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We use the adiabatic-nuclei molecular convergent close-coupling (MCCC) method to perform cal-
culations of 0.01–1000 eV electrons scattering on the c 3Πu, a

3Σ+
g , B

1Σ+
u , C

1Πu, and EF 1Σ+
g

states of H2 in the v = 0 vibrational level. Elastic, superelastic, ionization, and grand-total cross
sections are presented, as well as cross sections for excitation of the n = 2–3 singlet and triplet
states of H2 (where n is the atomic-limit principle quantum number). Comparison with avail-
able theoretical results is made. Good agreement is found with the recent R-matrix results (2020
J. Phys. B: At. Mol. Opt. Phys. 53 245203) for most of the exchange and dipole-forbidden tran-
sitions, but not for the dipole-allowed transitions. The sources of disagreement were found to be
an unconverged partial-wave expansion and the utilization of the fixed-nuclei approximation (as
opposed to adiabatic-nuclei) in the R-matrix calculations.

I. INTRODUCTION

Electron collisions with excited molecular species are
important processes which affect the collisional-radiative
dynamics of many low-temperature plasmas. Cross sec-
tions for scattering on electronically-excited states are
necessary for the application of collisional-radiative mod-
els to intermediate collision-rate plasmas, where the
Corona approximation is invalid and local thermody-
namic equilibrium cannot be assumed [1]. Molecular hy-
drogen is present in a variety of industrial plasmas [2],
and is abundant in the edge and divertor plasmas of toka-
mak fusion reactors [3]. The c 3Πu state of H2 in its v = 0
vibrational level is metastable, since spontaneous radia-
tive decay to the lower states is dipole-forbidden and may
proceed only via the electric quadrupole and magnetic
dipole interactions with a lifetime of about 1 ms [4, 5].
This state can then reach relatively high population den-
sities and significantly influence the dynamics of low-
temperature hydrogenic plasmas, making it a target for
which collision data is particularly important [6].
There have been no experimental and only limited the-

oretical studies for scattering on electronically-excited
H2 [7]. From the experimental perspective, studying col-
lisions with excited electronic states is a difficult problem
even for atomic targets. For example, it took about 20
years to resolve the discrepancy between measurements
and convergent close-coupling calculations of the cross
section for electron-impact ionization of the metastable
2 3S state of helium [8–10]. One of the major challenges
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for experiment is the production of excited species in suf-
ficient numbers, although in principle this is much eas-
ier for the metastable states. Measurements have been
reported for electron collisions with metastable states
of heavier diatomics, such as O2 and N2 [11], which
have long radiative lifetimes and are therefore easier
to produce with number densities suitable for scatter-
ing experiments (the A 3Σ+

u state of N2 has a life-
time on the order of 1 s, while the a 1∆g state of O2

has a lifetime of 45 min [12]). By comparison, The
metastable c 3Πu state of H2 is relatively short-lived.
Another issue is that the excited states may be produced
with an unknown distribution of substates, complicat-
ing the conventional approach of averaging over initial
experimentally-unresolved states [13]. This is a particu-
lar concern for molecular scattering experiments, due to
the large number of closely-spaced rovibrational levels in
a given electronic state.

Cross sections for various elastic, superelastic, ion-
ization, and excitation processes for scattering on
electronically-excited H2 have been calculated using
the Schwinger multichannel (SMC) [14, 15], impact-
parameter (IP) [16, 17], complex scattering potential-
ionization contribution (CSP-ic) [18], and Gryzinski [19]
methods, but due to the particular restrictions of each
method none have been applied to all of the aforemen-
tioned processes. Most recently [20], the UKRMol+
method has been applied to calculate cross sections for
transitions between the first 12 electronic states of H2,
representing the largest set of excitation cross sections
presently available for scattering on excited states.

Previously, the molecular convergent close-coupling
(MCCC) method has provided accurate electron-
scattering results for scattering on the ground state of
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H2. First, a spherical-coordinate implementation was
utilized to perform convergence studies in the fixed-nuclei
approximation and establish accurate elastic, excitation,
ionization, and grand total cross sections summed over
final vibrational levels, for scattering on the v = 0
level [21]. To calculate fully vibrationally-resolved ex-
citation cross sections [22, 23] using the adiabatic-nuclei
(AN) approximation, which requires scattering calcula-
tions to be performed at larger internuclear separations,
we utilized a spheroidal-coordinate implementation of
the MCCC method. In this paper, we describe the
spheroidal MCCC method, perform convergence studies,
and present grand-total, elastic, superelastic, excitation,
and ionization cross sections for electrons scattering on
on the v = 0 level of the B 1Σ+

u , c
3Πu, a

3Σ+
g , C

1Πu, and

EF 1Σ+
g states, comprising the n = 2 electronic states of

H2, where n is the atomic-limit principle quantum num-
ber. Atomic units are used throughout unless otherwise
specified.

II. THEORY

The spherical-coordinate implementation of the
MCCC method and its application to e−-H2 scattering
has been extensively detailed by Zammit et al. [21, 24].
Here we provide a brief overview of the MCCC the-
ory, with emphasis on details specific to the spheroidal-
coordinate implementation. A complete account of the
spheroidal MCCC theory can be found in the PhD thesis
of Savage [25].

A. Spheroidal coordinates

The standard prolate spheroidal coordinates (ξ, η, φ)
are defined as

ξ =
r1 + r2

R
∈ [1,∞), (1)

η =
r1 − r2

R
∈ [−1, 1], (2)

along with the standard azimuthal angle φ, in terms of
distances r1 and r2 from the two focii positioned at the
nuclei. In the present formulation it is more convenient
to use the scaled radial coordinate

ρ = R
2 (ξ − 1) ∈ [0,∞) (3)

which is analogous to the spherical r. With this change
in variable the spheroidal differential volume element be-
comes

dV =
[

(ρ+ R
2 )

2 − (R2 η)
2
]

dρdηdφ. (4)

The modified spheroidal coordinates used here have been
previously discussed by Zammit et al. [26].

B. Molecular structure

Neglecting rotational motion, we represent the vibronic
(vibrational and electronic) target states in the Born-
Oppenheimer approximation:

|Φnvn〉 = |Φn〉|vn〉, (5)

where n indexes the electronic states, vn is the vibra-
tional quantum number, and (mπs) are respectively the
electronic orbital angular momentum projection, parity,
and spin. The electronic states are eigenstates of the
electronic Hamiltonian

Ĥ12 = K̂1 + V1 + K̂2 + V2 + V12 (6)

at each fixed value of R. Here, the indices 1 and 2 specify
the target electrons, K̂i is the kinetic energy operator, Vi

is the electron-nuclei potential, and V12 is the electron-
electron potential. In the scaled spheroidal coordinates,
K̂i and Vi are given by

K̂i =
−1/2

(ρi +
R
2 )

2 − (R2 ηi)
2

{

∂

∂ρi

[

ρi(ρi +R)
∂

∂ρi

]

(7)

+
∂

∂ηi

[

(1− η2i )
∂

∂ηi

]

+

[

R2/4

ρi(ρi +R)
+

1

1− η2i

]

∂2

∂φ2
i

}

Vi =
−1/2

(ρ+ R
2 )

2 − (R2 η)
2
(4ρ+ 2R). (8)

The electron-electron potential can be expanded in spher-
ical harmonics as

V12 = 4π

∞
∑

ℓ=0

ℓ
∑

m=−ℓ

P |m|
ℓ (ρ<)Q|m|

ℓ (ρ>)Y
−m
ℓ (ρ̂1)Y

m
ℓ (ρ̂2),

(9)
where ρ< = min{ρ1, ρ2} and ρ> = max{ρ1, ρ2}. Here we
have defined

Pm
ℓ (ρ) = (ℓ−m)!

(

R

2

)ℓ

Pm
ℓ ( 2

Rρ+ 1) (10)

and

Qm
ℓ (ρ) =

1

(ℓ +m)!

(

2

R

)ℓ+1

Qm
ℓ ( 2

Rρ+ 1), (11)

where Pm
ℓ and Qm

ℓ are the regular and irregular Legendre
polynomials, which we generate using the algorithm of
Ref. [27].
We represent the target space at a given R with a set

of pseudostates obtained with a configuration interaction
(CI) calculation using Sturmian basis functions. In the
spheroidal implementation we utilize the following basis
for the one-electron coordinate and spin space:

〈ρ|kℓmσ〉 = Λm
k (ρ;αm)Y m

ℓ (η, φ)χ(σ), (12)

where χ(σ) is the one-electron spin wave function for spin
projection σ, Y m

ℓ (η, φ) are the spherical harmonics, and
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Λm
k are the radial Hylleraas-type [28] functions:

Λm
k (ρ;αm) =

√

αm
(k − 1)!

(k +m− 1)!

× (αmρ)m/2 exp(−αmρ/2)Lm
k−1(αmρ). (13)

Here, αm are tunable exponential fall-off parameters, and
Lm
k−1(αmρ) are the associated Laguerre polynomials. An-

tisymmetrized two-electron configurations are built for
each target symmetry (mπs):

|k1ℓ1m1k2ℓ2m2 : mπs〉 = 1
√

2(1 + δk1k2
δℓ1ℓ2)

×
∑

σ1σ2

Csms

1
2σ1,

1
2σ2

A|k1ℓ1m1σ1〉|k2ℓ2m2σ2〉, (14)

where Csms

1
2σ1,

1
2σ2

are Clebsch-Gordan coefficients, ms is

the two-electron spin projection, and

A = 1− P̂12 (15)

is the antisymmetrization operator (with P̂12 the two-
electron permutation operator). Note that, for the pur-
poses of calculating spatial wave functions, the spin de-
pendence in Eq. (14) can be neglected except in deter-
mining the allowed configurations (to satisfy the exclu-
sion principle). Implicit in Eq. (14) are the requirements
that

m1 +m2 = m (16)

π1π2 = π. (17)

Introducing the superindex γ = (k1ℓ1m1k2ℓ2m2), the set
of unique configurations {|γ : mπs〉} forms a basis which
is used to diagonalize the electronic molecular Hamil-
tonian for each target symmetry. The resulting two-
electron pseudostates are given by

|Φn : mπs〉 =
∑

γ

C(n)
γ |γ : mπs〉 (18)

and satisfy

〈mπs : Φn′ |Ĥ12|Φn : mπs〉 = ǫnδn′n, (19)

where C
(n)
γ are the CI coefficients and ǫn is the pseu-

dostate energy.
The vibrational states are obtained using a similar CI

calculation to diagonalize the Born-Oppenheimer vibra-
tional Hamiltonian

Hvib
n = −1

2

d2

dR2
+ ǫn(R), (20)

where ǫn(R) is the potential-energy curve of the elec-
tronic state n. Note that in the present non-rotationally-
resolved formulation the centrifugal term which would

otherwise be present in Eq. (20) has been neglected. The
vibrational basis functions are

〈R|k〉 =
√
α

k
(2αR)e−αRL1

k−1(2αR), (21)

where α in an exponential fall-off parameter. Diagonal-
izing Eq. (20) in this set of functions yields a set of vi-
brational pseudostates which satisfy

〈v′n|Hvib
n |vn〉 = εnvnδv′

nvn , (22)

where εnvn is the vibronic energy of the state nvn. The
size of the vibrational basis can be taken large enough
that the bound pseudostates accurately represent the
true bound vibrational states, and the pseudostates with
energies above the asymptotic limit of the potential-
energy curve adequately discretize the dissociative con-
tinuum.

C. Projectile wave functions

The incident-electron plane waves of linear momentum
q are expanded in the spheroidal harmonics Υm

λ :

|q〉 =
√

2

π

1

q

∞
∑

λ=0

λ
∑

M=−λ

iλΥM∗
λ (q̂; c)|qλM〉χ(σ) (23)

〈ρ|qλM〉 ≡ ΞM
λ (ρ; c)ΥM

λ (η, φ; c), (24)

where c = qR/2 is the spheroidal pseudomomentum,
and λ is the pseudo angular momentum. The projection
M of λ is equivalent to the spherical-coordinate orbital
angular-momentum projection since both coordinate sys-
tems possess the same cylindrical symmetry about the
internuclear axis. The method for obtaining the radial
functions Ξ is described in detail in Ref. [25].

D. Adiabatic-nuclei approximation

To simplify the scattering equations we utilize the AN
approximation, which expresses the total scattering state
as a Born-Oppenheimer product of a fixed-nuclei elec-
tronic scattering state and the target vibrational state:

|Ψ(+)
ivi

〉 = |Ψ(+)
i 〉|vi〉|rot〉, (25)

where ivi is the initial state of the target, (+) denotes

outgoing spherical-wave boundary conditions, |Ψ(+)
i 〉 is

the electronic scattering state, and |rot〉 is the target ro-
tational state. Since from now on we will not be con-
cerned with rotational motion there is no need to explic-
itly state the form of |rot〉. A more detailed derivation of
the MCCC theory with rotational motion included can
be found in Ref. [24]. Using the AN approximation (25)
allows us to consider the electronic scattering problem

separately from the nuclear motion and solve for |Ψ(+)
i 〉

at each fixed value of the internuclear separation R.



4

E. Scattering equations

For solutions of the electronic scattering system with
Hamiltonian

Ĥ = K̂0 + V0 + V01 + V02 + Ĥ1 + Ĥ2 + V12 + 1/R (26)

we proceed to solve the Lippmann-Schwinger equation
with Green’s function

Gn(q) =
1

E − ǫn − q2/2 + i0
(27)

and projectile-target interaction potential

V̂ = V0 + 2V01 + 2(E − Ĥ)P̂01. (28)

The last term in Eq. (28) arises from enforcing the
antisymmetry of the total scattering wavefunction and
is what accounts for the exchange interaction. The
V -matrix elements 〈qfΦf |V̂ |Φiqi〉 are expanded using
Eq. (23) in partial waves of total (three-electron) angular-
momentum projection M, parity Π, and spin S. The
partial-wave V -matrix elements are

V MΠS
fλfMf ,iλiMi

(qf , qi)

≡ 〈MΠS : MfλfqfΦf |V̂ |ΦiqiλiMi : MΠS〉,
(29)

and the same form holds for the partial-wave T -matrix
elements. The corresponding partial-wave Lippmann-
Schwinger equation is

TMΠS
fλfMf ,iλiMi

(qf , qi) = V MΠS
fλfMf ,iλiMi

(qf , qi) (30)

+
∑

nλM

∫

V MΠS
fλfMf ,nλM

(qf , q)Gn(q)T
MΠS
nλM,iλiMi

(q, qi)dq.

Eq. (30) is solved separately for each scattering-
system symmetry (MΠS) using standard techniques [24].
Finite-size expansions must be used to solve the problem
numerically, so we test for convergence with respect to
the number of target states included, and the maximum
partial-wave pseudo-angular-momentum λ ≤ λmax of the
projectile. Only channels with total (projectile plus tar-
get) angular-momentum projection equal to M are in-
cluded in the sum in Eq. (30), and we perform the cal-
culations for all −λmax ≤ M ≤ λmax. Once convergence
is reached with respect to the number of target states
and the size of the partial-wave expansion, the electronic
scattering problem can be considered solved.

F. Fixed-nuclei cross sections and analytic Born

completion

Although the fixed-nuclei cross sections can be ob-
tained directly from the spheroidal T -matrix elements,
it is more convenient to transform back to the spherical

coordinate system now before reintroducing the vibra-
tional motion, since the spheroidal coordinate system is
R-dependent. The spherical T -matrix elements (assum-
ing a partial-wave expansion in spherical harmonics with
angular momentum L) can be written as [25]

TMΠS
fLfMf ,iLfMi

(qf , qi) =

λmax
∑

λf ,λi

iλi−Li+Lf−λf

× 〈Y Mf

Lf
|ΥMf

λf
〉〈Y Mi

Li
|ΥMi

λi
〉TMΠS

fλfMf ,iλiMi
(qf , qi). (31)

Although Eq. (31) is valid for arbitrary Lf , Li ≥ 0, we
choose Lmax = λmax to maintain the same bounds on M
(i.e. |M | ≤ Lmax).
Reintroducing the dependence of the T matrix on R,

the partial-wave FN scattering amplitudes

FMΠS
fLfMf ,iLiMi

(R) =
−4π2

qfqi
iLi−LfTMΠS

fLfMf ,iLiMi
(qf , qi;R).

(32)
are used to calculate the partial-wave integrated cross
sections (ICS)

σMΠS
f,i (R) =

1

4π

qf
qi

∑

Lf ,Mf

∑

Li,Mi

|FMΠS
fLfmf ,iLimi

(R)|2,

(33)
which in turn give the spin-resolved ICS

σS
f,i(R) =

∑

MΠ

σMΠS
f,i (R). (34)

To accelerate the rate of convergence in the dipole-
allowed cross sections with respect to Lmax, we utilize
the analytic Born completion (ABC) method:

σS
f,i(R) =

∑

MΠ

[

σMΠS
f,i (R)− σMΠ

f,i (R)
]

+ σAB
f,i (R), (35)

where σAB
f,i and σMΠ

f,i are the analytical and partial-wave
Born ICS, respectively. Details on the calculation of the
Born cross sections in the spherical MCCC method can
be found in Ref. [24], and details specific to the spheroidal
implementation in Ref. [25]. The ABC method is an
application of Kummer’s transformation, an established
method for accelerating the convergence of an infinite
series by replacing it with the sum of a highly conver-
gent series and a series which can be evaluated in closed
form [29]. In effect, the ABC method completes the
partial-wave expansion up to infinity using the partial-
wave Born ICS for all L > Lmax, which replies on the va-
lidity of the Born approximation for high partial waves.
Cross sections for dipole-forbidden transitions (including
spin-exchange transitions) have much faster partial-wave
convergence than for dipole-allowed transitions, and in
these cases the ABC procedure is typically not necessary.
Finally, the spin-averaged ICS is given by

σf,i(R) =
1

2(2si + 1)

∑

S

(2S + 1)σS
f,i(R), (36)
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where si is the target initial spin. For scattering on the
c 3Πu and a 3Σ+

g states (si = 1), there are two total spins

S ∈
{

1
2 ,

3
2

}

, while for scattering on the singlet B 1Σ+
u ,

C 1Πu, and EF 1Σ+
g states (si = 0), only S = 1

2 is
possible.

G. Adiabatic-nuclei cross sections

Vibrationally-resolved cross sections are obtained by
replacing the FN scattering amplitudes in Eq. (33) with
the AN scattering amplitudes

FMΠS
fvfLfmf ,iviLimi

= 〈vf |FMΠS
fLfmf ,iLimi

|vi〉. (37)

In order to simplify the application of the ABC method
to the AN cross sections, as well as avoid numerical in-
stabilities arising from interpolating the scattering am-
plitudes per partial wave when evaluating the R integral
in Eq. (37), we utilize the “square-root” approximation:

σfvf ,ivi =

∣

∣

∣

∣

〈vf |
√

σf,i(R)|vi〉
∣

∣

∣

∣

2

. (38)

In previous work we have found Eq. (38) to be a very good
approximation for the true AN cross section [22, 30, 31],
and we have confirmed the same is true in the present
calculations.
In order to enforce the correct threshold behavior,

we use the “energy-balancing” modification to the AN
method suggested by Stibbe and Tennyson [32]. Al-
though this method was first developed to study dis-
sociative excitation, we have found it useful in calcu-
lations of both dissociative and bound excitation cross
sections. The modification was introduced due to the
fact that cross sections or on-shell T matrices calculated
in the FN formalism have their corresponding incident
and outgoing electron energies related by the FN (verti-
cal) excitation energy, which varies with R, rather than
the physical excitation energy between vibrational lev-
els. The standard AN approach is to choose the inci-
dent energy correctly, and allow the outgoing energy to
vary as the integration over R is performed. The energy-
balancing method takes the opposite approach of fixing
the outgoing energy to match the physical outgoing elec-
tron energy (per vibrational transition), and allowing the
incident energy to vary with R as required. Although this
approach does not correct the underlying breakdown of
the adiabatic approximation at low incident energies, it
does enforce the correct thresholds in the calculated cross
sections (unlike the standard approach which can give a
non-zero cross section below the physical threshold), and
can be a useful way to ensure that the AN cross sections
smoothly go to zero at the correct threshold (when ap-
plicable). The modification generally has no substantial
effect more than 1 eV above threshold.
The set of vibrational states obtained by diagonalizing

Eq. (20) contains both bound states and pseudostates

which discretize the dissociation continuum. This allows
for a straightforward calculation of the total electronic
excitation cross section by summing the vibrationally-
resolved cross sections over all final vibrational pseu-
dostates:

σf,ivi =
∑

vf

σfvf ,ivi , (39)

where the sum includes both bound vibrational states
and dissociative pseudostates. Away from threshold en-
ergies, the evaluation of Eq. (39) along with Eq. (38)
is equivalent to using the standard formula for the
vibrationally-averaged cross section [33]

σf,ivi = 〈vi|σf,i|vi〉, (40)

which neglects the vibrational-level spacings.
For some processes, our approach to determining cross

sections differs somewhat to what is outlined above. For
superelastic transitions, which do not have a threshold
energy, we apply Eq. (40) directly, without the energy-
balancing modification. It is straightforward to show that
this approach will satisfy detailed balance when the in-
verse excitation cross sections are calculated using the
energy-balancing method. For ionization, there is no sin-
gle outgoing energy associated with the FN cross section,
since it is already summed over ionizing pseudostates
at each R, so for the purposes of applying the energy-
balancing method we assume the FN outgoing energy is
equal to

Ef (R) = Ei − ǫioni (R), (41)

where Ei is the incident energy and ǫioni is the ioniza-
tion potential for the initial electronic state i. In the
evaluation of Eq. (38), the final vibrational levels are
calculated in the potential energy curve of the of the
residual H+

2 ion in its ground electronic state. Although
this is not formally correct, since the FN ionization cross
section includes contributions from ionization with ex-
citation (leading to the production of H+

2 in excited
electronic states), at the energies where this is possible
(more than 10 eV above the ionization threshold) the ap-
proach we have adopted is equivalent to using Eq. (40).
To obtain grand-total cross sections (GTCS), we apply
Eq. (40) using the FN GTCS, which includes contribu-
tions from more discrete excitations than we explicitly
consider here. At low energies, the GTCS is dominated
by the v = 0 → 0 elastic cross section, which is unaffected
by energy balancing, and the superelastic cross sections,
which do not utilize energy balancing, and hence the use
of Eq. (40) is valid.

III. CALCULATION DETAILS

A. Target Structure

The electronic structure calculations are optimized
with the use of a hybrid-basis approach. The major-
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ity of the basis orbitals are Laguerre functions (12) with
k ≤ 12 − ℓ, ℓ ≤ 3, |m| ≤ ℓ, and αm = 0.8. However, we
replace the 1s orbital with an accurate H+

2 1sσg state cal-
culated from a preliminary one-electron diagonalization
in a large basis (Nℓ = 60− ℓ, ℓ ≤ 8). We then replace the
2s, 2p, 3d, and 4f orbitals with shorter-ranged Laguerre
functions using the R-dependent exponential falloff pa-
rameters

αm=0(R) =

{

0.03R2 − 0.32R+ 2.8 0.0 ≤ R ≤ 4.0

2.0 4.0 < R

(42)
for m = 0 functions and

αm>0(R) =

{

0.052R2 − 0.52R+ 3.8 0.0 ≤ R ≤ 5.0

2.6 5.0 < R

(43)
for m > 0 functions. These orbitals are important in
representing the “inner” molecular electron, and opti-
mizing their exponential falloff parameters with R en-
sures the accuracy of the calculated target states over
the range of internuclear separations of interest. When
constructing the set of configurations (14) we include all
frozen-core configurations (1s, nℓ), and correlation con-
figurations (nℓ, n′ℓ′) with both electrons allowed to oc-
cupy the 1s, 2s, 3s, 2p, 3p, 3d, 4d, 5d, and 4f orbitals.
The accuracy of the present structure model is demon-

strated by the good agreement with accurate calculations
of the potential-energy curves and oscillator strengths,
shown for the c 3Πu and a 3Σ+

g states in Fig. 1. A sim-
ilar level of accuracy has been found for all electronic
states considered in this work (see Ref. [39] for further
comparisons).
In Table I we present target-state energies and vertical

excitation energies from the c 3Πu state for each of the
target states in the n = 1–3 singlet and triplet spectra.
For simplicity the energies are given for the single inter-
nuclear distance of R = 2.0 a0, which is close to the mean
R of all n = 2 states (between 1.928 and 2.518 a0). We
compare the energies from the present structure model
with accurate calculations from Refs. [34–36, 40–42],
finding good agreement for all states considered.
To ensure the accuracy of the vibrational wave func-

tions, they are obtained using the accurate potential-
energy curves from the literature (according to the refer-
ences in Table I for each state). The vibrational energy
levels we have obtained are tabulated in Ref. [22] and are
in excellent agreement with the calculations of Fantz and
Wünderlich [43].

B. Scattering models and convergence

Previously, we have found that excitation cross sec-
tions for scattering on the ground electronic state of H2

are converged with a model consisting of 210 target states
and Lmax = 10 (with the ABC method) [39]. To es-
tablish convergence for scattering on excited states, we
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FIG. 1. Left: Potential energy curves for the c 3Πu, a
3Σ+

g ,
B 1Σ+

u , C 1Πu, and EF 1Σ+
g states calculated in this

work (solid lines) compared against the accurate results of
Refs. [34–37] (dashed lines). Right: Dipole-moment curves
for each dipole-allowed transition between these states, com-
pared with the accurate calculations of Refs. [34, 38]. The
probability density of the v = 0 vibrational wave function in
each state is also shown to illustrate the range of R values
which influence the scattering calculations.

have performed fixed-nuclei calculations at R = 2.0 a0
and Lmax = 10 with the following models: MCC(27),
MCC(57), MCCC(96), MCCC(158), and MCCC(210),
where the number in parentheses indicates the number
of target states (we use “CC” rather than “CCC” to la-
bel models which do not include ionization channels).
The MCC(27) model includes all of the n = 1–3 elec-
tronic states and neglects coupling to ionization channels
(note that states of non-zero orbital angular-momentum
projection enter the close-coupling equations twice, and
hence the list of states in Table I amounts to 27 states
in the scattering calculations). The MCC(57) model in-
cludes all bound electronic states (at R = 2.0 a0), and the
remaining models include all bound states with increas-
ing numbers of positive-energy states (positive relative to
the ground state of the residual H+

2 ion), to test the ef-
fect of coupling to ionization channels. Calculations have
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TABLE I. Two-electron energy of electronic states of H2 at
the internuclear distance R = 2.0 a0. Comparisons are made
with accurate structure calculations from the literature [34–
36, 40–42]. Excitation energies relative to the c 3Πu state
are also presented and compared with values obtained using
the literature energies in column 3. The states are grouped
according to their atomic-limit principle quantum number.
For the n = 1–2 states the mean internuclear separation Rm

of the ground vibrational level also presented.

State Rm

Energy (Ha) ∆E (eV)

Present Ref. Present Ref.

n = 1

X 1Σ+
g 1.448 -1.1360 -1.1381a -10.86 -10.90

b 3Σ+
u – -0.8967 -0.8971b -4.347 -4.344

n = 2

B 1Σ+
u 2.518 -0.7503 -0.7521c -0.364 -0.397

c 3Πu 2.022 -0.7369 -0.7375b – –

a 3Σ+
g 1.928 -0.7357 -0.7361b 0.032 0.037

C 1Πu 2.016 -0.7177 -0.7182d 0.523 0.5237

EF 1Σ+
g 1.978 -0.7172 -0.7177e 0.536 0.538

n = 3

e 3Σ+
u -0.6831 -0.6832b 1.465 1.478

B′ 1Σ+
u -0.6650 -0.6655c 1.957 1.959

d 3Πu -0.6606 -0.6607b 2.077 2.089

h 3Σ+
g -0.6602 -0.6606b 2.088 2.093

GK 1Σ+
g -0.6599 -0.6604e 2.095 2.097

g 3Σ+
g -0.6595 -0.6598b 2.106 2.113

i 3Πg -0.6592 -0.6596b 2.115 2.120

I 1Πg -0.6591 -0.6595f 2.117 2.121

j 3∆g -0.6574 -0.6576f 2.164 2.173

J 1∆g -0.6573 -0.6576f 2.166 2.174

D 1Πu -0.6551 -0.6553d 2.226 2.235

H 1Σ+
g -0.6547 -0.6549e 2.238 2.246

aKolos et al. [40]
bStaszewska and Wolniewicz [34]
cStaszewska and Wolniewicz [35]
dWolniewicz and Staszewska [36]
eWolniewicz and Dressler [41]
fWolniewicz [42]

also been performed using the first Born approximation
for comparison with the close-coupling results.

In Table II we present the static dipole polarizabil-
ity α0 of the ground electronic state and first five non-
dissociative excited states, averaged over the v = 0 vi-
brational wave function, for each of the scattering models

described above. The contributions to the MCCC(210)
polarizability from the bound and continuum spectra are
given in Table III. These quantities can be helpful

TABLE II. Static dipole polarizabilities for the X 1Σ+
g ,

B 1Σ+
u , c 3Πu, a 3Σ+

g , C 1Πu, and EF 1Σ+
g states, aver-

aged over the v = 0 wave functions. Comparisons are made
between each of the scattering models described in the text.

Model X 1Σ+
g B 1Σ+

u c 3Πu a 3Σ+
g C 1Πu EF 1Σ+

g

MCCC(210) 5.42 131 302 2793 1327 2137

MCCC(158) 5.11 130 302 2793 1327 2137

MCCC(96) 4.41 118 301 2793 1327 2136

MCC(56) 3.89 113 300 2792 1326 2136

MCC(27) 3.59 105 299 2791 1324 2133

TABLE III. Contributions from the bound and continuum
spectra to the MCCC(210) static dipole polarizabilities in Ta-
ble II.

Source X 1Σ+
g B 1Σ+

u c 3Πu a 3Σ+
g C 1Πu EF 1Σ+

g

Bound 71% 86% 97% 97% 99% 98%

Cont. 29% 14% 3% 3% 1% 2%

in making qualitative predictions of the importance of
coupling to ionization channels and dependence of cross
sections on the initial state. For example, the polariz-
abilities of the excited states converge faster than for
the ground state, and the contributions from the con-
tinuum are much smaller, so we should expect to see
faster convergence in the cross sections for scattering on
excited states, and a smaller effect of coupling to ion-
ization channels. The much larger polarizabilities for
the excited states indicate that the total cross sections
should be substantially larger compared to scattering on
the ground state.
In Fig. 2, we present convergence studies for a selection

of transitions, chosen to represent the cases of slowest
convergence. Even for the slowest-converging transitions
which we present in Fig. 2, the rate of convergence is
much faster than it is for scattering on the ground elec-
tronic state [21]. For many transitions, coupling to ion-
ization channels has negligible effect, while for scattering
on the ground state it was found to be very important at
energies above the ionization threshold [21]. In all cases,
the cross sections we present in Fig. 2 are well converged
using the MCCC(210) model, and we have confirmed that
the situation is the same for all transitions presented in
this work. In Fig. 3, we present similar convergence stud-
ies for the elastic-scattering and ionization cross sections
of each n = 2 state. Again, the MCCC(210) model is suf-
ficient, although the slightly jagged behavior at the peak
of the ionization cross sections suggests that a slightly
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FIG. 2. Convergence studies, performed in the fixed-nuclei
(FN) approximation with R = 2.0 a0, for a selection of tran-
sitions from excited states of H2. Convergence is tested with
respect to the number of target states included in the close-
coupling expansion. See the text for a description of the dif-
ferent scattering models.

larger model is required for convergence. Since this is
only a minor issue over a small energy region we simply
smooth the cross section when presenting our final results
later.
Our principle concern regarding convergence is that

transitions with smaller excitation energies typically
require larger partial-wave expansions. For the
MCCC(210) model, we have run FN calculations at
R = 2.0 a0 with Lmax = 6, 10, 15, 20, and 25 in order
to conduct partial-wave convergence studies. A selec-
tion of convergence studies are presented in Fig. 4, again
chosen to represent the cases with slowest convergence.
We present the results both with and without the use
of the ABC method to demonstrate the improvement in
the speed of convergence when it is used. As expected,
the partial-wave convergence for scattering on these ex-
cited states is much slower than it was for scattering on
the ground state [21]. We have found that Lmax = 20
is required to reach convergence in a number of transi-
tions, and even with this large partial-wave expansion
the ABC method still plays an important role. We have
confirmed that the MCCC(210) model with Lmax = 20
and the ABC method yields converged cross sections for
all transitions considered in this work. For the spin-
exchange transitions and many dipole-forbidden transi-
tions, a partial-wave expansion with Lmax = 6 is suffi-
cient, but for the dipole-allowed transitions the partial-
wave convergence is very slow, and it is computationally
unfeasible to obtain accurate cross sections without the
ABC method. The behavior of the c 3Πu → a 3Σ+

g tran-
sition is particularly interesting. Due to the small energy
difference between these states the partial-wave conver-
gence is slow, but the Born approximation becomes valid
at relatively low incident energies. As a result, without
the ABC method even the Lmax = 20 cross section is
up to an order of magnitude smaller than the converged
cross section.

IV. RESULTS

In this section we present AN cross sections for elec-
trons scattering on the B 1Σ+

u , c
3Πu, a

3Σ+
g , C

1Πu,

and EF 1Σ+
g states of H2 in the v = 0 level, including

superelastic, elastic, excitation, ionization, and grand-
total cross sections. For the AN calculations, we utilize
the MCC(27) Lmax = 10 model up to 1 eV, and then
the MCCC(210) Lmax = 20 model up to 200 eV. Be-
yond 200 eV, the Born approximation is sufficient and
we utilize this to extend the MCCC results for the spin-
allowed transitions up to 1000 eV. To perform the inte-
gration overR in the AN calculations, we have performed
FN scattering calculations at 10 evenly-spaced points be-
tween R = 1.25 and 3.5, which covers the v = 0 vibra-
tional wave function of each initial state considered here,
and is sufficient to accurately interpolate the FN excita-
tion cross sections. Where available, we provide compar-
isons with the previous theoretical calculations which are
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summarized below.

A. Previous calculations

Until recently, the available data for scattering on ex-
cited electronic states of H2 was limited to a handful of
calculations using a variety of methods, none of which
considered the entire range of transitions we present
here. Sartori et al. [14, 15] used the Schwinger multi-
channel (SMC) method to obtain cross sections for elas-
tic and superelastic scattering on the c 3Πu(v = 0) and
a 3Σ+

g (v = 0) states, as well as the c 3Πu(v = 0) → a 3Σ+
g

excitation. Rescigno & Orel (as cited in Ref. [44]) ap-
plied the first Born approximation (FBA) to study the
c 3Πu(v = 0) → a 3Σ+

g transition. Joshipura et al.
[18] used the approximate complex scattering potential-
ionization contribution (CSP-ic) method to estimate the
elastic, ionization, and grand-total cross sections for scat-
tering on the c 3Πu(v = 0) state. Wünderlich [19] used
the classical Gryzinksi approximation to obtain ioniza-
tion cross sections for scattering on the ground state and
all n = 2 states of H2, including ionization of excited vi-
brational levels. It has recently been determined that in
the implementation of this method the kinetic energy of
the ejected electron for scattering on excited electronic
states was not treated correctly (though the equations
given in Ref. [19] are all correct), leading to an overes-
timation of the ionization cross section [45]. When pre-
senting ionization cross sections, we will compare with
recalculated Gryzinski results which have this issue cor-
rected (provided via private communication [45]).
All of the aforementioned calculations either utilized

the FN approximation (neglecting vibrational motion),
or the Franck-Condon method to approximately account
for vibrational-motion effects. Laricchiuta et al. [16]
used the semiclassical impact-parameter (IP) method
along with the AN approximation to calculate fully
vibrationally-resolved cross sections for a few dipole-
allowed transitions from the c 3Πu and a 3Σ+

g states,
while Celiberto et al. [17] provided cross sections calcu-
lated with the same method for the B 1Σ+

u → I 1Πg

transition.
Recently, Meltzer and Tennyson [20] applied the

UKRMol+ method in the FN approximation (with R =
2.0 a0) to produce a set of cross sections for scatter-
ing on the first 12 excited states of H2. The UKRMol+
method is based on the same close-coupling principle as
the MCCC method, and hence we generally expect good
agreement between the two methods when similar scat-
tering models are used (see Ref. [46] for a comparison of
the two methods for scattering on the ground state of
H2). The UKRMol+ calculations utilize a close-coupling
expansion with 85 target states and a projectile partial-
wave expansion with Lmax = 6, but do not apply the
ABC method to account for higher partial-wave contribu-
tions. As discussed in Sec. III B, the MCCC calculations
for the dipole-allowed transitions are highly unconverged

with Lmax = 6, so we should expect the UKRMol+ re-
sults to be similarly inaccurate for these transitions.
In Table IV we summarize the various theoretical cal-

culations which have been performed for scattering on
excited states of H2, along with the results available from
each one. We note that the present MCCC calculations
are the only attempt so far to produce a set of cross
sections for superelastic, elastic, excitation, and ioniza-
tion processes using the same theoretical method. No
measurements for scattering on excited states of H2 have
been reported

B. Elastic, ionization, and grand-total cross

sections

In Figs. 5, 6, and 7 we present elastic, ionization, and
grand-total cross sections for scattering on the n = 2
states, and compare with the available SMC [14, 15],
CSP-ic [18], Gryzinski [19, 45], and UKRMol+ [20] cal-
culations. The MCCC and UKRMol+ calculations are
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FIG. 5. Elastic scattering cross sections for electrons scat-
tering on the B 1Σ+

u , c 3Πu, a
3Σ+

g , C
1Πu, and EF 1Σ+

g

(v = 0) states of H2. Comparisons are made between the
present MCCC results and the SMC [14, 15], CSP-ic [18], and
UKRMol+ [20] calculations, where available. See the text for
descriptions of the theoretical methods.

in good agreement for elastic scattering on the c 3Πu,
a 3Σ+

g , C
1Πu, and EF 1Σ+

g states, and for the a 3Σ+
g

state the SMC results are in reasonable agreement with
both MCCC and UKRMol+. For the c 3Πu state, both
the SMC and CSP-ic calculations are lower than the
MCCC and UKRMol+ results, particularly at lower in-
cident energies. The MCCC and UKRMol+ results for



11

TABLE IV. A summary of the various theoretical approaches which have been applied to electrons scattering on excited
states of H2. Abbreviations for the scattering methods are as defined in the text. The FC, FN, and AN labels refer to the
Franck-Condon, fixed-nuclei, or adiabatic-nuclei treatments of the vibrational motion utilized in each method.

Reference Method Results available

Sartori et al. [14, 15] SMC FC Superelastic, elastic, c 3Πu → a 3Σ+
g

Joshipura et al. [18] CSP-ic FN Ionization, grand-total (scattering on c 3Πu only)

Wünderlich [19, 45] Gryzinski FC Ionization of n = 1–2 states

Laricchiuta et al. [16] IP AN c 3Πu →

{

h 3Σ+
g , g

3Σ+
g

}

, a 3Σ+
g → d 3Πu

Celiberto et al. [17] IP AN B 1Σ+
u → I 1Πg

Rescigno and Orel [44] FBA FN c 3Πu → a 3Σ+
g

Meltzer and Tennyson [20] UKRMol+ FN Superelastic, elastic, excitation of all n = 2 states and half of the n = 3 states

(scattering on n = 2 and half of n = 3 states)

This work MCCC AN Superelastic, elastic, ionization, grand-total, excitation of all n = 1–3 states

(scattering on n = 2 states)

elastic scattering on the B 1Σ+
u are in disagreement below

around 4 eV, with a pronounced difference in the shape
of the cross section below 1 eV. The reason for this is
that the UKRMol+ calculations utilize the FN approx-
imation with R = 2.0 a0 for all transitions, while the
v = 0 level of the B 1Σ+

u state has a mean internuclear
separation of R = 2.518 a0 (see Table I). To illustrate the
effect of choosing R = 2.0 a0 for scattering on this state,
we also include in Fig. 5 the B 1Σ+

u elastic-scattering
cross sections obtained from FN MCCC calculations with
R = 2.0 a0 and R = 2.5 a0. The R = 2.0 a0 cross section
reproduces the UKRMol+ result, while the R = 2.5 a0
cross section follows the AN MCCC result.

In Fig. 6, the CSP-ic cross section for ionization of
the c 3Πu(v = 0) state is in near-perfect agreement with
the MCCC calculations, which is unexpected given the
approximate nature of the CSP-ic calculations. The
Gryzinski ionization cross sections are in good agreement
with MCCC for the c 3Πu, B

1Σ+
u , and C 1Πu states,

but is somewhat larger than the MCCC results for the
EF 1Σ+

g and a 3Σ+
g states.

In Fig. 7, the CSP-ic c 3Πu GTCS is about a factor of
two lower than the MCCC cross section. Given the rea-
sonable agreement between the CSP-ic and MCCC elas-
tic and ionization cross sections, this discrepancy must
be due to the cross sections for discrete excitations being
underestimated in the CSP-ic calculations. No previous
calculations have been attempted of the GTCS for scat-
tering on the other excited electronic states, so in the
right panel of Fig. 7 we present the MCCC results alone.
The EF 1Σ+

g state has the largest total cross section, be-

ing up to an order of magnitude larger than the B 1Σ+
u

total cross section. The c 3Πu, a
3Σ+

g , and C 1Πu total
cross sections are all of similar magnitude. In contrast to
scattering on the ground electronic state, where ioniza-
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FIG. 6. Ionization cross sections for electrons scattering on
the B 1Σ+

u , c
3Πu, a

3Σ+
g , C

1Πu, and EF 1Σ+
g (v = 0) states

of H2. Comparisons are made between the present MCCC
results and the CSP-ic [18] and Gryzinski [45] calculations,
where available.

tion accounts for up to a half of the GTCS at higher ener-
gies [21], the GTCS for scattering on the excited states is
up to two orders of magnitude larger than the ionization
cross section. The much smaller GTCS for scattering on
the B 1Σ+

u state, compared to the other excited states,
can be explained by noting that the polarizability of the
B 1Σ+

u state is a factor of three smaller than that of the
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FIG. 7. Grand-total cross sections for electrons scattering on
the B 1Σ+

u , c
3Πu, a

3Σ+
g , C

1Πu, and EF 1Σ+
g (v = 0) states

of H2. Comparisons are made between the present MCCC
results and the CSP-ic [18] calculations, where available.

c 3Πu state, and an order of magnitude smaller than the
remaining excited-state polarizabilities.

C. Superelastic scattering and excitation of n = 2

states

In Fig. 8 we present cross sections for superelastic
scattering and excitation of the n = 2 states from the
c 3Πu(v = 0) state. Since the vibrational levels of dif-
ferent electronic states overlap, cross sections which are
summed over final vibrational levels will contain some
contribution from the excitation of levels which are above
the initial c 3Πu(v = 0) state. The X 1Σ+

g and b 3Σ+
u

states are sufficiently lower than the c 3Πu state that this
contribution is negligible, however the B 1Σ+

u state has a
number of bound vibrational levels which are above the
c 3Πu(v = 0) state and hence the c 3Πu(v = 0) → B 1Σ+

u

transition can be considered only partially superelas-
tic (in general, many of the electronic transitions be-
tween the n = 2 states are partially superelastic). For
each transition, we compare with the results from the
UKRMol+ calculations [20], and where available we also
compare with the SMC [14, 15] and FBA [44] cross sec-
tions. For the spin-exchange transitions, there is excel-
lent agreement between the MCCC and UKRMol+ cal-
culations, with small differences at low incident energies
arising from our use of the AN method rather than the
FN method utilized in the UKRMol+ calculations. We
do not attempt to map out resonance structures such as
those present in the UKRMol+ cross sections since both
the AN and FN approximations fail to correctly describe
resonant processes.
The dipole-forbidden c 3Πu(v = 0) → b 3Σ+

u cross sec-
tion is fast to converge with partial waves, and the ABC
procedure is not important. Accordingly, we find good
agreement with the UKRMol+ and SMC calculations
for this transition, since neither method utilized large
partial-wave expansions or the ABC method. The situ-
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FIG. 8. Electron-impact cross sections for superelastic scat-
tering and excitation of states up to n = 2 from the
c 3Πu(v = 0) state of H2. Comparisons are made between
the present MCCC results and the UKRMol+ [20] and
SMC [14, 15] calculations, where available. The FN (R = 2.0)
MCCC cross section with Lmax = 6 and no analytical Born
completion is also shown for the dipole-allowed transitions for
proper comparison with the UKRMol+ results.

ation is different for the dipole-allowed c 3Πu(v = 0) →
a 3Σ+

g transition. As we demonstrated in Fig. 4, this
transition is fast to converge when the ABC method it
utilized, but without it even a large partial-wave expan-
sion with Lmax = 20 is not sufficient to reach conver-
gence. The UKRMol+ cross section is practically the
same as the Lmax = 6 MCCC cross section without ABC,
which has been included in the figure for comparison, and
above 1 eV the SMC result is similar. Due to the small
difference in energy between these states, the cross sec-
tion is very large and of similar magnitude to the elastic-
scattering cross section. It converges to the Born cross
section at relatively low energies, as demonstrated by the
agreement between the MCCC and FBA calculations of
Rescigno and Orel [44] above 1 eV. The large difference
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(up to an order of magnitude) between the UKRMol+
and converged MCCC results demonstrates the impor-
tance of confirming partial-wave convergence for dipole-
allowed transitions.

In Fig. 9 we present cross sections for superelastic
scattering and excitation of the n = 2 states from
the a 3Σ+

g (v = 0) state. Again, the UKRMol+ and
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FIG. 9. Electron-impact cross sections for superelastic scat-
tering and excitation of states up to n = 2 from the
a 3Σ+

g (v = 0) state of H2. Comparisons are made between
the present MCCC results and the UKRMol+ [20] and
SMC [14, 15] calculations, where available. The FN (R = 2.0)
MCCC cross section with Lmax = 6 and no analytical Born
completion is also shown for the dipole-allowed transitions for
proper comparison with the UKRMol+ results.

MCCC cross sections are in good agreement for the spin-
exchange transitions, while for the dipole-allowed transi-
tions (to the c 3Πu and b 3Σ+

u states) there are substan-
tial differences due to lack of partial-wave convergence
in the UKRMol+ calculations. The Lmax = 6 MCCC
cross section (without ABC) has been included for both
of these transitions to demonstrate that the differences
between the MCCC and UKRMol+ cross sections arise

from partial-wave convergence issues. Where the SMC
results are available, they are also significantly different
to the MCCC cross sections.
In Fig. 10 we present cross sections for superelastic

scattering and excitation of the n = 2 states from the
C 1Πu and EF 1Σ+

g states. For these transitions the only
available results to compare with are the UKRMol+ cal-
culations. As before, excellent agreement is seen between
the MCCC and UKRMol+ calculations for the spin-
exchange transitions. There is similarly good agreement
for most of the remaining dipole-forbidden transitions,
but the UKRMol+ result for the C 1Πu → B 1Σ+

u tran-
sition is somewhat lower than the MCCC results above
1 eV. Although the C 1Πu → X 1Σ+

g transitions are
dipole-allowed, the MCCC and UKRMol+ calculations
for these transitions are still in good agreement since they
are sufficiently converged with Lmax = 6 at the energies
considered in the UKRMol+ calculations. For the re-
maining dipole-allowed transitions (C 1Πu → EF 1Σ+

g ,

EF 1Σ+
g → C 1Πu, and EF 1Σ+

g → B 1Σ+
u ), there

are substantial discrepancies between the two calcula-
tions due to the lack of partial-wave convergence in the
UKRMol+ results.
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FIG. 10. Electron-impact cross sections for superelastic scat-
tering and excitation of states up to n = 2 from the C 1Πu

and EF 1Σ+
g states of H2 in the v = 0 level. Compar-

isons are made between the present MCCC results and the
UKRMol+ [20] calculations. The FN (R = 2.0) MCCC cross
section with Lmax = 6 and no analytical Born completion is
shown for the dipole-allowed transitions for proper compari-
son with the UKRMol+ results.

In Fig. 11, we present cross sections for superelastic
scattering and excitation of the n = 2 states from the
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B 1Σ+
u state. We compare the AN MCCC results with

the UKRMol+ results, and also present FN MCCC cal-
culations with R = 2.0, Lmax = 6, and no use of the
ABC procedure for comparison with the UKRMol+ re-
sults. Good agreement is seen between the UKRMol+
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FIG. 11. Electron-impact cross sections for superelastic
scattering and excitation of states up to n = 2 from the
B 1Σ+

u (v = 0) state of H2 in the v = 0 level. Compar-
isons are made between the present MCCC results and the
UKRMol+ [20] calculations. The FN (R = 2.0) MCCC cross
section with Lmax = 6 and no analytical Born completion is
also shown for the dipole-allowed transitions for proper com-
parison with the UKRMol+ results. The R = 2.5 MCCC
cross section with analytical Born completion and Lmax = 20
is also shown.

results and the FN MCCC results with R = 2.0 and
Lmax = 6, but for many transitions there are consider-
able discrepancies between these and the actual MCCC
results, which use the AN method and Lmax = 20 along
with the ABC method. For comparison with the latter,
we also show the R = 2.5 FN MCCC results (with ABC).
For the B 1Σ+

u → b 3Σ+
u transition, the UKRMol+ results

are in good agreement with the AN MCCC calculations,
since there is little difference between the R = 2.0 FN

 0

 10

 20

 30

 40

c 3Πu (v = 0) → e 3Σu
 +

 0

 2

 4

 6

 8

 10

 12

 14

In
te

gr
at

ed
 c

ro
ss

 s
ec

tio
n 

(u
ni

ts
 o

f a
02 )

IP

c 3Πu (v = 0) → h 3Σg
 +

 0

 5

 10

 15

 20

 25

1 10 100

Incident energy (eV)

c 3Πu (v = 0) → d 3Πu

 0

 2

 4

 6

 8MCCC AN

UKRMol+ R = 2.0

c 3Πu (v = 0) → g 3Σg
 +

 0

 5

 10

 15

 20

c 3Πu (v = 0) → i 3Πg

1 10 100 1000
 0

 10

 20

 30

 40
MCCC R = 2.0 Lmax = 6 c 3Πu (v = 0) → j 3∆g

FIG. 12. Electron-impact cross sections for excitation of the
n = 3 triplet states from the c 3Πu(v = 0) state of H2. Com-
parisons are made between the present MCCC results and the
UKRMol+ [20] and IP [16] calculations, where available. The
FN (R = 2.0) MCCC cross section with Lmax = 6 and no an-
alytical Born completion is also shown for the dipole-allowed
transitions for proper comparison with the UKRMol+ results.

MCCC result and the AN MCCC result. For all other
transitions there are substantial differences in both the
threshold energy and magnitude of the cross section. For
the B 1Σ+

u → EF 1Σ+
g transition, the lack of partial-wave

convergence in the UKRMol+ calculations compounds
the disagreement with the MCCC result.

D. Excitation of n = 3 states

In Figs. 12 and 13 we present cross sections for exci-
tation of the n = 3 triplet states from the c 3Πu(v = 0)
and a 3Σ+

g (v = 0) states. Where the UKRMol+ re-
sults are available, there is generally poor agreement with
the MCCC cross sections. For the dipole-allowed tran-
sitions there is the expected lack of partial-wave conver-
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FIG. 13. Electron-impact cross sections for excitation of the
n = 3 triplet states from the a 3Σ+

g (v = 0) state of H2. Com-
parisons are made between the present MCCC results and the
UKRMol+ [20] and IP [16] calculations, where available. The
FN (R = 2.0) MCCC cross section with Lmax = 6 and no an-
alytical Born completion is also shown for the dipole-allowed
transitions for proper comparison with the UKRMol+ results.

gence in the UKRMol+ results, but for excitation of the
n = 3 states there are a number of dipole-forbidden tran-
sitions which are also slow to converge. As before, the
Lmax = 6 MCCC cross sections (without ABC) are in-
cluded in the figures to demonstrate this. For three of the
dipole-allowed transitions there are results from the IP
method [16], which show the behavior expected of semi-
classical techniques – agreement with the MCCC calcu-
lations in the high-energy limit but substantial disagree-
ment at low to intermediate energies. We have found
similar comparison between IP and MCCC cross sections
for scattering on the ground state of H2 [47, 48].

In Figs. 14 and 15 we present cross sections for excita-
tion of the n = 3 singlet states from the c 3Πu(v = 0) and
a 3Σ+

g (v = 0) states. As these are spin-exchange tran-
sitions, which converge quickly with the number of par-
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FIG. 14. Electron-impact cross sections for excitation of the
n = 3 singlet states from the c 3Πu(v = 0) state of H2. Com-
parisons are made between the present MCCC cross sections
and the UKRMol+ [20] calculations, where available.

tial waves, there is good agreement with the UKRMol+
calculations wherever they are available. No other calcu-
lations have been previously attempted for these transi-
tions.
In Figs. 16 and 17, we present cross sections for exci-

tation of the n = 3 singlet and triplet states from the
B 1Σ+

u , C
1Πu, and EF 1Σ+

g , states. For excitation of
the singlet states we compare with the UKRMol+ calcu-
lations for excitation of the B′ 1Σ+

u , and GK 1Σ+
g states,

and the IP calculations of Celiberto et al. [17] for the
B 1Σ+

u → I 1Πg transition. There is reasonable agree-
ment between UKRMol+ and MCCC for excitation of
the B′ 1Σ+

u and GK 1Σ+
g states from the B 1Σ+

u state,

but not from the C 1Πu and EF 1Σ+
g states, where the

UKRMol+ cross section are substantially lower than the
MCCC results at energies more than a few eV above
threshold. For the B 1Σ+

u → I 1Πg transition, the MCCC
and IP [17] cross sections are in agreement above 100 eV,
but the latter are up to a factor of two larger below
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FIG. 15. Electron-impact cross sections for excitation of the
n = 3 singlet states from the a 3Σ+

g (v = 0) state of H2. Com-
parisons are made between the present MCCC cross sections
and the UKRMol+ [20] calculations, where available.

100 eV. None of the previous calculations consider the
remaining transitions for which the MCCC cross sections
are presented in Fig. 16.
For excitation of the n = 3 triplet states, the

UKRMol+ calculations include transitions to the e 3Σ+
u ,

d 3Πu, h
3Σ+

g , and g 3Σ+
g states (but not i 3Πg or j 3∆g).

For clarity, we present MCCC results in Fig. 17 only for
the transitions where the UKRMol+ results are avail-
able, but the remaining cross sections for excitation of the
i 3Πg and j 3∆g states have been calculated and are avail-
able online at mccc-db.org. For scattering on the B 1Σ+

u

state, there is poor agreement between the UKRMol+
and MCCC results since these transitions are more af-
fected by the choice of R = 2.0 a0 in the UKRMol+
calculations rather than the AN approach utilized in the
MCCC calculations. For scattering on the C 1Πu and
EF 1Σ+

g states there is good agreement for excitation

of the e 3Σ+
u state, but for the remaining excitations

there are significant discrepancies between the two cal-
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FIG. 16. Electron-impact cross sections for excitation of the
n = 3 singlet states from the B 1Σ+

u , C
1Πu, and EF 1Σ+

g

states of H2 in the v = 0 level. Comparisons are made be-
tween the present MCCC results and the UKRMol+ [20] and
impact-parameter (IP) [17] calculations, where available.

culations because of the effect of the AN method used in
the MCCC calculations, which leads to a slower rise to
the cross-section maximum for these transitions.

V. CONCLUSIONS

We have performed calculations for 0.01–1000 eV elec-
trons scattering on the B 1Σ+

u , c
3Πu, a

3Σ+
g , C

1Πu, and

EF 1Σ+
g state of H2 in the v = 0 level, using the molecu-

lar convergent close-coupling (MCCC) method, and have
presented cross sections for superelastic and elastic scat-
tering, ionization, and excitation of all n = 2–3 singlet
and triplet states, as well as grand-total cross sections
within the adiabatic-nuclei approximation. Good agree-
ment was found with the recent UKRMol+ [20] calcula-
tions for most of the spin-exchange and dipole-forbidden
transitions, where available, but poor agreement for the
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FIG. 17. Electron-impact cross sections for excitation of the
e 3Σ+

u , d 3Πu, h 3Σ+
g , and g 3Σ+

g states from the B 1Σ+
u ,

C 1Πu, and EF 1Σ+
g states of H2 in the v = 0 level. Compar-

isons are made between the present MCCC results and the
UKRMol+ [20] calculations.

dipole-allowed transitions due to a lack of partial-wave
convergence in the UKRMol+ results. Furthermore, poor
agreement was found for scattering on the more diffuse
B 1Σ+

u state due to the utilization of the fixed-nuclei
approximation with a single internuclear separation to
represent all states in the R-matrix calculations. Com-
parison with older calculations showed mixed agreement
with the present results, ranging from excellent to very
poor depending on the transition. No measurements
have yet been reported for scattering on excited elec-
tronic states of H2, so we hope the present work can
provide the motivation for such experiments to be per-
formed in the future. Measurements for scattering on
the metastable c 3Πu(v = 0) state, which should be the
simplest to perform after scattering on the ground elec-
tronic state, would be desirable in order to validate the
calculated cross sections. The MCCC results represent
the first collection of data for scattering on excited states

of H2 which include superelastic, elastic, excitation, ion-
ization, and grand-total cross sections obtained from a
single set of calculations performed with the same the-
oretical method. The utilization of the adiabatic-nuclei
method in the present calculations will allow future work
to be directed towards generating a complete set of fully
vibrationally-resolved cross sections for scattering on ex-
cited electronic states of H2 and each of its isotopologues.
Similar to the atomic CCC method, the MCCC code

is designed specifically to efficiently treat one- and two-
electron targets, with plans to extend this to include
quasi- one- and two-electron molecules in the future.
More general codes, such as UKRMol+, are capable of
modeling collisions with more complex molecules, but
are typically unable to run calculations of sufficient size
to establish convergence. Comparisons between different
computational methods, such as those presented here,
are important for validation of the cross-section data
sets, and identifying the aspects of the calculations which
most severely affect the calculated cross sections. For
example, the convergence studies and comparisons with
the UKRMol+ results presented here indicate that the
smaller close-coupling expansions typically employed in
the UKRMol+ calculations may be particularly well-
suited for scattering on excited electronic states. On the
other hand, the prohibitively-slow partial-wave conver-
gence found here for the dipole-allowed transitions sug-
gests that the UKRMol+ suite of codes would benefit
greatly from an implementation of the analytical Born
completion method.
The results presented here can be downloaded from the

MCCC database at mccc-db.org.
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