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We study a minimal model that has a driven-dissipative quantum phase transition, namely a Kerr non-linear
oscillator subject to driving and dissipation. Using mean-field theory, exact diagonalization, and the Keldysh
formalism, we analyze the critical phenomena in this system, showing which aspects can be captured by each
approach and how the approaches complement each other. Then critical scaling and finite-size scaling are
calculated analytically using the quantum Langevin equation. The physics contained in this simple model
is surprisingly rich: it includes a continuous phase transition, Z2 symmetry breaking, PT symmetry, state
squeezing, and critical fluctuations. Due to its simplicity and solvability, this model can serve as a paradigm for
exploration of open quantum many-body physics.

I. INTRODUCTION

Quantum phase transitions (QPT) have been one of the cen-
tral themes of many-body physics [1, 2]. In closed systems
governed by a Hamiltonian, a QPT signifies an abrupt qualita-
tive change of the ground state wavefunction. Recently, due to
interest in non-equilibrium quantum many-body physics [3],
phase transitions in open systems have attracted increasing at-
tention. Because of coupling with an external environment, an
open system is governed by non-unitary dynamics. Neverthe-
less, there can be an analogous abrupt change of a system’s
steady state: this is a phase transition in an open quantum
system (e.g. [4–18]). However, because a general framework
for non-equilibrium physics is lacking, QPT in open quantum
systems are much less well understood. To make the princi-
pal mechanism more transparent, here we study a simple and
solvable system: an oscillator with Kerr non-linear interac-
tion, two-photon driving, and single-photon loss. The compe-
tition between driving and dissipation leads to a second-order
phase transition in the steady state. The system illustrates the
basic principles of a driven-dissipative phase transition and
contains rich physics. Since an analytical solution is given, it
can serve as a paradigmatic model for the study of open quan-
tum many-body physics.

For a Kerr oscillator subject to single-photon driving,
there exists a first-order phase transition and hysteresis,
which has been studied theoretically using the generalized
P-representation [4, 19], the quantum-absorber method [20],
quantum activation [21], and numerical diagonalization [22–
26]. Experimentally, it has been realized using a semiconduc-
tor optical cavity [16, 17, 27] and in circuit QED [18]. When
two-photon driving is used, the system has a parity symme-
try; it has been shown theoretically that this symmetry can be
spontaneously broken in the steady state, leading to a con-
tinuous phase transition [19, 24]. Recently, this symmetry
breaking has found applications in quantum error correction
[28]. Furthermore, phase transitions in either a few or a lat-
tice of coupled Kerr oscillators have also been explored [29–
35]. Dissipative phase transitions have also been studied in

∗ xin.z@duke.edu

a dissipative cavity with other types of non-linearity, such as
coupling with atoms (e.g. [12–14, 36–39]).

Previous approaches to the phase transition in a Kerr os-
cillator are usually limited to finite system size. Here, using
the Keldysh formalism, we access the thermodynamic limit
directly. At both the semi-classical and quantum levels, we
reveal the mechanism behind the driven-dissipative second-
order phase transition, which is crucial for understanding gen-
eral cases. At the semi-classical level, we find that the phase
transition is connected to an emergent PT symmetry of its
dynamics (sections III and IV). Then to show the spectrum of
the Lindbladian, symmetry breaking in the steady state mani-
fold, and the validity of the semi-classical approach, quantum
solutions are provided numerically (section V). In the ther-
modynamic limit (i.e. the weak non-linearity limit), using the
Keldysh formalism, we provide analytical solutions for the
spectral function and power spectrum, which are experimen-
tally accessible and provide spectral signatures of the critical-
ity (sections VI, VII, and VIII). Finally, critical and finite-size
scaling exponents are calculated analytically using a quantum
Langevin equation (section IX).

II. THE MODEL

The system we study is a non-linear oscillator subject
to two-photon (parametric) driving and single-photon loss
[Fig. 1(a)]. The unitary dynamics can be described by the
Hamiltonian (in a rotating frame)

H = −ωda†a+
U

2
a†a†aa+

(
G

4
a†a† + h.c.

)
, (1)

where the detuning ωd = ωG/2 − ωc with ωG and ωc being
the frequency of the driving and the cavity, respectively [40].
With dissipation the system is then described by a Lindblad
master equation

d

dt
ρ = −i[H, ρ] + γD(a)[ρ], (2)

where D(a)[ρ] = aρa† − 1
2{ρ, a

†a}. For abbreviation, the
right-hand side (RHS) of (2) is denoted asLρ, whereL is a su-
peroperator called the Lindbladian. It can be seen that L is in-
variant under a Z2 transformation a(†) → −a(†). This model
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FIG. 1. (a) Schematic of the setup. Detection of the dissipative pho-
tons gives their power spectrum S(ω) and detection of the scattered
probing light gives the absorption spectrum A(ω). (b) Order pa-
rameter Un v.s. driving strength |G| for MF theory and for different
values of U obtained with diagonalization. (Values of 1/U in the key
refer to curves from top to bottom for |G|<1.)

could be realized using several experimental platforms such
as semiconductor microcavities (e.g. [16, 17, 27]) or quantum
circuits (e.g. [18, 41, 42]).

III. MEAN FIELD THEORY

From (2), the equation of motion for the expectation value
of a is

d

dt
〈a〉 = iωd 〈a〉 − iU 〈a†aa〉 − i

G

2
〈a†〉 − γ

2
〈a〉 . (3)

By making the approximation that 〈a†aa〉 ≈ 〈a†〉 〈a〉 〈a〉 (see
e.g. [4, 19]), we obtain the semi-classical mean field (MF)
equation of motion for α ≡ 〈a〉,

d

dt
α =

(
iωd − iU |α|2 −

γ

2

)
α− iG

2
α∗. (4)

The steady state is obtained by setting RHS = 0, which
leads to the solution for the occupation number n = |α|2
(assuming ωd ≥ 0): when |G| < γ, n = 0; when γ ≤
|G| ≤

√
γ2 + 4ω2

d, n = 0 or (ωd + 1
2

√
|G|2 − γ2)/U ; when

|G| >
√
γ2 + 4ω2

d, n = (ωd + 1
2

√
|G|2 − γ2)/U .

When the driving is resonant (ωd = 0), which is the focus
of this paper, we see that MF theory predicts a second-order
phase transition at the critical driving strength |Gc| = γ. We
define the order parameter as φ = Un. Then

φ =

{
0 |G| < γ,

1
2

√
|G|2 − γ2 |G| > γ.

(5)

By substituting the solution for φ back into (4), one finds that
the Z2 symmetry is broken when G > γ since the steady state
amplitude is αs = ±

√
neiθ, where the phase factor is given

by

ei2θ = −(
√
|G|2 − γ2 + iγ)/G∗. (6)

In calculations, we take γ = 1 unless specified otherwise.
The number of photons in the cavity n is of order γ/U ,

which means that the thermodynamic limit is the limit of in-
finitesimal interaction U/γ → 0+. Note that even though the
interaction strength U is small, the interaction term U

2 a
†a†aa

is of the order Un2 = φn, which is comparable to other terms
in the Lindbladian. To check the validity of MF theory, we
diagonalize the Lindbladian L exactly (see Appendix A). As
shown in Fig.1(b), as U approaches 0, the value U 〈a†a〉 ap-
proaches the MF result. Fig. 2 shows |φED−φMF| as a function
of U , which indeed vanishes as U → 0+. At the critical point,
it scales as a power law Un ∝ U1/3, which is calculated ana-
lytically later in section IX.

IV. PARITY-TIME (PT ) SYMMETRY

At the MF level, this phase transition is related to the un-
derlying structure of the MF equation of motion, which has a
PT symmetry [43, 44]. Eq. (4) can be written as

d

dt

(
α
α∗

)
= M

(
α
α∗

)
, (7)

where

M =

(
−iφ− γ

2 −iG
iG∗ iφ− γ

2

)
. (8)

M is PT -symmetric [45] since it is invariant under the ex-
change of modes combined with complex conjugation (e.g.
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FIG. 2. |φED − φMF| vs.U for (a) G = 0.8, (b) G = 1.0 (log-log
scale), and (c) G = 1.2. (b) shows clearly a power law scaling at
critical point. (d) The linearity between n and U−2/3, which means
Un ∝ U1/3.
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FIG. 3. <Γ+ as a function of φ and |G|. The arrows are propor-
tional to the magnitude of<Γ+ and they point up (down) for positive
(negative) sign. The dashed line marks the stabilized solution where
<Γ+ = 0. The boundary between lower right (<Γ+ > −γ/2) and
upper left (<Γ+ = −γ/2) is a line of exceptional points.

[43, 44, 46]). Here this symmetry emerges in the thermo-
dynamic limit, when fluctuations are negligible and the MF
equation of motion becomes exact.

This emergent PT -symmetry guarantees that eigenval-
ues of M have the form Γ± = −γ/2 ± ξ with ξ =√
|G|2 − 4φ2/2. ξ is purely real when |G| > 2φ (PT sym-

metry unbroken) while purely imaginary when |G| < 2φ (PT
symmetry broken). |G| = 2φ defines a line of exceptional
points where ξ = 0 and two eigenmodes coalesce. Commonly
studied PT -symmetric systems have γ = 0 in which the ex-
ceptional points are therefore at the boundary between expo-
nentially increasing/decreasing modes and oscillatory modes
[43, 44]. Since here γ 6= 0, <Γ+ in contrast determines the
dynamics at long times. <Γ+ < (>) 0 leads to exponential
decrease (increase) of α and φ. Then as shown in Fig. 3, this
PT symmetry of M leads to a self-stabilizing mechanism:
the dynamics drives the solution to the line <Γ+ = 0, which
is the same as the MF solution.

Note that here we consider the PT symmetry at the MF
level; PT symmetry of Lindbladian, a separate issue, has also
been found to be connected with dissipative phase transitions
[47–51].

V. SPECTRUM OF LINDBLADIAN

To understand the physics of this system at the quantum
level and see how many-body effects emerge in the thermody-
namic limit, we study the spectrum of L using exact diagonal-
ization (ED):

Lσi = λiσi, (9)

where the eigenvalues {λi|i = 0, . . . , nmax} have been sorted
in descending order of their real parts and nmax is the occu-
pation number cutoff. For a Lindbladian, the real parts of the
eigenvalues are non-positive (<λi ≤ 0), and there must ex-
ist at least one λi = 0, which correspond to the steady states
(e.g. [11, 24]). The gap ∆ between the second largest and 0
gives a smallest decay rate towards the steady state. This rate
therefore dominates the long-time dynamics. As in the clos-
ing of an energy gap in a Hamiltonian system, the closing of
this gap signals degeneracy of the steady state manifold. Such
degeneracy happens at a quantum phase transition.
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FIG. 4. Finite size scaling of the real parts of highest few eigenvalues
(a) below (G = 0.8), (b) at (G = 1.0, log-log scale), and (c) above
(G = 1.2, semi-log) the critical point. The gap closes at the critical
point as the decay rate of macroscopically many states approaches 0
as a power law of 1/U . Above the critical point, <λ1 approaches
0 exponentially fast, which gives a degenerate steady state manifold
but the system remains gapped. (d) Shows that the gap closes as
∆ ∝ U2/3 obtained from finite size analysis. (Curves are ordered as
in the key—the lowest curve corresponds to λ1.)

Fig. 4 shows the scaling of the highest few non-zero eigen-
values as a function of 1/U below, at, and above the critical
point. Below the critical point, |G| < γ, where there is only
one zero eigenvalue. The system is gapped. At the critical
point, the low-frequency fluctuations dominate, and the real
parts of macroscopically many eigenvalues approach 0 as a
power law of 1/U . The gap closes as ∆ ∝ U2/3, which is
calculated later in section IX. Above the critical point, in ad-
dition to λ0 = 0, λ1 approaches 0 exponentially fast, which
leads to a doubly degenerate steady state manifold—i.e.Z2

symmetry breaking in the thermodynamic limit. Similar to
an equilibrium phase transition, the power law at the critical
point signals its collective nature. Above the critical point,
the exponential scaling result signals the tunneling between
two metastable states.

To understand better the symmetry broken regime, we
study the eigenstates σ0 and σ1 using their Wigner function
W [σi=0,1](x, p), with x = (a + a†)/

√
2 and p = i(−a +

a†)/
√

2. σ0 is a valid density matrix. σ1 is Hermitian. How-
ever, it has only off-diagonal elements, which means it is not
a valid density matrix due to lack of positivity. We normalize
σ1 by its trace norm such that Tr |σ1| = 1. In the phase space
of position and momentum, the Z2 transformation amounts
to x → −x and p → −p. As shown in Fig. 5, W [σ0] is
symmetric while W [σ1] is antisymmetric under the Z2 trans-
formation, which means symmetry is broken in the thermody-
namic limit. Both of them are squeezed due to the parametric
driving. As the thermodynamic limit is reached, the mixtures
σ0 ± σ1 give the two opposite amplitudes αs = ±

√
neiθ re-

spectively.
Depending on the initial state, the steady state can break the
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FIG. 5. Wigner function of the two steady states with 0 decay rate (as
U → 0), when driving is above critical point. x = (a+ a†)/

√
2 and

p = i(−a+a†)/
√

2. Note thatW [σ0] is symmetric about the origin
while W [σ1] is antisymmetric. Upper panels: 1/U = 30; Lower
panels: 1/U = 90. (For G = 1.2.)

Z2 symmetry with the form ρ = σ0 + cσ1, where c ∈ R and
is constrained by the positivity of ρ. Notice that, unlike equi-
librium cases, here there cannot be an antisymmetric steady
state. This can be understood by going to the number basis.
For an element |m〉 〈n| of a density matrix, the Z2 transfor-
mation Π = eiπa

†a yields Π |m〉 〈n|Π = (−1)m+n |m〉 〈n|,
which means that |m〉 〈n| is (anti)symmetric when m and n
have the same (opposite) parity. Therefore, the antisymmet-
ric states have no diagonal elements, which cannot be a valid
density matrix.

VI. KELDYSH FORMALISM

Since ED suffers from finite size effects and MF theory
completely ignores quantum fluctuations, here we use the
Keldysh formalism [52, 53] to access the thermodynamic limit
while maintaining quantum fluctuations. Using the coherent
state path integral of (2), we show (see Appendix B) that
the partition function Z = Tr[ρ(t = ∞)] can be written as
Z =

∫
D[αc(t), α

∗
c(t), αq(t), α

∗
q(t)] e

iS with the action

S =

∫
dt
[
(α∗c i

∂

∂t
αq + α∗qi

∂

∂t
αc)−Hα +Dα

]
, (10a)

Hα =
U

2
(|αc|2 + |αq|2)(α∗cαq + c.c.) + (

G

2
α∗cα

∗
q + c.c.),

(10b)

Dα = γ(i|αq|2 + i
1

2
αcα

∗
q − i

1

2
α∗cαq). (10c)

Here αc/q = (α+ ± α−)/
√

2, where α+/− denotes the path
in the ket/bra branch.

Then the saddle point solution ᾱµ=c,q(t) can be obtained by
solving δS/δαµ = 0 and δS/δα∗µ = 0, which, unsurprisingly,

gives exactly the MF equation of motion (4) upon identifying
ᾱc =

√
2α and ᾱq = 0. By writing αµ = ᾱµ + δαµ, the

action S can now be written in terms of the fluctuations δαµ.
The leading part, which is Gaussian, is

SG =

∫
dt
[(
δα∗c i

∂

∂t
δαq+δα

∗
qi
∂

∂t
δαc
)
−H ′δα+Dδα

]
, (11)

where H ′δα = U |ᾱc|2(δα∗cδαq + δα∗qδαc) + (U2 ᾱ
2
c + G

2 )
δα∗cδα

∗
q − c.c. and Dδα is the same as Dα upon chang-

ing variables. The non-Gaussian part SNG contains high-
er-order fluctuations of the form Uα∗cδα

∗
µ1
δαµ2δαµ3 and

Uδα∗µ1
δα∗µ2

δαµ3δαµ4 (see Appendix D), which scale to 0 as√
U and U respectively as U → 0. Therefore, in the thermo-

dynamic limit, the non-Gaussian part is irrelevant.
In (11) it can be seen that an effective detuning ωeff

d =
−U |ᾱc|2 = −2φ has been introduced into H ′δα, which means
that an effective cavity frequency ωeff

c = ωc+2φ emerges [54].
Another collective effect is that the driving field is also shifted,
becomingGeff = G+Uᾱ2

c = G+2Uα2. Putting in the value
of α (for |G| > γ), we findGeff = G

(
s2− is

√
1− s2

)
, where

s ≡ γ/|G| ∈ (0, 1). Then the effective driving strength satis-
fies |Geff| = γ in the whole symmetry broken regime.

When |G| < γ, the Kerr interaction can be ignored since
φ = 0, rendering the system effectively non-interacting. By
solving the Heisenberg equation d

dt 〈a
†a〉 = 0, we see that in

the steady state

〈a†a〉 = |G|2/
(
2(γ2 − |G|2)

)
, (12)

which is finite for |G| < γ. The same result can also be
obtained using the Keldysh Green function igK(τ = 0) =
2 〈a†a〉+ 1 (see Appendix E). Therefore, as U → 0, the order
parameter vanishes, φ = U 〈a†a〉 → 0. Note that although
φ = 0 below critical point, the occupation number 〈a†a〉 is
not 0. In fact, as the critical point is reached, 〈a†a〉 diverges,
allowing the order parameter φ to start to be non-zero.

VII. SPECTRAL FUNCTION

Though we have shown that MF theory correctly predicts
the order parameter, fluctuations actually matter and provide
crucial information about the system’s properties. We there-
fore study the spectral function

A(ω) =
1

2π

(
igR(ω)− ig∗R(ω)

)
, (13)

where gR(ω) ≡ −i 〈α∗q(ω)αc(ω)〉 = −i 〈δα∗q(ω)δαc(ω)〉 is
the retarded Green function (see Appendix E). A(ω) gives an
effective density of states at energy ω and thereby the prob-
ability of absorbing a weak probing signal with frequency ω
[Fig. 1(a)].

Since the quadratic fluctuations given in (11) dominate, the
spectral function can be calculated exactly (see Appendix E).
When |G| < γ,

A(ω) =
1

2π

4γ(4ω2 + γ2 − |G|2)

(−4ω2 + γ2 − |G|2)2 + 16γ2ω2
, (14)
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FIG. 6. (a) FWHM of the absorption spectrumA(ω) as a function of
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while when |G| > γ,

A(ω) =
1

2π

γ

(ω − 2φ)2 +
γ2ω2

(ω + 2φ)2

. (15)

Below the critical point, the absorption spectrum, given by
(14), is an even function centered at 0. When |G| = 0, A(ω)
is a Lorentzian, as expected, with full width at half maxi-
mum (FWHM) equal to γ. As the critical point is reached,
the FWHM decreases monotonically to 0 [Fig. 6(a)], which
means the low-energy fluctuations dominate as expected for
quantum criticality. The zero-width peak corresponds to fluc-
tuations with infinitely long lifetime, leading to long-range
time correlations. This criticality is consistent with the spec-
trum of the Lindbladian [Fig. 4(a)]: a macroscopically large
number of eigenstates with zero decay rate in the thermody-
namic limit.

To get the spectrum at the critical point, we can see that, for
|G| < γ,

igR(τ)− igA(τ) =
1

2
(e−

γ−|G|
2 |τ | + e−

γ+|G|
2 |τ |), (16)

whose Fourier transform gives (14), which is a sum of two
Lorentzian functions. As the critical point is reached,

igR(τ)− igA(τ) =
1

2
(1 + e−γ|τ |), (17)

which gives the spectral function at critical point

A(ω) =
1

2

(
δ(ω) +

1

π

γ

ω2 + γ2

)
, (18)

which is an equal weight mixture of a Dirac delta function and
a Lorentzian with width = 2γ. Indeed, the states with 0 decay
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FIG. 7. (a) Spectral function as the critical point is reached. For
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from Eq. (18). (b) Wigner function of the steady state when G = 1
and 1/U = 90. The quadratureX2 = (ae−iπ/4+a†eiπ/4) becomes
perfectly squeezed as U → 0.

rate give a delta function while those with non-zero decay rate
give a Lorentzian. Fig. 7(a) shows the spectral function ob-
tained with Eq. (14) for a case very close to the critical point,
and shows furthermore that it agrees with Eq. (18).

Above the critical point, (15) shows that the order parame-
ter φ and Kerr interaction come into play. G does not appear
explicitly because |Geff| = γ. A(ω) is not symmetric any-
more, and its peak shifts away from zero. As an example,
A(ω) at |G| = 1.2 is shown in Fig. 6(b). A(ω) reaches its
maximum at a positive frequency, which is ≈ 2φ for large G
as shown in Fig. 6(c).

When |G| � γ, A(ω) becomes a Lorentzian again. To see
this, we expand A(ω) around 2φ and set ω = 2φ+ δω:

A(ω) ≈ 1

π

γ/2

δω2 +
(
γ(1 + δω/4φ+ . . . )/2

)2 . (19)

Thus, when |G| � γ, δω ∼ γ � φ, which makes (19)
a Lorentzian with FWHM → γ, as for G = 0. This can
be understood by analyzing the action (11) using H ′δα =

−ωeff
d (δα∗cδαq + c.c.) + Geff

2 δα∗cδα
∗
q + c.c.. When |G| � γ,

|Geff| = γ, which is negligible compared to the large detun-
ing ωeff

d = −2φ ≈ −|G|. Therefore, for strong driving, the
theory looks like that of a cavity with frequency 2φ coupled
to an external environment without any driving—the same as
for G = 0 (with the cavity frequency shifted).

Notice the striking feature A(ω = −2φ) = 0 exactly,
which originates from the squeezing of the Lorentzian peak
by the parametric driving. Therefore for weak probing light
of frequency ωc − 2φ, there is no absorption. Measurement
of the frequency with zero absorption thus provides a direct
measure of the order parameter φ, complementary to measur-
ing the occupation number.

VIII. POWER SPECTRUM OF THE OUTPUT FIELD

Fluctuations are crucial for other physically important
quantities, such as the power spectrum of the output field
S(ω) =

∫
dωeiωτ 〈a†out(t)aout(t+ τ)〉, which gives the energy

distribution of photons emitted through the dissipation chan-
nel [Fig. 1(a)]. From input-output theory [55, 56], we know
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that aout(t) =
√
γa(t). In the Keldysh formalism, using the

operator expressions of Green functions, we find

S(ω) = i
γ

2

(
gK(ω) + gA(ω)− gR(ω)

)
(20)

where gK(ω) = −i 〈α∗c(ω)αc(ω)〉 and gA(ω) = g∗R(ω) =
−i 〈α∗c(ω)αq(ω)〉 are the Keldysh and advanced Green func-
tion, respectively. When written in terms of fluctuations, we
see that igK(ω) = |ᾱc|2δ(ω) + 〈δα∗c(ω)δαc(ω)〉, where the
first term with |ᾱc|2 = 2φ/U is due to elastic scattering.
Then the inelastic scattering power spectrum is Sinel(ω) =
γ 〈δα∗c(ω)δαc(ω)〉 /2− γπA(ω).

Using the expressions for the Green functions in Appendix
E, we find

Sinel(ω) =


4γ2|G|2

(−4ω2 + γ2 − |G|2)2 + 16γ2ω2
|G| < γ,

γ4

4

1

(ω2 − 4φ2)2 + γ2ω2
|G| > γ.

(21)
Unlike the absorption spectrum given by the spectral function,
the power spectrum is always symmetric because processes
with emitted frequencies ωc + ω and ωc − ω have the same
amplitude by energy conservation [4]. The linewidth goes to 0
at the critical point, like the spectral function. Using the same
approach as in obtaining Eq. (18), we see that for |G| <∼ γ,

Sinel(ω) =
γ2

4ω2 + ∆2
G

, (22)

where ∆G = γ − |G|. The power spectrum has a 1/ω2 di-
vergence as the critical point is reached. Since the Kerr inter-
action can be ignored below the critical point, the system acts
like a degenerate parametric oscillator [55, 56] in that regime.
From the known squeezing spectra for the latter, we conclude
that the suppression of fluctuations in our system results from
the squeezing of the quadrature X2 ≡ (−iaeiθ + ia†e−iθ) by
the parametric driving, where θ = θG/2 for G = i|G|e−iθG
(see Eq. (6)). This can also be seen from the MF solution of
the steady state amplitude αs at the critical point. At the crit-
ical point, the quadrature X2 becomes perfectly squeezed as
seen in Fig. 7(b). Fluctuations along its orthogonal direction
X1 therefore produce a zero-width peak in both the spectral
function and power spectrum. This can also be seen later in
Eq. (26). In the symmetry broken regime, as |G| increases two
peaks arise from the effective detuning when |G| >

√
3/2γ

such that the detuning is larger than the peak width [Fig. 6(d)].

IX. QUANTUM LANGEVIN EQUATION AND CRITICAL
SCALING

The quantum Langevin equation is a noisy equation of mo-
tion for operators which, in contrast with the MF theory, gives
the exact dynamics of operators in the sense that all orders of
correlation can be calculated exactly. It can be derived using
the Heisenberg equation of motion and a noise operator [57].

Here, in order to show its connection with Keldysh formal-
ism, we derive it using a Hubbard-Stratonovich transforma-
tion [53]. Following the analysis in [12], we can then compute
the scaling exponents based on the low-frequency expansion
of the quantum Langevin equation at the critical point. Al-
though scaling upon approaching the critical point can also be
obtained with the Keldysh formalism, the quantum Langevin
equation is particularly useful for finite-size analysis at the
critical point.

A. Quantum Langevin equation from Keldysh action

As we know from the MF theory, for |G| <∼ γ, the steady
state amplitude αs is squeezed in the direction (−iαseiθG/2 +
iα∗se

−iθG/2) while amplified in the orthogonal direction.
Without of loss of generality, we set G = ig with g be-
ing real i.e. θG = 0. We can define a set of real variables
xc/q = (αc/q +α∗c/q)/

√
2 and pc/q = (−iαc/q + iα∗c/q)/

√
2.

Then xc is amplified while pc is squeezed. Using this coordi-
nate transformation in (E2), we get the Keldysh action in the
xp basis:

Sxp =

∫
dω
[
i
γ

2
x∗q(ω)xq(ω) + i

γ

2
p∗q(ω)pq(ω)

+
1

2
(γ − g − 2iω)xc(ω)p∗q(ω)

− 1

2
(γ + g − 2iω)pc(ω)x∗q(ω)

]
,

(23)

where xc/q(ω)∗ = xc/q(−ω) and pc/q(ω)∗ = pc/q(−ω) as
they are real variables in real time.

Introducing a Hubbard-Stratonovich transformation [53],
we know

e−
γ
2

∫
dωp∗q(ω)pq(ω) ∝

∫
D[fx]e−

2
γ

∫
dωfx(ω)

∗fx(ω)

×ei
∫
dω2fx(ω)p

∗
q(ω),

(24)

where fx(t) can be interpreted as real Gaussian white noise
with 〈f∗x(ω)fx(ω′)〉 = δ(ω − ω′)γ4 and f∗x(ω) = fx(−ω).
Thus an equivalent expression for the partition function Z is
obtained in which the Keldysh action S depends on pq(ω)
only linearly. Similarly, we can introduce another Gaus-
sian noise fp(ω) with the same properties to eliminate the
quadratic term γ

2x
∗
q(ω)xq(ω). Since now the action depends

linearly on both xq(ω) and pq(ω), they can be directly inte-
grated out. Then the partition function becomes

Z =

∫
D[xc, pc, fx, fp] e

− 2
γ

∫
dω(fx(ω)

∗fx(ω)+fp(ω)
∗fp(ω))

×δ
(

1

2
(γ − g − 2iω)xc(ω) + 2fx(ω)

)
×δ
(

1

2
(γ + g − 2iω)pc(ω) + 2fp(ω)

)
,

(25)
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which shows that xc and pc satisfy exactly the quantum
Langevin equation{

d
dtxc(t) + 1

2 (γ − g)xc(t) + 2fx(t) = 0,

d
dtpc(t) + 1

2 (γ + g)pc(t) + 2fp(t) = 0.
(26)

Using it, all orders of correlations of xc(t) and pc(t) can be
calculated exactly, since the partition function (25) is equiv-
alent to the original one. They are in the same form as the
Langevin equations that describe a massless particle mov-
ing in a harmonic potential, subject to friction and thermal
noise 2f [12, 58]. We can define an effective temperature
Teff = γ/2, and thus find the steady state distribution of xc

P (xc) =
1

N
e−F (xc)/Teff , (27)

where N is a normalization factor and F (xc) = 1
4 (γ − g)x2c

is the effective free energy. Similarly, P (pc) can be obtained
from F̃ (pc) = 1

4 (γ+g)p2c . Notice that Eq. (27) gives an inter-
esting picture of the criticality: as the critical point is reached
[i.e. (γ − g) → 0], F (xc) becomes a flat potential and so the
finite-temperature occupation 〈x2c〉 diverges.

B. Critical exponent of occupation number

As we saw above, the occupation number n diverges as the
critical point is reached. Let the scaling be n ∼ (γ − g)−νn ,
where νn is the critical exponent of the occupation number.
Here we only consider critical exponents from below. Expo-
nents from above are generally the same except in rare cases
[59]. As shown in Appendix F, they are indeed the same in
the present case.

For g < γ, 〈a†a〉 can be calculated exactly using either
the Heisenberg equation or Keldysh formalism, as shown in
Eq. (12). Around the critical point (g <∼ γ), we get the critical
scaling for occupation number,

〈a†a〉 ≈ γ

4

1

γ − g
, (28)

which gives νn = 1.
Here we also show how to calculate νn with the quan-

tum Langevin equation, as a demonstration of its application.
From Eq. (27), we know

〈x2c〉 =

∫
dxcP (xc)x

2
c∫

dxcP (xc)
=

γ

γ − g
. (29)

Similarly, 〈p2c〉 = γ/(γ + g). Notice that 〈p2c〉 / 〈x2c〉 = (γ −
g)/(γ+g)→ 0 as g → γ, which shows the perfect squeezing
of quadrature pc. Then using 〈a†a〉 =

(
〈x2c〉+ 〈p2c〉 − 2

)
/4,

we get again (28) and therefore the same critical exponent
νn = 1.

C. Dynamic critical exponent

As seen in section V, the gap ∆ vanishes as the critical
point is reached. Let ∆ ∼ (γ − g)νt , where νt is called dy-

namic exponent since ∆ is proportional to the decay rate of
the correlation functions.

From Eq. (26), we know that

xc(ω) =
−4fx(ω)

(γ − g − 2iω)
, (30)

which gives the correlation

〈xc(t+ τ)xc(t)〉 =
γ

γ − g
e−

1
2 (γ−g)|τ |. (31)

It then follows that ∆ ∼ (γ − g) and so νt = 1.
The same result can also be obtained from the retarded

Green function gR(τ) (16), which also contains a vanishing
decay rate (γ − g)/2 for large τ .

D. Finite-size scaling of occupation number

For g <∼ γ, the Kerr interaction can be ignored in the ther-
modynamic limit. However, to study the finite-size effects
at the critical point g = γ, the Kerr interaction needs to be
included. Here we show how to calculate finite-size effects
based on the quantum Langevin equation.

From the saddle point solution (see Appendix C), at the crit-
ical point, U |αc|2 is significant while U |αq|2 vanishes. Then
by ignoring irrelevant terms ∼ U |αq|2, the saddle point solu-
tion (C2) gives the Langevin equations{

d
dtxc −

U
4 (x2c + p2c)pc + 1

2 (γ − g)xc + 2fx = 0,

d
dtpc + U

4 (x2c + p2c)xc + 1
2 (γ + g)pc + 2fp = 0.

(32)

Since 〈p2c〉 / 〈x2c〉 � 1 near the critical point, (32) can be sim-
plified to{

d
dtxc −

U
4 x

2
cpc + 1

2 (γ − g)xc + 2fx = 0,

d
dtpc + U

4 x
2
cxc + 1

2 (γ + g)pc + 2fp = 0,
(33)

where (x2c+p2c) ≈ x2c has been used. To get finite-size scaling
of 〈a†a〉 ≈ 〈x2c〉 /4, only the Langevin equation for xc needs
to be considered.

Setting dpc/dt = 0 yields

pc = − U

2(γ + g)
x3c −

4

γ + g
fp. (34)

Putting it back in (33), we get

d

dt
xc +

U2

8(γ + g)
x5c +

1

2
(γ − g)xc + 2fx = 0, (35)

where Ux2cfp has been ignored, since Ux2c � 1 makes it neg-
ligible compared with the noise 2fx. Therefore, the finite-size
effect introduces a weak sixth-order potential into the free en-
ergy (|g − γ| � γ):

F (xc) =
1

4
(γ − g)x2c +

U2

48(γ + g)
x6c , (36)
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which gives a clear analogue of Landau theory of symmetry
breaking equilibrium phase transition. The unusually flat x6c
potential originates from the coupling between xc and pc in
(33). Note that although the variable xc can be described us-
ing an effective thermal distribution, the system is intrinsically
non-equilibrium as seen in the violation of the fluctuation-
dissipation relation (see Appendix G). At the critical point
g = γ, using (27), we find that

〈x2c〉 =

√
2π

Γ(7/6)
3−2/3

(
U

γ

)−2/3
, (37)

where Γ(7/6) is the Gamma function. We then have the finite
size scaling 〈a†a〉 ∼ (U/γ)−ηn with ηn = 2/3.

E. Finite-size scaling of gap

To get the finite-size scaling of the gap ∆, we need to know
the decay rate of the correlations. In the large τ limit (τ > 0),
let

〈xc(t+ τ)xc(t)〉 ∝ e−κτ , (38)

where κ is an unknown constant that needs to be determined.
Putting it into Eq. (35) at critical point, we get

κ 〈xc(t+ τ)xc(t)〉 =
U2

16γ
〈x5c(t+ τ)xc(t)〉

+ 2 〈fx(t+ τ)xc(t)〉 .
(39)

We know 〈fx(t+ τ)xc(t)〉 = 0 due to causality. Since the
free energy (36) has a weakly non-Gaussian potential, we can
write

〈x5c(t+ τ)xc(t)〉 ≈ 15 〈x2c(t+ τ)〉2 〈xc(t+ τ)xc(t)〉
+O(U2/γ2),

(40)

where the leading order comes from Wick’s theorem, while
the higher-order corrections come from modification of
Wick’s theorem due to the weakly non-Gaussian term. Thus
we find

κ =
15U2

16γ
〈x2c〉

2
= γ

5

8

3−1/3π

Γ2(7/6)

(
U

γ

)2/3

, (41)

which gives the finite-size scaling of gap ∆/γ ∝ κ/γ ∼
(U/γ)ηt with ηt = 2/3.

F. Argument using pseudo-critical point

Finally, we want to show that the values of the critical ex-
ponents νn, νt, ηn, and ηt are consistent with the argument
using pseudo-critical point [60]. Therefore, in practice, one
can be obtained from the other three.

With finite-size effects, we can define the pseudo-critical
point gc(U) such that it replaces the real critical point gc(U =
0) = γ in the scaling relations. Then, using scalings of n,

we can have n ∼ |gc(U)− g|−νn and n ∼ (U/γ)−ηn , which
lead to the scaling

|gc(U)− g| ∼ (U/γ)ηn/νn . (42)

Further, using ∆ ∼ |gc(U)− g|νt , we get the finite-size scal-
ing

∆ ∼ (U/γ)νtηn/νn . (43)

That is, the four exponents satisfy the relation

ηtνn = νtηn, (44)

which is indeed consistent with the above calculated expo-
nents.

X. CONCLUSION AND OUTLOOK

Using a minimal model composed of a Kerr oscillator, two-
photon driving, and single-photon loss, we study a second-
order driven-dissipative quantum phase transition. We show
that the phase transition is connected to the underlying PT
symmetry of the semi-classical dynamics, which provides a
stabilization mechanism. We anticipate that there exists a
class of phase transitions with a similar underlying mecha-
nism. Quantum fluctuations are studied using ED and the
Keldysh formalism. Critical properties such as symmetry
breaking, finite-size scaling, state squeezing, and spectral
properties are explored. We show that the emergence of crit-
icality in this system is due to perfect squeezing at the crit-
ical parametric driving. Critical scaling and finite-size scal-
ing properties are calculated analytically using the quantum
Langevin equation. Since an analytical solution is provided,
this system can serve as a paradigmatic platform for the ex-
ploration of open quantum many-body physics.
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Appendix A: The vectorization of the density matrix and exact
diagonalization (ED)

Using an auxiliary Hilbert space of the same dimension
as that of the original one H, the density matrix ρ =



9∑
ij ρij |i〉 〈j| can be written as a vector ~ρ =

∑
ij ρij |i〉⊗ |j〉

in the enlarged spaceH⊗H. Then the Lindblad superoperator

L(•) = −i[H, •] +
∑
k

γk

(
ck • c†k −

1

2
{•, c†kck}

)
(A1)

can be written as an operator L inH⊗H, whose form is given
by

L̂ =− iH ⊗ 1 + i1⊗HT

+
∑
k

γk

(
ck ⊗ c∗k −

1

2
1⊗ cTk c∗k −

1

2
c†kck ⊗ 1

)
.

(A2)

In our case, the jump operator ck is a boson annihilation op-
erator a. In numerical calculation, a cutoff for the maximum
occupation number nmax is chosen such that a† |nmax〉 = 0.
Since the occupation number is known to be of order 1/U in
our system, nmax is chosen be of the same order and increased
gradually until cutoff errors are acceptable.

ED of L̂ gives eigenstates {σi} and their corresponding
eigenvalues. Some of the eigenstates are not positive semidef-
inite, which means they cannot be physical density matri-
ces. For the physical states, σ is normalized by their trace
i.e.σ → σ/Tr(σ). For the non-physical states such as the

σ1 in Fig. 5 of the main text, we use the trace norm Tr(|σ|),
i.e.σ → σ/Tr(|σ|).

Appendix B: Keldysh action in the original basis

By writing the Lindbladian as path integral using a coherent
state basis [53], the partition function for our model can be
written as

Z = Tr[ρ(+∞)] =

∫
D[α+(t), α?+(t), α−(t), α?−(t)] eiS ,

(B1)
where α+ and α− are the basis in the ket and bra branches
respectively. The action S is given by

S =

∫
dt
[
α∗+i

∂

∂t
α+ − α∗−i

∂

∂t
α− − (H+ −H−)

− iγα+α
∗
− + i

γ

2
α∗+α+ + i

γ

2
α∗−α−

]
,

(B2)

where H± are obtained by replacing operators a and a† in
H by α+/− and α∗+/−. The action in Eq. (10) can be then
obtained with a Keldysh rotation to the basis αc/q .

Appendix C: Saddle point solution

To get the saddle point solution, we apply functional deriva-
tives to get

δ

δα∗c
S = i

∂

∂t
αq −

U

2
α2
cα
∗
q − U |αc|2αq −

U

2
|αq|2αq −

G

2
α∗q − i

γ

2
αq = 0 (C1)

δ

δα∗q
S = i

∂

∂t
αc −

U

2
|αc|2αc − U |αq|2αc −

U

2
α2
qα
∗
c −

G

2
α∗c + i

γ

2
αq + i

γ

2
αc = 0 (C2)

δ

δαc
S = −i ∂

∂t
α∗q −

U

2
(α∗c)

2α∗q − U |αc|2α∗q −
U

2
|αq|2α∗q −

G∗

2
αq + i

γ

2
α∗q = 0 (C3)

δ

δαq
S = −i ∂

∂t
α∗c −

U

2
|αc|2α∗c − U |αq|2α∗c −

U

2
(α∗q)

2αc −
G∗

2
αc + i

γ

2
α∗q − i

γ

2
α∗c = 0 (C4)

From the requirements (C1) = (C3)∗ and (C2) = (C4)∗,
we get ᾱq = 0 and

∂

∂t
ᾱc = −iU

2
|ᾱc|2ᾱc − i

G

2
ᾱ∗c −

γ

2
ᾱc, (C5)

which is exactly the mean-field equation of motion by identi-
fying αMF = αc/

√
2 = (α+ + α−)/2.

Appendix D: non-Gaussian part

By expanding around the saddle point solution, we obtain
the action of fluctuations S = SG + SNG, where SG is the

Gaussian part shown in Eq. (11) of the main text and SNG is
the non-Gaussian part:

SNG =

∫
dt (−U

2
)
[
|δαc|2(ᾱ∗cδαq + c.c.)

+
(
ᾱc(δα

∗
c)

2δαq + c.c.
)

+ (|δαc|2 + |δαq|2)(ᾱcδα
∗
q + c.c.)

+ (|δαc|2 + |δαq|2)(δαcδα
∗
q + c.c.)

]
.

(D1)

The non-quadratic fluctuations are of the form
Uα∗cδα

∗
µ1
δαµ2

δαµ3
and Uδα∗µ1

δα∗µ2
δαµ3

δαµ4
. In the

thermodynamic limit U → 0+, since ᾱc ∼ 1/
√
U , the

third-order fluctuations are ∼
√
U and the fourth-order
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fluctuations are ∼ U while the Gaussian fluctuations are ∼ 1.
Therefore, SNG can be neglected in the thermodynamic limit.

Appendix E: The calculation of the Green functions

The Green functions we consider are the Keldysh, ad-
vanced, and retarded Green function:

gK(t1, t2) ≡ −i 〈α∗c(t1)αc(t2)〉
= −i 〈{a†(t1), a(t2)}〉 ,

gA(t1, t2) ≡ −i 〈α∗c(t1)αq(t2)〉
= −iθ(−t2 + t1) 〈[a†(t1), a(t2)]〉 ,

gR(t1, t2) ≡ −i 〈α∗q(t1)αc(t2)〉
= −iθ(t2 − t1) 〈[a(t2), a†(t1)]〉 ,

(E1)

while 〈α∗q(t1)αq(t2)〉 = 0. In the steady state, they only de-
pend on the time difference τ = t2 − t1.

For a Gaussian theory like Eq. (11), we can obtain Green
functions analytically [61]. Using the Fourier transform
α(ω) = 1√

2π

∫
dt α(t)eiωt, Eq. (11) can be written in fre-

quency space as

SG =

∫
dωΨ†(ω)

i

2
A(ω)Ψ(ω), (E2)

where

Ψ(ω) ≡ [δαc(ω), δα∗c(−ω), δαq(ω), δα∗q(−ω)]T , (E3)

and

A(ω) = −i


0 0 ω − iγ2 − U |ᾱc|

2 −G2 −
U
2 ᾱ

2
c

0 0 −G
∗

2 −
U
2 (ᾱ∗c)

2 −ω + iγ2 − U |ᾱc|
2

ω + iγ2 − U |ᾱc|
2 −G2 −

U
2 ᾱ

2
c iγ 0

−G
∗

2 −
U
2 (ᾱ∗c)

2 −ω − iγ2 − U |ᾱc|
2 0 iγ

 ≡ [ 0 PA

PR PK

]
. (E4)

Note here that the four components of Ψ(ω) are four inde-
pendent variables. The action below the critical point can be
obtained by setting ᾱc = 0.

Define C = (A−1)T and

C ≡
[
CK CR

CA 0

]
. (E5)

We can see that CA =
[
(PA)−1

]T
, CR =

[
(PR)−1

]T
, and

CK =
[
− (PR)−1PK(PA)−1

]T
. Then the three Greens

functions needed here can be obtained by identifying

gK/A/R(ω) = −i
(
CK/A/R(ω)

)
11
, (E6)

where g∗R(ω) = gA(ω). For example, above critical point,

igK(ω) =
γ

4

4ω2 + 16φω + 16φ2 + 2γ2

ω4 + (γ2 − 8φ2)ω2 + 16φ4
(E7)

and

igR(ω) =
2 (γ − 2iω − 4iφ)

(γ − 2iω)2 + 16φ2 − γ2
. (E8)

In real space,

gK/A/R(τ) =
1

2π

∫
dω gK/A/R(ω)e−iωτ . (E9)

Appendix F: Critical exponents from above

Using the Green function (E9), we get that, for g >∼ γ,

igK(τ) ≈ γ

8(g − γ)
e−2(g−γ)|τ | +

1

4
e−γ|τ |, (F1)

where expansion to lowest order of (g − γ) has been applied.
It can be seen that ∆ ∼ (g − γ)ν

′
t , where ν′t = 1 = νt. Since

n ∼ igK(τ = 0) ∼ (g − γ)−ν
′
n , we have ν′n = 1 = νn.

Appendix G: Violation of the Fluctuation-Dissipation Relation

Although xc itself can be described by an effective ther-
mal equilibrium distribution, the system is intrinsically non-
equilibrium when considering all variables xc, pc, xq , and pq
(e.g. [12, 53]). The non-equilibrium nature can be shown in
the violation of the fluctuation-dissipation relation. In ther-
mal equilibrium at temperature T , we have the fluctuation-
dissipation relation (e.g. [52, 53, 62])

gK(ω) = h(ω) (gR(ω)− gA(ω)) , (G1)

where h(ω) = coth ω
2T = 2nB(ω/T ) + 1 with the Bose-

Einstein distribution nB(ω/T ) = 1/(eω/T − 1). In our case,
we can define

h̃(ω) =
gK(ω)

gR(ω)− gA(ω)
=

1

πγ

Sinel(ω)

A(ω)
+ 1. (G2)
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Then we know

h̃(ω) =


2|G|2

4ω2 + γ2 − |G|2
+ 1 |G| < γ,

γ2

2

1

(ω + 2φ)2
+ 1 |G| > γ.

(G3)

h̃(ω) cannot be given by a thermal distribution when |G| 6= 0.
Without driving, the system is indeed in thermal equilibrium
with temperature T = 0.
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[59] F. Léonard and B. Delamotte, Critical exponents can be differ-

ent on the two sides of a transition: A generic mechanism, Phys.
Rev. Lett. 115, 200601 (2015).

[60] J. Cardy, ed., Finite-Size Scaling (Elsevier, Amsterddam, 1988).
[61] A. Altland and B. Simons, Condensed Matter Field Theory, 2nd

ed. (Cambridge Univ. Press, Cambridge UK, 2010).
[62] G. Stefanucci and R. van Leeuwen, Nonequilibrium Many-Body

Theory of Quantum Systems: A Modern Introduction (Cam-
bridge University Press, Cambridge, 2013).

https://doi.org/10.1103/PhysRevA.101.043826
https://doi.org/10.1103/PhysRevA.101.043826
https://doi.org/10.22331/q-2019-06-03-150
https://doi.org/10.1103/PhysRevA.97.013825
https://doi.org/10.1103/PhysRevA.97.013825
https://doi.org/10.1103/PhysRevLett.124.073602
https://doi.org/10.1103/PhysRevA.99.063828
https://doi.org/10.1126/science.aaa2085
https://arxiv.org/abs/2005.12667
https://arxiv.org/abs/2005.12667
https://doi.org/10.1088/0034-4885/70/6/r03
https://doi.org/10.1038/nphys4323
https://doi.org/10.1103/PhysRevA.99.063834
https://doi.org/10.1103/PhysRevA.99.063834
https://doi.org/10.1103/PhysRevLett.109.090404
https://doi.org/10.1103/PhysRevLett.109.090404
https://doi.org/10.1103/PhysRevB.101.214302
https://doi.org/10.1103/PhysRevB.101.214302
https://doi.org/10.1103/PhysRevA.102.012219
https://doi.org/10.1103/PhysRevA.102.012219
https://doi.org/10.21468/SciPostPhys.9.4.052
https://doi.org/10.21468/SciPostPhys.9.4.052
https://arxiv.org/abs/2006.05593
https://doi.org/10.1088/0034-4885/79/9/096001
https://doi.org/10.1088/0034-4885/79/9/096001
https://doi.org/10.1007/978-3-540-71320-3
https://doi.org/10.1007/978-3-540-71320-3
https://doi.org/10.1103/PhysRevLett.115.200601
https://doi.org/10.1103/PhysRevLett.115.200601

	Driven-dissipative phase transition in a Kerr oscillator: From semi-classical PT symmetry to quantum fluctuations
	Abstract
	Introduction
	The Model
	Mean Field Theory
	Parity-Time (PT) symmetry
	Spectrum of Lindbladian
	Keldysh Formalism
	Spectral Function
	Power spectrum of the output field
	Quantum Langevin Equation and Critical Scaling
	Quantum Langevin equation from Keldysh action
	Critical exponent of occupation number 
	Dynamic critical exponent
	Finite-size scaling of occupation number
	Finite-size scaling of gap
	Argument using pseudo-critical point

	Conclusion and Outlook
	Acknowledgments
	The vectorization of the density matrix and exact diagonalization (ED)
	Keldysh action in the original basis
	Saddle point solution
	non-Gaussian part
	The calculation of the Green functions
	Critical exponents from above
	Violation of the Fluctuation-Dissipation Relation
	References


