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Matter-wave interference mechanisms in one-dimensional Bose-Einstein condensates that allow for
the controlled generation of dark soliton trains upon choosing suitable box-type initial configurations
are described. First, the direct scattering problem for the defocusing nonlinear Schrödinger equation
with nonzero boundary conditions and general box-type initial configurations is discussed, and
expressions for the discrete spectrum corresponding to the dark soliton excitations generated by
the dynamics are obtained. It is found that the size of the initial box directly affects the number,
size and velocity of the solitons, while the initial phase determines the parity of the solutions. The
analytical results obtained for the untrapped system are compared to those of numerical simulations
of the Gross-Pitaevskii equation, both in the absence and in the presence of a harmonic trap. The
numerical results bear out the analytical results with excellent agreement.

I. INTRODUCTION

Dark solitons are fundamental nonlinear excitations
stemming from the balance between dispersion and suit-
able kinds of nonlinearity. They are found to arise in
diverse physical systems ranging from water waves [1]
and magnetic materials [2] to nonlinear optics [3–5] and
Bose-Einstein condensates (BECs) [6–9]. For instance, in
nonlinear optics dark solitons emerge in media with pos-
itive dispersion and defocusing nonlinearity whose evo-
lution is described by the so-called defocusing nonlinear
Schrödinger (NLS) equation [10]. On the other hand, in
the BEC context dark solitons form in systems with re-
pulsive interatomic interactions [11] obeying the so-called
Gross-Pitaevskii equation (GPE).

BECs, due to their high degree of controllability and
isolation from the environment [12], constitute fertile
physical platforms for investigating the existence, dy-
namics and interactions [13–16] of these matter-waves or
multi-component [17–19] and multi-dimensional variants
thereof [20–22]. Additionally, several powerful techniques
have been utilized in order to generate such waves. These
include, among others, phase imprint [8, 20, 23] and den-
sity engineering [22], perturbing the BEC with localized
impurities [24, 25] and interference experiments [26–29].

Among the aforementioned methods, the latter is
based on the matter-wave interference of two colliding
condensates, a process via which dark soliton trains can
be produced. Several experimental and theoretical works
have been devoted to studying the controllable creation
of such dark soliton arrays [26–28, 30, 31]. They re-
vealed, among other things, that the momenta of the
colliding BEC parts and their relative phase play an im-
portant role in the number of generated solitonic entities.
This result has been derived analytically for the defo-
cusing NLS equation by means of the inverse scattering

transform (IST) in the seminal work of Ref. [3]. Re-
cent theoretical attempts have exploited the integrable
nature of the above scalar NLS model and further de-
veloped an IST formalism accounting for both symmet-
ric [32, 33] and fully asymmetric non-zero-boundary con-
ditions (NZBC) [34].

In the present work we exploit the unprecedented level
of control that the ultracold environment offers along
with the exact analytical tools provided by both direct
scattering methods and the IST with NZBC and we re-
port the on-demand generation of dark soliton arrays.
In particular, we consider a one-dimensional (1D), har-
monically trapped scalar BEC composed of repulsively
interacting atoms, and we study the response of such a
system to box-type initial configurations [3, 31, 33, 35]
(see also Ref. [36–38] in nonlinear optics) whose shape is
controlled by five distinct parameters. Limiting cases of
the latter directly mimic interference and density/phase
engineering processes suggesting the experimental rele-
vance of our findings. The closest analogue to this in
the context of trapped BECs that we are familiar with
appears in the work of [30], however that work is based
on the (approximate) Bohr-Sommerfeld quantization rule
for hyperbolic function based perturbations of the initial
density or phase profile. Here, on the other hand, we
leverage both the pioneering work of [3] and also the re-
cent developments of [32, 33], to obtain explicit analytical
results based on IST.

More specifically, first we consider the integrable ver-
sion of the problem, i.e., the defocusing NLS equation
with NZBC. The direct scattering problem for this equa-
tion with the above box-type initial condition is solved
analytically. Expressions for the discrete eigenvalues of
the scattering problem, which as usual determine the am-
plitudes and the velocities of the ensuing dark solitons,
are found, and the exact soliton waveforms and the center
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of each of them can be extracted within the IST. Having
at hand the exact analytical expressions, a systematic
study of the dynamical evolution of the scalar system
is then put forth. Distinct parameter explorations are
conducted including, for instance, in-phase (IP) and out-
of-phase (OP) initial configurations. In all cases investi-
gated herein, remarkable agreement between the analyti-
cal predictions and our numerical findings is observed.
This agreement in turn means that, for example, the
number of dark solitons that are expected to nucleate via
interference is a-priori predicted by our initial condition,
along with the amplitudes and velocities of the emergent
matter waves. It is also found that the size of the initial
box directly affects the number, the amplitude and veloc-
ity of the emitted dark solitons. Additionally, its phase,
which can be now manipulated with the analytical tools
discussed in this work, along with its depth can deter-
mine not only the even or odd number of nucleated dark
solitons, but can also lead to an asymmetrical distribu-
tion thereof. Remarkably, the analytical solutions of the
homogeneous setting (where by “homogeneous” we mean
the case without confinement) can be suitably extended

to the presence of a harmonic confinement. Specifi-
cally, it is found that in each scenario the number of in-
trap emitted dark solitons and their amplitudes coincide
with that of the homogeneous setting, while their tra-
jectories closely follow those of a particle in a harmonic
oscillator [9]. Additionally here, by monitoring during
evolution the center of mass of each nucleated dark soli-
ton, estimations of the oscillation frequency of individual
waves are obtained. Excellent agreement with the ana-
lytical expressions is exposed for the soliton amplitudes
and velocities, while deviations smaller than 4% are iden-
tified for the oscillation frequency when compared to the
analytical predictions.

The flow of this paper is as follows. In Section II
we introduce the model and discuss the direct scatter-
ing problem for the NLS with a general box-type initial
condition. Additionally, we comment on limiting cases,
in terms of the involved box parameters, and thus es-
tablish connections with interference and density/phase
engineering processes used in contemporary BEC exper-
iments. In Section III we present our findings. First, we
extract the eigenvalues of the scattering problem over a
wide range of different initial configurations. Then, we
perform a comparison of the analytical predictions with
direct numerical simulations of the GPE both in the ab-
sence and in the presence of the trap. Finally, in Sec-
tion IV we summarize our results and discuss possible
directions for future study.

II. MODEL SETUP, SCATTERING PROBLEM
AND DISCRETE EIGENVALUES

A. The Gross-Pitaevskii and nonlinear
Schrödinger equation setup

The system of interest is a scalar 1D BEC consisting of
repulsively interacting atoms being confined in a highly
anisotropic trap with longitudinal and transverse trap-
ping frequencies chosen such that ωx � ω⊥. In such
a cigar shaped geometry [8, 17], the condensate wave-
function along the transverse direction, being the ground
state of the respective harmonic oscillator, can be inte-
grated out. Then, in the mean-field framework, the BEC
dynamics for the longitudinal part of the wavefunction
Ψ(x, t) is governed by the following 1D GPE [6, 7]

i~
∂Ψ

∂t
= − ~2

2m

∂2Ψ

∂x2
+ V (x)Ψ + g|Ψ|2Ψ. (1)

Moreover, in the above expression V (x) = mω2
xx

2/2 de-
notes the external harmonic potential. Additionally, m
denotes the atomic mass, while g = 2~ω⊥as is the ef-
fective 1D coupling constant expressed in terms of the
s-wave scattering length, as. The latter accounts for two-
atom collisions and can be tuned by means of Feshbach
resonances [39, 40]. In the present work we consider g = 1
and our setup can be realized experimentally by consid-
ering e.g. a gas of 87Rb atoms [6, 7]. By performing
the transformations: |q|2 = 2as|Ψ|2, x′ = a−1⊥ x, with

a⊥ =
√

~/mω⊥ being the transverse oscillator length,
and t′ = ω⊥t, we cast the aforementioned scalar GPE in
the dimensionless form

i
∂q

∂t
= −1

2

∂2q

∂x2
+

1

2
Ω2x2q + |q|2q , (2)

where Ω ≡ ωx/ω⊥. For convenience we further dropped
the primes. In the absence of a trapping potential (i.e.,
for Ω = 0), Eq. (2) reduces to the well-known defocusing
NLS equation [10].

The latter integrable model can be solved analytically
via IST and it is known to possess dark soliton solutions
that have NZBC at infinity [33]. To this end for the ana-
lytical considerations to be carried out below, we further
perform the rescaling q̃(x, t) = q(

√
2x, t) exp

{
−2iq2ot

}
in

the integrable version of Eq. (2) and by omitting the
tildes we end up with

iqt + qxx − 2(|q|2 − q2o)q = 0. (3)

Notice that with the aforementioned transformation
Eq. (3) satisfies the following time-independent NZBC
at infinity

lim
x→±∞

q(x, t) = q± = qoe
iθ± . (4)

Henceforth, qo = |q±| > 0 (without loss of generality),
θ± are real numbers, and the subscripts t and x intro-
duced in Eq. (3) denote here and throughout this work
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partial differentiation with respect to time and space, re-
spectively.

Motivated by our recent work of Ref. [31], but also by
the earlier works of Refs. [3, 36, 38, 41–44] regarding the
controllable nucleation of soliton arrays, for our analyt-
ical and numerical investigations below, we consider the
following box-type initial configurations for the conden-
sate wavefunction:

q(x, 0) =

 qoe
iθ− , x < −L ,

heiα, |x| < L ,
qoe

iθ+ , x > L .
(5)

Here, h ≥ 0 refers to the depth (h < qo) or height (h >
qo) of the box. Additionally, L corresponds to the half
width of the box, qo is the background amplitude, θ±
are the asymptotic phases at either side of the box and
α is the phase inside the box. It will be convenient to
introduce the quantities

∆θ = θ+ − θ− , ∆θ+ = θ+ − α , ∆θ− = α− θ− , (6)

to denote the distinct phase differences in each of the dif-
ferent regions of the box. Owing to the phase invariance
of the NLS equation, we can take θ+ = −θ− = θ with-
out loss of generality, and we will do so hereafter so that
∆θ = 2θ and ∆θ± = θ∓α. Note, however, that the phase
inside the box, α, remains as an additional, independent
parameter. We will refer to the cases ∆θ = 0 and ∆θ 6= 0
as in-phase (IP) and out-of-phase (OP) condensates, re-
spectively, and to the special case h = 0 (which describes
the complete absence of atoms inside the box) as that
of a “zero box”. A schematic illustration of the initial
configuration (5) is provided in Fig. 1(a).

B. Direct scattering of box-type configurations

Here, we follow the presentation of [33]. As noted ear-
lier, the defocusing NLS equation [Eq. (3)] is an inte-
grable nonlinear partial differential equation, whose ini-
tial value problem can be solved by means of the IST via
its Lax pair. The 2× 2 Lax pair associated with Eq. (3)
is

φx = Xφ , φt = Tφ , (7)

where φ is a 2× 2 matrix eigenvector,

X(x, t, k) = ikJ + Q , (8)

T(x, t, k) = 2ik2J− iJ(Qx −Q + q2o)− 2kQ , (9)

and

J =

(
−1 0
0 1

)
, Q(x, t) =

(
0 q
q∗ 0

)
. (10)

The first equation in (7) is referred to as the scatter-
ing problem, k ∈ C as the scattering parameter, and
q(x, t) as the scattering potential. One can expect that,

Figure 1. Schematic illustration of the box-type initial
configuration (5), for generic wavefunction parameters, i.e.,
L, qo, θ, h and α (a) in the absence and (b) in the presence
of a harmonic trapping potential. Note that the quantities
shown are measured in transverse oscillator units (see text).

as x → ±∞, the solutions of the direct scattering prob-
lem are approximated by those of the asymptotic scat-
tering problem φx = X±φ, where X± = −ikJ+Q± and
Q± = limx→±∞Q(x, t).

The eigenvalues of X± are ±iλ, where

λ(k) =
√
k2 − q2o . (11)

As in Refs. [33, 45–47], we take the branch cut along the
semilines (∞,−qo) and (qo,∞), and we define uniquely
λ(k) by requiring that Imλ(k) ≥ 0. (This corresponds to
working on one sheet of the two-sheeted Riemann surface
defined by λ(k) [33, 45–47]).

Here, we define the Jost solutions φ±(x, t, k) as the
simultaneous solutions of both parts of the Lax pair sat-
isfying the boundary conditions

φ±(x, t, k) ≡ Y±(k)eiΘ(x,t,k) + o(1) as x→ ±∞
(12)

where Θ(x, t, k) = Λx − Ωt, Λ = diag(−λ, λ), Ω =
diag(2kλ,−2kλ), and Y±(k) are the simultaneous eigen-
vector matrices of X± and T±. Both Jost solutions are
related to each other through the scattering relation

φ−(x, t, k) = φ+(x, t, k)S(k) , (13)

and the scattering coefficients (the entries of the 2 × 2
scattering matrix S(k)) are time independent on account
of the fact that the Jost eigenfunctions are chosen to be
simultaneous solutions of the Lax pair.

As we are only concerned with the discrete eigenvalues
of the scattering operator, which are time-independent,
hereafter we will consider the scattering problem at t = 0
and omit the time dependence from the eigenfunctions.
At t = 0 the scattering problem in each of the three
regions x < −L, |x| < L, and x > L takes the form
vx = (−ikJ+Qj)v with j = c,± with constant potentials
Q± and Qc,

Q± =

(
0 qoe

±iθ

qoe
∓iθ 0

)
, Qc =

(
0 heiα

he−iα 0

)
, (14)
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where again we set θ+ = −θ− = θ without loss of gener-
ality. One can then easily find explicit solutions for the
scattering problem in each of the three regions:

ϕl(x, k) = Y−(k)eiΛx x ≤ −L (15a)

ϕc(x, k) = Yc(k)eiMx |x| ≤ L (15b)

ϕr(x, k) = Y+(k)eiΛx x ≥ L (15c)

where M = diag(−µ, µ), with µ =
√
k2 − h2, and

Y±(k) =

(
k + λ −iqoe±iθ
iqoe

∓iθ k + λ

)
, (16)

Yc(k) =

(
k + µ −iheiα
ihe−iα k + µ

)
. (17)

We then have explicit representations for the Jost
solutions φ±(x, 0, k) in their respective regions, i.e.
φ−(x, 0, k) ≡ ϕl(x, k) for x ≤ −L, and φ+(x, 0, k) ≡
ϕr(x, k) for x ≥ L. At the boundary of each region one
can express the fundamental solution on the left as a lin-
ear combination of the fundamental solution on the right,
and vice versa. In particular, we can introduce scattering
matrices S−(k) and S+(k) such that

ϕ−(−L, k) = ϕc(−L, k)S−(k) , (18a)

ϕc(L, k) = ϕ+(L, k)S+(k) . (18b)

As a consequence, we can express the scattering matrix
S(k) relating the Jost solutions φ±(x, k) as

S(k) = S+(k)S−(k)

= e−iΛLY−1+ Yce
2iMLY−1c Y−e

−iΛL . (19)

Computing the right-hand side of Eq. (19), we obtain
the following expression for the first element s11(k) of
the scattering matrix S(k):

λµe−i(2λL+θ)s11(k) = µ cos(2µL) (λ cos θ − ik sin θ)

+ i sin(2µL)
[
hqo cosα

− k(k cos θ − iλ sin θ)
]
. (20)

The discrete eigenvalues of the scattering problem are the
zeros of s11(k). Each of them contributes a dark soliton
to the solution. For the scalar defocusing NLS equation
the zeros are real and simple, and there is a finite number
of them, belonging to the spectral gap k ∈ (−qo, qo) [48].
In the case of a single zero ko, the dark soliton solution
of Eq. (3) reads

qd(x, t) = qo cosβo − iqo sinβo ×

× tanh
[

sinβo (x− x0(t))
]
, (21)

where ko = qo cosβo, and λo = iqo sinβo provide the
velocity and the amplitude of the soliton,

v = −qo cosβo ≡ −ko , (22a)

Ad = qo sinβo ≡
√
q2o − k2o , (22b)

respectively, and x0(t) = x0 − qo cosβot stands for the
center of the soliton.

We point out that the maximum soliton speed |vmax| =
qo, which coincides with the speed of sound of the con-
densate, c = qo (note that c =

√
gn [49, 50] in the dimen-

sionless units adopted herein, with n being the density
of the BEC). Recall (cf. Eq. (22)) that a true soliton can
never reach such speed (v = ko < qo). On the other hand,
the maximum amplitude of a soliton is Amax

d = qo, and
it is attained by solitons with v = ko = 0, also known as
black solitons. In what follows, we will use the variable
ko to refer to a generic zero or to a set of zeros.

C. Special cases, symmetries , interference and
phase/density engineering

Some of the most popular methods to generate dark
solitons in 1D BECs are phase imprinting, density en-
gineering and colliding condensates, as discussed in the
introduction. In this section we show how box-type ini-
tial configurations can be analogous to most setups used
in the aforementioned methods for the generation of dark
solitons in 1D BECs, and we obtain analytical results in
the corresponding cases.

Before discussing each case, it is worth noting that,
regardless of the method of creation, configurations with
a phase difference ∆θ = π allow the emergence of black
solitons. Recall that black solitons are static solitons, i.e.
v = ko = 0 [see Eq. (22)]. We can establish straightfor-
ward necessary and sufficient conditions to ensure that
k = 0 is a discrete eigenvalue, i.e., a zero of s11(k). Since
we are looking for zeros, from now on it is convenient to
only work with the right-hand side of Eq. (20). When
k = 0 both λ and µ are purely imaginary, i.e. λ = iqo
and µ = ih, and Eq. (20) yields

cosh(2hL) cos θ + sinh(2hL) cosα = 0 . (23)

Thus, k = 0 is a discrete eigenvalue if and only if either
(i) cos θ = cosα = 0, for any choice of h, L, qo; or (ii)
tanh(2hL) = − cos θ secα. The former is in line with the
previous statement regarding black solitons, i.e., θ = π/2.
The latter obviously requires cos θ secα > −1.

Equation (23) is a special case of the symmetries pos-
sessed by the discrete spectrum in certain configurations.
Since λ and µ are both even functions of k, when θ = 0
(corresponding to an in-phase background, i.e., ∆θ = 0),
the right-hand side of Eq. (20) is also an even function of
k. Thus, independently of the value of h and α, to each
discrete eigenvalue ko 6= 0 there corresponds a symmetric
discrete eigenvalue −ko, yielding a pair of symmetric soli-
tons with the same amplitude and opposite velocity. The
same symmetry also arises when θ = π/2 (i.e., ∆θ = π) if
either h = 0 or α = π/2, since in this case the right-hand
side of Eq. (20) becomes an odd function of k.
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We now discuss how the box-type configurations (5)
relate to two of the aforementioned methods, associated
with the interference process. Such a setup in princi-
ple consists of two condensates, e.g. of the same atomic
species, being separated from each other by some dis-
tance. The emergence of dark solitons in this setting
relies on matter-wave interference phenomena occurring
during the collision of the condensates [26–29]. Basi-
cally, when the condensates collide an interference pat-
tern appears. Then, depending on the initial momenta
and phase of the colliding condensates, some of the in-
terference fringes formed might develop into dark soli-
tons. Specifically, the number of the latter is known to
be proportional to the momenta of the colliding conden-
sates [27, 28] and can be increased by placing them far-
ther apart. Additionally, also known is that the parity of
the number of solitons depends on the phase difference
between the condensates. Namely, an even (odd) number
of them is going to emerge if the initial condensates are
IP (OP). A box-type initial configuration that can mimic
such an interference process is that with h = 0. In this
case the two sides of the box represent the two indepen-
dent colliding condensates, being separated by a distance
2L and having a phase difference ∆θ = 2θ. Taking h = 0,
Eq. (20) reduces to

0 = k cos (2kL)
[
λ cos θ − ik sin θ

]
− ik sin (2kL)

[
k cos θ − iλ sin θ

]
, (24)

which can be rewritten as√
k2 − q2ok cos(2kL+ θ)− ik2 sin(2kL+ θ) = 0 . (25)

Apart from the trivial solution k = 0, the other solutions
kn are given by

2knL+ θ = arctan

(√
q2o − k2n
kn

)
+ πn , (26)

with n ∈ Z (note: in Sec. III the subscript n is replaced
by o). This sets all the solutions in the interval −qo <
kn < qo, as expected. Moreover, the limiting case of
kn → qo provides the number of zeros N for a given L
and 0 ≤ θ ≤ π as

N =

⌈
2qoL+ θ

π

⌉
. (27)

In the above expression d e denotes the ceiling function
(Eq. (27) was already derived in [3, 35]). From the above
equation, it is then clear that the number of solitons (ze-
ros) is proportional to the distance between the colliding
condensates, and its parity depends on their phase dif-
ference.

We now discuss the second methodology, namely
phase-imprinting [8, 23, 51]. This technique imprints a
phase-jump on the condensate, by exposing part of it to a
far-detuned laser beam, which can dynamically develop

into dark solitons. This setting can be reproduced by
box-type initial configurations even with L = 0. This ex-
treme case represents the setting of a highly localized in
space phase imprinting. Notice that such a choice indeed
leads to a condensate that has two regions with different
phases. Then, Eq. (20) directly reduces to

λ cos θ − ik sin θ = 0 , (28)

which yields a single zero

k = qo cos θ = qo cos

(
∆θ

2

)
. (29)

Notice also that a black soliton solution occurs when
∆θ = π, as expected from Eq. (23)(i). Even though
Eq. (29), having a single phase-jump, does not produce
soliton trains, it nevertheless assures the controlled gen-
eration of a single soliton given a particular θ. Moreover
it correctly captures earlier findings [8, 14, 52, 53] accord-
ing to which the generated solitons are faster, shallower
and wider, the smaller the phase difference is [see also
Eq. (22)].

We can consider other cases as well. For instance a
case in which a phase is imprinted on a finite region of
the BEC, resulting in a three-section condensate with
two phase-jumps [8, 14, 52, 53]. To reproduce such a
setup with the box-type initial configuration of Eq. (5)
we consider a homogeneous condensate (h = qo) having
an extent 2L and to which we impose a phase (α). In
this case, if L ≈ qo then Eq. (20) needs to be numerically
solved. Yet, in the limit L� qo, we can treat both phase-
jumps as being sufficiently far apart from each other to
treat them locally. Thereby, we can make use again of
Eq. (29) with the appropriate phase difference

k± = qo cos

(
∆θ±

2

)
= qo cos

(
θ ∓ α

2

)
. (30)

Recall that ± denotes the right or the left phase-jump
[see Eq. (5)]. Here, we want to point out that we as-
sume 0 ≤ ∆θ± ≤ π, otherwise it needs to be transformed
accordingly with a π shift. Yet, another case example
consists of a box-type initial configuration corresponding
to a barrier on top of a background, i.e., h > qo. Consid-
ering h � qo and imposing a phase α at the location of
the barrier, Eq. (20) can be expressed as

tanh(2hL) =
k sin θ −

√
q2o − k2 cos θ

qo cosα
. (31)

Since the left-hand side is always positive, Eq. (31) pro-
vides zeros if and only if θ and α are such that they pro-
duce a positive right-hand side. For example, if we look
for zeros corresponding to black solitons, i.e. ko = 0, we
recover condition (ii) from Eq. (23). Additionally, in the
limit L, h→∞, Eq. (31) reduces to

k± = qo sin ∆θ± . (32)
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Lastly, we briefly comment on the analogy of density
engineering methods with our box-type initial configura-
tions. These methods are typically used to create density
defects on a condensate, which can be small [24] or sub-
stantial [25] depletions of the latter. To mimic such tech-
niques with our box-type initial configurations, each case
needs to be considered individually and the zeros must
be found numerically by solving Eq. (20). Specific case
examples of the zeros and their parametric dependencies
for distinct box-type initial configurations are presented
in the forthcoming section.

III. DARK SOLITON GENERATION AND
DYNAMICS

A. Analytical results for the discrete spectrum

Here we analytically characterize the dark solitons pro-
duced by the box-type initial configurations (5) by study-
ing the zeros of the first element, s11(k), of the scattering
matrix, S(k) [Eq. (20)], upon considering different selec-
tions of the system parameters. Specifically, we utilize
the wavefunction of Eq. (5) which is characterized by the
following five parameters: the half width, L, the ampli-
tude, qo, the side phase, ±θ, the depth (or height) of the
box, h, and its phase, α [see also Fig. 1(a)]. To sort out
all the spectra, we choose a set defined by two main vari-
ables, which will be varied while the remaining system
parameters are held fixed. Since L and h can be thought
of as the main parameters of the scalar system under con-
sideration, the following discussion will be mainly focused
on the set of values of L and h. The corresponding explo-
ration, in terms of parametric variations, is performed for
the following selection of the configuration parameters:

L ∈ [1, 9], θ =
{

0,
π

2

}
, h ∈ [0, qo], α = {0, π} , (33)

together with qo = 1. However, we will also briefly com-
ment on other selections too whose results are not in-
cluded herein for brevity.

In what follows, we present the spectra of zeros of the
first element s11(k) of the scattering matrix for three dif-
ferent sets of values of L and h. Each distinct exploration
is shown in a figure consisting of ten panels (a) to (i) that
range from L = 1 to L = 9, respectively. Each panel con-
tains different zeros, ko, as h is varied, with each of which
corresponding to a particular dark soliton solution.

All in-phase. The first selection we investigate is
the case qo = 1, θ = 0 and α = 0. Here, ∆θ = 0 implying
an IP configuration [see Fig. 1(a)], and α = 0 implies
that the box is also in-phase with the background. The
corresponding spectra of zeros is presented in Figs. 2(a)–
(i). Due to the parity of the zeros, only ko > 0 are
shown in the aforementioned figure. As can be directly
seen, increasing L increases the number of solitons (i.e.
the number of ko’s). Particularly, when L = 1 only one
pair of zeros, ±k1, appears (one-pair of soliton solutions)
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Figure 2. Zeros of s11(k) as a function of h for different values
of L. The parameters qo = 1, θ = 0 and α = 0 remain
fixed. Only ko > 0 are shown due to the parity of the zeros.
Note that the quantities shown are measured in transverse
oscillator units (see text).

while L = 5 [L = 9] allows up to four [six] pairs of them,
±k1, . . . ,±k4 [±k1, . . . ,±k6], to occur. This is in agree-
ment with the analytical expression of Eq. (27) and cor-
rectly captures the h = 0 case. Recall that h = 0 is
referred to as a “zero box” and is physically associated
with a setting of independent condensates colliding. Note
also that even though Eq. (27) is not a general expres-
sion but rather a limiting case, the number of solitons
still increases with L and qo even when h 6= 0. Also
by inspecting Figs. 2(a)–(i), it becomes apparent that
for fixed h, increasing L decreases the value of ko. This
implies that the resulting solitons are slower as L in-
creases [see Eq. (22)], which can be understood as the mo-
menta available in the system being distributed among
a larger number of solitons. This trend can be easily
discerned by monitoring e.g. k1(h = 0) as L increases
[see also Eq. (26)]. Indeed, initially, i.e. for L = 1,
k1(h = 0) = 0.515 [Fig. 2(a)]. Then, for L = 2, k1
decreases to k1(h = 0) = 0.313 [Fig. 2(b)] and already
for L = 9 k1(h = 0) = 0.083 [Fig. 2(i)]. On the other
hand, for a fixed L it is found that the value of ko in-
creases, i.e., the solitons become faster, upon increasing
h. Moreover, since k ∈ (−qo, qo) [see also Sec. II], this
increasing tendency of ko for increasing h holds as such
until ko = qo, a threshold above which solitons cease to
exist [see Eq. (22)]. Recalling now that increasing h im-
plies that the initial jump in the configuration becomes
progressively shallower, then when h = qo there is no box
configuration that can lead to the creation of solitonic ex-
citations. Such outcome also persists for h > qo.

Out-of-phase box. Next we turn to the second se-
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L(h) : qo = 1, θ = 0, α = π
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Figure 3. Zeros of s11(k) as a function of h for different values
of L. The parameters qo = 1, θ = 0 and α = π remain
fixed. Only ko > 0 are shown due to the parity of the zeros.
Note that the quantities shown are measured in transverse
oscillator units (see text).

lection of parameters, in which qo = 1, θ = 0 as be-
fore, but where now α = π. This is also an IP config-
uration, but the box is now out-of-phase with the back-
ground. The analytical solutions, given by the zeros of
the first scattering element, are illustrated in Figs. 3(a)–
(i). Since ∆θ = 0 here as well, we only show the range
ko > 0, as before. Below, we solely focus on k1 since it
is the only zero having a distinct trend when compared
to those shown in Fig. 2. Notice that contrary to the
aforementioned zeros, and also to the previous parame-
ter selection, as h increases k1 decreases with the associ-
ated soliton thus becoming slower and, in fact, k1 → 0 as
h → ∞. This decreasing tendency of k1 is in agreement
with Eq. (23) and specifically with condition (ii).

Additionally, it is also evident from Figs. 3(b)–(i) that
k1 → 0 as L→∞ independently of h. A discrete eigen-
value k1 = 0 would in theory correspond to a pair of
black solitons, each generated as a consequence of the
phase jump ∆θ± = ∓π at x = ±L. In turn, this would
correspond to k1 = 0 being a degenerate eigenvalue with
degeneracy two. However, it is well-known that, for the
scalar defocusing NLS, all discrete eigenvalues are sim-
ple [48], and no coalescence of zeros is possible, in con-
trast to the focusing case. What is happening is that, as
L → ∞, one reaches an approximate degeneracy: when
the phase jumps at x = ±L are sufficiently far apart
from each other, one can approximately treat them as
independent scattering problems. Then, the solution to
each problem is simply given by Eq. (29), which indeed
coincides with the observed result. Nonetheless, it is
important to realize that the discrete eigenvalues of the

L(h) : qo = 1, θ = π/2, α = 0
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Figure 4. Zeros of s11(k) as a function of h for different values
of L. The parameters qo = 1, θ = π/2 and α = 0 remain fixed.
Note that the quantities shown are measured in transverse
oscillator units (see text).

overall system are only approximately given by those of
the individual scattering problems, and a careful analyt-
ical treatment shows that in practice the symmetric pair
of discrete eigenvalues is always at a nonzero distance
from k = 0, although this distance vanishes in the limit
L→∞.

Finally, we note in passing that cases corresponding to
different choices of α have also been explored, for which
upon increasing h, k1 → k± [Eq. (30)]. To be precise,
it is found that if 0 ≤ α ≤ π/2 then k1 increases and
eventually reaches k1 = qo. On the other hand, if π/2 <
α ≤ π, then k1 asymptotically tends to a different yet
again finite value, as h is increased. Indeed, taking the
limit h� qo and for θ = 0, Eq. (31) yields

tanh(2hL) = − secα

√
1−

(
k

qo

)2

, (34)

which directly implies that secα < 0 explaining this way
that there exist values of α for which k1 = qo is reached.
Past this point, and for L→∞ or h→∞, k1 → qo sinα
asymptotically slow [see Eq. (32)].

Asymptotic phase difference. Our last parametric
exploration, shown in Figs. 4(a)–(i), consists of various
choices of L and h as before, but with the remaining sys-
tem parameters as qo = 1, θ = π/2 and α = 0. This
initial state preparation corresponds to an OP box-type
configuration, with ∆θ = π. In contrast to the previous
cases, this choice produces an asymmetric distribution of
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discrete eigenvalues. This outcome is evident by looking
at the zeros as h is varied, as illustrated in Figs. 4(a)–(i).
Exceptionally, for h = 0 all zeros are paired, i.e. ko = ±k,
except for the k7 one. For instance, for L = 9 and h = 0
thirteen soliton solutions are identified, corresponding to
the thirteen distinct zeros, k1, . . . , k13, shown in Fig. 4(i).
From these, solutions k1, . . . , k6 = −k13, . . . ,−k8, respec-
tively. As in the preceding scenarios, it is clear that in
the present case the number of solitons also increases as
L increases, and increasing L while keeping h fixed re-
sults in zeros that have smaller |ko| value and are thus
slower. Additionally, for fixed L the number of expected
soliton solutions decreases as we increase h. For exam-
ple, for L = 3 all five solutions k5, . . . , k9 occur e.g. at
h = 0, but only four of them, i.e. k6, . . . , k9, are left
for h = 0.6, further reducing to three (k6, k7 and k8)
for h = 0.8 [Fig. 4(c)]. Moreover, increasing h produces
also an increase in the magnitude of each zero (|ko|) un-
til eventually |ko| = qo is reached, leading in turn to the
absence of soliton solutions.

Exceptions to the aforementioned general behavior of
the solutions are the zeros k7 and k8 that never reach the
threshold |ko| = qo for h ≤ qo. Instead, these two solu-
tions are seen to merge asymptotically as h increases, a
merging that occurs faster for larger L values. This merg-
ing can in turn be translated into two (asymptotically)
identical solitons, having the same velocity and ampli-
tude, but different soliton centers, x0 [see Eqs. (22)]. To
understand further the aforementioned behavior, we con-
sidered also different values of θ which in turn unraveled
that if h = qo then k7 = k8 → qo cos(θ/2) as L → ∞
[see Eq. (30)]. This is also in line with our interpretation
for the existence of degenerate zeros in the scalar NLS
(see also our previous discussion). On the other hand, if
h → ∞ then k7 = k8 → qo sin(∆θ±) independently of L
[see Eq. (32)]. Note here that the subscripts referring to
the solutions k7, k8 are such for the specific case example
addressed herein. However, different values of θ might
change the number of solutions and thus their relevant
labelling.

B. Nucleation of dark soliton trains: Without
confinement

In this section we aim to validate the analytical results
presented in Section III A (and more specifically to bear
out the discrete eigenvalues identified there) by numeri-
cally solving the scalar GPE in the absence of a confining
potential, i.e. Ω = 0 [Eq. (2)]. For the dynamical evo-
lution of the aforementioned scalar system, we employ a
fourth-order Runge-Kutta integrator accompanied by a
second order finite-difference method that accounts for
the spatial derivatives. The spatial and temporal dis-
cretizations introduced are dx = 0.1 and dt = 0.001,
respectively, and the position of the boundaries used in
the dynamics is at |x| = 2500 to avoid finite size effects.
In the following, we fix L = 5 and qo = 1 and we con-

Figure 5. Dark soliton solutions resulting from the box-type
initial condition (5) with L = 5, qo = 1, θ = 0, h = 0 and
α = 0, corresponding to a zero box and an in-phase back-
ground [cf. Fig. 2(e)]. (a) Snapshot of |q| at t = 250 given
by the GPE (solid blue line) and the analytical solutions with
x0(t = 0) = 0 (dashed yellow line). The inset shows the
spatiotemporal evolution of |q| at initial times. (b) Contour
plot of Re s11 = 0 (solid blue line) and Im s11 = 0 (dashed
yellow line) on the complex k-plane for Re k ≥ 0. The ze-
ros, ko, are depicted by red circles. Temporal evolution of
the velocities (c) and the amplitudes (d) of the dark solitons.
In both (c) and (d) the distinct lines (from bottom to top)
correspond to the analytical predictions stemming from the
zeros (from right to left) in (b). Dotted black line in (c) refers
to the speed of sound and in (d) to the maximum amplitude.
The zeros, ko, follow the notation introduced in the legend
of Fig. 2, with k1 = 0.1428, k2 = 0.4271, k3 = 0.7069 and
k4 = 0.9608. Note that the quantities shown are measured in
transverse oscillator units (see text).

sider as representative examples the values h = {0, 0.5}.
Additionally, for this h selection, we further consider the
cases of θ = {0, π/2} and α = {0, π}.

Below we present our findings regarding the dynamical
nucleation of dark solitons via the matter-wave interfer-
ence of two colliding condensates [26–29] for various ini-
tial configurations. When comparing the analytical pre-
dictions to the numerical observations, it is important to
keep in mind that the various solitons generated by the
initial conditions (5) are in general interacting with each
other. Therefore, one can expect to be able to visually
identify individual solitons only in the asymptotic limit
of x → ±∞, after the solitons emerge from the creation
process and can be considered to be well-separated and
independent from one another. Conversely, during the
initial stages of the dynamics one expects to see discrep-
ancies between the analytically determined solitons and
the numerically observed ones. One can also expect any
such discrepancies to become smaller and gradually dis-
appear as t→ ±∞. This expectation is indeed reflected
by the results, as discussed below.

Zero box, in-phase background. We start pre-
senting our findings in Figs. 5(a)–(d). According to our
analytical estimates [see Fig. 2(e) and Eq. (27)] four pairs
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Figure 6. Same as Fig. 5 but for L = 5, qo = 1, θ = π/2,
h = 0 and α = 0, corresponding to a zero box and an out-
of-phase background. From left to right the zeros, ko, in (b)
that lead to the solitons formed in (a) are located at: k7 =
0.0, k8 = 0.2852, k9 = 0.5679, k10 = 0.8423 [see the legends
in Fig. 4]. Note that the quantities shown are measured in
transverse oscillator units (see text).

of dark solitons are expected and indeed form when a zero
box (h = 0) IP (∆θ = 0) configuration is utilized. Note
that due to the symmetric nucleation of the matter-waves
only the solitons located at x < 0, having negative veloci-
ties, v < 0, and thus corresponding to the positive zeros,
ko > 0, occurring at Re k ≥ 0 are shown in Figs. 5(a)
and 5(b). Remarkable agreement between the analytical
solutions and the dynamically nucleated matter-waves is
observed already at times t = 250 during evolution, as
illustrated in this profile snapshot of the norm of the
wavefunction |q|t=250 [Fig. 5(a)]. Notice how the emer-
gent dark solitons spread outwards at their initial stages
of formation, i.e., right after the collision of the two sides
of the initial box around x = 0. Such spreading at early
times t < 5, as depicted in the spatiotemporal evolu-
tion of |q| [inset of Fig. 5(a)], bends the trajectories of
the solitons that are symmetrically emitted around the
origin. However, already at t ≈ 25, where also the tra-
jectories of the propagating solitons become linear, the
instantaneous velocities, v = dxCM/dt (see below), of
the individual coherent structures reach the asymptotic
analytical predictions stemming from the zeros, ko, iden-
tified in Fig. 5(b), remaining thereafter nearly constant
for all times [Fig. 5(c)]. The same trend holds also for
the amplitudes, Ad, of the emergent entities illustrated in
Fig. 5(d). Note also that in both Figs. 5(c) and 5(d) the
fastest dark wave denoted by k4 has a velocity proximal
to the speed of sound c = q0 = 1 [dotted black line in
Fig. 5(c)], while the slowest soliton denoted by k1 has an
amplitude close to the maximum one, i.e., Amax

d = q0 = 1
[dotted black line in Fig. 5(d)].

Finally, it is important to mention at this point that,
in order to obtain the amplitude of each of the afore-
mentioned solitons (and also for the cases to be pre-
sented below), we numerically followed the dark soli-

ton minima during evolution. Then, the amplitude
corresponds to the value of |q| at these minima. For
measuring the instantaneous velocity, we used instead
the position given by the center of mass, i.e., xCM =(∫ xr

xl
x|q|2dx

)
/
(∫ xr

xl
|q|2dx

)
, of each soliton with xl,r de-

noting the area of integration around each dark soliton’s
core. Therefore, at early times, the oscillations observed
in the temporal evolution of v [Fig. 5(c)] stem from the
discrepancies in the calculation of xCM . Indeed, at the
initial stages of the dynamics, the calculation of xCM
might present some irregular oscillations if a soliton is not
well formed nor separated enough from its neighbours or
the emitted radiation. The latter, seen for instance at
x < −275 in Fig. 5, is a direct effect of the highly excited
initial state introduced herein.

Zero box, out-of-phase background. Next we
turn to the exploration of the dynamics upon consider-
ing a zero box but with OP (∆θ = π) background. Here,
our analytical findings suggest the emergence of an odd
number of solitons [see Fig. 4(e) at h = 0 and Eq. (27)].
This outcome is dynamically confirmed by Figs. 6(a)–
(d), which show three pairs of dark solitons being nucle-
ated together with a central black soliton, adding up to
the expected odd number [Fig. 6(a)]. Since once more
the generation is symmetric with respect to the origin,
only the left moving matter-waves are shown in the snap-
shot of |q|t=250 in Fig. 6(a) that correspond to the zeros
k7 − k10 illustrated in Fig. 6(b). Notice the close simi-
larities between this process and the previous one. In-
deed, besides the number of nucleated waves, the only
discernible difference at the early stages of soliton forma-
tion is the generation of the central black soliton [inset
Fig. 6(a)]. The velocities and amplitudes of the evolved
solitons also follow a trend analogous to the IP case with
minor differences for the relevant magnitudes of v and
Ad for each individual dark soliton [Fig. 6(c) and 6(d)].
The black soliton (k7) has, as expected, v = 0 and also
the maximum amplitude Amax

d = q0 = 1.

Non-zero boxes, dispersive shock waves. We
now discuss initial configurations whose shape resembles
a density defect immersed in the BEC [23–25]. To achieve
the latter we fix h = 0.5. Figures 7(a)–(d) and Figs. 8(a)–
(d) illustrate representative examples of the dynamical
evolution of the scalar system for IP initial configura-
tions but with α = 0 and α = π, respectively [see also
Fig. 2(e) and Fig. 3(e), respectively]. In both cases, at
the initial stages of the dynamics, t < 5, multiple in-
terference events significantly distort the homogeneous
background and also disturb the nucleation process.

It should be noted how, in this case as well as the fol-
lowing two, the time evolution generates dispersive shock
waves [54] as a result of the initial discontinuities. This
is a well-known phenomenon, and in marked contrast to
the case when the amplitude in the central box is zero, in
which no such structures are generated [55]. The forma-
tion and initial dynamics of these dispersive shock waves
can be effectively described using Whitham’s modulation
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Figure 7. Same as Fig. 5 but for L = 5, qo = 1, θ = 0,
h = 0.5 and α = 0, corresponding to a non-zero box in-phase
with respect to its background. From left to right the zeros,
ko, in (b) that lead to the solitons formed in (a) are located
at: k1 = 0.5526, k2 = 0.6914, k3 = 0.8763 [see the legends
in Fig. 2]. Note that the quantities shown are measured in
transverse oscillator units (see text).

theory for the defocusing NLS equation [56–61]. In sit-
uations where more than one dispersive shock wave is
generated, as in the present case (where each disconti-
nuity generates a separate structure), their interactions
can also be effectively studied, as in Refs. [62, 63], using
the Whitham modulation equations of higher genus [64].
It is also interesting to note that one could still choose
to look at the individual oscillations in these dispersive
shocks as the initial manifestations of the dark solitons
that are the main object of our study. Also note, however,
that the initial speeds of propagation of these individual
excitations are quite different from those predicted by
the IST, and are instead very well in agreement with the
predictions from Whitham modulation theory. Nonethe-
less, after these structures have interacted, the final state
of the system does become a collection of solitons whose
properties agree very well with the predictions of the IST,
as per the calculations in Section II B.

An even more dramatic instance of the same phe-
nomenon arises in the case of α = π, as depicted in the
inset of Fig. 8(a). Indeed, the spatiotemporal evolution of
this configuration captures the formation of two counter-
propagating dispersive shock waves whose downstream
soliton emission [24, 65] is illustrated in Fig. 8(a). As
in the case shown in Fig. 7(a), these shock waves inter-
act with the newly formed dark solitons, an interaction
that is most pronounced for the two central nearly black
solitons visible in the inset of Fig. 8(a). For both cases,
close inspection of the relevant insets indeed reveals that
solitons with positive velocities are initially formed at
x ≈ −5. On the other hand, the negative velocity ones
arise symmetrically at x ≈ 5. Despite the much more in-
volved soliton generation, in both cases our simulations
almost perfectly match the analytical predictions when
we set the origin of the latter at x = 0 [see the identi-

Figure 8. Same as Fig. 5 but for L = 5, qo = 1, θ = 0, h = 0.5
and α = π, corresponding to a non-zero box out-of-phase
with respect to its background. From left to right the zeros,
ko, in (b) that lead to the solitons formed in (a) are located
at: k1 = 0.0045, k2 = 0.06073, k3 = 0.8269 [see the legends
in Fig. 3]. Note that the quantities shown are measured in
transverse oscillator units (see text).

fied zeros in Fig. 7(b) and Fig. 8(b), respectively]. Our
results continue to hold even for significantly larger evo-
lution times than those depicted herein. It is also at
these later times, and in particular around t ≈ 1000,
that the two central dark solitons, whose zeros are iden-
tified at k1 = ±0.0045 [see the k1 > 0 in Fig. 8(b)], begin
to repel [29] one another effectively, given their oppo-
site but extremely small in magnitude velocities (results
not shown here for brevity). Finally, due to the above-
described dynamics, both the instantaneous velocities, v
[Fig. 7(c), Fig. 8(c)], and the amplitudes, Ad [Fig. 7(d),
Fig. 8(d)], of all three pairs of solitons formed in both
scenarios acquire their expected nearly constant trend
for t ≥ 25.

Other configurations. In all cases discussed so far,
the initial configuration gave rise to a symmetric distribu-
tion of solitons. We now explore a scenario corresponding
to an OP initial configuration, the analytical predictions
of which can be found in Fig. 4(e). The correspond-
ing dynamical process is illustrated in Figs. 9(a)–(d). In
contrast to the previously discussed IP box-type config-
urations, in the present case, since both ∆θ = π and
∆θ± = π/2, we do expect an asymmetric distribution
of the zeros, ko, and thus asymmetrically produced dark
solitons. Both expectations are confirmed and shown in
Figs. 9(a) and 9(b). In particular, seven distinct soli-
tons are nucleated in Fig. 9(a), with each of them cor-
responding to each of the seven distinct solutions shown
in Fig. 9(b). The spatiotemporal evolution of |q| at early
times [inset of Fig. 9(a)] shows that three of them have
v = −ko > 0 and four v = −ko < 0. This asymmetric
generation of matter-waves entails also the largest devia-
tions between our analytical findings and the numerically
obtained ones. This can be easily inferred by inspecting
either the profiles or even better the estimated velocities,
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Figure 9. Same as Fig. 5 but for L = 5, qo = 1, θ = π/2,
h = 0.5 and α = 0 [see the legends in Fig. 4]. In this case
(b) depicts all the complex k–plane. From left to right the
zeros, ko, in (b) that lead to the solitons formed in (a) are
located at: k4 = −0.9750, k5 = −0.7700, k6 = −0.5814, k7 =
0.4329, k8 = 0.4718, k9 = 0.6869, k10 = 0.9155. Note that the
quantities shown are measured in transverse oscillator units
(see text).

v, and amplitudes, Ad, of the ensuing waves illustrated
respectively in Figs. 9(c) and 9(d). For instance, the
fastest soliton, k4 = −0.9750, bears such a small am-
plitude that renders it indistinguishable from the back-
ground radiation for times up to t ≈ 180. As such, the
corresponding v and Ad are not depicted in Figs. 9(c)
and 9(d), respectively, until t > 180. Yet, another exam-
ple refers to the solitons labelled k7 and k8. Namely, the
two entities that are tightly close to one another [see here
Eq. (30) and Eq (32)] and thus interact continuously with
each other. It is this continuous interaction that holds
for t & 1000, before the soliton repulsion sets in, to which
the discrepancy in the amplitudes observed at t = 250 is
attributed [Fig. 9(a)]. Even though the largest deviation
between our analytical predictions, provided by the zeros
of Eq. (20), and our numerical findings is found for the
aforementioned asymmetric initial configurations, it still
lies within our numerical precision, i.e. δ = ±0.01.

We also explored cases for which h is close to qo but
h ≥ qo. Here, our results are found to be consistent with
the limiting cases discussed in Sec. II C. In particular,
θ = α = 0 leads to sound wave emission but no soliton
production. For θ = 0 and α = π the creation of two
almost black solitons (ko ≈ 0) located at x = ±(L +
ε), where ε > 0 is a small displacement caused by the
emission of radiation, is seen. Last, θ = π/2 and α = 0
(θ = π/2 and α = π) results into two nearly equal zeros,
with Re ko > 0 (Re ko < 0).

C. Nucleation of dark soliton trains: With
confinement

We now aim to generalize our findings by taking into
account the presence of a harmonic confinement that is
naturally introduced in BEC experiments [8, 19, 66]. To
this end, for the numerical considerations to be presented
below we turn on the harmonic potential introduced in
Eq. (2) and we further fix the trapping frequency to
Ω = 0.01 [66]. The latter choice, besides its experimental
relevance, is also an optimal one since it allows for prop-
erly handling the sound wave emission that takes place
at the initial stages of the interference process. Indeed,
for tighter trappings the radiation emitted remains also
trapped and, as such, multiple collisions of the generated
dark solitons with these sound waves would result in a
much more involved dynamical evolution of the nucle-
ated matter waves. Yet, another important point worth
mentioning here refers to the analytical estimates regard-
ing the soliton generation provided by solving the direct
scattering problem (see Sec. II B). Specifically, in the trap
setting under consideration these estimates can serve as
approximate ones, since for instance the NZBC, which
in turn define the asymptotic behavior of the solitons
formed in terms of amplitude, velocity and location, can-
not be fulfilled. However, as we shall show later on, the
strength of the analytical predictions is not limited to the
homogeneous setup but provides a particularly insightful
tool for the confined case as well.

In the present setting, in order to induce the dynamics
we initially find, by using imaginary time propagation,
the ground state of the scalar system [Eq. (2)]. We then
embed in it the wavefunction of Eq. (5). A schematic il-
lustration of the aforementioned initial state is illustrated
in Fig. 1(b). Moreover, in order to offer a direct compari-
son between the homogeneous and the confined cases, we
consider as representative examples five distinct selec-
tions of the involved parameters. Namely, L = 5, qo = 1
while h = {0, 0.5}, α = {0, π} and θ = {0, π/2} (see also
the relevant discussion around Figs. 5–9 in Sec. III B).
Additionally, we design the analytical estimates for the
trapped scenario by molding onto the ground state, qgs,
the analytical solutions of the corresponding homoge-
neous setting [see Eq. (21)] as follows,

|q(x, t)|2 = q2o

∣∣∣∣∣∏
i

q
(i)
d (x, t)

qo

∣∣∣∣∣
2

−
(
q2o − |qgs(x)|2

)
. (35)

In Eq. (35) the product is performed over all the different
solutions of a set of zeros ko, while the first term on the
right side corresponds to a dark soliton train solution
in the absence of a trapping potential having a back-
ground amplitude qo. The second term properly adjusts
the former, by preserving the shape of each soliton, onto
the in-trap ground state. It is important to remark that
given our particular set of initial conditions and param-
eter selection, the right hand side of Eq. (35) is always
positive. In particular, Ω = 0.01 assures a trapping po-
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Figure 10. (a)–(f) Spatiotemporal evolution of |q| for dis-
tinct choices of the involved parameters L, qo, h, α and θ (see
legends). Dashed red lines correspond to the analytical tra-
jectories given by Eq. (36). (f) Magnified version of (d) which
captures the two dark solitons that are symmetrically placed
around the trap center (x = 0). The other four solitons that
appear at the collision points are stretched due to the zoom.
The trapping frequency is fixed to Ω = 0.01. Note that the
quantities shown are measured in transverse oscillator units
(see text).

tential growth slow enough to satisfy the positivity of the
right hand side of Eq. (35). Additionally, the center of
each dark soliton is now given by

x0(t) = − ko
ωo

sin(ωot+ φo) + xo , (36)

where the amplitude of the oscillation directly depends
on ko. Here, ωo is the characteristic in-trap oscillation
frequency of a single dark soliton [29, 67] (see our discus-
sion below), xo is the equilibrium position, and φo is an
additional phase factor. Both xo and φo are fixed to zero
unless stated otherwise. Our results are summarized in
Figs. 10(a)–(f) and Figs. 11(a)–(e), as well as in Table I.

In particular, Figs. 10(a)–(e) illustrate the spatiotem-
poral evolution of |q|, for different parametric variations,
along with the trajectory of each soliton center obtained
by using the analytical expression of Eq. (36) [see dashed
red lines in Figs. 10(a)–(e)]. Additionally, Figs. 11(a)–(e)
are the corresponding profile snapshots of |q| at t = 210
for each selection of parameters, together with the rele-
vant analytical estimates stemming from Eq. (35). No-
tice here the very good agreement between the analytical
predictions and the dynamically formed dark solitons. In
general, it is found that the number of the dark solitons
formed in each in-trap dynamical process is the same as
in the homogeneous case, as dictated by Eq. (27). For
instance, Figs. 10(a) and Figs. 11(a) show the generation
of four pairs of dark solitons which is exactly the number
of matter waves that are predicted and observed for the
homogeneous counterpart of this parameter selection il-

Figure 11. (a)–(f) Profile snapshots of |q| at t = 210 for
distinct choices of the involved parameters L, qo, h, α and
θ (see legends). The snapshots from (a) to (e) correspond to
the relevant in each case dynamics presented in Figs. 10(a)–(e)
respectively. The analytical solutions are given by Eq. (35).
The trapping frequency is fixed to Ω = 0.01. Note that the
quantities shown are measured in transverse oscillator units
(see text).

lustrated in Fig. 5. This outcome holds equally also for
the dynamical processes shown in Figs. 10(b)–(d) and
Figs. 11(b)–(d) [cf. Figs. 6–8, respectively]. Here, ac-
cording to our homogeneous findings, three pairs of dark
solitons are expected and indeed nucleate symmetrically
around the trap center. Notice also the central black soli-
ton in the former of these processes. Only one difference
is worth commenting on, namely the last of the aforemen-
tioned cases [Fig. 10(d)]. By monitoring the dynamical
evolution of the pair of dark solitons that are closer to the
trap center, a magnified version of which is provided in
Fig. 10(f), it is found that these two dark solitons instead
of executing large amplitude oscillations as the remaining
pairs do, they lock into an out-of-phase oscillation mode,
similar to the ones explored previously (including exper-
imentally) in the works of, e.g., [28, 29]. In this case,
their centers are provided by Eq. (36) but with φo = π/2
since here, the oscillation of each solitary wave begins
at maximum amplitude. Additionally, for this particu-
lar out-of-phase oscillation of this pair, the in-trap os-
cillation frequency, i.e. ωOP , and equilibrium position,
i.e. x±, are given by Eq. (37) and Eq. (38) respectively
(see our discussion below). As our last case example, in
Fig. 10(e) we show the dynamical evolution of the system
for parameters that lead to asymmetric soliton generation
analogous to the one found in the homogeneous scenario
[see Fig. 9]. Also in this case the number of dark soli-
tons coincides with the one found in the homogeneous
setting, with seven such entities being generated. Even
more importantly here, and also for all cases discussed
above, it is not only the number of nucleated states that
is in accordance with the analytical predictions discussed



13

h = 0, α = 0, θ = 0 h = 0, α = 0, θ = π/2 h = 0.5, α = 0, θ = 0 h = 0.5, α = π, θ = 0 h = 0.5, α = 0, θ = π/2

ko ωnum εo ko ωnum εo ko ωnum εo ko ωnum εo ko ωnum εo
k1 0.007184 0.016 k7 0 – k1 0.007043 0.004 k†1 0.023905 0.023 k4 0.007330 0.036
k2 0.007229 0.022 k8 0.007228 0.022 k2 0.007169 0.014 k2 0.007145 0.011 k5 0.007226 0.022
k3 0.007267 0.028 k9 0.007233 0.023 k3 0.007265 0.027 k3 0.007253 0.026 k6 0.007063 0.001
k4 0.007330 0.036 k10 0.007265 0.027 k7 0.007077 0.0008

k8 0.007077 0.0008
k9 0.007246 0.025
k10 0.007297 0.032

Table I. Numerically obtained oscillation frequencies ωnum. Each column contains the parameter characterizing each soliton
(ko) and the relative error (εo) with respect to the analytical prediction for the frequency of oscillation of a single dark soliton,
i.e ωo = Ω/

√
2 [9] for different variations of the system’s parameters. From left to right each column corresponds to Figs. 10(a)

up to Figs. 10(e), respectively. Other parameters used are L = 5, qo = 1 and Ω = 0.01. †See Eq. (37) and the discussion
around. Note that the quantities shown are measured in transverse oscillator units (see text).

in the homogeneous case, but also the relative position
and amplitude of the evolved states. The former is almost
perfectly captured by Eq. (36), as depicted by the dashed
red lines in Fig. 10 while the latter is also well captured
by Eq. (35) as it is evident by inspecting Fig. 11. Note
though that while the solitons corresponding to the so-
lutions k7 and k8 shown in Fig. 9(a) propagate parallel
to each other but eventually, due to repulsion, they will
separate out, this is not the case for their trapped ana-
logues shown in Fig. 10(e), which oscillate nearly parallel
to each other, given the effect of the confining potential.
Before proceeding, it is worth commenting at this point
on why the solutions stemming from the homogeneous
case so closely match those of the trapped one. This
behavior can be attributed to the weak, yet experimen-
tally relevant, confinement frequency introduced herein
(Ω = 0.01). Such a weak confinement leads to a conden-
sate density around the trap center that is flat enough
so that locally the initial conditions for both the homo-
geneous and trapped scenario are nearly equal, thus pro-
ducing rather similar soliton trains.

In order to further shed light on the observed in-trap
dynamics of the dark solitons generated in each case, we
once more follow the center of mass, xCM , of each en-
tity for evolution times up to t = 3000. The numerically
obtained oscillation frequencies, ωnum, are included in
Table I. In particular, Table I, contains ωnum for each
soliton that can in turn be compared to the (asymptotic)

analytical prediction ωo ≡ Ω/
√

2 = 0.007071 within the
so-called Thomas-Fermi regime where qo � Ω [9, 67].
From left to right, each column of Table I corresponds to
Figs. 10(a)–(e), respectively. Additionally, the different
solutions are denoted by the different zeros, ko, identified
by the scattering problem [see the notation introduced in
Figs. 5–9]. Evidently, the faster moving solitons (ko ≈ c),
see e.g. the outermost illustrated in Fig. 10(a) corre-
sponding to the solution labelled k4 in the first column
of Table I, have the largest ωnum and also the maximum
deviation, εo = |ωnum − ωo|/ωo, from the analytical pre-
diction. In some cases, such waves are indistinguishable
from the radiation itself. For these cases, we were not
able to trace the center of mass of the ensuing soliton and

thus obtain its oscillation frequency. One such example
corresponds to the fastest soliton shown in Fig. 10(e),
whose solution k4 is depicted in the fifth column of Ta-
ble I, for which we determined ωnum manually. It turns
out that in all cases investigated herein, the maximum
discrepancy between ωnum and ωo is εo = 3.6% (see k4
in the first and fifth columns), while the minimum is
εo = 0.08% (see k7 and k8 in the fifth column). Recall-
ing now that ωo is the oscillation frequency of a single
dark soliton within the parabolic trap when slightly dis-
placed from its equilibrium position, the observed dis-
crepancies can be attributed to: (i) the existence of more
than one dark solitons; (ii) the interaction of the dark
solitons with the sound waves emitted during the dy-
namics; (iii) the interactions among one another. These
effects have been studied previously in some of the above
cited works, such as [28, 29] and hence are not exam-
ined further here. However, we can use their previous
results to very accurately describe the out-of-phase os-
cillations from the soliton pair shown in Fig. 10(f), for
which we numerically obtained an oscillation frequency
ωnum = 0.023905. From [29], the oscillation frequency
of two solitons performing small out-of-phase oscillations
around their equilibrium positions reads

ω2
OP = ω2

o + 32q2oe
−4qo|x±| , (37)

with the equilibrium positions, x±, given by

x± = ± 1

4qo
w

(
32q4o
ω2
o

)
, (38)

where w(z) is the Lambert’s w function defined as the
inverse of z(w) = wew. Then, Eq. (37) yields ωOP =
0.024487. This result is in very good agreement with
the numerically found frequency, which presents only a
relative error εOP = 0.023.

IV. CONCLUSIONS AND PERSPECTIVES

In this work, we have investigated the on-demand nu-
cleation of dark soliton trains arising in a 1D repulsively
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interacting scalar BEC system both in the absence and
in the presence of a harmonic trap. In particular, by uti-
lizing box-shaped initial configurations, we have shown
that it is possible to a-priori predict not only the num-
ber of nucleated dark matter-waves, but also their ampli-
tudes, velocities and positions. We have done so by ini-
tially considering the integrable version of the problem,
namely the defocusing NLS equation. For this model and
for the aforementioned flexible initial wavefunction the
direct scattering problem has been solved analytically.
The direct relation of the discrete eigenvalues of the lat-
ter with the velocities and amplitudes of the emergent
dark solitons has been showcased, while the exact soliton
solutions are systematically extracted via IST.

By considering a wide range of parametric selections we
have shown that the number and the symmetric or asym-
metric distribution of the nucleated soliton trains can be
tailored upon suitable adjustment of the initial config-
uration parameters. In general, and also in line with
earlier predictions based on interference processes [31],
it is found that wider box-type configurations result in
larger soliton trains. However, narrower box-type config-
urations, resembling, in turn, phase imprint techniques
that create defects within a BEC [24], lead to smaller
soliton trains. We have explored different types of con-
figurations involving shallow boxes, as well as two en-
tirely separated condensates. Also, asymmetrically dis-
tributed dark trains can be dynamically realized when
considering e.g. shallow OP initial configurations. Here,
slowly-interacting dark solitons coexisting with slow and
extremely fast ones arise. In all the cases considered for
the integrable defocusing NLS without a trap, our an-
alytical findings are supported by the direct dynamical
evolution of the scalar system. In particular, the veloc-
ities and amplitudes of the emergent soliton trains are
traced during evolution and both approach the analyti-
cal predictions asymptotically, highlighting an excellent

agreement between the two. Finally we also appreciated
the strength of our analytical predictions even in the pres-
ence of a harmonic trap. Our findings for all cases in-
vestigated in the latter setting closely followed the ones
identified in the homogeneous setup in terms of ampli-
tudes and velocities of the emitted dark soliton trains
but upon considering the modified, in each case scenario,
in-trap analytical estimates. Remarkable agreement be-
tween the analytical estimates and our numerical findings
is exposed, with deviations regarding e.g. the estimated
oscillation frequency of each nucleated matter-wave being
less than 4%.

An immediate extension of this work points towards a
richer system, consisting of two- component [8, 68] or
even three-component BECs [19, 31]. In this regard,
while recent works already considered multi-component
BEC setups with box-type initial configurations [31], re-
vealing, among other things, the generation of dark-
bright solitons trains, a systematic analytical treatment
of the problem is still lacking. Yet, another interesting
perspective would be to generalize the diagnostics uti-
lized herein in higher dimensions. There, naturally the
toolbox of integrability is no longer available. Neverthe-
less, in this setting, topological excitations may be ex-
pected to emerge as a result of the interference process,
in the presence of suitable phase structure, as has been
shown, e.g., in the experiments of [69].
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González, Emergent Nonlinear Phenomena in Bose-
Einstein Condensates: Theory and Experiment, Vol. 45
(Springer Science & Business Media, 2007).

[12] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys.
80, 885 (2008).

[13] G. Huang, M. G. Velarde, and V. A. Makarov, Phys.
Rev. A 64, 013617 (2001).

[14] S. Stellmer, C. Becker, P. Soltan-Panahi, E.-M. Richter,
S. Dörscher, M. Baumert, J. Kronjäger, K. Bongs, and
K. Sengstock, Phys. Rev. Lett. 101, 120406 (2008).

http://dx.doi.org/ 10.1103/PhysRevLett.110.124101
http://dx.doi.org/ 10.1103/PhysRevLett.110.124101
http://dx.doi.org/ 10.1103/PhysRevLett.104.037207
http://dx.doi.org/ 10.1103/PhysRevLett.104.037207
http://dx.doi.org/10.1016/S0030-4018(97)00191-0
http://dx.doi.org/10.1016/S0030-4018(97)00191-0
http://dx.doi.org/10.1016/S0370-1573(97)00073-2
http://dx.doi.org/10.1016/S0370-1573(97)00073-2
http://dx.doi.org/10.1017/CBO9780511802850
http://dx.doi.org/10.1017/CBO9780511802850
http://dx.doi.org/ 10.1038/nphys962
http://dx.doi.org/10.1088/1751-8113/43/21/213001
http://dx.doi.org/10.1088/1751-8113/43/21/213001
http://dx.doi.org/10.1137/1.9781611973945
http://dx.doi.org/10.1137/1.9781611973945
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/PhysRevA.64.013617
http://dx.doi.org/10.1103/PhysRevA.64.013617
http://dx.doi.org/ 10.1103/PhysRevLett.101.120406


15

[15] A. M. Kamchatnov and M. Salerno, J. Phys. B: At. Mol.
Opt. Phys. 42, 185303 (2009).

[16] D. M. Jezek, P. Capuzzi, and H. M. Cataldo, Phys. Rev.
A 93, 023601 (2016).

[17] M. A. Hoefer, J. J. Chang, C. Hamner, and P. Engels,
Phys. Rev. A 84, 041605 (2011).

[18] D. Yan, J. J. Chang, C. Hamner, M. Hoefer, P. G.
Kevrekidis, P. Engels, V. Achilleos, D. J. Frantzeskakis,
and J. Cuevas, J. Phys. B: At. Mol. Opt. Phys. 45, 115301
(2012).

[19] T. M. Bersano, V. Gokhroo, M. A. Khamehchi,
J. D’Ambroise, D. J. Frantzeskakis, P. Engels, and P. G.
Kevrekidis, Phys. Rev. Lett. 120, 063202 (2018).

[20] J. Denschlag, J. E. Simsarian, D. L. Feder, C. W. Clark,
L. A. Collins, J. Cubizolles, L. Deng, E. W. Hagley,
K. Helmerson, W. P. Reinhardt, S. L. Rolston, B. I.
Schneider, and W. D. Phillips, Science 287, 97 (2000).

[21] B. P. Anderson, P. C. Haljan, C. A. Regal, D. L. Feder,
L. A. Collins, C. W. Clark, and E. A. Cornell, Phys.
Rev. Lett. 86, 2926 (2001).

[22] I. Shomroni, E. Lahoud, S. Levy, and J. Steinhauer, Nat.
Phys. 5, 193 (2009).

[23] S. Burger, K. Bongs, S. Dettmer, W. Ertmer, K. Seng-
stock, A. Sanpera, G. V. Shlyapnikov, and M. Lewen-
stein, Phys. Rev. Lett. 83, 5198 (1999).

[24] Z. Dutton, M. Budde, C. Slowe, and L. V. Hau, Science
293, 663 (2001).

[25] P. Engels and C. Atherton, Phys. Rev. Lett. 99, 160405
(2007).

[26] W. P. Reinhardt and C. W. Clark, J. Phys. B: At. Mol.
Opt. Phys. 30, 785 (1997).

[27] T. F. Scott, R. J. Ballagh, and K. Burnett, J. Phys. B:
At. Mol. Opt. Phys. 31, 329 (1998).

[28] A. Weller, J. P. Ronzheimer, C. Gross, J. Esteve, M. K.
Oberthaler, D. J. Frantzeskakis, G. Theocharis, and
P. G. Kevrekidis, Phys. Rev. Lett. 101, 130401 (2008).

[29] G. Theocharis, A. Weller, J. P. Ronzheimer, C. Gross,
M. K. Oberthaler, P. G. Kevrekidis, and D. J.
Frantzeskakis, Phys. Rev. A 81, 063604 (2010).

[30] V. A. Brazhnyi and A. M. Kamchatnov, Phys. Rev. A
68, 043614 (2003).

[31] A. Romero-Ros, G. C. Katsimiga, P. G. Kevrekidis, and
P. Schmelcher, Phys. Rev. A 100, 013626 (2019).

[32] F. Demontis, B. Prinari, C. van der Mee, and F. Vitale,
Stud. Appl. Math. 131, 1 (2013).

[33] G. Biondini and B. Prinari, Stud. Appl. Math. 132, 138
(2014).

[34] G. Biondini, E. Fagerstrom, and B. Prinari, Physica D:
Nonlinear Phenomena 333, 117 (2016).
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