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Coupling electrodynamic fields to vibrational modes in helical structures
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Helical structures like alpha helices, DNA, and microtubules have profound importance in biology.
It has been suggested that these periodic arrangements of constituent units could support collective
excitations similarly to crystalline solids. Here, we examine the interaction between such constructs
and oscillating dipoles, and evaluate the role of the helicity in the coupling between electrodynamic
fields and vibrations. Based on a vibrational and eigenfunction analyses we identify a group of modes
of coherent oscillations that give rise to a strong and delocalized response, selectivity in frequency,
and typical interaction range. To describe the field scattering due to the structure vibrations we
consider an anisotropic permittivity with a helical periodicity, which applies to all vibration types
and close dipole locations. This new type of resonances identified here may help explain the role
of electrodynamic fields in the diverse functionality of cytoskeletal microtubules in the cellular
environment.

PACS numbers:

I. INTRODUCTION

Microtubules (MTs) are tubular helical structures
that self-assemble from their constituent tubulin-protein
units. MTs are critical for the development and mainte-
nance of the cell shape, transport of vesicles and other
components throughout cells, cell signaling, and mito-
sis. Tubulins have a large dipole moment [1–4] and it
was conjectured that MT vibrations could generate elec-
tric field in its vicinity [5-7], also beyond the typical
Coulomb and vdW range. This process can be pow-
ered by GTP hydrolysis, motor proteins that move along
the MT, and mitochondria energy release [6]. MTs were
also analyzed in the context of robust-edge topologi-
cal vibrational modes [8], vibrational modes of hollow-
cylinders, and two-dimensional (2D) crystal lattices [9-
10]. Recently, their 3D mechanical vibrations were calcu-
lated numerically using a molecular structural-mechanics
model [11] and their acoustic modes were measured ex-
perimentally under the assumption of thermal equilib-
rium [12]. Importantly, alternating electric fields were
shown to inhibit cancerous cell-growth by an anti-MT
mechanism [13].

MTs have a highly regular helical shape that is rare
in nature, similarly to carbon nanotubes [14]. Their
constituent units are identical, even more than in DNA
and alpha helices, whose elementary units have different
residues. In addition, the MT structure appears like a
shifted crystal, which may give rise to axial propagation
of vibrations. It is certainly of interest to understand
how this exquisite geometry may affect oscillatory phe-
nomena of MTs such as vibrations and electromagnetic
(EM) excitations. In a broader sense, one can ask if
these properties are critical for the diverse functionality
of MTs in biology. Of particular interest would be to
understand the interaction with surrounding molecules
and if the modes have a particular extent and frequency
properties.

In the following, we answer these questions to some
extent. We first analyze vibrations in a helical struc-

ture by employing a top-view model that describes accu-
rately macroscopic vibrations of complex structures. We
then develop an eigenfunction analysis [15–18] for the
vibrational-mode-mediated interaction between a MT
and an oscillating electric dipole in a host medium. To
that end, we consider an infinitely-long dielectric struc-
ture in a uniform medium, which applies to MTs and
DNAs that have a persistence length much larger than
the radius and is an approximation for alpha helices that
have a persistence length of 1nm and a radius of 2.3Å
[19]. The dielectric structure consists of units disposed
in a helical arrangement that can vibrate in a collective
manner and have internal vibrational and electronic ex-
citations. We will focus on properties that arise from
the helical arrangement and even though the units in
MTs, DNAs, and alpha helices are different, the analy-
sis should apply to most cases. In addition, while the
structure vibrations can be damped by the medium, the
vibrations of a cylindrical-shell-medium system can be-
have similarly to a free shell [9]. A dipole in proxim-
ity to this structure emits radiation with a wavelength
λ = 2πc/ω � l, where l is the typical length scale,
and therefore the interaction can be analyzed in the qua-
sistatic approximation [20]. In this regime, the electric
and magnetic fields are decoupled and the electric field,
which oscillates in time, obeys Poisson’s equation [15–
17]. We derive eigenfunctions that express the scattering
of the electric field due to the vibrations. To descibe this
interaction, we define the MT as an inclusion with a per-
mittivity ←→ε1 (ω, r) that is anisotropic and periodic along
a helical orbit, and the host-medium with a permittivity
ε2(ω), assuming ω > 250MHz, in which ionic screening is
negligible [2].

II. RELATING THE VIBRATIONS TO THE
INCOMING-FIELD MODES

We consider a dipole that emits radiation, which im-
pinges on the helical structure. In the near field, the
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Figure 1: The physical system: an oscillating dipole
emitting electromagnetic field is in proximity to a
microtubule. Part of the electric field couples to
vibrational modes in the microtubule (a). The coupled
field can be in a helical arrangement (b) or standard
longitudinal arrangement (constant when varying the
azimuthal angle) (c). In response to the field, the
tubulins deform and translate such that they move
synchronously (d) or asynchronously (e).

dominant spatial frequencies of the emitted field corre-
spond to wavelengths on the order of the distance from
the dipole [17, 21]. We define the incoming field Einc as
the dipole field in a uniform ε2 medium [15–17]. While
this field is usually described with respect to the dipole
position, we utilize its expansion with respect to the
structure axis to relate it to the structure vibrations. We
consider the case in which laterally-adjacent units move
together, that for an axially-shifted crystal results in that
each axial chain behaves as a 1D crystal. To impose this
movement, we require Einc to be symmetric to a contin-
uous translation along a helical orbit. This situation is
illustrated in Fig. 1 (a) for the case of a MT, in which
the tubulin dimers are disposed in a helical arrangement.
The electric fields in helical and longitudinal configura-
tions are shown in Fig. 1 (b) and (c). As a result, the
tubulin units can change their size and move as suggested
in (d) and (e), respectively. In a helical-field arrange-
ment, laterally-adjacent units move together (d). The
movement where the adjacent tubulins are not aligned
as shown in Fig. 1 (e) is assumed to be less favorable
energetically. Imposing this symmetry on Einc inside the
structure results in (see Appendix (A) 1)

Einc(φ, z, ρ) ∝ exp (im (φ− kzz)) (1)

wherem is an integer number, kz = 2π/a, a is the helical-
orbit axial period, and φ, z, ρ are cylindrical-coordinates
variables. In these field modes, the k and m degrees of
freedom are related by k = mkz, which, if the medium
responds strongly to them, implies selectivity in k and
ω. Clearly, the high-m modes have high spatial frequen-
cies and can be dominant only for close dipole locations.
In addition, invariance of Einc to discrete lateral transla-
tions along the helix results in the same field distribution
in each constituent unit and a coordinated movement.
Such modes have high spatial frequencies kzn, where n
is the number of units per helical round. These modes
can be excited when the dipole is very close to the heli-
cal structure (typical interaction distance is 2π/kzn) and
the field impinging on the structure has very high spatial
frequencies. This situation is similar to the simpler case
of the electrostatic field generated by charges in a helical
arrangement with a uniform-inclusion permittivity [22].

III. VIBRATIONAL-MODE ANALYSIS

Having analyzed the coupling of incoming EM fields to
synchronous vibrations, we examine now in more detail
the vibrations in the helical structure. We first consider
the forms of vibration. Radial movements are expected
to be damped [6] since they involve movements of a rela-
tively large volume of liquid. While vibrations of a helical
structure are different from vibrations of a spring, a spi-
ral motion may also be less favorable mechanically since
it involves movements of long helical chains. Moreover,
in the context of MTs, the azimuthal dipole moment is
small [6] and in a recent work torsion was found to be
insignificant [11]. We will therefore focus on axial vibra-
tions.

We now analyze classically the vibrational modes that
can be excited by the incoming field and generate field.
For 1D crystals, such a treatment agrees with the quan-
tum analysis [25]. We consider the coupling of vibrations
also to field components with kc � ω that are almost
static [26]. While interaction of near field with a crystal
was analyzed for ka� 1 [27, 28], we extend it to ka ≥ 1.
When vibrational modes and electric field are coupled
they have the same ω,k, and at low and high ks, ω(k)
of one of the polaritons and the uncoupled vibrational
mode are similar [25]. We also show that in our case the
1D crystal symmetry k → k + kz [25] is not satisfied.
We consider a structure comprising two types of units
with masses m1,m2 connected by springs k1, k2, k3, k4 as
shown in Fig. 2 (b). Denoting the axial displacements of
m1,2 and the indices of the axial and lateral shifts by u1,2

and s, q, respectively, and assuming u1,2 = a1,2e
ikz+imφ,

we write the equations of motion (EOM)
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−ω2m1u1sq =k1 (u2sq − u1sq)− k2 (u1sq − u2s−1q)− k3 (u1sq − u1sq+1)− k3 (u1sq − u1sq−1) ,

−ω2m2u2sq =k2 (u1s+1q − u2sq)− k1 (u2sq − u1sq)− k4 (u2sq − u2sq+1)− k4 (u2sq − u2sq−1) , (2)

(
−ω2m1 + k1 + k2 + 4k3 sin2 ((ka/n− 2πm/n) /2) −

(
k2e
−ika + k1

)
−
(
k2e

ika + k1

)
−ω2m1 + k1 + k2 + 4k4 sin2 ((ka/n− 2πm/n) /2)

)(
u1

u2

)
=

(
0
0

)
.

(3)

This 1D description enables us to analyze the behavior
of the system in the axial axis while accounting implic-
itly for the lateral interactions in the terms with k3, k4.
These diagonal terms with k3, k4 restrain the movements
of m1,m2 to their sites as in a local oscillator and van-
ish for the helical functions satisfying k = mkz (see Eq.
(1)). These interactions are associated with propagation
of axial movements along a helical orbit similarly to an
infinite chain of identical particles [25].

For the k = mkz modes since u1s,q+1 =

u1s,qe
i(ka/n−2πm/n), laterally adjacent units oscillate

in-phase and form a standing wave, resulting in super-
radiance and strong scattering in some cases [29, 30],
[25] p. 102. In more complex structures the identical
atoms and therefore the centers of mass of all the units
move together, which relates this type of model also to
low ω/large mass vibrations. Eq. (3) can be written as
Au = ω2u, where A is a Hermitian matrix and therefore
diagonalizable. Since ω2 is real and positive, we obtain
ω(k), which means that the modes are delocalized. We
now consider the response at a given k and therefore
analyze the EOM at this k. When anharmonicity or
dissipation are incorporated, the matrix formulation
and Hermiticity do not hold and localization can arise.
We introduce anharmonicity in the axial forces between
lateral units due to the alignment shift of the units upon
movement. The sum of these (second order) forces ∝
u2

1sq [1− 2 cos (ka/n− 2πm/n) + cos (2 (ka/n− 2πm/n))]
and translates to an on-site term. For the k = mkz
modes these forces vanish and the u1−u2 coupling terms
are maximal. Moving away from k = mkz increases the
ratio of anharmonicity to dispersion, leading to a more
localized response, similarly to interacting diatomic
molecules with internal anharmonicity [31, 32] (see
A.2.1). In A.2.2 we perform a similar analysis for
two helical structures without axial periodicity and
axial interactions and obtain similar properties. Such
properties were recently observed in DNA [29]. We also
analyze the effect of dissipation by introducing γu̇1,2

terms, which shows that Re(ω(k)) is hardly affected
and Im(ω(k)) is constant at all ks, except at large γs
that suppress the acoustic modes (A.2.3). Since we
consider axial vibrations and in Ref. [9] the vibrations
of a cylindrical-shell-water system behave similarly to
a free shell for our m ≥ 1 modes, we assume that
anharmonicity is a more dominant effect at least for the
optical modes.

Interestingly, the α, β units of the MT have electrical
charges with the same sign [1]. This may imply that
“acoustic” modes, for which adjacent units move together
[25], generate current and couple to electric field along
with optical modes. From Eq. (3) we calculate ω(k)
for the acoustic and optical modes. We find that the
k = mkz modes have the same ω(k) of a 1D crystal (see
Fig. 2 (c) and videos) in agreement with the previous
analysis in Eq. (1). In addition, one can substitute ωT →
ω(k) in the expression for ε [25] and obtain ε(ω,k) =
1 + 4πNq2/[mr(ω

2(k) − ω2)], where q is the charge, mr

is the reduced mass, and N is the charge concentration.
Moreover, the k = mkz field modes have the same po-

tential distribution in each dimer and for a fixed dimer
length (corresponds to internal vibrations or acoustic
modes) the dimers can be treated as non-interacting also
in the axial axis that may result in a similar spectrum for
a dimer and the structure, which agrees with Ref. [34].

IV. QUANTITATIVE ANALYSIS OF THE
DIPOLE-STRUCTURE INTERACTION

Having described the vibrational modes of the helical
structure, we now examine the scattering of the electric
field due to these vibrations. To this end, we will use the
eigenstates ψk of the quasi-electrostatic potential. In a
composite medium ψk represents the potential of a field
that exists without a source for an inclusion eigenper-
mittivity ε1k. ψks can be used to expand the scattered
electric field ψsc, which is generated due to the existence
of the inclusion. In turn, ε1ks are calculated by impos-
ing field boundary conditions and depend on the inclu-
sion geometry. For propagating waves, this requires gain
and constructive interference as in a laser. However, for
evanescent waves ε1ks are real and can be reached more
naturally. When the inclusion permittivity ε1 ≈ ε1k, a
physical resonance occurs and the system responds reso-
nantly [15–17].

Let us describe ψsc for an anisotropic inclusion per-
mittivity with a helical periodicity, which enables us to
account for surface roughness. We first associate the
permittivity tensor to axial vibrations by considering an
anisotropic inclusion with an axial permittivity εz(r) and
ερ = εφ = ε2.We then utilize the structure symmetries to
analyze a permittivity with helical periodicity. In crys-
tals, the permittivity is usually expanded in a Fourier
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Figure 2: Vibrational-mode analysis for a helical
structure. The illustrations show that when varying the
field along a helical trajectory, the field coincides with
its initial state for k = kzm, implying that these modes
are allowed when requiring decoupling between the axial
protofilaments (a). The structure is composed of two
units denoted by α, β with masses m1,m2 connected
with springs k1, k2, k3, k4 (b). ω(k) for the acoustic and
optical m = 1 helix and 1D crystal modes. The MT
parameters are m1 = m2 = 0.9 · 10−22 (Kg), k1 = 8, k2 =
1, k3 = k4 = 2 (N/m), n = 13, where k4 is of the order of
magnitude of the value in Ref. [10]. (c)

series and it couples each field mode with the modes
with k + Gn, where Gn is a reciprocal-lattice vector,
and there is an effective ←→ε1 (ω,k) that describes the ω,k
response to an excitation at ω,k [15, 20, 26, 35–40]. In
our case, the symmetry to discrete translations defines
the k = mkz and k = nkz modes that represent the
“DC” and higher-order Fourier components, respectively.
Thus, the coupling is to modes with integer multiples of
(∆m,∆k) = (1, kz) and ∆k = nkz apart. This form of
←→ε1 (ω,k) is justified for the MT because λ/a � 1 and
ρext(ω) = 0,Jext(ω) = 0 inside the inclusion, since the
charges oscillate only in response to external excitations
[26, 41, 42].

We now turn to the quantitative analysis of
the dipole-helical structure interaction. In A.3
we show that for εz(k) and ερ = εφ = ε2, the
amplitude of ψk in the expansion of ψsc, Ckω ∝
(ε2(ω)− ε1z (k, ω)) / (ε1zk − ε1z (k, ω))

∫
θ1dr∂ψ

∗
k/∂zE

inc
kz ,

where θ1 = 1 in the ε1 volume, and therefore Einc
k re-

sults in a contribution of ψk with the same k in the
expansion. Thus, we write the ψms that describe the
spatial dependency of ψsc due to the k = mkz vibrations

ψm = eim(φ−kzz)

 A1mKm(mkzρ) ρ > ρ2

A2mIm +A3mKm ρ1 < ρ < ρ2

A4mIm(mkzρ) ρ < ρ1

,

(4)

where ρ1, ρ2 are the internal and external inclusion radii,
Km and Im are the modified Bessel functions. We then
solve Laplace’s equation in cylindrical coordinates in
ρ1 < ρ < ρ2 to find the argument of the functions

ε2
1

ρ

∂

∂ρ

(
ρ
∂ψm
∂ρ

)
− ε2m2 1

ρ2
ψm − k2

zm
2εzmψm = 0, (5)

and obtain Im(mkz
√
ε1zm/ε2ρ) and

Km(mkz
√
ε1zm/ε2ρ). To simplify Ckω we

show in A.3 that the integral in Ckω ∝
ε2(ω)/ (ε2(ω)− ε1zk)∇ψ∗k (r0) · p, where p is the
dipole moment, and r0 is the dipole location.

Let us now analyze the scaling of ψm for small and
large ρs. We first observe that the m = 0 mode is con-
stant everywhere and can therefore be omitted. This
mode is, however, relevant in the far field. For an in-
finite cylinder, when k = m = 0 and ρ2 � λ, it has
the form outside the structure for kρ � 1 of ETM

z,m=0 ∝√
k0/ρe

i(k0ρ−π/4), where k0 = ω/c [23]. Interestingly,
this mode extends far from the helical structure and
scales as

√
k/ρ. Now we examine the scaling of them ≥ 1

modes. For ρ � a, Km≥1(mkzρ) → 1√
2mkz

√
π
ρ e
−mkzρ,

which means that the typical interaction distance for a
dipole is of the order of a from the structure. Inside the
MT the modes scale as limρ→0 Im (mkzρ) ∝

(
mkzρ

2

)m
.

Importantly, these modes are discrete and are dominated
by the m = 1 mode for ρ0 − ρ2 & a/2, where ρ0 is the
dipole radius. This means that the response of these
modes is highly selective in k. For ρ0 − ρ2 & a/2 the
m = 1 mode is excited by the dipole and couples to the
high-order modes that have a negligible effect at ρ = ρ0

and we can consider approximately only this mode. In
Fig. 3 we present the radial dependence of the first modes
outside a MT. The modes have a typical interaction dis-
tance of the size of a = 8nm, which is larger than the
Debye distance of 1nm [2], and the m = 1 mode domi-
nates at large distances. These functions have m in the
radial argument unlike the standard cylindrical modes.
Two isopotential surfaces of ψm=1(r) outside the helical
structure are shown in the inset.

To obtain the eigenpermittivities we impose the field
boundary conditions (see A.3). We also calculate Em≥1

and find that Ez > Eρ > Eφ, which means that the
dipole tends to align almost parallel to the helical struc-
ture (see A.4).

The resonances are approached when ε1zk ≈ ε1z(k, ω1),
where ω1 is a resonance frequency. Delocalization of
modes implies Im(ωk) ≈ 0 and hence Re(ε1z(k, ω)) that
spans over a large range of values. Therefore, close to
k = mkz the system is likely to be at a resonance at
ω1 ' ωk=mkz . When exciting at ω1 there can be a strong
and collective response [43] of the helical structure that
may affect the MT functionality. For resonances in addi-
tional types of structures see Refs. [44–47]. ε1zk depends
on the structure dimensions and ε1zk(ω) on the internal
interactions. Hence, ω1 may enable us to distinguish be-
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Figure 3: Normalized Km(mkzρ) outside the
microtubule. The interaction distance is of the order of
a. Inset: two isopotential surfaces of ψm=1(r) = ±0.1
extending to a radius of about 18nm.

tween different helical structures.
The phenomena associated with the helical structure

are both in the near and far fields (for m ≥ 1 and m = 0,
respectively). They can be observed by absorption spec-
troscopy [48] with an incoming field polarized along the
axial axis [49], by Raman spectroscopy [50], or indirectly,
by conductivity measurements [34].

V. SUMMARY

In conclusion, we studied the coupling between EM
fields and vibrational-modes in a helical crystal struc-
ture by analyzing the bulk and geometric properties of
the structure. In particular, we examined the interac-
tion of the structure and oscillating dipole, which emits
field components also beyond the first Brillouin zone. We
identified a group of discrete modes of in-phase oscilla-
tions that give rise to a delocalized response and selectiv-
ity in ω and k.We note that in a recent experiment coher-
ent and delocalized response was observed in DNA [33].
We found that the first mode is long-range and scales
as 1/

√
ρ while the other modes are quasistatic and have

typical interaction distances characterized by the helical-
orbit axial period. The fact that the spatial distribution
of the m = 1 mode correlates with the constituent units
may imply spatial selectivity, which can be relevant for
processes like self-assembly and induced polymerization.
Finally, similar phenomena may arise in other physical
systems where the constituent units are self-assembled
[51].

Appendix

A.1. The form of the incoming field

When the system size l, which is determined by the in-
clusion radius and the dipole-inclusion distance, is much
smaller than the far-field wavelength λ, ∇ × E ≈ 0.
Thus, E is decoupled from the magnetic field and can
be approximated by Poisson’s equation. We consider a
two-constituent medium composed of a helical structure,
which we regard as the inclusion and a host medium. We
then define the incoming field Einc as the dipole field in
the host medium. We utilize the expansion of Einc with
respect to the structure’s axis using cylindrical vector
harmonics in order to relate it to the structure’s vibra-
tions. A field that is constant along a helical orbit results
in synchronous oscillation of laterally-adjacent units. In
the case of an axially-periodic structure such as the mi-
crotubule, the protofilaments behave as 1D crystals, or in
other words, the protafilaments are non-interacting. We
impose that Einc is symmetric to a continuous transla-
tion along the helical orbit and obtain inside the inclusion
volume

Einc ,m ∝ eim(φ−kzz),Einc ,m ≈ −∇ψinc ,m

⇒ ψinc ,m ∝ eim(φ−kzz),

∇vψinc ,m = v · ∇ψinc ,m

= − i√
(ρkz)2 + 1

(ρkz, 1) · (m/ρ,−mkz) eim(φ−kzz) = 0,

where φ, z, ρ are cylindrical coordinates variables, kz =
2π/a, and a is the helical-orbit axial period. When the
dipole is very close to the helical structure, the field im-
pinging on the microtubule has very high spatial frequen-
cies and it excites additional modes that correspond to
coordinated movement and encode the arrangement of
the constituent units. These field modes have the rela-
tion for the axial index k = pnkz, where p is an integer
number and n is the number of units per helical round.
Note that this form of the field agrees with the form of
a subgroup of terms in a simpler case of the electrostatic
potential generated by charges in a helical arrangement
in DNA. Our case is much more complex as the inclu-
sion is an anisotropic (and charge-free) medium that is
composed of many atoms and we consider excitations of
vibrations by electrodynamic field [21].

A.2 Vibrational-mode analysis

A.2.1 Delocalization analysis

The equations of motion (EOM, see Eq. (3) in the
manuscript) can be written as
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( [
k1 + k2 + 4k3 sin2 ((ka/n− 2πm/n) /2)

]
/m1 −

(
k2e
−ika + k1

)
/m1

−
(
k2e

ika + k1

)
/m2

[
k1 + k2 + 4k4 sin2 ((ka/n− 2πm/n) /2)

]
/m2

)(
u1

u2

)
= ω2

(
u1

u2

)
.

This matrix is Hermitian and therefore diagonalizable and has real eigenvalues. Since the eigenvalue is ω2 and we are
interested that ω will be real, we will prove that the matrix is positive semi-definite so that ω2

n ≥ 0. For m1 = m2 we
omit the mass and write

(
u∗1 u∗2

)( [k1 + k2 + 4k3 sin2 ((ka/n− 2πm/n) /2)
]

−
(
k2e
−ika + k1

)
−
(
k2e

ika + k1

) [
k1 + k2 + 4k4 sin2 ((ka/n− 2πm/n) /2)

] )( u1

u2

)

=
(
u∗1 u∗2

)( u1

[
k1 + k2 + 4k3 sin2 ((ka/n− 2πm/n) /2)

]
− u2

(
k2e
−ika + k1

)
−u1

(
k2e

ika + k1

)
+ u2

[
k1 + k2 + 4k4 sin2 ((ka/n− 2πm/n) /2)

] )

= k1 |u1 − u2|2 + k2

∣∣u1e
ika − u2

∣∣2 + 4
(
k3 |u1|2 + k4 |u2|2

)
sin2 ((ka/n− 2πm/n) /2) ≥ 0.

This indicates that we can write ω (k) with real ω or k
and therefore the modes are delocalized. We have also
verified that ω (k)

2 ≥ 0 for m1 6= m2 for several values
from the analytical solution of Eq. (3) in the manuscript.
We consider an external excitation and an excited vibra-
tional mode at ω, k and we therefore need to consider
the EOM at these ω, k. When introducing on-site anhar-
monicity or dissipation, localization can arise since the
operator can no longer be written in this form or becomes
non-Hermitian. When increasing the dispersion/coupling
between u1 and u2, it increases the delocalization of the
mode [30,31] (these terms are also compatible with Her-
miticity). Since the lateral alignment of the units changes
upon axial-distance change, it results in different inter-
actions and asymmetric potential (see Fig. A1). We
therefore introduce the second-order quadratic force to
account for the anharmonicity

F1 =− k3an (u1sq − u1s,q+1)
2 − k3an (u1sq − u1s,q−1)

2

=− k3anu
2
1sq

(
1− ei(ka/n−2πm/n)

)2

− k3anu
2
1sq

(
1− e−i(ka/n−2πm/n)

)2

=− 2k3anu
2
1sq[1− 2 cos (ka/n− 2πm/n)

+ cos (2 (ka/n− 2πm/n))].

This force translates to an on-site anharmonicity and
vanishes for the k = mkz modes. For these modes
the u1 − u2 coupling terms are also maximal. Mov-
ing away from these modes increases the ratio of anhar-
monicity to dispersion, which is associated with localiza-
tion of modes. The potential now has the same form
of the potentials in Refs. 30,31, in which it was shown
that phonons become localized when increasing the ra-
tio of the on-site anharmonicity to dispersion/coupling
between sites.

+

+

+

- -

+

+

+

Figure A1: Axial locations of the lateral units in the
two states of the right unit, indicating different
interactions and anharmonic potential.

A.2.2 Dispersion relation for two helical structures
without periodicity and axial interactions

In this section we analyze ω (k) for helical structures
without axial interactions and axial periodicity.

Helix of alternating α, β units without axial
interactions

First we analyze ω (k) for a helix of alternating units
without axial interaction (Fig. A2 (a)).

We write the EOM

−ω2m1u1sq = −k1 (u1sq − u2s,q+1)− k1 (u1sq − u2,sq−1) ,

−ω2m2u2sq = −k1 (u2sq − u1s,q+1)− k1 (u2sq − u1,sq−1) ,
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𝑘1

𝛼
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𝛼
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𝑘4
𝑘4

𝑘3
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(a) (b)

Figure A2: Two helical structures without axial
interactions and axial periodicity.

which translate to

− ω2m1u1sq + 2k1 (u1sq + u2sq cos (ka/n− 2πm/n)) = 0,

− ω2m2u2sq + 2k1 (u2sq + u1sq cos (ka/n− 2πm/n)) = 0,

and the matrix form

(
−ω2m1 + 2k1 2k1 cos (ka/n− 2πm/n)

2k1 cos (ka/n− 2πm/n) −ω2m2 + 2k1

)(
u1sq

u2sq

)
=

(
0
0

)
.

It can be seen that there is strong dispersion in the
k = mkz eigenmodes (associated with delocalization).
We write the dispersion relation

m1m2ω
4−2k1ω

2 (m1 +m2)+4k2
1 sin2 (ka/n− 2πm/n) = 0.

From the analogy to a 1D crystal of two particles [24]
we observe an in-phase oscillation in the k = mkz eigen-
modes. DNA requires also to introduce a second helix
and impose that the sites that interact (base pair) will
have the same potential distribution with corresponding

modes such as m = 0, 2 etc.

Vertical dimers disposed in a helical structure
without axial interactions and periodicity

We also consider the model of Fig. 2 in the manuscript
without axial interaction between the dimers and without
requiring periodicity along the helix (see Fig. A2 (b)).
We write the EOM in a matrix

(
−ω2m1 + k1 + 4k3 sin2 ((ka/n− 2πm/n) /2) −k1

−k1 −ω2m2 + k1 + 4k3 sin2 ((ka/n− 2πm/n) /2)

)(
u1sq

u2sq

)
=

(
0
0

)
,

from which we obtain the dispersion relation for the k =
mkz modes

(
−ω2

k=mkzm1 + k1

) (
−ω2

k=mkzm2 + k1

)
− k2

1 = 0,

ω2
k=mkz

(
m1m2ω

2
k=mkz − k1 (m1 +m2)

)
= 0,

ω2
k=mkz = k1

m1 +m2

m1m2
, 0

We substitute ω2
k=mkz

= k1
m1+m2

m1m2
and get(

−k1
m1 +m2

m1m2
m1 + k1

)
u1sq − k1u2sq = 0,

−k1

(
m1

m2

)
u1sq − k1u2sq = 0,

u2sq = −
(
m1

m2

)
u1sq.

Here we see that the k = mkz modes have the same
in-phase oscillations (see video) and behavior associated
with the anharmonicity. Note that while in this case the
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Figure A3: ω (k) of the optical (a) and acoustical (b)
modes for γ = 0.2 (Kg/s)

propagation of the vibrations is via the helix, the mathe-
matical structure is similar to Eq. (3) in the manuscript
and we can therefore analyze it in the same manner.

A.2.3 Incorporating dissipation to the
vibrational-mode analysis

We incorporated dissipation in our model (Fig. 2 (b)
in the manuscript) by introducing to Eq. (2) in the
manuscript the terms γu̇1,2. We first substituted γ = 0,
required that the determinant of the matrix will be equal
to zero, and calculated numerically the dispersion re-
lation to verify that it agrees with the analytic calcu-
lation. We then calculated numerically ω (k) for the
optical and acoustic modes where γ = 0.2 (Kg/s) and
m1 = m2 = 1(Kg) for simplicity. By calculating the
modes at various γ values we observed that Re [ω (k)] is
hardly affected and Im [ω (k)] is constant except at large
γ values that suppress the acoustic modes (Fig. A3).
This means that, at least for the optical modes, the ef-
fect of the dissipation has no preference to a specific k,
unlike the effect of the anharmonic terms. In addition,
the acoustical modes might be suppressed since ω = 0
there.

A.3 Quasistatic analysis of the interaction between a
dipole and helical crystal

A.3.1 Expansion of the potential of a dipole for an
anisotropic and spatially-dispersive inclusion

We will start by expanding the physical potential of
a charge distribution in a two-constituent medium, in
which both constituents are isotropic and spatially uni-
form, similarly to the treatment in Refs. [15-17]. We
will then develop an expansion for an inclusion with an
anisotropic and spatially-uniform permittivity and sim-
plify it for a dipole source. Finally, we will formulate the
field expansion for a k-dependent inclusion permittivity
where the modes are uncoupled and analyze the scattered
field for a crystal inclusion.

In the quasistatic regime we use Poisson’s equation in
a two-constituent medium for the electric potential of a
charge distribution ρ̃ (r) . When both constituents have
a spatially uniform and isotropic permittivities we write
[15-17]

∇ε∇ψ = ρ̃ (r) ,

∇2ψ (r) = ∇ · θ1 (r)u∇ψ (r) + ρ̃ (r) /ε2, u ≡ ε2 − ε1
ε2

,

where θ1 (r) is a window function that equals 1 inside
the inclusion,ε1 is the inclusion permittivity, and ε2 is
the host-medium permittivity. The potential can be re-
garded as generated by the external charge distribution
ρ̃ (r) /ε2 and ∇ · θ1 (r)u∇ψ (r) . Therefore, it can also
be expressed as ψ = ψ0 + ψsc in terms of the potential
ψ0 generated by the charge distribution in a uniform ε2
medium (corresponds to Einc in the manuscript) and ψsc

that is generated due to the existence of the inclusion.
An eigenstate ψn, which exists in a system without a

source, is defined as follows

∇2ψn (r) = ∇ · θ1 (r)un∇ψn (r) , un ≡
ε2 − ε1n
ε2

,

ψn (r) =

∫
G
(
r− r

′
)
∇ · θ1un∇ψn

(
r
′
)
dr′

= un

∫
θ1

(
r
′
)
∇G

(
r− r

′
)
∇ψn (r′) dr′,

where G (r− r′) is Green’s function of Poisson’s equation
and we performed integration by parts. We define the
operator Γ̂as

Γ̂ψn =

∫
θ1

(
r
′
)
∇G

(
r− r

′
)
∇ψn

(
r
′
)
dr′

and write

ψn = unΓ̂ψn, snψn = Γ̂ψn, sn =
1

un
.



9

We then obtain [15-17]

ψ = uΓ̂ψ + ψ0

=
1

1− uΓ̂
ψ0 = ψ0 +

uΓ̂

1− uΓ̂
ψ0

= ψ0 +
∑
n

uΓ̂

1− uΓ̂
|ψn〉 〈ψn|ψ0〉

= ψ0 +
∑
n

sn
s− sn

|ψn〉 〈ψn|ψ0〉

= ψ0 + q
∑
n

s2
n

s− sn
|ψn〉ψ∗n (r0)

where we have used for a point charge [17]

〈ψn|ψ0〉 =

∫
drθ1∇ψ∗n∇ψ0

=

∫
drθ1 (r)∇ψ∗n (r)∇

∫
G (r− r′) qδ (r′ − r0) dr′

= qsn

∫
dr′ψ∗n (r′) qδ (r′ − r0) = qsnψ

∗
n (r0) .

The eigenstates are assumed to be normalized, where the
inner product is defined as

〈ψn|ψn〉 =

∫
drθ1∇ψ∗n∇ψn.

Now we develop the expansion of the potential for an
anisotropic inclusion permittivity. We denote the inclu-
sion permittivity tensor by ←→ε 1 and write

∇←→ε ∇ψ = ρ̃ (r) ,

ε2∇2ψ +∇θ1 (←→ε 1 − ε2)∇ψ = ρ̃ (r) ,

ε2∇2ψ =
ρ̃ (r)

ε2
+∇θ1

(ε2 −←→ε 1)

ε2
∇ψ,

∇2ψ (r) = ∇ · θ1 (r)←→u ∇ψ (r) +
ρ̃ (r)

ε2
, ←→u ≡ ε2I −←→ε 1

ε2
.

where I is the unit matrix.
We define an eigenfunction ψkas follows

ψk (r) =

∫
G
(
r− r

′
)
∇ · θ1

←→u ∇ψk (r′) dr′

=

∫
G
(
r− r

′
) ∂

∂′i
θ1uk,ij

∂

∂′j
ψk (r′) dr′

=
∑
i,j

uij,kG
(
r− r

′
) ∂

∂′ i
θ1 (r′)

∂

∂′j
ψk (r′) dr′

=
∑
i,j

uij,kθ1 (r′)
∂

∂′ i
G
(
r− r

′
) ∂

∂′j
ψk (r′) dr′,

where we performed integration by parts and uij ≡ δij−
ε1ij
ε2

.

For a diagonal form of ←→ε we have

ψk (r) = ui,k

∫
G (r− r′)

∂

∂′i
θ1 (r′)

∂

∂′i
ψk (r′) dr′

=
∑
i

ui,k

∫
θ1 (r′)

∂

∂′i
G (r− r′)

∂

∂′i
ψk (r′) dr′.

For (εx, εy, εz) = (ε2, ε2, ε1z)

ψk (r) = uzk

∫
G
(
r− r

′
) ∂

∂′z
θ1

(
r
′
) ∂

∂′z
ψk

(
r
′
)
dr
′

= uzk

∫
θ1

(
r
′
) ∂

∂′z
G
(
r− r

′
) ∂

∂′z
ψk

(
r
′
)
dr
′
.

We write the eigenvalue equation

ψk = uzkΓ̂zψk, szkψk = Γ̂zψk,

szk = 1/uzk = ε2/ (ε2 − ε1zk) ,

where szk is an eigenvalue. Note that here the physical
permittivity of the inclusion ε1 is spatially uniform and
the index k denotes the mode index. Similarly, we write
the expansion of ψ for (εx, εy, εz) = (εx, εy, ε1z)

ψ = ψ0 +
∑
k

szk
sz − szk

|ψn〉 〈ψn|ψ0〉

For a point charge we substitute the eigenvalue equation
in the inner product to obtain

〈ψk|ψ0〉 =

∫
drθ1 (r)

∂

∂z
ψ∗k (r)

∂

∂z
ψ0 (r)

=
4π

ε2

∫
drθ1 (r)

∂

∂z
ψ∗k (r)

∂

∂z
G
(
r− r

′
)
∗ qδ

(
r
′
− r0

)
=

4πq

ε2
szkψ

∗
k (r0) .

We then consider a dipole composed of two charges and
write

〈ψk|ψ0〉 = szkq (ψ∗k (z0 + d/2)− ψ∗k (z0 − d/2))

= szkqd
(ψ∗k (z0 + d/2)− ψ∗k (z0 − d/2))

d
.

For a cylindrical inclusion, the eigenfunctions have two
indices m, k. All in all, we obtain for ψ

ψ = ψ +
4π

ε2

∑
m

∫
s2
k

sz − sk
|ψm,k〉∇ψ∗m,k (r0) · pdk,

(A.1)
where the inner product for the normalization is

〈ψk|ψk〉 =

∫
drθ1 (r)

∂

∂z
ψ∗m,k (r)

∂

∂z
ψm,k (r) .

We now formulate the expansion for a k-dependent inclu-
sion permittivity without coupling between modes. This
is the situation in an electron gas, where the physical
permittivity value is associated with each mode [24]. We
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first write the response of the inclusion to an excitation
at a given k

ψsc,k =
uzkΓz

1− uzkΓz
ψ0k,

where uzk corresponds to the physical inclusion permit-
tivity at a given k and

ψ0k = 〈ψ0|ψk〉ψk.

We can now sum these terms and substitute in Eq. (A.1)
sz → sz (m, k) to obtain for a cylindrical inclusion

ψ = ψ0+
4π

ε2

∑
m

∫
s2
km

sz(m, k)− skm
|ψkm〉∇ψ∗km (r0)·pdk. .

(A.2)
Finally, we analyze the response of a crystal inclu-
sion. In the case of a helical crystal the Fourier ex-
pansion is along a helical orbit and the “DC” compo-
nents have constant potential along this orbit. We thus
have coupling between modes of the types [25] (m′, k′)→(
m
′
+ pm, k

′
+ pmkz

)
and (m′, k′)→

(
m
′
, k
′
+ pnkz

)
,

where p is an integer number and n is the number of units
per helical round. We will show in the next subsection
that for ρ0−ρ2 > a/n, ρ0−ρ2 > a/2 the second and first
types of coupling are negligible, respectively, at ρ = ρ0.
We therefore conclude that for ρ0 − ρ2 > a/2 only the
m = 1 mode is important and write

ψ (r, ρ0 > a/2) ≈

ψ0 (r) +
4π

ε2

∫
s2
km=1

sz(m = 1, k)− skm=1
|ψkm〉∇ψ∗km (r0) · pdk

(A.3)

We can substitute the eigenpermittivities and the
physical permittivity, to get sz (m = 1, k) , sk,m=1, re-
spectively, and obtain an expansion for ψ (r) . The calcu-
lation of the eigenpermittivities will be explained in this
section and the physical permittivity can be measured
in some cases or calculated by substituting ω (k) → ωT
in the expression for ε [23]. ω (k) is calculated in the
manuscript from the EOM and can also be calculated
when anharmonic terms are incorporated (see references
in Ref. 30).

Since a strong response is expected at m = 1, k =
kz (see explanation in the manuscript in pages 4-5), a
dipole that emits at a range of spatial frequencies will
interact more dominantly with this mode. In this region
the dominant term in the expansion is

4π

ε2

s2
kzm=1

sz (m = 1, kz)− skzm=1
|ψkzm=1〉∇ψ∗kzm=1 (r0) · p,

in addition to ψ0, where kz = 2π
a , a is the helical-orbit

axial periodicity.

Finally, ψ0 can also be expanded by a set of eigenfunc-
tions inside the inclusion as follows

ψ0 =
∑
m

∫
dk 〈ψ0|ψkm〉 〈ψkm|

=
∑
m

smk

∫
|ψkm〉∇ψ∗km (r0) · pdk.

A.3.2 The form of the eigenfunctions

Since Einc/ψ0 component with a given k results in a
contribution of an eigenfunction with the same k in the
expansion, the eigenfunctions that account for the field
scattering due to synchronous vibrations are

ψm = eim(φ−kzz)

 A1mKm (mkzρ) ρ > ρ2

A2mIm +A3mKm ρ1 < ρ < ρ2

A4mIm (mkzρ) ρ < ρ1

,

where φ, z, ρ are cylindrical coordinates variables,
Im,Km are the modified Bessel functions, ρ1, ρ2 are the
internal and external inclusion radii, kz = 2π/a, and a is
the helical-orbit axial period. Upon a continuous trans-
lation along the helical orbit, ψm remains constant and
therefore corresponds to an eigenvalue 1. We can sim-
ilarly take the directional derivative in the direction of
the helical orbit and obtain

∇vψm = v · ∇ψm

= − i√
(ρkz)2 + 1

(ρkz, 1) · (m/ρ,−mkz) eim(φ−kzz) = 0,

as expected. This means that R̂ψn = ψn, where R̂ is the
continuous-translation operator.

A.3.3 Scaling of the eigenfunctions

We analyze the scaling of ψm for small and large ρs.
We start with the first m = 0 mode

Km (x→ 0)→
{
−
[
ln
(
x
2

)
+ 0.5772

]
m = 0

Γ(m)
2

(
2
x

)m
m 6= 0

Since for m = 0, x = 0 and we expect a finite potential,
this mode is associated in all regions with Im=0 (x) and
is constant everywhere (and therefore can be omitted).
This mode can be treated in the full Maxwell-equation
analysis and can be shown to scale as

√
1/ρ [22]. We

proceed to the m ≥ 1 modes at ρ� a and obtain

Km≥1 (ρ� a)→ 1√
2mkz

√
π

ρ
e−mkzρ,
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with a typical interaction distance on the order of a/m.
This determines the range in which a dipole interacts
with each mode.

The scaling of the helical modes inside the structure is

Im (x→ 0)→ 1

Γ (m+ 1)

(x
2

)m
,

Im=0 (mkzρ→ 0)→ 1

Γ (m+ 1)

(
mkzρ

2

)m
= mm

(
kzρ

2

)m
, Γ (m+ 1) = m!.

A.3.4 Calculating the radial argument inside the
inclusion

In a crystal one can write the effective permittivity
ε = ε (ω, k) , which relates the response at a given k to
an excitation at the same k. In the case of a microtubule
(MT), this form of ε (ω, k) is justified because the pe-
riod length a is 8nm and therefore, (λ0/a)2 � 1 where
λ0 = c/ω is the vacuum wavelength [25]. Note that in
the derivation in Ref. [25] it is assumed that inside the
inclusion ρext (ω) = 0,Jext (ω) = 0, which is satisfied in
our case since the charges on the tubulin and tubulin
dimers oscillate only as a response to an external excita-
tion and can therefore be defined as polarization. Also,

eigenstates are defined for the system without a source.
Another argument is that for sources at distances larger
than the typical interaction distance of the m = 2 mode,
the inclusion is not affected by the m > 1 modes.

To represent axial vibrations, we assume an anisotropic
inclusion with an axial permittivity εz and radial and
azimuthal permittivitties ε2, equal to the host-medium
permittivity, where we omit k for brevity. Note that the
eigenpermittivities in the quasistatic regime do not de-
pend on ω.We now solve Laplace’s equation in cylindrical
coordinates inside the anisotropic inclusion. This will al-
low us to find the argument of the functions Im,Km for
ρ1 < ρ < ρ2 and calculate the eigenpermittivities in the
next subsection. Substituting the form of ψm we write
Laplace’s equation inside the helical structure

∇←→ε ∇ψm = 0,

ε2
1

ρ

∂

∂ρ

(
ρ
∂ψm
∂ρ

)
− ε2m2 1

ρ2
ψm − k2

zm
2εzmψm = 0.

We change variables

x ≡ km
√
εz/ε2ρ,

∂

∂ρ
=

∂

∂x

∂x

∂ρ
=

∂

∂x
kzm

√
εzm/ε2,

and write

1

x
k2
zm

2εzm
∂

∂x

(
x
∂ψm
∂x

)
−m2

(
kzm
√
εzm
)2

x2
ψm − k2

zm
2εzmψm = 0,

1

x

∂

∂x

(
x
∂ψm
∂x

)
−
(
m2

x2
ψm + 1

)
ψm = 0,

Thus we get

ψm = eim(φ−kzz)


A1mKm (mkzρ) ρ > ρ2

A2mIm

(
mkz

√
εzm
ε2
ρ
)

+A3mKm

(
mkz

√
εzm
ε2
ρ
)
ρ1 < ρ < ρ2

A4mIm (mkzρ) ρ < ρ1

,

which needs to be multiplied by additional factors to ob-
tain the contribution in the expansion of the potential of
a point charge as we showed in the previous subsection.

In the more general case of diagonal permittivity ε =

(ερ, εφ, εz) we write

ερ
εz

1

ρ

∂

∂ρ

(
ρ
∂ψm
∂ρ

)
− εφ
εz
m2 1

ρ2
ψm − k2

zm
2ψm = 0.

We change variables

x ≡ kzm
√
εz/ερρ,

∂

∂ρ
=

∂

∂x

∂x

∂ρ
=

∂

∂x
kzm

√
εz/ερ,
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and get

1

x

∂

∂x

(
x
∂ψm
∂x

)
− εφ
ερ

m2

x2
ψm − ψm = 0,

from which we obtain v = m
√

εφ
ερ

ψm = eim(φ−kzz)


A1mKm (mkzρ) ρ > ρ2

A2mIv

(
mkz

√
εzm
ερ
ρ

)
+A3mKv

(
mkz

√
εzm
ερ
ρ

)
ρ1 < ρ < ρ2

A4mIm (mkzρ) ρ < ρ1

.

A.3.5 Calculating the eigenpermittivities

We express the eigenvalue equation and the relation
between the coefficients, where B1 is treated as known
(cancels out in the expansion). We first write the bound-
ary conditions

Aa = B1b11 +B2b21,

B1b12 +B2b22 = C1c,

Aad = (B1b11d +B2b21d) ,

(B1b12d +B2b22d) = C1cd,

where A↔ A1mk, B1 ↔ A2mk, B2 ↔ A3mk, C1 ↔ A4mk,
and

a = Im (mkzρ1) , b±11 = Im

mkz
√
ε±1m
ε2

ρ1

 , b±12 = Im

mkz
√
ε±1m
ε2

ρ2

 , b±21 = Km

mkz
√
ε±1m
ε2

ρ1

 ,

b±22 = Km

mkz
√
ε±1m
ε2

ρ2

 , c = Km (mkzρ2) , ad =

(
∂Im (mkzρ)

∂ρ

)
ρ=ρ1

,

b±11d =

 ∂

∂ρ
Im

mkz
√
ε±1m
ε2

ρ


ρ=ρ1

, b±12d =

 ∂

∂ρ
Im

mkz
√
ε±1m
ε2

ρ


ρ=ρ2

,

b±21d =

 ∂

∂ρ
Km

mkz
√
ε±1m
ε2

ρ


ρ=ρ1

, b±22d =

 ∂

∂ρ
Km

mkz
√
ε±1m
ε2

ρ


ρ=ρ2

, cd =

(
∂Km (mkzρ)

∂ρ

)
ρ=ρ2

.

We write two relations between B2 and ε1m

(B1b12d +B2b22d) =
B1b12 +B2b22

c
cd, (A.4)

B1b11 +B2b21

a
ad = (B1b11d +B2B21d) , (A.5)

From Eq. (A.4) we express B2

B2b22d −
B2b22cd

c
=
B1b12

c
cd −B1b12d,

B2

(
b22d −

b22cd
c

)
= B1

(
b12

c
cd − b12d

)
,
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B2 = B1

(
b12
c cd − b12d

b22d − b22cd
c

)
.

Substituting this expression in Eq. (5) we obtain the

eigenvalue equation for ε1m

B1b11 +B1

(
b12
c cd−b12d
b22d−

b22cd
c

)
b21

a
ad =

(
B1b11d +B1

(
b12
c cd − b12d

b22d − b22cd
c

)
b21d

)
,

[
b11 +

(
b12
c cd − b12d

b22d − b22cd
c

)
b21

]
ad
a

=

(
b11d +

(
b12
c cd − b12d

b22d − b22cd
c

)
b21d

)
,

[
b11

(
b22d −

b22cd
c

)
+

(
b12

c
cd − b12d

)
b21

]
ad
a

=

(
b11d

(
b22d −

b22cd
c

)
+

(
b12

c
cd − b12d

)
b21d

)
,

0 =

(
b22d −

b22cd
c

)(
b11d − b11

ad
a

)
+

(
b12

c
cd − b12d

)(
b21d − b21

ad
a

)
.

Using this equation we can calculate ε1m. We calculated
numerically ε1m for the first modes. Interestingly, due to
the anisotropy there is an infinite degeneracy in the qua-
sistatic (real) eigenvalues and each mode has an infinite
number of eigenpermittivities, similarly to electrodynam-
ics.

Finally, we express A and C1

A = B1

b11 +

(
b12
c cd−b12d
b22d−

b22cd
c

)
b21

a
,

C1 = B1

b12 +

(
b12
c cd−b12d
b22d−

b22cd
c

)
b22

c
.

A.3.6 Calculating the inner product

We calculate the inner product for completeness. Since
the integration over the z, φ degrees of freedoms is trivial
we focus on the integration with respect to ρ

〈ψn|ψn〉 ∝∫
(B1I1 (bρ) +B2K1 (bρ))

∗ · (B1I1 (bρ) +B2K1 (bρ)) dρ,

where b =
√

ε1zk
ε2
k.

We calculate 〈ψn|ψn〉 for b = i
√
|ε1zk|
ε2

k∫
(B1I1 (bρ) +B2K1 (bρ))

∗·(B1I1 (bρ) +B2K1 (bρ)) dρ =

∫
|B1|2 |I1 (bρ)|2 + |B2|2 |K1 (bρ)|2

+B∗1I
∗
1 (bρ)B2K1 (bρ) +B∗2K

∗
1 (bρ)B1I1 (bρ) dρ.

We use the identities

Im (ix) = i−mJm (−x) = i−m (−1)
m
Jm (x) ,

I1 (ix) = iJm (x) ,

Km (ix) =
π

2
im+1H(1)

m (−x) , K1 (ix) =
π

2
(−1)H

(1)
1 (−x) ,

to simplify the first and second term and obtain∫
|B1|2 |I1 (bρ)|2 =

∫
|B1|2 J1 (|b| ρ)

2
dρ,

∫
|B2|2 |K1 (bρ)|2 =

(π
2

)2

|B2|2
∫ (

J (|b| ρ)
2

+ Y 2 (|b| ρ)
)
dρ.

We simplify the third and fourth terms by summing
the values of two adjacent ρ values
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B∗1I
∗
1 (bρ′1)B2K1 (bρ′1) +B∗2K

∗
1 (bρ′1)B1I1 (bρ′1) +B∗1I

∗
1 (bρ′2)B2K1 (bρ′2) +B∗2K

∗
1 (bρ′2)B1I1 (bρ′2)

2Re (B∗1I
∗
1 (bρ′1)B2K1 (bρ′1)) + 2Re (B∗1I

∗
1 (bρ′2)B2K1 (bρ′2)) =

2Re (B∗1I
∗
1 (bρ′1)B2K1 (bρ′1) +B∗1I

∗
1 (bρ′2)B2K1 (bρ′2)) =

2Re (B∗1B2I
∗
1 (bρ′1)K1 (bρ′1) +B∗1B2I

∗
1 (bρ′2)K1 (bρ′2)) =

2 [Re (B∗1B2) Re (I∗1 (bρ′1)K1 (bρ′1))− Im (B∗1B2) Im (I∗1 (bρ′1)K1 (bρ′1))]

+2 [Re (B∗1B2) Re (I∗1 (bρ′2)K1 (bρ′2))− Im (B∗1B2) Im (I∗1 (bρ′2)K1 (bρ′2))] =

2Re (B∗1B2) (Re (I∗1 (bρ′1)K1 (bρ′1)) + Re (I∗1 (bρ′2)K1 (bρ′2)))

−2Im (B∗1B2) (Im (I∗1 (bρ′1)K1 (bρ′1)) + Im (I∗1 (bρ′2)K1 (bρ′2))) .

From this we deduce ∫
B∗1I

∗
1 (bρ)B2K1 (bρ) +B∗2K

∗
1 (bρ)B1I1 (bρ) dρ =

2Re (B∗1B2)

∫
Re (I∗1 (bρ)K1 (bρ)) dρ− 2Im (B∗1B2)

∫
Im (I∗1 (bρ)K1 (bρ)) dρ.

All in all we get ∫
(B1I1 (bρ) +B2K1 (bρ))

∗ · (B1I1 (bρ) +B2K1 (bρ)) dρ =

∫
|B1|2 J1 (|b| ρ)

2
dρ+

π

2
|B2|2

∫ (
J (|b| ρ)

2
+ Y 2 (|b| ρ)

)
dρ

+Re (B∗1B2)

∫
πJ (|b| ρ)Y (|b| ρ) dρ− Im (B∗1B2)

∫
πJ2

1 (|b| ρ) dρ =

∫
|B1|2 J1 (|b| ρ)

2
dρ+

(π
2

)2

|B1|2 |B1→2|2
∫ (

J (|b| ρ)
2

+ Y 2 (|b| ρ)
)
dρ

+ |B1|2
[
Re (B1→2)

∫
πJ (|b| ρ)Y (|b| ρ) dρ− Im (B∗1B2)

∫
πJ2

1 (|b| ρ) dρ

]
.

We calculate the integrals analytically

∫
J1

(
k

∣∣∣∣√ε1m
ε2

∣∣∣∣ ρ)2

=
1

2
ρ2

(
Jm

(
k

∣∣∣∣√ε1m
ε2

∣∣∣∣ ρ) 2 − Jm−1

(
k

∣∣∣∣√ε1m
ε2

∣∣∣∣ ρ) Jm+1

(
k

∣∣∣∣√ε1m
ε2

∣∣∣∣ ρ)) ,
(π

2

)2

|B1→2|2
∫ (

J (|b| ρ)
2

+ Y 2 (|b| ρ)
)
dρ =
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1

4
π2 |B1→2|2

[
1

2
ρ2

(
J2
m

(
k

∣∣∣∣√ε1m
ε2

∣∣∣∣ ρ)− Jm−1

(
k

∣∣∣∣√ε1m
ε2

∣∣∣∣ ρ) Jm+1

(
k

∣∣∣∣√ε1m
ε2

∣∣∣∣ ρ))

+
1

2
ρ2

(
Y 2
m

(
k

∣∣∣∣√ε1m
ε2

∣∣∣∣ ρ)− Ym−1

(
k

∣∣∣∣√ε1m
ε2

∣∣∣∣ ρ)Ym+1

(
k

∣∣∣∣√ε1m
ε2

∣∣∣∣ ρ))] ,
Re (B1→2)

∫
πJ

(
k

∣∣∣∣√ε1m
ε2

∣∣∣∣ ρ)Y (k ∣∣∣∣√ε1m
ε2

∣∣∣∣ ρ) dρ− Im (B∗1B2)

∫
πJ2

1

(
k

∣∣∣∣√ε1m
ε2

∣∣∣∣ ρ) dρ =

πRe (B1→2)

(
2m2 csc(πm)Γ(m+1)

(
−1+F2

(
− 1

2 ;−m,m;−k2ρ2
∣∣∣ ε1mε2 ∣∣∣)−1

)
k2

∣∣∣ ε1mε2 ∣∣∣Γ(1−m)
+

4−mρ2 cot(πm)
∣∣∣ ε1mε2 ∣∣∣m(kρ)2mF2

(
m+ 1

2 ;m+2,2m+1;−k2ρ2
∣∣∣ ε1mε2 ∣∣∣)

m+1

)
2Γ (m+ 1)

2

−π
2
ρ2Im (B1→2)

(
Jm

(
k

∣∣∣∣√ε1m
ε2

∣∣∣∣ ρ) 2 − Jm−1

(
k

∣∣∣∣√ε1m
ε2

∣∣∣∣ ρ) Jm+1

(
k

∣∣∣∣√ε1m
ε2

∣∣∣∣ ρ)) ,

where F is a hypergeometric function. All the analytical
calculations have been verified with numerical calcula-
tions.

A.4 Calculating the electric field of ψm

To calculate Em≥1 we use

∂

∂ρ
Km (kzmρ) = −1

2
kzm (Km−1 (kzmρ) +Km+1 (kzmρ)) ,

and write, assuming ψm ∝ cos (m (φ− kzz))

Em≥1 = Cm

[
1

2
kzm (Km−1 (kzmρ) +Km+1 (kzmρ)) cos (m (φ− kzz)) eρ +

(
m

ρ
eφ − kzez

)
Km (kzmρ) sin (m (φ− kzz))

]
,

where Cm is the expansion coefficient. For m = 1 we have

Em=1 = Cm=1p

[
1

2
kz (K0 (kzρ) +K2 (kzρ)) cos (φ− kzz) eρ +

(
1

ρ
eφ − kzez

)
K1 (kzρ) sin (φ− kzz)

]
,

Cm=1p ∝ p ·
[

1

2
kz (K0 (kzρ) +K2 (kzρ)) cos (φ− kzz) eρ +

(
1

ρ
eφ − kzez

)
K1 (kzρ) sin (φ− kzz)

]
.
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