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We show how the Jaynes–Cummings–Rabi model of cavity quantum electrodynamics can be
realized via an isomorphism to the Hamiltonian of a qubit inside a parametric amplifier cavity. This
realization clears the way to observe the full spectrum of the Rabi model via a probe applied to a
parametric amplifier cavity containing a qubit and a parametric oscillator operating below threshold.
An important outcome of the isomorphism is that the actual frequencies are replaced by detunings
which make it feasible to reach the ultra-strong coupling regime. We find that inside this regime
the probed spectrum displays a narrow resonance peak that is traced back to the transition between
ground and first excited states. The exact form of these states is given at an energy crossing and
then extended numerically. At the crossing, the eigenstates are entangled states of field and atom
where the field is found inside squeezed cat states.

I. INTRODUCTION

It is well-known that a weak harmonic field is partic-
ularly efficient to induce a transition between two states
of an atom when it oscillates at a frequency close to the
Bohr frequency separating the states. The field can be
used in this way to probe the atomic energy spectrum
and provide a window into the underlying processes that
rule the atomic dynamics. As the intensity of the field
is ramped up, it perturbs the atomic response in a way
that signals that field and atom have coupled into a sin-
gle system. The energy diagram of this composite sys-
tem displays a rich structure with crossings and avoided-
crossings whose locations are given by an interplay of
atomic transition frequency, field frequency, and coupling
strength [1]. This diagram carries information of an ide-
alized light-matter coupling and has been the subject of
extensive research ranging from the many-photon [2–6]
down to the single-photon limit [7–10].

Recent advances have made it possible to increase the
single-photon coupling to about 10% of the atomic tran-
sition frequency [11–18]. Due to this strong coupling,
models used to describe these systems need to move be-
yond common simplifications, as the rotating wave ap-
proximation. And, in the idealized case of a two-state
atom coupled to a single mode of the field under the
dipole approximation, the system is accurately described
by the Hamiltonian (~ = 1)

Ĥη = ωcâ
†â+ ωaσ̂+σ̂−+λ′(âσ̂+ + â†σ̂−)

+ηλ′(âσ̂− + â†σ̂+) (1)
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with η = 1. Here, â and â† are annihilation and cre-
ation operators for the field mode; σ̂+ and σ̂− raising
and lowering operators for the atomic levels; and ωc (ωa),
λ are parameters that denote the mode (atomic transi-
tion) frequency and coupling strength. The inclusion of η
makes it possible to create a bridge between the Jaynes-
Cummings limit with η = 0 (suitable for ωc ≫ λ) and
the Rabi limit with η = 1. This parameter can then
be varied to study the effects of an increasing coupling
strength.

The energy spectrum of this model—refered to as the
Jaynes–Cummings–Rabi (JC–Rabi) model—was recently
obtained by Tomka and collaborators [19, 20] whose ana-
lytic results extend on the seminal work by Braak [21] for
the Rabi limit. The theoretical advances raise the nat-
ural question on how to design systems where this spec-
trum can be probed. Current approaches have moved to
a driven-dissipative setting where atomic and mode fre-
quencies are changed into detunings to a driving field [22]
and coupling terms are generated from interactions be-
tween additional levels [23] or degrees of freedom [24].
Here, we propose a different method to study the JC–
Rabi model where we present a realizable system whose
model Hamiltonian is isomorphic to Eq. (1). In this way,
the system can be used to probe the energy spectrum of
the JC-Rabi model over a large range of parameters.

In Figure 1 we sketch two possible realizations of the
JC–Rabi model that are relevant to this work. On the left
panel the model is generated from two metastable-states
coupled through a pair of lambda transitions as originally
proposed in Ref. [23]. This proposal has found great suc-
cess on atomic gases where the necessary level structure
is encountered [24–26]. On the right panel an isomor-
phic Hamiltonian is generated from a two-state system
coupled to a parametric oscillator. The basic ingredi-
ents being available in superconducting circuits architec-
tures [27, 28]. The isomorphism is presented below where
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it is shown that the conditions on the level structure are
relaxed in exchange of independent control of the param-
eters.
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Figure 1. Sketch of two optical amplification processes that
generate the JC-Rabi model from the JC model. (a) Coupled
lambda transitions introduced in Ref. [23] . (b) Qubit inside
a parametric amplifier discussed in Sec. II

The advantage of using a cavity with parametric ampli-
fier was recognized in the context of optomechanics [29]
where it was shown how the parametric coupling can re-
sult in normal mode splitting and the squeezing of the
mechanical oscillator [30]. More recently the use of para-
metric amplifier has been advocated in enhancing collec-
tive effects [31] and in quantum phase transitions [32].
The idea to reach the strong coupling regime using a
two-photon drive was also presented recently in Ref. [33]
where the authors consider an adiabatic switch on the
drive to reach the ground state of a ultra-strong coupled
system.

The outline of the paper is as follows. In Sec. II we in-
troduce a model to describe a qubit inside a parametric
amplifier operating below threshold and show its equiva-
lence to the JC–Rabi model. The eigenvalues and eigen-
states of the parametric model are calculated. In Sec. III
we simulate the absorption spectrum of this system as
probed by a weak coherent field. The spectrum displays
several peaks that are connected to the eigenstates ob-
tained before. We find a sharp peak whose breath de-
creases as we dwelve deeper into the strong coupling
regime. Section IV is used to describe the eigenstates
that lead to this peak. The states are shown to form a
long-living pair described by two-photon cat states con-
ditioned to the state of the qubit. Sections V and VI are
left for discussion and concluding remarks.

II. JC–RABI MODEL AND THE QUBIT INSIDE

A PARAMETRIC AMPLIFIER

In the proposed realization a qubit is placed inside a
parametric cavity as sketched in Figure 1b. The cav-
ity supports two modes, labeled pump and subharmonic,
that couple to one another through a nonlinear mate-
rial of second-order susceptibility χ(2). We consider the

pump mode to be highly populated and treat it as a clas-
sical field of constant amplitude G/2 and frequency ωp

that drives the subharmonic mode via a two-photon pro-
cess [34]. In addition, the subharmonic mode is coupled
to a qubit with coupling strength λ under conditions that
allow for the dipole and rotating-wave approximations.

The master equation for the density operator of the
qubit-mode system ρ is

ρ̇ = −i
[

ĤG, ρ
]

+ κL[â]ρ , (2)

where the parametric Hamiltonian reads

ĤG = ωcâ
†â+ ωaσ̂+σ̂− + λ(âσ̂+ + â†σ̂−)

+ 1
2G(e2iωptâ2 + e−2iωptâ†2) , (3)

and the Lindblad superoperator L[ξ]· = 2ξ · ξ† − ·ξ†ξ −
ξ†ξ· accounts for losses in the form of photons leaving
the subharmonic mode at a rate κ. The explicit time-
dependence of Eq. (3) is removed inside an interaction
picture where the Hamiltonian becomes

ĤG = ∆Gâ
†â+∆aσ̂+σ̂− +λ(âσ̂+ + â†σ̂−)+ 1

2G(â2 + â†2) ,
(4)

with detunings

∆G = ωc − ωp , (5)

∆a = ωa − ωp . (6)

A. Isomorphism between the JC–Rabi model and

the qubit inside a parametric amplifier

The two-photon pump is responsible for a process of
optical amplification that has been studied on detail in
the absence of the qubit [35–37]. Its effect on the subhar-
monic mode is to generate the squeezing transformation

Ŝ(z) = exp 1
2 (z∗â2 − zâ†2)

with parameter

z =
1

4
ln

[

∆G −G

∆G +G

]

. (7)

When a qubit is placed inside the parametric oscilla-
tor, it couples to the now squeezed mode. The qubit then
probes the amplified quadratures of the field through
rotating and counter-rotating terms equivalent to those
found inside the JC-Rabi model. This allows the ampli-
fication process to connect the model Hamiltonians (1)
and (4) through the unitary transformation

S(z)ĤGS†(z) = Ĥη + 1
2 (∆c − ωG) , (8)
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with hyperbolic relations for the coupling strengths

cosh z = λ′/λ , (9a)

sinh z = ηλ′/λ , (9b)

and mode frequencies

ωc =
√

∆2
G −G2 . (10)

Equations (7)-(10) establish the isomorphism between
the JC-Rabi model and a qubit inside a parametric cav-
ity. They bring the ultra-strong coupling regime within
reach, as mode and qubit frequencies are replaced by de-
tunings to an external field [33]. Equation (7), in partic-
ular, also sets up a limiting pump amplitude Gthr = ∆G

where this isomorphism breaks down. The eigenstates of
the squeezing operator are discrete and normalizable be-
low this threshold and continuous and non-normalizable
above it [38]. While we have shown the isomorphism be-
low threshold, the non-normalizable states represent an
infinitely squeezed subharmonic mode whose photon in-
tensity grows without bounds. Depletion of the pump
is required to counteract this unphysical gain [34]. This
term breaks the connection between the parametric and
the JC-Rabi models. Throughout this work we remain
below threshold where both models are isomorphic and
we are able to explore the JC-Rabi spectrum with η 6= 1.

B. General properties of the eigenvalues and

eigenstates of ĤG and Ĥη

The eigenvalue problem according to Eq. (8) is

ĤG|ψβ〉 = Eβ |ψβ〉 , (11)

Ĥη|φβ〉 = Ẽβ |φβ〉 , (12)

where solutions to both models connect by

Eβ = Ẽβ + 1
2 (ωc − ∆G) , (13)

|ψβ〉 = S†(z)|φβ〉 . (14)

Since the parametric Hamiltonian commutes with the
parity operator

Π̂ = exp[iπ(â†â+ σ̂+σ̂−)] , (15)

its eigenstates are classified into branches of even and
odd parities according to the ±1 eigenvalues of Π̂. All
the bare states within each branch are coupled to dif-
ferent orders in the interaction due to the coexistence of
coupling λ and two-photon pump G in the Hamiltonian.

This leads to eigenstates of the form

|ψeven
β 〉 =

∞
∑

n=0

cβ;g,2n|g, 2n〉 + cβ;e,2n+1|e, 2n+ 1〉 , (16a)

|ψodd
β 〉 =

∞
∑

n=0

cβ;g,2n+1|g, 2n+ 1〉 + cβ;e,2n|e, 2n〉 , (16b)

with |g〉 and |e〉 the ground and excited states of the
qubit, and |n〉 (with n = 0, 1, . . . ) the photon number
inside the mode.

The coupling among bare states of equal parities is
reflected on the eigenvalue spectrum, which displays
avoided-crossings between states of the same parity and
crossings between states of different parities. In Figure 2
we plot the lowest eigenvalues of ĤG as a function of
the pump amplitude. The results are obtained from nu-
merical diagonalization using a truncated photon num-
ber basis for the parameters ∆a = ∆G and λ = 0.95∆G.
This places us deep into the strong coupling regime where
crossings and avoided-crossings of the spectrum are read-
ily observed for small pump amplitudes. The first cross-
ing is found at [19]

G =
1

∆a

√

∆2
G∆2

a − λ4 (17)

where the two lowest energy states meet.

Changes in the spectrum with an increasing pump am-
plitude are attributed to a redistribution of the pho-
ton number population within each eigenstate. In Fig-
ure 3 we plot the populations |cβ;g,n|2 of the lowest-
energy eigenstates for different pump amplitudes with
Eβ < Eβ+1. For weak two-photon pump (G ≪ λ)
the distributions tend to localize around a given photon
number. This is shown in panel (a) where the popu-
lations resemble those of the Jaynes–Cummings dressed
states (|n,±〉 = |g, n〉 ± |e, n − 1〉). For example, states
with β = 2 and β = 5 form the first JC doublet while
β = 3 and β = 8 the second. As the pump is increased
in panel (b), the distributions broaden while keeping
the same parity. Ultimately, the populations distribute
among more and more photon numbers as shown in pan-
els (c) and (d).

C. Dressed states at the first energy crossing

It is remarkable that the photon distribution can be
obtained analytically at the first energy crossing [19–21].
In the following we examine the eigenstates at this point
using the isomorphism between the JC-Rabi and para-
metric models.

Energy crossings signal a degeneracy in the system and
have been shown to occur in the JC-Rabi model at the
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Figure 2. Lowest eigenvalues of ĤG for λ = 0.95∆G and
∆a = ∆G. Red solid (blue dashed) lines denote states of even
(odd) parity.

regular values [20]

Ẽcross(m) = mωc − (1 + η2)λ′2

2ωc

(18)

(m = 0, 1, . . . ) under specific conditions for the param-
eters discussed on detail in Ref. [19]. The first crossing
(m = 0) is found under the condition

ωa = (1 − η2)λ′2/ωc , (19)

where the JC-Rabi Hamiltonian takes the simplified form

Ĥη = ωcÂ
†Â− (1 + η2)λ′2

2ωc

. (20)

Here, Â† and Â are creation and annihilation operators
represented by the matrices

Â = (Â†)† =
1

ωc

(

λ′ ωcâ
ωcâ ηλ′

)

, (21)

that obey the commutation relation [Â, Â†] = 12×2 and
account for the correlations that rise between subhar-
monic mode and qubit.

The degenerate ground states of Ĥη are readily ob-

Figure 3. Photon number population |cβ;g,n|2 for the eigen-

states of lowest energy of ĤG using the parameters of Fig. 2
with pump: G/∆G = 0.2 (a), 0.4 (b), 0.6 (c), and 0.8 (d).

tained from the eigenvalue equation

Â|φ〉 = 0

whose solutions lead to the dressed states

|φeven〉 = −|g〉|C+
α 〉 − √

η|e〉|C−
α 〉

√

N+

, (22a)

|φodd〉 = −|g〉|C−
α 〉 − √

η|e〉|C+
α 〉

√

N−

, (22b)

when diagonalized within the parity basis. States (22a)
and (22b) describe a field in a positive or negative cat
states correlated to the qubit state. Cat states can be
written as

|C±
α 〉 =

[

D̂(α) ± D̂(−α)
]

|0〉 (23)

where D̂(α) = exp(−αâ† + α∗â) is the displacement op-
erator with amplitude

α =
√
ηλ′/ωc , (24)

and the normalization N± reflects the overlap between
the coherent states forming each cat

N± = 2[(1 + η) ± e−2|α|2

(1 − η)] . (25)

It can already be seen that these dressed states play
a central role in the optical response of a system sat-
isfying the JC-Rabi model (see Sec. III below). The
dressed states couple exclusively to one another under
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one-photon transitions

â|φeven〉 = α

√

N−

N+
|φodd〉 , (26a)

â|φodd〉 = α

√

N+

N−
|φeven〉 . (26b)

Thus forming a long–lived pair when we move into a dis-
sipative setting.

The eigenstates of ĤG can also be obtained at the
crossing using Eqs. (13) and (22). The eigenstates take
the form

|ψeven〉 = −|g〉|C̃+
α,z〉 − √

η|e〉|C̃−
α,z〉

√

N+

, (27a)

|ψodd〉 = −
|g〉|C̃−

α,z〉 − √
η|e〉|C̃+

α,z〉
√

N−

. (27b)

where the field is described by a superposition of two-
photon coherent states [47, 48]

|C̃±
α,z〉 =

[

S†(z)D̂(α) ± S†(z)D̂(−α)
]

|0〉 . (28)

Due to the effect of the squeezing operator, these states
couple to states outside the pair under one-photon tran-
sitions. The probability amplitude to remain inside the
pair after is given by

〈ψodd|â|ψeven〉
√

〈ψeven|â†â|ψeven〉
=

N−α cosh z − N+α
∗ sinh z

√

N−O+

(29a)

〈ψeven|â|ψodd〉
√

〈ψodd|â†â|ψodd〉
=

N+α cosh z − N−α
∗ sinh z

√

N+O−

(29b)

where

O± = N± sinh2 z + 1
2 (N+ + N−)|α cosh z − α∗ sinh z|2

∓ 1
2 (N+ − N−)|α cosh z + α∗ sinh z|2

is proportional to the photon number expectation within
each state.

III. PROBED SPECTRUM OF THE JC-RABI

MODEL VIA THE PARAMETRIC

HAMILTONIAN

We now move on to simulate the energy spectrum of
Figure 2 as probed by a coherent beam with tunable fre-
quency exciting the subharmonic mode. The probe has
an amplitude ǫ and is detuned a frequency δ from the
pump beam. Its effect over the system dynamics is given
through an additional term

Ĥprobe = ǫ
(

âeiδt + â†e−iδt
)

, (30)

inside the master equation (2).
For weak amplitudes (ǫ ≪ G, λ) the probe creates one-

photon channels that couple two eigenstates |ψβ〉 and
|ψβ′〉 of opposite parities separated by an energy differ-
ence ∆E = Eβ − Eβ′ . The maximum transition proba-
bility is reached when the resonance condition

δ = ∆E

is met and is weighted by the transition matrix element
〈ψβ′ |â|ψβ〉 between the states. Figures 2 and 3 provide
a reference for the energy separation and the matrix ele-
ment, respectively.

In Figure 4 we plot the steady-state photon number
expectation obtained from a numerical evolution of the
master equation (2) with initial state |g, 0〉. The results
are shown for the (a)-(d) lines of Figure 2 as probed by
a weak coherent field (ǫ ≃ 0.03λ) inside the strong cou-
pling regime (κ ≃ λ/10). For each line we find several
peaks that are traced back to transitions between eigen-
states β and β′ of ĤG. We begin with line (a) where the
β = 1 to β′ = 2 and β = 1 to β′ = 5 transitions are
resolved by two peaks separated a distance ≃ 2λ. These
transitions correspond to the JC doublet made available
by the weak pump amplitude G. We consider next line
(b) where an additional peak at δ ≃ 0.7∆G is resolved.
The peak corresponds to the β = 2 to β′ = 3 transition
and its appearance is attributed to a broadening of the
photon distributions within these two eigenstates. The
matrix element connecting two states increases when the
distributions broaden. In line (c) the pump is further
ramped up, leading to a peak around δ ≃ −0.5∆G and a
broadened line around δ ≃ 0.5∆G. The peak at negative
frequency corresponds to the β = 3 to β′ = 1 transition
and its sign follows from the large overlap between |ψβ=3〉
and the initial state |g, 0〉. The broadened peak appears
as several transitions merge, e.g., the β = 2 to β = 4
(δ ≃ 0.7∆G) and β = 3 to β = 4 (δ ≃ 0.25∆G). Finally,
in line (d) we can see a combination of all these effects.

For stronger probe amplitudes ǫ it is possible to con-
nect states of the same parity through 2m-photon tran-
sitions [50–52]. The m-th photon transition probability
is maximized for the resonance condition

mδ = ∆E.

In Figure 5 we plot the absorption spectrum probed by a
driving field of ampliude ǫ ≃ 0.12λ for the same param-
eters as Figure 4. We begin with line (a) again, where
additional peaks near frequencies δ/∆G ≃ 0.3, 1.7 are
resolved. These peaks correspond to two-photon transi-
tions between states of the same parity (β = 1 to β′ = 3
and β = 1 to β′ = 8). Notice also a peak at δ ≃ 0.7∆G

corresponding to the one-photon transition β = 2 to
β′ = 3. Two-photon transitions in line (b) can still be
resolved, as the peak around δ ≃ 1.7∆G corresponds to
the transition β = 1 to β′ = 9. Since one-photon tran-
sitions are power broadened by the intense probe we are
unable to resolve other peaks. This is exemplified in lines
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Figure 4. Resonance spectrum for ∆a = ∆G, λ = 0.95∆G and
κ = 0.1∆G probed by a field of amplitude ǫ = 0.03∆G. The
lines correspond to the same pump amplitudes as Figure 3.
Results are displaced vertically to account for the background
photon number and allow for clarity of presentation

(c) and (d) where one-photon transitions dominate and
lines resembling those of Figure 4 are found, albeit with
increased amplitude due to a stronger probe beam.

Figure 5. Resonance spectrum for the same system parame-
ters as Fig. 4 with probing field ǫ = 0.125∆G . The maximum
photon expectation reached in (d) is ≃ 2.165.

IV. GROUND STATES OUTSIDE THE ENERGY

CROSSING: ROLE OF DISSIPATIVE PROCESSES

We have shown that the JC-Rabi model is isomorphic
to a model Hamiltonian describing a qubit inside a para-
metric cavity, a system that can be realized under cur-
rent experimental constrains. We have also simulated

the absorption spectra of this realizable system and con-
nected the different resonance peaks to transitions be-
tween eigenstates of the model Hamiltonian. In doing so
we have shown how to probe the spectrum of the JC-
Rabi model. The next section is concerned with the nar-
row peak found around δ = 0 in the absorption spectra
of Figures 4 and 5. In particular, we are interested in
the eigenstates that lead to this peak. Over the next sec-
tion we show that these low-energy states resemble the
dressed states of Eqs. (22) and (27)—even though the
system is far away from the first crossing. For this, we
construct an ansatz |φans〉 based on the dressed states
and find that the system overlaps significantly with this
ansatz as it evolves in time.

The evolution is taken using quantum trajectories
equivalent to the master equation (2). In quantum tra-
jectory theory the density matrix ρ is replaced by an en-
semble of stochastic wave functions |ψc(t)〉 conditioned
to a particular measurement record. The wave functions
evolve under the Schrödinger equation

i~|ψ̇c(t)〉 = (ĤG − iκâ†â)|ψc(t)〉 (31)

and are interrupted by the action of the jump operator
â when a photo electron is detected at times determined
in a Monte Carlo fashion [34]. This allows us to see the
changes in the parity of the system each time a photo
electron is detected.

The results for the parametric model are to be com-
pared to those of the JC-Rabi model. This procedure
brings to light an important aspect of the current ap-
proach: the surrounding environment is coupled to a
particular set of modes. In the parametric model the
environment is coupled to the subharmonic mode of the
cavity and the evolution is described by

ρ̇ = −i
[

ĤG, ρ
]

+ κL[â]ρ . (32)

By comparison, in the JC-Rabi Hamiltonian generated
through coupled lambda transitions the master equation
reads

ρ̇ = −i
[

Ĥη, ρ
]

+ κL[â]ρ , (33)

and the environment is coupled to the cavity mode.
While ĤG and Ĥη are isomorphic, the master equa-
tions (32) and (33) are not, there is a two-photon decay
missing.
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A. Ground states of the coupled lambda transitions

We begin with the JC-Rabi model where the system
evolves under Eq. (33) and propose the ansatz

|φeven〉 = −|g〉|C+
αans

〉 − √
η|e〉|C−

αans
〉

√

N+

, (34a)

|φodd〉 = −|g〉|C−
αans

〉 − √
η|e〉|C+

αans
〉

√

N−

. (34b)

These states have the same form as Eq. (22), but with
corrected field amplitudes

αans =
√
ηλ′/(ωc + iκ) (35)

to account for the decay rate and displacements from the
crossing. The ansatz is built from the stationary value
of a driven-damped harmonic oscillator and our observa-
tions of different quantum trajectories. For convenience
we define the projector

P̂a = |φeven〉〈φeven| + |φodd〉〈φodd| , (36)

such that Pa = Tr[P̂a|φc〉〈φc|] gives the probability to
find the system inside the ansatz.

The probability Pa is plotted in Figure 6a for a sample
quantum trajectory with initial state |φc(to)〉 = |g, 0〉 us-
ing the parameters that lead to line (d) above. The prob-
ability is decomposed into red squares and blue trian-
gles that denote, respectively, the terms |〈φeven|φc〉|2 and
|〈φodd|φc〉|2 of Eq. (36). Notice that the conditioned wave
function settles near the ansatz states and changes its
parity each time a photo electron is detected. The wave
function also oscillates between two detection events with
a larger amplitude on the even branch. This oscillation
is caused by overlap between the wave function and ex-
cited states outside the low-energy pair. Excited states
of even and odd parity overlap significantly with |g, 0〉
(|e, 1〉) and |e, 0〉 (|g, 1〉) for this set of parameters due
to the low photon number expectation (〈â†â〉ss ≃ 1.42).
Such that the wave function is sent into a superposition
of ansatz and excited states after the detection of a photo
electron that explains the oscillations seen in the figure.

These effects are reflected on the state of the qubit
and mode. The probability to find the qubit on the ex-
cited state is displayed by yellow circles on Fig. 6 where
it is seen to fluctuate around two separate values. The
large fluctuations denote a change on the qubit as the
wave function jumps between even and odd subspaces,
and signal the overlap between the two coherent states
forming each cat state [see N± in Eq. (34)]. This overlap
can be visualized using the Wigner distribution of the
field

Wl(α, α
∗) =

1

π2
Tr

[

ρl

∫

d2ξeξ∗(α−â)−ξ(α∗−â†)

]

,

with l = {g, e} and ρl = Trq[|φc〉〈φc|l〉〈l|] the density

matrix of the field conditioned to the excited or ground
states of the qubit. The Wigner distributions are plotted
on Figs. 6b and 6c after the system is driven to the odd
subspace by the detection of a photo electron. In this
example Wg is found inside a negative cat state while
We inside a positive cat state. Each time the system
changes parity the conditioned distributions switch. By
performing a time average over many of these changes
the interference fringes dissapear and give way to the
statistical mixture shown in Fig. 6d.

Figure 6. Validity of the state ansatz (34) for λ = 0.95∆G,
∆G = ∆a, κ = 0.1∆G, and G = 0.8∆G (equivalent to η ≃
0.5). (a) Probabilities |〈φeven|φc〉|2 (red squares), |〈φodd|φc〉|2

(blue triangles) and |〈e|φc〉|2 (yellow circles). (b)-(c) Wigner
distributions conditioned to the ground and excited state of
the qubit following a jump to a state of odd parity. (d) Wigner
distribution obtained from the steady state of master equa-
tion (33).

The ansatz remains valid as we move further away from
the energy crossing. In Figure 7 we illustrate the case of
η ≃ 0.72 where the steady-state displays a higher photon-
number expectation. The amplitude of the oscillations
outside the ansatz is reduced in this case, as well as the
fluctuations of the qubit state. Since the probability of
finding the systems in either dressed state is not unity
fluctuations can still drive the system outside the pair
for relatively short times.

B. Qubit inside a parametric amplifier

The previous results explain the narrow resonance
found in Figs. 4 and 5. The conditioned wave function
of the system is composed predominantly of two dressed
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Figure 7. Validity of the state ansatz (34) for λ = 0.95∆G,
∆G = ∆a, κ = 0.1∆G, and G = 0.95∆G (equivalent to
η ≃ 0.72). (a) Probabilities |〈φeven|φc〉|2 (red squares),
|〈φodd|φc〉|2 (blue triangles) and |〈e|φc〉|2 (yellow circles). (b)-
(c) Wigner distributions following a jump to a state of even
parity conditioned to the ground and excited state of the
qubit. (d) Wigner distribution obtained from the steady state
of master equation (33).

states that couple to one another under one-photon tran-
sitions. This creates a long lived pair that displays a high
degree of coherence and manifests as a narrow resonance.
We now extend the analysis for the qubit inside a para-
metric amplifier using equation (32). In this case the
conditioned wave function is composed predominantly of
the states

|ψeven〉 = −|g〉|C̃+
α,z〉 − √

η|e〉|C̃−
α,z〉

√

N+

,

|ψodd〉 = −|g〉|C̃−
α,z〉 − √

η|e〉|C̃+
α,z〉

√

N−

.

We consider a qualitative description of the conditioned
wave function in the following, as two-photon coherent
states |C̃±

α,z〉 display changes in both squeezing factor z
and amplitude α when evolving under a quadratic Hamil-
tonians [47]. With an interplay between these two free
parameters and the uncertainty relation

〈0|D̂†(α)S(z)(∆â)2S†(z)D̂(α)|0〉 = − cosh z sinh z (38)

it is challenging to determine the parameters for the cor-
rected field equivalent to Eq. (35).

In Figure 8 we show the conditioned Wigner distri-
butions of the field after it is driven to a state of even
parity by detection of a photo electron. The distribu-

Figure 8. (a)-(b) Wigner distributions following a jump to
a state of even parity conditioned to the ground and excited
state of the qubit. (c) Wigner distribution obtained from the
steady state of master equation (32).

tions are conditioned to the ground and excited state of
the qubit and show two-photon coherent states. While
the parameters z and α are not characterized—they fluc-
tuate as the wave function evolves—the two distributions
remain correlated at all times. The fact that both distri-
butions evolve as a correlated pair of two-photon states
means that they couple predominantly to one another
under Eq. (29) and explain the narrow peak.

V. DISCUSSION

By probing the spectrum of the qubit inside a paramet-
ric amplifier—and by consequence that of the JC–Rabi
model—we have opened a window into the competing
processes that rule the dynamics for each model. This
competition occurs between: (i) coupling strength λ and
two-photon pump G for the parametric model; and (ii)
rotating terms λ′ and counter-rotating terms ηλ′ for the
JC-Rabi model. The competition is apparent under a
dissipative setting where the system settles into a steady
state that minimizes fluctuations related to the dominat-
ing process and, for this system, manifests as a narrow
resonance line.

Take the parametric model as an example. In the ab-
sence of a pump (G = 0) the eigenstates of ĤG are the
Jaynes–Cummings dressed states |n,±〉 = |g, n〉 ± |e, n−
1〉. These eigenstates are organized into manifolds with

a given excitation number N̂ = â†â + σ̂+σ̂− such that,
when dissipation is considered, the system settles into the
absolute ground state at long times. By comparison, in
the absence of the qubit (λ = 0) the eigenstates of ĤG are
squeezed states. It has been discussed by Carmichael [49]
that when dissipation is taken into account the steady-
state of a parametric cavity with adiabatic elimination of
the pump takes the approximate form

ρss = 1
2

[

peven|C+
α 〉〈C+

α | + podd|C−
α 〉〈C−

α |
]

(39)

in the limit of small system size when two-photon decay
dominates over single photon decay. Cat states |C±

α 〉 are
ubiquitous in systems driven by two-photon processes,
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as they are eigenstates of the parity ein̂ and two-photon
annihilation â2 operators [42–46]. By settling into this
pair, the system minimizes fluctuations of the two-photon
operator. When both pump and qubit are considered,
the steady state settles into a dressed state pair display-
ing a combination of these two effects [see Eqs. (27a)
and (27b)]. The combination was already apparent in
Fig. 3 where the states transitioned from having a well-
defined excitation number to having a broad photon num-
ber distribution as the pump was ramped up. It is worth
noticing that these general features appear in the para-
metrically driven Kerr-oscillator [44] where the effect of
the qubit is replaced by a nonlinear material.

The role of fluctuations in defining the steady state
helps to explain the structure of the lowest energy states
of both the Jaynes–Cummings-Rabi model and the para-
metric model. In particular, it helps to explain why the
analytical structure found at the energy crossing is man-
tained far away from this point. Dressed states where the
field is inside a cat state conditioned to the state of the
qubit are the natural way to combine the two-excitation
processes introduced by an external drive and coupling
between qubit and field. In addition, the simplicity of
the ansatz for the JC–Rabi model (and the large overlap
it displays with the ground state) suggest that an analyt-
ical result can be obtained using a variational approach
with the amplitude α as a variational parameter. This is
left for future work.

VI. CONCLUSION

We have presented an isomorphism between a qubit
inside a parametric amplifier and the Jaynes-Cummings-

Rabi model. The isomorphism brings the ultra-strong
coupling regime within reach, as mode and qubit fre-
quencies are replaced by detunings to an external field
and coupling rates are managed by the amplitude of this
field. We simulated spectrum of this system as probed
by a coherent beam with a varying frequency. The peaks
of the absorption spectrum where then connected to dif-
ferent transitions among eigenstates of the model; thus
showing how the JC-Rabi spectrum can be probed under
current experimental settings.

Deep into the strong-coupling regime the spectrum dis-
plays a narrow peak whose breath decreases as more pho-
tons are injected to the subharmonic mode. The peak is
attributed to a transition between two low energy states
of the system. In particular, we have shown that these
states form a long-lived pair under one-photon transi-
tions as those induced by the probe and environment.
The structure of this pair is kept accross the parameter
space and provides a window into the underlying pro-
cesses that rule the JC-Rabi model.
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