a
necessary ingredient for amplifying the signal power
in the reciprocal case [8]. If there is no gain, only
with additional coherent drives, no enhancement can be
achieved. The details can be found in Appendix C.

B. Fully non-reciprocal case

Now consider a fully non-reciprocal Hamiltonian

H̃non-reci[0] =

(
−iγ12 J

0 ν2 − iγ22

)
, (21)

where ν2 is the frequency detuning of the two modes,
and J quantifies the non-reciprocal mode-mode coupling.
It can be verified that, as long as the non-reciprocal
coupling |J | is sufficiently large, then condition (16)
holds. Thus the amplification or gain from the local bath
is not a necessary ingredient for non-reciprocal sensors.

As an illustration, we specialize the system with
parameters γ1 = k1, γ2 = 0.5k1, ν2 = 0 and J = 1.5k1.
Note that there is no coupling to gain baths. Let
k2/k1 = 0.001 and β2/β1 = 5. The measurement rates
per photon are shown in Fig. 3. It can be seen that in
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FIG. 3. (Color online) The measurement rate per photon
Γ̄2-opt/k1. Blue dashed: one-drive non-reciprocal system
described by Eq. (21) with k2 = 0, γ1 = k1, γ2 = 0.5k1,
ν2 = 0 and J = 1.5k1. Red solid: two-drive non-reciprocal
system described by Eq. (21) with k2 = 0.001k1, γ1 = k1,
γ2 = 0.5k1, ν2 = 0, J = 1.5k1 and β2/β1 = 5.

contrast to the reciprocal case, with two coherent drives
the performance of the measurement rate per photon can
be greatly improved for the non-reciprocal sensor even
though there is no amplification or gain from the bath.
The improvement is due to the fact that signals from the
mode 2 dominate in the total signal power.

Combined with the reciprocal case, it is worth pointing
out that although the best possible measurement rate
per photon is limited by the same bound as in Eq. (15),
the parameters (e.g., J) attaining this bound are quite
different in reciprocal and non-reciprocal sensors. In the
reciprocal case, the physical parameters should satisfy
conditions (19) and (20), while in the non-reciprocal case
one just ensures |J | to be sufficiently large, which allows
more degrees of freedom for other parameters. Moreover,
from Figs. 2 and 3, one can see that Γ̄2-opt/k1 decreases
more quickly as the detuning ∆ deviates from 0 in the
reciprocal case than that in the non-reciprocal case. Thus
we claim that non-reciprocity provides advantages for
quantum sensing.

There have been several ways of realizing non-
reciprocal interactions, ranging from photonic setups
[54–56], optomechanical systems [45, 46], to classical
microwave [57, 58] and superconducting circuits [59, 60].
Although these experiments were designed to build
circulators and isolators, such systems could be exploited
for enhanced sensing [8].

V. MEASUREMENT RATE WITH DIFFERENT
DRIVE FREQUENCIES

In the above analysis, we have assumed that the
frequencies of the two coherent drives satisfy wdr,1 =

wdr,2. Now we consider how the coherent drive
frequencies affect the best possible performance of the
measurement rate per photon. To be specific, we focus
on the following two typical cases where

|wdr,1 − wdr,2| � |∆i|

for i = 1 and 2, respectively. Here, ∆i = wdr,i − wm
represents the detuning of the drive frequency wdr,i from
the mode 1 resonance frequency wm.

First, suppose that |wdr,1 − wdr,2| � |∆1|. In this
case, it is convenient to first work in a rotating frame
at the drive frequency wdr,1, and then choose a frequency

reference such that the real part of H̃11[0] = 0. The
Heisenberg-Langevin equations become:

˙̂ai=i∆1âi−i
∑
j

(H̃ij [ε]−i
k1

2
δi1δj1−i

k2

2
δi2δj2)âj

− iδi1
√
k1β1 − iδi2

√
k2β2e

i(wdr,1−wdr,2)t

− iδi1
√
k1B̂

in
1 − iδi2

√
k2B̂

in
2

− i
√

2(

NY∑
j=1

YijĈ
in†
j +

NZ∑
j=1

ZijD̂
in
j ).

(22)

It can be seen that under the following condition,

|wdr,1−wdr,2| � max{|∆1|, ‖H̃‖, ki,
√
kiβi} (for i = 1, 2),

the rapid oscillation signal β2 exp{i(wdr,1 −wdr,2)t} from
drive 2 can be averaged out in the long-time average
limit due to the rotating-wave approximation (RWA).
This leads to (see Appendix D)

Γ̄meas ≤
4|(χ∆1V χ∆1)11|2

(χ∆1†χ∆1)11
· k1,

which does not exceed (and in general is smaller than)
the fundamental bound in [8]. This is because in this
situation (although the rapid oscillation signal from drive
2 has been averaged out owing to the RWA) the injected
photons through mode 2 still contribute to the total
number of photons, and the unavoidable accompanied
quantum noise remains in the noise power.

Let us turn to the second case where |wdr,1 − wdr,2| �
|∆2|. Now it is convenient to work in a rotating frame
at the drive frequency wdr,2, and choose a frequency

reference such that the real part of H̃11[0] = 0, then the
corresponding Heisenberg-Langevin equations become:

˙̂ai=i∆2âi−i
∑
j

(H̃ij [ε]−i
k1

2
δi1δj1−i

k2

2
δi2δj2)âj

− iδi1
√
k1β1e

i(wdr,2−wdr,1)t − iδi2
√
k2β2

− iδi1
√
k1B̂

in
1 − iδi2

√
k2B̂

in
2

− i
√

2(

NY∑
j=1

YijĈ
in†
j +

NZ∑
j=1

ZijD̂
in
j ).

(23)
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Similarly, under the RWA condition

|wdr,1−wdr,2| � max{|∆2|, ‖H̃‖, ki,
√
kiβi} (for i = 1, 2),

the rapid oscillation excitation β1 exp{i(wdr,2 − wdr,1)t}
from drive 1 can be averaged out. However, it can be
found in Appendix D that if the conditions (16) and (17)
hold with ∆ being replaced by ∆2, the same bound as
Eq. (15) can be established for two-mode non-Hermitian
systems as

Γ̄2-opt =
1

2
· k1

k2
· k1.

This is the situation where the excitation from mode
2 dominates in the total signal power. More
importantly, the resulting signal power gain prevails
in the competition with the noise power enhancement
induced by the unavoidable associated noise. To sum up,
when utilizing two coherent drives whose frequencies are
quite different, it is better to adjust the frequency of drive
2 to be near the resonance frequency of mode 1 .

VI. CONCLUSION AND DISCUSSION

We have established a uniform bound for the best
possible SNR or measurement rate per photon for
reciprocal and non-reciprocal non-Hermitian quantum
sensing with two coherent drives. The bound is only
related to the coupling coefficients between the modes
and coherent drives, and it constrains sensors no matter
whether they are at EP or not. The bound can be
made arbitrarily large in principle and is approximately
attainable. Our results highlight how the coherent
excitation drives affect the SNR and show that with
two drives conventional reciprocal sensors, which are
easy to implement with current technology, can simulate
non-reciprocal sensors and enhance the performance of
sensing.
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APPENDICES

In the appendices we demonstrate the detailed
description of the non-Hermitian setup and derivations
of the bound on the best possible measurement rate
per photon. The appendices are organized as follows.
In Appendix A we describe in detail the terms in
the Heisenberg-Langevin equations which depict the
dynamics of the full non-Hermitian setup. In Appendix
B we present the derivations of the signal power, noise
power and the measurement rate per photon. We
then consider the two-mode non-Hermitian systems in
Appendix C. In Appendix D we consider the case where
the frequencies of the two coherent drives are different
and discuss how to obtain a better SNR by working in
an appropriate rotating frame.

Appendix A: General non-Hermitian setup

To make the paper self-contained, we describe the
details of the non-Hermitian linear coupled modes in this
section.

In many works, the dynamics of N resonant modes is
described by the linear equations:

˙̃αi(t) = −iωmα̃i(t)− i
∑
j

H̃ij [ε]α̃j(t),

where α̃j(t) is the amplitude of mode j, ωm is the
mode 1 resonance frequency, and the N × N matrix
H̃ denotes an effective non-Hermitian Hamiltonian
depicting both coherent and dissipative dynamics. The
parameter ε in the non-Hermitian Hamiltonian describes
an infinitesimal perturbation, and our aim is to sense this
infinitesimal change.

To measure the perturbation, a general idea is to
couple one of the modes, say mode 1, to an input-output
waveguide. On the one hand we can use this port to
excite the system with a coherent drive. On the other
hand the reflected signal can be measured to estimate ε.
Unlike previous studies with one drive, we also couple
mode 2 to another waveguide through which only the
excitation signal is injected but without measurement.
Coupling to the waveguide results in extra damping, and
accordingly

H̃ij → H̃ij − i(k1/2)δi1δj1 − i(k2/2)δi2δj2,

where ki (i = 1, 2) is the coupling rate between mode
i and the corresponding waveguide. Now the system
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with coherent drives is described by the coupling-mode
equations

˙̃αi(t)=− iωmα̃i(t)

− i
∑
j

(H̃ij [ε]−i
k1

2
δi1δj1−i

k2

2
δi2δj2)α̃j(t)

− iδi1
√
k1β1e

−iωdr,1t−iδi2
√
k2β2e

−iωdr,2t,

(A1)

where βi (ωdr,i) is the amplitude (frequency) of the ith
coherent drive for i = 1, 2.

Since the dissipative dynamics is encoded in the anti-
Hermitian part of H̃ which can be described as

1

2i
(H̃ − H̃†) ≡ Y Y † − ZZ†,

where the matrix Y Y † describes gain processes and
ZZ† represents loss processes. Let Y be an N × NY
matrix, and Z be an N × NZ matrix, i.e., the non-
Hermitian dynamics is generated by coupling to NY +NZ
distinct baths with the corresponding coupling constants
described by Y and Z.

Equation (A1) can be viewed as a noise-averaged dy-
namics. Now we describe the whole dynamics including
the consistent noise processes as the Heisenberg-Langevin
equations:

˙̂a′i =− iωmâ′i − i
∑
j

(H̃ij [ε]− i
k1

2
δi1δj1 − i

k2

2
δi2δj2)â′j

− iδi1
√
k1β1e

−iωdr,1t − iδi2
√
k2β2e

−iωdr,2t

− iδi1
√
k1B̂

in
1 − iδi2

√
k2B̂

in
2

− i
√

2(

NY∑
j=1

YijĈ
in†
j +

NZ∑
j=1

ZijD̂
in
j ).

(A2)
Here â′i denotes the canonical bosonic annihilation
operator of the ith mode, i = 1, 2, · · · , N . Note
that the terms in the first two lines are in the same
form as those in Eq. (A1), while the terms in the last
two lines describe zero-mean noise effects. The quantum
noises B̂in

j (j = 1, 2) come from the input-output

waveguide, whereas Ĉ in
j (D̂in

j ) are quantum noises arising
from dissipative baths used to realize the gain (loss)
parts of the dynamics with specific mode-bath coupling
coefficients described by the matrix Y (Z). The quantum

noises B̂in
j , Ĉ in

j and D̂in
j are assumed to be quantum

Gaussian white noises, which satisfy

〈Q(t)Q†(t′)〉 = (n̄thQ + 1)δ(t− t′),

〈Q†(t)Q(t′)〉 = n̄thQδ(t− t′),

and

〈Q(t)Q(t′)〉 = 0,

where Q ∈ {B̂in
j , Ĉ

in
j , D̂

in
j }, and the correlations between

different noise operators vanish.
Assume wdr,1=wdr,2. First, work in a rotating frame

at the drive frequency wdr,1, and let âi = â′ie
iwdr,1t. Then

choose a frequency reference such that the real part of
H̃11[0] = 0. The Heisenberg-Langevin equations (A2)
become

˙̂ai=i∆âi−i
∑
j

(H̃ij [ε]−i
k1

2
δi1δj1−i

k2

2
δi2δj2)âj

− iδi1
√
k1β1 − iδi2

√
k2β2

− iδi1
√
k1B̂

in
1 − iδi2

√
k2B̂

in
2

− i
√

2(

NY∑
j=1

YijĈ
in†
j +

NZ∑
j=1

ZijD̂
in
j ),

(A3)

where ∆ represents the detuning of the drive frequency
from the mode 1 resonance frequency. Here we still
adopt the same symbols for the annihilation operators
and noises.

Appendix B: Derivations of the SNR and
measurement rate

In this section, we present the detailed calculation in
deriving the SNR and measurement rate per photon.

Without loss of generality we assume that the
parameterized non-Hermitian Hamiltonian is in the form

H̃[ε] = H̃[0] + εV,

where V is an N×N matrix which describes the coupling
of the parameter ε to the unperturbed non-Hermitian
Hamiltonian H̃[0]. If the non-Hermitian dynamics (A3)
is stable, it is convenient to transfer into the frequency
domain to solve Eq. (A3) in terms of the zero-frequency
transfer matrix

χ̃∆(ε) , ik1

(
∆I − H̃[ε] + i

K1

2
+ i

K2

2

)−1

, (B1)

where

K1ij = k1δi1δj1 and K2ij = k2δi2δj2.

Moreover, define the unperturbed transfer matrix as

χ∆ , χ̃∆(0).

To be specific, from Eq. (1) or (A3), if the time t is
sufficiently large, the annihilation operator of the mode
l can be described as

âl =

√
k1

ik1
β1χ̃

∆
l1 +

√
k2

ik1
β2χ̃

∆
l2

+

√
k1

ik1
B̂in

1 χ̃
∆
l1 +

√
k2

ik1
B̂in

2 χ̃
∆
l2

+

√
2

ik1

( NY∑
j=1

(χ̃∆Y )ljC
in†
j +

NZ∑
j=1

(χ̃∆Z)ljD
in
j

)
.



9

Thus the reflected field

B̂out =β1 + B̂in
1 (t)− i

√
k1â1(t)

=(1− χ̃∆
11)β1 −

√
k2

k1
χ̃∆

12β2

+ (1− χ̃∆
11)B̂in

1 −
√
k2

k1
χ̃∆

12B̂
in
2

−
√

2

k1

( NY∑
j=1

(χ̃∆Y )1jC
in†
j +

NZ∑
j=1

(χ̃∆Z)1jD
in
j

)
.

Since we are considering an infinitesimal perturbation
ε, the change of the mean of the reflected field can be
represented as

〈B̂out〉ε − 〈B̂out〉0

=
−1√
k1

(
χ̃∆

11(ε)− χ̃∆
11(0)

)√
k1β1

+
−1√
k1

(
χ̃∆

12(ε)− χ̃∆
12(0)

)√
k2β2

=λε,

where

λ = −β1
d

dε
χ̃∆

11(ε)|ε=0 −
√
k2

k1
β2

d

dε
χ̃∆

12(ε)|ε=0

= i
β1

k1
(χ∆V χ∆)11 + i

√
k2

k1

β2

k1
(χ∆V χ∆)12.

According to the definition of the signal power in
Eq. (4),

S=2k1ε
2τ2
∣∣∣β1

k1
(χ∆V χ∆)11+

√
k2

k1

β2

k1
(χ∆V χ∆)12

∣∣∣2.
(B2)

The total photon number in all modes is described by

n̄tot =
∑
i

〈â†i 〉〈âi〉

=
1

k1
β2

1(χ∆†χ∆)11 +
k2

k2
1

β2
2(χ∆†χ∆)22

+

√
k1k2

k2
1

β1β2

(
(χ∆†χ∆)12 + (χ∆†χ∆)21

)
.

(B3)

The noise power N is defined as

N , 〈δm̂(τ)δm̂(τ)〉0,

where

δm̂(τ) , m̂(τ)− 〈m̂(τ)〉0,

and

m̂(τ) ,
∫ τ

0

dtÎ(t).

Combining Eqs. (1)-(3), we have

δm̂ =

√
k1

2

∫ τ

0

dt
[
(1− χ∆

11)B̂in + (1− χ∆∗
11 )B̂in†

1

−
√
k2

k1
χ∆

12B̂
in
2 −

√
k2

k1
χ∆∗

12 B̂
in†
2

−
√

2

k1

NY∑
j=1

(
(χ∆Y )1jC

in†
j + (χ∆Y )∗1jC

in
j

)
−
√

2

k1

NZ∑
j=1

(
(χ∆Z)1jD

in
j + (χ∆Z)∗1jD

in†
j

)]
,

where the phase φ in Eq. (3) has been included in the
noise operators. Employing the properties of quantum
Gaussian white noise, the noise power is

N =
k1τ

2

(
|1− χ∆

11|2 +
k2

k1
|χ∆

12|2

+
2

k1

(
(χ∆Y Y †χ∆†)11 + (χ∆ZZ†χ∆†)11

))
.

(B4)

From Eq. (B1), we have

χ∆−1 + (χ∆†)−1 = − 2

k1
(Y Y † − ZZ† − 1

2
K1 −

1

2
K2).

Thus,

χ∆
11+χ∆∗

11 =− 2

k1

[
(χ∆Y Y †χ∆†)11−(χ∆ZZ†χ∆†)11

− 1

2
k1|χ∆

11|2 −
1

2
k2|χ∆

12|2
]
.

(B5)
This is combined with Eq. (B4), and we have the noise
power as

N =
k1τ

2

(
1 +

4

k1
(χ∆Y Y †χ∆†)11

)
. (B6)

From Eqs. (B5), (B6) and the fact that ZZ† is positive
semidefinite, the minimized noise power can be found as

Nmin =
k1τ

2

(
1 + 2Ξ ·Θ(Ξ)

)
, (B7)

where

Ξ(∆) , −(χ∆
11 + χ∆∗

11 ) + |χ∆
11|2 +

k2

k1
|χ∆

12|2,

and Θ(·) is the Heaviside step function. It is worth

stressing that for any fixed H̃[0], one can always
construct mode-bath couplings (Y and Z) to attain the
minimum possible noise power.

Now it is straightforward to combine Eqs. (5), (B2),
(B3), (B6) and (B7) to derive a general bound for the
measurement rate per photon as
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Γ̄meas =
k1 · 4

∣∣β1(χ∆V χ∆)11 +
√

k2
k1
β2(χ∆V χ∆)12

∣∣2(
β2

1(χ∆†χ∆)11 + k2
k1
β2

2(χ∆†χ∆)22 + 2
√

k2
k1
β1β2<{(χ∆†χ∆)12}

)(
1 + 4

k1
(χ∆Y Y †χ∆†)11

)
≤

k1 · 4
∣∣β1(χ∆V χ∆)11 +

√
k2
k1
β2(χ∆V χ∆)12

∣∣2(
β2

1(χ∆†χ∆)11 + k2
k1
β2

2(χ∆†χ∆)22 + 2
√

k2
k1
β1β2<{(χ∆†χ∆)12}

)(
1 + 2Ξ ·Θ(Ξ)

)
, Γ̄opt,

(B8)

where <{·} denotes the real part of the variable. With
this fundamental bound we can compare the best possible
performance of senors with different non-Hermitian
Hamiltonians.

Appendix C: Two-mode non-Hermitian sensors

1. Physical parameter conditions

Now consider the physical parameter conditions
satisfying Eq. (16) for two-mode reciprocal and non-
reciprocal sensors, respectively.

First, consider a reciprocal system in the form of

H̃recip[0] =

(
−iγ12 J
J −iγ22

)
,

where J is the Hermitian coupling between the modes,
while γi (i = 1, 2) describe the possible gain/loss
processes (depending on the sign) acting locally on each
mode. The corresponding matrix χ∆

recip is

ik1

G

(
∆ + i

2 (k2 + γ2) J
J ∆ + i

2 (k1 + γ1)

)
,

where

G = −J2 + (∆ +
i

2
(k1 + γ1))(∆ +

i

2
(k2 + γ2)).

It can be verified that if

∆ ≈ 0, ki + γi ≈ 0,

and

k1 � |J | � max{|∆|, |ki + γi|} (for i = 1, 2),

the condition (16) holds.
Similarly, consider a fully non-reciprocal system in the

form

H̃recip[0] =

(
−iγ12 J

0 −iγ22

)
.

The corresponding matrix χ∆
non-recip is

ik1

(
1

∆+ i
2 (k1+γ1)

J
(∆+ i

2 (k1+γ1))(∆+ i
2 (k2+γ2))

0 1
∆+ i

2 (k2+γ2)

)
.

It can be seen that the condition (16) can be ensured as
long as |J | is sufficiently large.

2. Case with no gain in reciprocal sensors

In the paper, we have accounted for the uniform bound
(15) and the two conditions explicitly. Here we consider
the case where there is no gain in the reciprocal process.
Consider a reciprocal system in the form

H̃recip[0] =

(
−iγ12 J
J −iγ22

)
.

If one γi satisfies γi < 0, then there is a local gain from
the bath.

Suppose that the reciprocal system has parameters
γ1 = 0, γ2 = 0.2k1 and J = 0.2k1. It can be verified
that with only a single drive, the measurement rate per
photon Γ̄opt,single/k1 is approximately equal to 5.67003.
We wonder that with an additional drive whether the
performance of the measurement rate per photon can
be improved. Since the measurement rate per photon
Γ̄opt/k1 in this case is a function of η = k2/k1, p = β2/β1

and the detuning ∆, the question can be converted into
whether the solution set of the following inequalities is
empty: 

Γ̄opt(∆, η, p)

k1
≥ µ,

p ≥ 0,

η ≥ 0,

where µ is set to be 5.67003. It can be verified that no
matter how η, p and ∆ are adjusted, one cannot improve
the performance of the measurement rate corresponding
to the case where there is only a single drive on mode
1. The main reason is that for reciprocal systems,
amplification or gain from local bath is a necessary
ingredient for amplifying the signal power. If there
is no gain, only with additional coherent drives, no
enhancement can be achieved.

Appendix D: Different Drive Frequencies

First, consider the case where |wdr,1 − wdr,2| � |∆1|.
It is convenient to work in a rotating frame at the drive
frequency wdr,1.
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From Eq. (22), if we consider the long-time average,
under the following RWA condition

|wdr,1−wdr,2| � max{|∆1|, ‖H̃‖, ki,
√
kiβi} (for i = 1, 2),

the excitation containing the rapid oscillation√
k2β2 exp{i(ωdr,1 − ωdr,2)t} can be averaged out.

Thus, for sufficiently large t, the annihilation operator
of the mode l is described as

âl(t) =

√
k1

ik1
β1χ̃

∆1

l1 +

√
k1

ik1
B̂in

1 χ̃
∆1

l1 +

√
k2

ik1
B̂in

2 χ̃
∆1

l2

+

√
2

ik1

( NY∑
j=1

(χ̃∆1Y )ljC
in†
j +

NZ∑
j=1

(χ̃∆1Z)ljD
in
j

)
,

where the transfer matrix χ̃∆ is defined in Eq. (B1).

Based on this and following a similar analysis to that
in Appendix B, the parameter λ is described as

λ = i
β1

k1
(χ∆1V χ∆1)11.

Thus the signal power is

S = 2ε2τ2 β
2
1

k1

∣∣(χ∆1V χ∆1)11

∣∣2. (D1)

It only contains the signals from mode 1, as the signals
from mode 2 have been averaged out in the long-time
limit.

The total number of photons is

n̄tot =
β2

1

k1
(χ∆1†χ∆1)11 +

k2β
2
2

k2
1

(χ∆′
1†χ∆′

1)22, (D2)

where ∆′1 = ∆1 − ωdr,1 + ωdr,2.
In contrast to the signal power, the photons injected

through mode 2 still contribute to the total number of
photons. Thus the signal power per photon is reduced
compared to the case where there is only one drive
coupling with mode 1.

Moreover, we have the noise power as

N =
k1τ

2

(
1 +

4

k1
(χ∆1Y Y †χ∆1†)11

)
. (D3)

From Eqs. (D1), (D2) and (D3), the measurement rate
per photon is described as

Γ̄meas = k1 ·
4
∣∣(χ∆1V χ∆1)11

∣∣2(
(χ∆1†χ∆1)11 + k2

k1

β2
2

β2
1
(χ∆′

1†χ∆′
1)22

)(
1 + 4

k1
(χ∆1Y Y †χ∆1†)11

)
≤ k1 ·

4
∣∣(χ∆1V χ∆1)11

∣∣2
(χ∆1†χ∆1)11

.

In general, in this situation the measurement rate per
photon is not greater than the bound where there is only
one drive coupling with mode 1.

Secondly, consider the case where |wdr,1−wdr,2| � |∆2|.
Similarly, under the RWA condition

|wdr,1−wdr,2| � max{|∆2|, ‖H̃‖, ki,
√
kiβi} (for i = 1, 2),

the signals containing the rapid oscillation√
k1β1 exp{i(ωdr,2 − ωdr,1)t} from mode 1 can be

averaged out in the long-time limit. From Eq. (23), if
t is sufficiently large, the annihilation operator of the
mode l is described as

âl(t) =

√
k2

ik1
β2χ̃

∆2

l2 +

√
k1

ik1
B̂in

1 χ̃
∆2

l1 +

√
k2

ik1
B̂in

2 χ̃
∆2

l2

+

√
2

ik1

( NY∑
j=1

(χ̃∆2Y )ljC
in†
j +

NZ∑
j=1

(χ̃∆2Z)ljD
in
j

)
.

Following a similar analysis to that in Appendix B, we

have

S = 2ε2τ2 k2

k2
1

β2
2

∣∣(χ∆2V χ∆2)12

∣∣2, (D4)

which only contains the signals from mode 2.

The total number of photons is

n̄tot =
β2

1

k1
(χ∆′

2†χ∆′
2)11 +

k2β
2
2

k2
1

(χ∆2†χ∆2)22, (D5)

where ∆′2 = ∆2 − ωdr,2 + ωdr,1. It contains the photons
injected through mode 1 and mode 2.

Moreover, the noise power is described as

N =
k1τ

2

(
1 +

4

k1
(χ∆2Y Y †χ∆2†)11

)
. (D6)

From Eqs. (D4), (D5) and (D6), the measurement rate
per photon is described as
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Γ̄meas = k1 ·
4k2k1 |

β2

β1
|2
∣∣(χ∆2V χ∆2)11

∣∣2(
(χ∆′

2†χ∆′
2)11 + k2

k1
|β2

β1
|2(χ∆2†χ∆2)22

)(
1 + 4

k1
(χ∆2Y Y †χ∆2†)11

)
≤ k1 ·

4k2k1 |
β2

β1
|2
∣∣(χ∆2V χ∆2)11

∣∣2(
(χ∆′

2†χ∆′
2)11 + k2

k1
|β2

β1
|2(χ∆2†χ∆2)22

)(
1 + 2Θ(Ξ) · Ξ

) ,
(D7)

where Ξ(∆2) = −(χ∆2
11 + χ∆2∗

11 ) + |χ∆2
11 |2 + k2

k1
|χ∆2

12 |2.
For two-mode sensors, if the coupling matrix is V =

1
2σx as in Section IV, from Eq. (D7) we have the best
possible measurement rate per photon as

Γ̄2-opt = k1 ·
k2
k1
|β2

β1
|2
∣∣χ∆2

12

2
+ χ∆2

11 χ
∆2
22

∣∣2(
|χ∆′

2
11 |2 + |χ∆′

2
21 |2 + k2

k1
|β2

β1
|2(|χ∆2

12 |2 + |χ∆2
22 |2)

)(
1 + 2Θ(Ξ) · Ξ

) .

Since we have assumed that

|wdr,1 − wdr,2| � 1,

when |χ∆2
12 | becomes large, the elements of the transfer

matrix χ∆′
2 keep small. Thus it can be verified that if

conditions (16) and (17) hold with ∆ being replaced by
∆2, then

Γ̄2-opt =
1

2
· k1

k2
· k1.

This means that the excitation from mode 2 dominates
in the total signal power and the signal power gain
from mode 2 prevails in the competition with the noise
enhancement induced by the unavoidable associated
noise.
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and S. Rotter, Pump-induced exceptional points in lasers,
Phys. Rev. Lett. 108, 173901 (2012).

[32] W. D. Heiss, The physics of exceptional points, J. Phys.
A-Math. Theor. 45, 444016 (2012).

[33] H. Jing, Ş. K. Özdemir, X.-Y. Lü, J. Zhang, L. Yang and
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Jing, X.-Y. Lü, Y.-L. Liu, L. Yang and F. Nori, Giant
nonlinearity via breaking parity-time symmetry: a route
to low-threshold phonon diodes, Phys. Rev. B 92, 115407
(2015).

[45] K. Fang, J. Luo, A. Metelmann, M. H. Matheny, F.
Marquardt, A. A. Clerk and O. Painter, Generalized
non-reciprocity in an optomechanical circuit via synthetic
magnetism and reservoir engineering, Nat. Phys. 13, 465-
471 (2017).

[46] N. R. Bernier, L. D. Tóth, A. Koottandavida, M. A.
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