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We consider a hybrid atom-optomechanical system consisting of a mechanical membrane inside
an optical cavity and an atomic Bose-Einstein condensate outside the cavity. The condensate is
confined in an optical lattice potential formed by a traveling laser beam reflected off one cavity
mirror. We derive the cavity-mediated effective atom-atom interaction potential, and find that
it is non-uniform, site-dependent, and does not decay as the interatomic distance increases. We
show that the presence of this effective interaction breaks the Z2 symmetry of the system and gives
rise to new quantum phases and phase transitions. When the long-range interaction dominates,
the condensate breaks the translation symmetry and turns into a novel self-organized lattice-like
state with increasing particle densities for sites farther away from the cavity. We present the
phase diagram of the system, and investigate the stabilities of different phases by calculating their
respective excitation spectra. The system can serve as a platform to explore various self-organized
phenomena induced by the long-range interactions.

I. INTRODUCTION

Long-range interactions, such as the dipole-dipole in-
teraction, the Van der Waals forces, etc., play important
roles in cold atomic systems and can result in a vari-
ety of intriguing physical effects [1–9]. In recent years,
photon-mediated long-range interaction between atoms
inside an optical cavity has also received wide attentions
as these systems provide an opportunity to engineering
atom-atom interaction in a highly controllable manner
[3, 4, 10–15], where both the range and the strength of
the interaction can be tailored [16–18]. For instance, the
cavity-mediated long-range spin-spin interaction can be
engineered to realize various frustrated models [19, 20].
The competition between the short- and long-range inter-
actions induced in cavity also greatly enriches the physics
of quantum phase transitions, which is unattainable in
other setups [3]. For fermions, such long-range interac-
tion can also result in exotic topological superfluids fea-
turing Majorana fermions [21].
Recently, a hybrid atom-optomechanical system made

up of a membrane inside a cavity and cold atoms resid-
ing in an optical lattice outside the cavity has attracted
wide attentions [22–30]. This system can not only serve
as a platform to explore the coupling between the me-
chanical modes and other physical systems [28], but also
provide a toolbox to engineer the quantized lattice vibra-
tions [29, 31]. As the cavity and the outside lattice are
separate and can be placed in different vacuum chambers,
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they can be manipulated almost independently. For in-
stance, the lattice potential can be highly controlled by
introducing additional lasers or other necessary appara-
tus in the chamber. Compared to the scheme of inte-
grating atoms and mechanics in the same chamber or
the same cavity, this greatly reduce the difficulty of the
experiment. For Bose-Einstein condensates, it has been
theoretically predicted that the atomic cloud can experi-
ence a non-equilibrium quantum phase transition from
a localized symmetric state to a shifted spontaneous-
symmetry-broken state due to the presence of induced
membrane-atom coupling [25, 30]. Across the transition,
the lattice can be either left- or right- shifted depending
on the sign of the membrane displacement, which reflects
the breaking of the internal Z2 symmetry of the system.
The relevant steady-state many-body phase diagram and
non-equilibrium quantum phase transition for spinor sys-
tem have also been considered [30, 32, 33].

In all previous theoretical studies of the atom-
optomechanical system, the effect of cavity-mediated
global interaction among atoms has been neglected un-
der the assumption that such interaction is very weak.
The validity of this assumption, however, is not thor-
oughly investigated. Usually, the cavity-mediated effec-
tive interaction between atoms can result in various novel
self-organized structures [34–36] and strongly correlated
phases [37, 38]. A careful study of this effect in the hy-
brid atom-optomechanical system is thus highly desir-
able. This provides the main motivation of the current
work.

In this work, we derive the explicit form of the cavity-
mediated effective atom-atom interaction in this hybrid
atom-optomechanical system. We show that this effec-
tive interaction is qualitatively different from the one
when the atoms are inside the cavity [3, 4, 10–18]. In
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particular, the effective interaction in the current situ-
ation is non-uniform and site-dependent. With this ef-
fective interaction taken into account, we consider the
steady-state phase diagram of the system in the mean-
field level. We show that the intrinsic Z2-type symmetry
of the atom-membrane coupling is explicitly broken by
the induced global interaction, where a first-order super-
radiation phase transition of mechanical modes is favored
for large membrane-atom coupling with the presence of
a right-moved lattice order (RLO). For even stronger ef-
fective interaction, the condensate spontaneously breaks
into peaks with imbalanced onsite occupations. These
peaks form an approximate lattice-like density-wave or-
der (DWO) with, however, unequal spacing between ad-
jacent peaks. Meanwhile, the onsite occupation increases
monotonously away from the cavity, and the transition
from the usual lattice order to the DWO is of first-order.
Finally, the stability and the excitation spectra of rele-
vant phases are also discussed.
The paper is organized as follows. In section II, we

present a detailed derivation about the effective Hamil-
tonian of the model, where the underlying physics about
the induced interaction is discussed. In section III, we in-
troduced the mean-field treatment of the system, where
an effective Gross-Pitaevskii (GP) equation of the con-
densate is obtained. In section IV, we consider the effects
of the induced global nonlinear interaction, and the prop-
erties of the quasi-lattice like mode are discussed in some
details. We provide the phase diagram of the system in
section V, where the relevant first-order and second-order
phase transitions are also discussed. We conclude the pa-
per in section VI. Much of the technical details can be
found in the appendices.

II. MODEL HAMILTONIAN

The hybrid atom-optomechanical system we consider
here consists of a membrane inside an optical cavity
and an ensemble of 87Rb Bose-Einstein condensate out-
side of the cavity confined in an external optical lattice
[22, 24, 25, 27, 30], as schematically shown in Fig. 1(a).
The lattice potential results from a laser beam prop-
agating towards left along the z-axis, and a counter-
propagating reflected light beam from the cavity mirror.
The mechanical mode for the membrane can be described
as

Ĥm = ~Ωmâ
†â (1)

with a single mechanical frequency Ωm. The usual many-
body Hamiltonian for the condensate can be written as

Ĥa =

∫

dz ψ̂†(z)H0ψ̂(z) +
g

2

∫

dz ψ̂†ψ̂†ψ̂ψ̂ (2)

with bosonic field operator ψ̂(z), s-wave interaction

strength g, and atom number N̂ =
∫

dz ψ̂†ψ̂. The single-
particle Hamiltonian reads

H0 = −~ωR∂
2/∂z2 + V sin2(z + φ) (3)

with recoil energy ωR = ~k2l /(2m), where m stands for
the mass of rubidium atom and kl represents wave num-
ber of the laser field. V is the amplitude of the optical
lattice, and φ represents the phase shift of the stand-
ing wave outside the cavity due to the presence of cavity
mirrors and the membrane [22]. For simplicity, here we
choose φ = 0 without loss of generality. In writing Ha

and H0, we have used the dimensionless coordinates z
and set λl = 2π/kl as the units for length.

FIG. 1. (a) Schematic diagram of atom-Optomechanical sys-
tem. There exist two different paths (|z − z′|, z + z′) for
intermediated photons. The origin z = 0 is defined to be the
position of the left cavity mirror. (b) Effective interaction
I(z, z′) with z = −π/4 and z = π/8. For convenience, we
have shifted the origin of the coordinate to the middle of the
lattice.

The condensate couples to the mechanical modes

through a broad-band laser modes b̂ω described as

Ĥl =

∫ ωl+θ

ωl−θ

dω ~(ω − ωl)b̂
†
ω b̂ω (4)

with its central frequency ωl and spectral width 2θ. The
bandwidth 2θ of the field modes, namely the line-width
of the cavity, should be much larger than the recoil fre-
quency ωR and the characteristic frequency Ωm of the
membrane. In our case, the laser fields take the form

b̂ω → b̂ω + blδ(ω − ωl). (5)

Physically the laser modes play two distinct roles: First,

the light mode 〈b̂ω〉 = blδ(ω − ωl) has a strong field
strength bl at the central frequency ωl, which induces
the external potential VL = V sin2(z), together with an
effective atom-laser coupling

Ĥal = λa

∫

dω√
2π

(b̂ω + b̂†ω)

∫

ψ̂† sin(z) sin(
ω

ωl
z)ψ̂dz.

(6)



3

Second, after entering into the cavity, these laser modes
also lead to membrane-light coupling described by the

following Hamiltonian

Ĥml = λm(â+ â†)

∫

dω (b̂ω + b̂†ω)/
√
2π. (7)

Here λm and λa are the relevant coupling strengths.

In the case of a broad-band light field and in the bad-cavity limit, we solve the Heisenberg equations of motion for

operators â, b̂, and ψ̂. After substituting the formal solution of b̂ω(t) into the equations of motion for â and ψ̂ (see
Appendix A for details), we find

i~
∂

∂t
â = ~Ωmâ− Λ

∫

dz ψ̂†(z) sin(2z)ψ̂(z), (8)

i~
∂

∂t
ψ̂(z) =

{

H0 + gψ̂†ψ̂ − Λ(â+ â†) sin(2z)− Γ

∫

dz′ψ̂†(z′)ψ̂(z′)I(z, z′)
}

ψ̂(z) (9)

with

Λ = λmλa/(2~), Γ = λ2a/(2~), (10)

I(z, z′) = [sin(z′ + z)− sin |z′ − z|] sin(z′) sin(z),(11)

where we have omitted the Langevin noise terms for sim-
plicity. The above equations indicate that the effective
membrane-atom coupling Hamiltonian can be written as

Ĥma = −Λ(â+ â†)

∫

dz ψ̂†(z) sin(2z)ψ̂(z) . (12)

In addition, the system also gives rise to an effective
cavity-mediated global atom-atom interaction, described
by the Hamiltonian

Ĥlr =
Γ

2

∫

dz

∫

dz′ψ̂†(z)ψ̂†(z′)I(z, z′)ψ̂(z′)ψ̂(z).(13)

Thus the total effective Hamiltonian, after eliminating
the laser modes, only contains the membrane and the
atomic degrees of freedom and reads

Ĥeff = Ĥm + Ĥa + Ĥma + Ĥlr. (14)

Equation (13), along with (11), represents one of the
main results of the work. Physically, since all the atoms

are coupled to the same laser fields b̂ω(t), these quantized
modes can thus be used as a bus for mediating the long-
range interaction between atoms. Here, the two atoms
located at z and z′ can be linked by the intermediating

fields b̂ω(t) through two different paths, as shown in Fig.
1(a). The first path corresponds the shortest distance
|z− z′| between the two atoms. In the second path, after
leaving the first atom at z, the intermediating photon is
reflected back by the cavity mirror before it reaches the
second atoms located at z′. The total distance traced by
the photon is therefore z + z′. This explains the origin
of the two different sinusoidally modulated interaction
terms contained in the effective global interaction Ĥlr.
In the absence of the effective interaction Ĥlr, it has

been shown theoretically that the atoms experience a

second-order phase transition from a localized symmetric
state with Xm = 〈a + a†〉 = 0 to a shifted symmetry-
broken state with Xm 6= 0 as the membrane-atom cou-
pling Λ increases [25, 27, 30, 32]. Compared with the
usual case with the atoms inside the cavity, here the lat-
tice spacing is not changed before and after the transition
point [39–41].

The induced global interaction appeared in Ĥlr ex-
hibits interesting features. Specifically, if we focus on the
atom fixed at z, the effective interaction I(z, z′) reduces
to

I(z, z′) =
{

− sin 2z′ sin2 z, for z′ > z;
− sin 2z sin2 z′, for z′ < z.

(15)

Therefore, when z 6= jπ, the effective long-range inter-
action between atoms at z and z′ shows different site-
dependent features for z′ > z and z′ < z. In Fig. 1(b), we
plot the effective interaction I(z, z′) for fixed z = −π/4
and z = π/8. One can see that when z = jπ + δz is
slightly displaced from the local minima jπ of the lattice
potential VL, the mean effective interaction I(z, z′) for
z′ < z takes positive and negative values depending on
the sign of δz. We stress that this site-dependent feature
of the induced atom-atom interaction is very different
from those obtained for atoms inside the cavity [19, 20],
where the interaction usually only depends on |z − z′|.
The induced global non-uniform interaction can affect
the steady state of the system significantly and lead to
unexpected physics, which we will focus in the following.

III. MEAN-FIELD APPROXIMATION

For condensate with large atomic number N and ne-
glectable quantum fluctuations, we can employ the mean-

field approximation, and replace the operators ψ̂(z) and
â with their mean values. After making substitutions

ψ̂(z) →
√
Nϕ(z) and â →

√
Nα, the Heisenberg equa-

tions of motion for operators ψ̂(z) and â can then be
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rewritten as

i~∂tα = ~(Ωm − iγ)α− Λ
√
N

∫

dz|ϕ|2 sin(2z),(16)

i~∂tϕ(z) =
{

H0 − Λ
√
N(α+ α†) sin(2z)

+gN |ϕ(z)|2 + ΓNχ[ϕ, z]
}

ϕ(z), (17)

with the functional

χ[ϕ, z] =

∫

dz′ |ϕ(z′)|2I(z, z′). (18)

In Eq. (16), we have introduced a damping rate γ for the
mechanical mode, and the normalization condition for ϕ
reads

∫

dz |ϕ(z)|2 = 1.
To simplify the discussion, we further assume that the

membrane reaches its steady state very quickly due to its
fast damping rate, and hence we can take ∂tα = 0. This
assumption gives

α =
Λ
√
N

~(Ωm − iγ)
κ[ϕ], (19)

with the functional

κ[ϕ] =

∫

dz′ |ϕ(z′)|2 sin(2z′). (20)

After substituting this back to Eq. (17), we arrive at the
effective GP equation for the condensate

i~∂tϕ(z) =
{

H0 − Λ̃κ[ϕ] sin(2z) + g̃|ϕ(z)|2

+ Γ̃χ[ϕ, z]
}

ϕ(z), (21)

with the following interaction parameters

Λ̃ = NβΛ2/(~Ωm), β = 2Ω2
m/(Ω

2
m + γ2),

g̃ = Ng, Γ̃ = NΓ.

The relative strength between the induced long-range in-
teraction Γ̃ and the effective atom-membrane coupling
Λ̃ can then be determined by λm, Ωm, and γ etc. In
appendix B, we have provided an explicit estimation of
these parameters based on current experimental condi-
tions, which also covers the parameter ranges discussed
in the following.
We solve Eq. (21) using the imaginary-time evolution

method to obtain the ground state. For a deep lattice
potential VL = V sin2(z) with V ≫ {g̃, Λ̃, Γ̃}, the atoms
mainly accumulate around its local minima at z0j = jπ
and thus form a lattice order. The presence of the ef-
fective membrane-atom coupling Ĥma introduces an ad-
ditional potential proportional to Vma = −ΛXm sin(2z).
This additional potential Vma shares the same period as
VL ∝ cos(2z), but features a relative phase shift. When
the membrane-atoms coupling is weak, VL dominates
and the aforementioned lattice order remains unchanged.
However, for sufficiently large Λ, Vma can drive the lat-
tice to move to left or to right depending on the sign

of the membrane displacement Xm. The right- and left-
moved lattice orders are degenerate when the effective
atom-atom interaction is absent, i.e., Ĥlr = 0. There-
fore, a second order phase transition takes place in this
process accompanied with a spontaneous breaking of the
Z2 symmetry. We stress that, for atoms inside the cav-
ity, similar super-radiant phase transition has also been
predicted and observed, which usually accompanies with
a change of the periodicity of the lattice before and after
the transitions [5, 10, 39–41]. In this hybrid system, by
contrast, the lattice period can remain unchanged when
the transition occurs.

IV. EFFECTS OF THE GLOBAL

NON-UNIFORM INTERACTION

When Ĥlr 6= 0, the presence of the global atom-atom
interaction can result in many novel features, which will
be the focus of this section.
First, we note that the nonlinear interaction does not

preserve the Z2 symmetry. Since an arbitrarily weak
long-range interaction can break the Z2 symmetry of the
system, the lattice favors to move once the coupling Λ
surpasses the transition point Λc. To show this, we con-
sider a simplified wavefunction for the condensate in the
deep lattice limit as

ϕ(z) =
L
∑

j=1

cj |z = zj〉, (22)

where
∑

j |cj |2 = 1 and zj represents the location of the

j-th wave-packet. The basis |z〉 satisfies 〈z|z′〉 = δ(z−z′).
We also assume zj = jπ + δz with δz the overall shift of
the lattice order. A simple algebra shows that the mean
interaction energy for an L-site lattice reads

Elr = 〈Ĥlr〉/L =
Γ̃

2
ǫlr (23)

with

ǫlr = − sin2(δz) sin(2δz), (24)

which is an odd function of δz and reaches the minimum
value at δz = π/3, as depicted in Fig. 2(a). Therefore,
a right-moved lattice is always favored which breaks the
intrinsic Z2 symmetry of the original model. In addition,
such weak long-range interaction also makes the phase
transition to be of first order (see analysis in Appendix
C).
Second, for stronger interaction strength Γ, the nonlin-

ear interaction can induce an effective lattice potential,
which can change both the density distribution of the
condensate and the lattice pattern of the ground state.
In the case of very strong long-range interaction, the orig-
inal periodic lattice pattern of the condensate induced
by VL becomes unstable. The system supports a series
of isolated Gaussian wave-packets. These isolated pack-
ets exist even when the lattice potential VL ∝ sin2(z)
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FIG. 2. (a) Density distribution n(z) (red line) of atoms due
to the presence of long-range interaction Hlr. Here we assume
the lattice is not presented (V = 0). Other parameters read:
g = 0, N = 104, m = ~ = ωR = 1, Ωm = 100, γ = 10,
Λ̃ = 0 and Γ̃ = 625. The two density peaks locates around
za ≈ −0.58π and zb ≈ 0.29π with na/nb ≈ 2/3. The dashed
blue line shows the odd function ǫlr = − sin2(δz) sin(2δz).
(b) Contour plot of ǫlr for two-sites case in za − zb plane
with za < zb, na = 0.4 and nb = 0.6. The minimal point is
(za, zb) ≈ (−0.58, 0.29)π. For convenience, we have shifted
the origin of the coordinate to the middle of the lattice.

become negligible compared with the nonlinear interac-
tions. The spacings between adjacent packets are not
constant. Hence we call this a quasi lattice-like pattern.
In addition, the peak values of these wave-packets are
also not uniform and increase as their distance away from
the cavity increases. The presence of the self-adapted
lattice-like density wave order (DWO) represents another
key feature induced by the effective global nonlinear in-
teraction.
We stress that the presence of such quasi lattice-like

pattern can be completely attributed to the interaction
Hlr, as this pattern exists even when the lattice trap
is absent V = 0. Physically, the lattice potential can
be tuned by introducing another laser which is slightly
misaligned with the former one and generates a lattice
with the same lattice spacing. To present a simple picture
of the emergence of the DWO order, let us consider the
simplest case with two Gaussian wave-packets localized
within the regime

−π ≤ za < zb ≤ π. (25)

The condensate wavefunction reads

ϕ(z) = ca|z = za〉+ cb|z = zb〉 (26)

with |ca|2 + |cb|2 = 1. The inter-site part of the interac-
tion can be simplified as

Eint
lr = −Γ̃nanb sin

2(za) sin(2zb) (27)

with na,b = |ca,b|2. It is easy to check that to minimize
the interaction energy Elr shown in Eq. (23), we should
set z0a = −2π/3 and z0b = π/3, as shown in Fig. 2(a).
Around (za, zb) = (−2π/3, π/3), we have

∂Eint
lr

∂za
|(za,zb)=(− 2π

3
,π
3
) = −3

4
Γ̃nanb < 0, (28)

∂Eint
lr

∂zb
|(za,zb)=(− 2π

3
,π
3
) =

3

4
Γ̃nanb > 0. (29)

Therefore, the interaction Eint
lr can be further reduced if

we choose a modified configuration with

−2π/3 < z′a < z′b < π/3 (30)

such that z′b−z′a < π. Similar analysis also indicates that
na < nb is favored to obtain an overall lower energy

Elr = − Γ̃

2

[

n2
a sin

2(za) sin(2zb) + n2
b sin

2(zb) sin(2za)
]

+Eint
lr . (31)

This is also verified numerically, where Elr is minimized
when na ≃ 0.4, nb ≃ 0.6, za ≈ −0.58π and zb ≈ 0.29π,
as shown in Fig. 2(b).
The above discussion can also be generalized to L-site

case. As in the two-site case discussed above, the cal-
culation indicates that these wave-packets tend to be lo-
calized at positions with intervals less than π. Further-
more, the spacings between adjacent wave-packets are
not constant. To illustrate this, we consider the simpli-
fied condensate wavefunction shown in Eq. (22). The
corresponding interaction energy can be written as

Elr = E−
lr + E+

lr (32)

with

E−
lr =

Γ̃

2

L
∑

j=1

nj sin
2(zj)

[

∑

i<j

ni sin(2zj)−
L
∑

i>j

ni sin(2zj)
]

,

E+
lr = − Γ̃

2

L
∑

j=1

nj sin
2(zj)

L
∑

i=1

ni sin
2(zi).

where we have set nj = |cj |2, and E−
lr and E+

lr correspond
to two different terms in Eq. (13) depending on sin(|z −
z′|) and sin(z + z′) respectively. This leads to

Elr = −Γ̃

L
∑

j=1

nj sin
2(zj)

[1

2
nj sin(2zj) +

L
∑

k>j

nk sin(2zk)
]

.

(33)

The first term corresponds to on-site interaction which is
minimized when zj = jπ + π/3 with the lattice interval
∆ = π. The last term describes the long-range interac-
tion between different sites, and depends closely on the
index order j along the z-axis. Therefore, the effective
potential at position zj due to Elr reads

V(zj) =
∂

∂nj
Elr = −Γ̃

[

sin2(zj)
L
∑

k=j

nk sin(2zk)

+

j−1
∑

k=1

nk sin
2(zk) sin(2zj)

]

. (34)

Usually, the interaction energy Elr is minimized when
the effective potential V(zj) is also minimized as far as
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FIG. 3. (a) Variance D2 as a function of the total lattice site

L with Γ̃/(~Ωm) = 12.5 (blue line) and Γ̃/(~Ωm) with L =
11 (red line). (b) Numerically obtained density distributions

n(z) with L = 11, Γ̃/(~Ωm) = 12.5. Red line represents
the scaled optical lattice. In both figures we set ωR = 1,
V = 200, Ωm = 100, γ = 10, g̃ = 10, N = 104, m = ~ = 1,
Λ̃/(~Ωm) = 0.495. For convenience, we have shifted the origin
of the coordinate to the middle of the lattice.
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FIG. 4. (a) Population imbalance N along with interaction

strength Γ̃ in case of Λ̃/(~Ωm) = 0.1. The plot also shows that
the system supports a first-order phase transition. See section
V and figure 6 for more details. (b) Density distributions n(z)
in case of only E−

lr
(blue line) and only E+

lr
(green line) with

Λ̃/(~Ωm) = 0.1, Γ̃/(~Ωm) = 5. Red line represents the scaled
optical lattice. For convenience, we have shifted the origin
of the coordinate to the middle of the lattice. We set other
parameters as: ωR = 1, V = 200, Ωm = 100, γ = 10, g̃ = 10,
N = 104, m = ~ = 1, L = 11.

possible. Using this simple observation, we can then es-
timate the mean distance of these wave-packets. For the
leftmost wave-packet, we have

V(z1) ∝ −2 sin2(z1)

L
∑

j=1

nj sin(2zj) (35)

and for the rightmost one, we have

V(zL) ∝ −2 sin(2zL)

L
∑

j=1

nj sin
2(zj). (36)

It is easy to check that these two potentials reach their
respective minimum when z1 = z̄1 and zL = z̄L where

sin2(z̄1) = 1, and sin(2z̄L) = 1. (37)

Here, without loss of generality, we assume zj ≥ 0 for all
j ∈ {1, · · · , L}. In this case, we have

z̄1 =
π

2
, and z̄L = (L − 1)π +

π

4
. (38)

Therefore, if these L wave-packets are equally spaced
with the shortened interval

∆̄ =
z̄L − z̄1
L− 1

= π − π

4(L− 1)
< π, (39)

then the position of the j-th wave-packet is estimated as

z̄j = z̄1 + (j − 1)∆̄. (40)

The above analysis is also verified numerically using
imaginary-time evolution method. Fig. 3(a) shows the
variance of the estimated z̄j with respective to the exact
zj of the j-th wave-packet as

D2 =
1

L− 1

L
∑

j=2

|z̄j − zj |2. (41)

Here the numerically obtained zj is defined as

zj =

∫

zj

z|ϕ(z)|2dz/
∫

zj

|ϕ(z)|2dz (42)

and the integration is performed around the j-th Gaus-
sian wave-packet (see Eq. (45)). The result shows that
D2 tends to zero quickly for stronger interaction strength
Γ̃ and longer lattice site L.
We also stress that the occupation number nj is site-

dependent, and increases monotonically along with zj .
This is evident if we turn the summation in Eq. (34)
into an integral in the limit L → ∞. A simple algebra
gives (see Appendix B for details)

V(zj) ∼ − Γ̃

2π
(cos ηj + ηj sin ηj), (43)

with ηj = (j − 1)π/[2(L − 1)]. Since V(zj) decreases as
zj increases, in order to obtain a lower interaction energy
Elr, the occupation number also increase away from the
cavity, as numerically verified in Fig. 3(b).
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To show the varied density of these sites, we introduce
the population imbalance N defined as

N =
1

L− 1

L
∑

j=2

|cj |2/|cj−1|2. (44)

which quantifies the mean population difference between
adjacent sites. Fig. 4(a) shows the population imbalance

N as a function of the interaction strength Γ̃ with all
other parameters fixed. When the induced interaction
becomes dominant at large Γ̃, N becomes larger than 1,
which indicates that the occupation number nj increases
at points farther away from the cavity. We note that
for parameters shown Fig. 4(a), the imbalance N also

exhibits a discontinuous jump as Γ̃ increases. This indi-
cates that the system supports a first-order phase transi-
tion from a homogeneous lattice pattern to a population
imbalance phase, which will be the main topic of the next
section.
The site-dependent feature of nj can be understood as

the competition between the two interaction terms E−
lr

and E+
lr . In Fig. 4(b), we have also plotted nj as the

function of the lattice site zj when only the long-range
interaction E−

lr (or E+
lr) is considered. The result indi-

cates that the occupation nj favors an approximated cen-
tral symmetric pattern with modified lattice spacing for
E−

lr . When only E+
lr is involved, the lattice pattern of the

condensate exhibits an overall shift without changing the
spacing ∆̄ = π. It is the competition of these two differ-
ent mechanisms that leads to the unique distribution of
the nj in this hybrid system. We also note that for con-
densate inside the cavity, both the positions of the sites
and the period of the lattice are fixed by cavity parame-
ters and mode functions. Therefore, the quasi-lattice like
order with unequal lattice spacing cannot be supported.

V. PHASE DIAGRAM

Based on above discussions, we are now ready to dis-
cuss the phase diagram of the system. For general Λ̃ and
Γ̃, the system supports various lattice patterns. In the
deep lattice limit, these patterns can be described using
the variational wavefunctions

ϕ(z) =
∑

j

cjψg(z, zj, σ),
∑

j

|cj |2 = 1 (45)

with zj the center of each wave-packet and the Gaussian
function reads

ψg(z, zj, σ) =
( 1

πσ2

)1/4

exp
[

− (z − zj)
2

2σ2

]

, (46)

where parameters cj , zj and σ are determined by mini-
mizing total energy corresponding to this wavefunction.
Figure 5 shows the obtained phase diagram in the Γ̃-Λ̃

plane using the imaginary-time evolution method. The
result is also checked and confirmed using the variational

0 2 4 6
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DWO
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FIG. 5. (a). Phase diagram in Γ̃ − Λ̃ plane. “LO”, “DWO”
represent “Lattice Order”, “Density-Wave Order” respec-
tively. The transition between LO phase and DWO phase
is of first-order. (b), (c). Representative density distribu-
tions at points in the phase diagram marked by five-pointed
stars. Here red lines are the scaled optical lattices. The dash
lines represent the density of a LO state with parameters
Λ̃ = 0.5~Ωm , Γ̃ = 0.1~Ωm . The two representative densi-
ties of DWO states are plotted with Λ̃ = 2~Ωm, Γ̃ = 0.1~Ωm

(b), and Λ̃ = 0.5~Ωm , Γ̃ = 6~Ωm (c) respectively. Other pa-
rameters are set as: L = 11, m = ~ = 1, ωR = 1, V = 200,
Ωm = 100, γ = 10, g̃ = 10 and N = 104. In the figure (a),
the dashed lines represent the parameters selected for figure
6. In (b) and (c), we have shifted the origin of the coordinate
to the middle of the lattice.

wavefunctions. The phase diagram shows novel features
which are summarized in the following.

In the absence of the induced global interaction Γ̃ = 0,
the system possesses Z2 symmetry. Membrane-atom cou-
pling gives rise to a second-order phase transition from
LO to the left- or right-moved LO when Λ̃ exceeds the
critical value Λ̃c.

The presence of finite Γ̃ 6= 0 breaks the Z2 symme-
try. Our calculation shows that the critical Λ̃c decreases
monotonously and eventually reaches 0 as we increase the
interaction strength Γ̃/(~Ωm). To show the influence of
the global interaction on the transitions, in Fig. 6(a) and
6(c), we plot the order parameters 〈z〉com, 〈Xm〉, and N
as functions of Λ̃/~ωm for fixed Γ̃ = 0.25~Ωm and 2.0~Ωm
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FIG. 6. Order parameters 〈z〉com, Xm (Fig.a, Fig.b), and N
(Fig.c, Fig.d) along the dashed line shown in figure (5a) as

functions of the interaction strength Λ̃ and Γ̃. In all figures
we set other parameters as: L = 11, m = ~ = 1, ωR = 1,
V = 200, Ωm = 100, γ = 10, g̃ = 10 and N = 104.

respectively. Here 〈z〉com is defined as the overall center-
of-mass shift of the condensate. The calculation shows
that all of these parameters jump discontinuously around
Λ̃ = Λ̃c. Especially, for Γ̃/(~Ωm) ∼ 1, these jumps be-
comes more apparent, as shown in Fig. 6(a) and 6(c).
This observation indicates that the transition between
the LO phase and the quasi-lattice like DWO is of first
order, which is very different from the former case with
Γ̃ = 0. In the DWO regime, the condensate shows an oc-
cupation imbalance N > 1 when Λ̃ > Λ̃c. In addition, N
also becomes smaller for stronger interaction strength Λ̃
as the effect of the induced nonlinear interaction becomes
smaller comparatively in this case.
We stress that the presence of the induced nonlinear in-

teraction leads to the change in the order of the transition
from LO phase to DWO phase. To make this point more
clear, we assume that when the interaction Γ̃/(~Ωm) ≪ 1
is weak, the periodicity of the system still holds. In this
case, the approximate density distribution of the wave-
function reads

|ϕ(z)|2 ≃
L
∑

j=1

|cj |2δ(z − zj) (47)

with |cj | = 1/
√
L, and zj = jπ+δz, and its corresponding

energy functional is given by (see Appendix C for details)

E(δz) ∼ V sin2(δz)− Λ̃

2
sin2(2δz)− Γ̃

2
sin2(δz) sin(2δz).

(48)

Around the phase boundary Λ̃ = Λ̃c, the overall shift
satisfies δz ∼ 0 and we have

E(δz) = pδz2 − Γ̃δz3 + qδz4 +O(δz5), (49)

with

p = V − 2Λ̃, q =
8Λ̃− V

3
. (50)

For weak interaction Γ̃/(~Ωm) ≪ 1, the overall center-
of-mass shift 〈z〉com of the condensate jumps from 0 to
δz after p sweeps across the critical point p = 0 and can
be estimated as

〈z〉com = δz = 3Γ̃/4q. (51)

Since δz > 0, this corresponds to a right-moved lattice or-
der (RLO). Therefore, within this mean-field treatment,
the relevant phase transition is of first-order.
The above transition between different phases are also

verified by considering 〈z〉com, 〈Xm〉, and N as func-

tions of Γ̃/~ωm for fixed Λ̃ = 0.25~Ωm and 2.0~Ωm re-
spectively, as shown in Fig. 6(b) and (d). For small

Λ̃ = 0.25~Ωm, the system supports the LO state until
the global nonlinear interaction Γ̃ increases and surpasses
a critical value Γ̃c, where the lattice-like state is favored
with nonzero 〈z〉com, 〈Xm〉, and imbalanced on-site occu-

pations N . For larger Λ̃ = 2.0~Ωm > Λ̃c, the calculation
indicates that the initial RLO states at Γ̃ ≪ 1 changes
continuously towards the lattice-like DWO states when Γ̃
increases, and the occupation imbalance N also increases
gradually, as shown in Fig. 6(d).
The stability of different phases can be illustrated from

their typical excitation spectra. Fig. 7 depicts the low-
est three collective excitations across the phase bound-
aries (detailed derivation can be found in Appendix D).

The spectra exhibit non-analytical behaviors when Γ̃ or Λ̃
sweep across the transition points, as shown in Fig. 7(a)
and (c), which indicates the onset of the phase transi-

tions. By contrast, for Λ̃ > Λ̃c, the crossover from a pe-
riodic LO to a quasi-periodic lattice like DWO is charac-
terized by continuous changes of these excitations, which
is also consistent with the previous discussions, as shown
in Fig. 7(b).

VI. EXPERIMENTAL CONSIDERATION AND

CONCLUSION

We note that the considered steady state of the con-
densates has the potential to be observable within current
experimental setup. As an example, we calculate the rel-
evant parameters for 87Rb condensate. For laser beam
with the wavelength λl = 780nm, the recoil energy can
be estimated as

~ωR =
~
2k2l
2m

= ~ · 2π × 3.77 kHz. (52)

Herem is the mass of the atom, kl = 2π/λl. The coupling
λm depends closely on the laser power and the cavity fi-
nesse, and λa is determined by the atom-laser coupling
strength and detuning (see Appendix E for details). For
typical parameters used in [28], the relative strength be-
tween Γ and Λ is estimated as Γ/Λ = λa/λm ≈ 3.4×10−3.
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FIG. 7. The lowest three collective excitations across different
phase boundaries indicated in Fig.4 with Γ̃ = 0.5~Ωm (a),

Λ̃ = 2~Ωm (b) and Λ̃ = 0.25~Ωm (c) respectively.

At first glance, it seems that we can safely ignore the ef-
fects of Ĥlr for short-time dynamics. However, in the
steady state case, the system is determined by the effec-
tive membrane-atom coupling Λ̃ and atom-atom interac-
tion Γ̃ with

Λ̃ =
βλ2mλ

2
a

4~2~Ωm
N, and Γ̃ =

λ2a
2~
N. (53)

The relative strength between Λ̃ and Γ̃ is then determined
by λm, β, and Ωm respectively. If we set β = 2Ω2

m/(Ω
2
m+

γ2) = 200/101 and the total particle number N = 106.
The above parameters can then be estimated as

Λ̃ ≈ 0.06~ωR, Γ̃ ≈ 4.95~ωR, Γ̃/Λ̃ ≈ 87.87. (54)

Therefore, the induced effective interaction Γ̂ can be
much larger than Λ̂. In addition, the lattice potential
VL outside the cavity can also be tuned almost indepen-
dently. This can be achieved, for example, by introduc-
ing another laser which is slightly misaligned with the
former one. The two lasers share the same frequency but
their relative strengths and phases can be tuned at will.
Therefore, VL can be changed in a wide range of param-
eters, as required. This indicates that the predict phase
transition should be attainable within current setup.

To summarize, we have derived explicitly the cavity-
mediated non-uniform global atom-atom interaction

potential, and studied its effect in a hybrid atom-
optomechanical system. In the steady-state approxima-
tion and deep lattice limit, the presence of such global
interaction breaks the intrinsic Z2 symmetry induced by
membrane-atom coupling, where a right-moved lattice
states is favored. In addition, the non-local properties of
such atom-atom interaction can also lead to the break-
down of lattice order, where a self-organized lattice-like
state with modified on-site occupations is featured. The
stabilities of these phases are also investigated by solv-
ing their Bogoliubov excitations. The predicted phases
provide new possibilities of exploring novel symmetry-
breaking physics in this hybrid atom-optomechanical sys-
tem, and also open up new avenues of research for various
exotic quantum states induced by the long-range atom-
atom interactions.
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Appendix A: derivation of the effective Hamiltonian

carrying non-uniform global interaction

In this section, we derive the effective Hamiltonian
from original Hamiltonian in the main-text. Following
[22, 24, 25, 27, 30], the total Hamiltonian can be written
as

Ĥtot = Ĥm + Ĥa + Ĥl + Ĥal + Ĥml, (A1)

where Ĥm, Ĥa, and Ĥl represent the Hamiltonian of
membrane, atomic condensate and lasers respectively.
Ĥal is interaction of atoms with laser beams, and Ĥml

describes coupling of mechanical modes with laser fields.
The explicit form of these interactions are listed as fol-
lows

Ĥm = ~Ωmâ
†â,

Ĥa =

∫

dz ψ̂†(z)H0ψ̂(z) +
g

2

∫

dz ψ̂†ψ̂†ψ̂ψ̂,

Ĥl =

∫ ωl+θ

ωl−θ

dω ~(ω − ωl)b̂
†
ω b̂ω,

Ĥal = λa

∫

dω√
2π

(b̂ω + b̂†ω)

∫

ψ̂† sin(z) sin(
ω

ωl
z)ψ̂dz,

Ĥml = λm(â+ â†)

∫

dω√
2π

(b̂ω + b̂†ω).
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According to Heisenberg equation, evolutions of operators a, ψ(z) and bω read

i~ ˙̂a = [â, Ĥtot] = ~Ωmâ+ λm

∫ ωl+θ

ωl−θ

dω√
2π

(b̂ω + b̂†ω), (A2)

i~
˙̂
ψ(z) = [ψ̂(z), Ĥtot] = [H0 + gψ̂†(z)ψ̂(z)]ψ̂(z) + λa

∫ ωl+θ

ωl−θ

dω√
2π

(b̂ω + b̂†ω) sin(z) sin(
ω

ωl
z)ψ̂(z), (A3)

i~
˙̂
bω = [b̂ω, Ĥtot] = ~∆ω b̂ω +

λm√
2π

(â+ â†) +
λa√
2π

∫

dzψ̂†(z) sin(z) sin(
ω

ωl
z)ψ̂(z) (A4)

with ∆ω = ω − ωl, spectra width θ of input pulse. The formal solution of b̂ω(t) can be written as

b̂ω(t) = b̂ω(0)e
−i∆ωt +

∫ t

0

dτe−i∆ω(t−τ) −i
~
√
2π

{

λm
(

â+ â†
)

τ
+ λa

[
∫

dzψ̂†(z) sin(z) sin(
ω

ωl
z)ψ̂(z)

]

τ

}

, (A5)

where subscription τ indicates that the relevant operators is time-dependent. The first term in Eq. (A5) depends on
initial condition and can be regarded as a noise. We substitute Eq. (A5) into Eq. (A2) and obtain that

i~ ˙̂a = ~Ωmâ+ λm

∫ ωl+θ

ωl−θ

dω√
2π

{

[

b̂ω(0)e
−i∆ωt + b̂†ω(0)e

i∆ωt
]

+

∫ t

0

dτ
i

~
√
2π
λm(â+ â†)τ

[

ei∆ω(t−τ) − e−i∆ω(t−τ)
]

}

+
i

~
λmλa

∫ t

0

dτ

∫

dz ψ̂†(z)ψ̂(z) sin(z)

∫ ω+θ

ω−θ

dω

2π
sin(ω

z

ωl
)
[

ei∆ω(t−τ) − e−i∆ω(t−τ)
]

. (A6)

Since we have θ ≫ Ωm, it is safe to expand the limits of integration ωl ± θ to ±∞. The second term relating to b̂ω(0)
depends on the initial conditions and is known as quantum noises

F̂a =

∫ +∞

−∞

dω√
2π

[

b̂ω(0)e
−i∆ωt + b̂†ω(0)e

i∆ωt
]

with 〈F̂a〉 = 0.

Using
∫ +∞

−∞
eiωtdω = 2πδ(t), Heinsenberg equation of the membrane operator a turns into

i~ ˙̂a =~Ωmâ+
1

2~
λmλa

∫

dz ψ̂†(z)ψ̂(z) sin(z)

∫ t

0

dτ

∫ +∞

−∞

dω

2π

[

e
iω(t−τ+ z

ωl
)
e−iωl(t−τ) − e

−iω(t−τ− z
ωl

)
eiωl(t−τ) + c.c.

]

=~Ωmâ+
1

2~
λmλa

∫

dz ψ̂†(z)ψ̂(z) sin(z)

∫ t

0

dτ

[

δ(t− τ +
z

ωl
)e−iωl(t−τ) − δ(t− τ − z

ωl
)eiωl(t−τ) + c.c.

]

=~Ωmâ− Λ

∫

dz ψ̂†(z) sin(2z)ψ̂(z) (A7)

with Λ = λmλa/(2~), where we have neglected the noise term and assumed z > 0. Similarly, after substituting
Eq. (A5) into Eq. (A3), we obtain that

i~
˙̂
ψ(z) = [H0 + gψ̂†(z)ψ̂(z)]ψ̂(z) +

i

~

∫ t

0

dτ

∫ +∞

−∞

dω

2π
(ei∆ω(t−τ) − e−i∆ω(t−τ))

{

λaλm(â+ â†)τ+

λ2a
[

∫

dz′ψ̂†(z′) sin(z′) sin(
ω

ωl
z′)ψ̂(z′)

]

τ

}

sin(z) sin(
ω

ωl
z)ψ̂(z). (A8)

Following the same steps in Eq. (A7), we can easily see that for membrane-atom coupling

i

∫ t

0

dτ

∫ +∞

−∞

dω

2π

[

ei∆ω(t−τ) − e−i∆ω(t−τ)
]

(â+ â†)τ sin(
ω

ωl
z) = cos(z)(â+ â†), (A9)
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and for atom-atom coupling
∫ t

0

dτ

∫ +∞

−∞

dω

2π

[

ei∆ω(t−τ) − e−i∆ω(t−τ)
]

sin(
ω

ωl
z) sin(

ω

ωl
z′)

=− 1

4

∫ t

0

dτ

∫ +∞

−∞

dω

2π

[

ei(ω−ωl)(t−τ) − e−i(ω−ωl)(t−τ)
]

(e
iω z

ωl − e
iω z

ωl )(e
iω z′

ωl − e
iω z′

ωl )

=− 1

4

∫ t

0

dτ

∫ +∞

−∞

dω

2π

{

[

(e
iω(t−τ+ z

ωl
+ z′

ωl
) − e

iω(t−τ− z
ωl

+ z′

ωl
)
+ e

iω(t−τ− z
ωl

− z′

ωl
) − e

iω(t−τ+ z
ωl

− z′

ωl
)]
e−iωl(t−τ) − c.c.

}

=− 1

4

∫ t

0

dτ
{[

δ(t− τ − z′ + z

ωl
)− δ(t− τ − |z′ − z|

ωl
)
]

e−iωl(t−τ) − c.c.
}

=
i

2

(

sin(z′ + z)− sin |z′ − z|
)

, (A10)

in which we have assumed that z, z′ > 0. Combining the above two equations gives that

i~
˙̂
ψ(z) =

{

H0 + gψ̂†ψ̂ − Λ(â+ â†) sin(2z)− Γ

∫

dz′ψ̂†(z′) sin(z′)ψ̂(z′)[sin(z′ + z)− sin |z′ − z|] sin(z)
}

ψ̂(z) (A11)

with Γ = λ2a/(2~). These two equations Eq. (A7) and Eq. (A11) allow us to write down the effective Hamiltonian
Heff in the main text.

Appendix B: effective chemical potential in the self-organized lattice-like phase

The effective potential at position zj reads

V(zj) =
∂

∂nj
Elr = −Γ̃

[

sin2(zj)
L
∑

k=j

nk sin(2zk) +

j−1
∑

k=1

nk sin
2(zk) sin(2zj)

]

. (B1)

To show the site-dependent feature of V(zj), we assume an homogeneous density distribution with nj = 1/L for all
j = 1, · · · , L. Therefore, V(zj) can be recast into

V(zj) ≃ −Γ̃
1

2L

[

(1− cos ξj) sin ξj + (1− cos ξj)

L
∑

k=j+1

sin ξk + sin ξj

j−1
∑

k=1

(1 − cos ξk)
]

, (B2)

where we have set

ξk = 2z̄k = 2[z̄1 + (k − 1)∆z̄] = 2[
π

2
+ (k − 1)(π − 1

L− 1

π

4
)] = π + 2(k − 1)π − ηk (B3)

with ηk = (k − 1)π/2(L − 1). Since ηk ∈ (0, π/2), when L → ∞, we can approximate the above summation into
integral

V(zj) ≃ − Γ̃

2L

[

(1 + cos ηj) sin ηj + (1 + cos ηj)

L
∑

k=j+1

sin ηk + sin ηj

j−1
∑

k=1

(1 + cos ηk)
]

≃ − Γ̃

2L

[

(1 + cos ηj) sin ηj + (1 + cos ηj)
1

∆η

∫ π/2

ηj

dη sin η + sin ηj
1

∆η

∫ ηj

0

dη(1 + cos η)
]

= − Γ̃

2L

[

(1 + cos ηj) sin ηj +
cos ηj + ηj sin ηj + 1

∆η

]

(B4)

with ∆η = π/2(L− 1). This results in

V(zj) L→∞−→ − Γ̃

π
(cos ηj + ηj sin ηj + 1). (B5)

Since the function f(η) = cos η + η sin η increase monotonically as

∂f

∂η
= − sin η + sin η + η cos η = η cos η > 0 (B6)

when η ∈ (0, π/2), we conclude that the effective potential decreases along with the increase of lattice indices j.
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Appendix C: first order phase transitions induced by global non-uniform interaction

The presence of weak long-range interaction Γ̃ not only breaks the intrinsic Z2 symmetry but also makes the
transition from a lattice order and a right-moved lattice order to be of first order. To show this, we consider the
simplified variational wave-function ϕ(z) =

∑

j cj |z = z0j 〉 with z0j = jπ + δz and |cj | = 1/
√
L for all j ∈ [1, L] (L is

the total number of wave packets), then the corresponding energy functional is

E(δz) = E0 + V sin2(δz)− Λ̃

2
sin2(2δz)− Γ̃

2
sin2(δz) sin(2δz) (C1)

with E0 the remaining interaction energy which is not relevant here. When Γ̃/~Ωm ≪ 1, around phase boundary

Λ̃ → Λ̃c, we have δz ∼ 0 and

E(δz) ∼ pδz2 − Γ̃δz3 + qδz4 +O(δz5) (C2)

with p = V − 2Λ̃, q = (8Λ̃−V )/3. When Γ̃ = 0, The above equation describes a continuous phase transitions at p = 0
when q > 0. Otherwise, the local energy minimal E(δz) of can be obtained from

E′(δz) = 0 ⇒ δz0 = 0, δz± = (3Γ̃± χ)/(8q) with χ =

√

9Γ̃2 − 32pq. (C3)

The corresponding energies and second-order derivations are

E(δz0) = 0, E′′(δz0) = 2p, (C4)

E(δz+) =
−1

2048q3
(3Γ̃ + χ)2[Γ̃(3Γ̃ + χ)− 16pq], E′′(δz+) =

χ(χ+ 3Γ̃)

8q
, (C5)

E(δz−) =
−1

2048q3
(3Γ̃− χ)2[Γ̃(3Γ̃− χ)− 16pq], E′′(δz−) =

χ(χ− 3Γ̃)

8q
. (C6)

In our case, since Λ̃ → Λ̃c = V/2 and Γ̃ ≪ 1, this ensures q > 0. Therefore, an overall shift occurs only when p ≤ 0.
This gives the following constrains

χ ≥ 3Γ̃ > 0, δz− < 0 < δz+, (C7)

E′′(δz0) ≤ 0, E′′(δz+) > 0, E′′(δz−) ≥ 0. (C8)

Therefore we have E(δz+) < E(δz−) ≤ E(δz0). The energy minimal point locates at δz = δz+ and the ground state
is a right-moved lattice phase. At the critical point p = 0, the order parameter jumps from zero to its minimal value
δz+|min = 3Γ̃/4q, which indicates that the phase transition is of fist-order.

Appendix D: Bogoliubov excitations

In this section, we explore the stability and the excitations of different states in the phase diagram. Taking
into account the first-order fluctuations, we rewrite the order parameter as ϕ(z) = ϕ0(z) + δϕ(z), where ϕ0(z) is
wavefunction of atomic BEC and δϕ(z) is the fluctuation. Substituting ϕ(z) into the GP equation (Eq. (21)), the
zero-order term gives the mean-field ground state satisfying

i∂tϕ0(z) = {H0 + g̃|ϕ0(z)|2 − Λ̃κ[ϕ0] sin(2z)− Γ̃χ[ϕ0, z] sin(z)}ϕ0(z); (D1)

For the fluctuation δϕ(z), up to the first-order correction, we get the Bogoliubov equation

i∂tδϕ(z) =
{

H0 + 2g̃|ϕ0(z)|2 − Λ̃κ[ϕ0] sin(2z)− Γ̃χ[ϕ0, z] sin(z)
}

δϕ(z) + g̃ϕ2
0(z)δϕ

∗(z)

− Λ̃ sin(2z)ϕ0(z)

∫

dz′ sin(2z′)
[

ϕ∗
0(z

′)δϕ(z′) + ϕ0(z
′)δϕ∗(z′)

]

− Γ̃ sin(z)ϕ0(z)

∫

dz′ sin(z′)
[

sin(z + z′)− sin |z − z′|
][

ϕ∗
0(z

′)δϕ(z′) + ϕ0(z
′)δϕ∗(z′)

]

(D2)

To obtain the Bogoliubov excitation, we rewrite the time-dependent wavefunction as

ϕ0(z, t) = exp(−iµt)ϕ0(z), δϕ(z, t) = e−iµt[e−iωtu(z) + eiωtν∗(z)], (D3)
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with chemical potential µ and excitation energy ω > 0. Here µ depends only on wavefunction ϕ0(z) of condensation

µ =

∫

dz ϕ∗
0(z)

{

H0 + g̃|ϕ0(z)|2 − Λ̃κ[ϕ0] sin(2z)− Γ̃χ[ϕ0, z] sin(z)
}

ϕ0(z). (D4)

The excitation energy ω is determined by following equations of u(z) and ν(z)

ωu(z) =[A(z)− µ]u(z) + [B(z, z′) + C(z, z′)]u(z′) + [B′(z, z′) + C′(z, z′)]ν(z′) + g̃ψ2
0(z)ν(z), (D5)

ων(z) =− [B′∗(z, z′) + C′∗(z, z′)]u(z′)− g̃ψ∗2
0 (z)u(z)− [A∗(z)− µ]ν(z)− [B∗(z, z′) + C∗(z, z′)]ν(z′) (D6)

with operators

A(z) =H0 + 2g̃|ϕ0(z)|2 − Λ̃κ[ϕ0] sin(2z)− Γ̃2χ[ϕ0, z] sin(z), (D7)

B(z, z′) =− Λ̃ sin(2z)ϕ0(z)

∫

dz′ sin(2z′)ϕ∗
0(z

′), (D8)

B′(z, z′) =− Λ̃ sin(2z)ϕ0(z)

∫

dz′ sin(2z′)ϕ0(z
′), (D9)

C(z, z′) =− Γ̃ sin(z)ϕ0(z)

∫

dz′ sin(z′)(sin(z + z′)− sin |z − z′|)ϕ∗
0(z

′), (D10)

C′(z, z′) =− Γ̃ sin(z)ϕ0(z)

∫

dz′ sin(z′)(sin(z + z′)− sin |z − z′|)ϕ0(z
′). (D11)

The presence of membrane-atom and atom-atom couplings brings about nonlocal long-range coupling of excitation
modes between u(z) and ν(z), which is explicitly shown by B, B′ and C, C′ respectively. From Eq. (D5) and Eq. (D6),
we can obtain the excitation spectra using numerical diagonalization. The lowest three excitations are shown in Fig. 7
in the main text. The vanishing imaginary part of the excitations indicates the dynamical stability of all three orders
in phase diagram. The transition between different phases can also be observed from the excitation spectra by their
typical analytical behavior around the critical points.

Appendix E: parameters estimation in a hybrid atom-optomechanical system

In the main text, we have introduced the dimensionless coordinate z in the total Hamiltonian (see Eq. (A1)). The
units of bω, V (org), and λm,a are Hz−1/2, J, and J·(Hz)−1/2 respectively. Following the discussions in [22], we can
write down the relevant parameters as

V =
µ2ǫ2wl

ζ2

~δ̃
, (E1)

λa =

√
2πµ2ǫ2wl

ζ

~δ̃
, (E2)

λm = ~
ζklla√
π

|τm|2F
π
, (E3)

where µ is the atomic dipole moment, ǫwl
=

√

~wl

πǫ0cS
with the light speed c and the cross-sectional area S of the

laser mode, ζ is related with the laser power P = ~wlζ
2

2π , λl is the wave-length of laser and kl wave number of laser,

δ̃ = wl − weg is the detuning between the laser frequency ωl and the atomic energy gap ωeg, la =
√

~

MΩm
is the

characteristic length of the membrane with massM and frequency Ωm, τm is the reflection index, and F is the finesse
of the cavity. We assume that a pencil-like shape condensate resides in a potential trap which is a harmonic trap in
x, y directions with high frequency wx, wy and a square well in z axis with length Lz. Other needed physical constants
are

~ = 6.626× 10−34/(2π) J · s, ǫ0 = 8.854× 10−12 C/(N ·m2),

c = 3× 108 m/s, µ = 3.584× 10−29 C ·m.
In this quasi-one dimensional system, wavefunction of atoms can be assumed as ψ(r′) = ψg(x

′)ψg(y
′)ψ′(z′) with

ψg(γ) =
1

√

aγ
√
π
exp(− γ2

2a2γ
), aγ =

√

~

mwγ
, and γ = x′, y′. (E4)
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Effective s-wave interaction can be derived as

g′

2

∫

dr′ |ψ(r′)|4 =
g′

2

∫

dx′ |ψg(x
′)|4

∫

dy′ |ψg(y
′)|4

∫

dz′ |ψ′(z′)|4 ≡ g

2

∫

dz |ψ(z)|4 with g =
2~2as

maxayλl
. (E5)

where we have used g′ = 4π~2as/m, z′ = zλl and ψ(z) =
√
λlψ

′(z′).
We next calculate these parameters by taking 87Rb atom as an example. The mass of a 87Rb atom is m =

87× 1.66× 10−27 Kg. In experiment [28], the relevant parameters of the membrane and cavity are

M = 117ng, Ωm = 2π × 276kHz, τm = 0.41, F = 570. (E6)

Here the wavelength of laser is λl = 780nm, δ̃ = −2π×1GHz is the detuning, and the laser power is P = 3.4mW. The
beam waist of laser reads wr = 250µm, from which we have that S = πw2

r . The frequencies of the harmonic traps
can be set as {wx, wy} = 2π×{62, 85} Hz. Their corresponding characteristic length are ax = 1.37µm, ay = 1.17µm.
We also set the length of the quasi-one dimensional condensate as Lz = 10λl = 7.8µm ≫ λl/2. Using these setting,
we can then calculate the recoil energy as

~ωR =
~
2k2l
2m

= 2.498× 10−30J = ~ · 2π × 3.77 kHz (E7)

and

λm ≈ 0.00595941 s1/2 · ~ωR,

λa ≈ 0.00002044 s1/2 · ~ωR,

λa
λm

≈ 3.4× 10−3.

Next we calculate effective membrane-atom coupling Λ̃ and long-range atom-atom interaction Γ̃ with

Λ̃ =
βΛ2

~Ωm
N =

βλ2mλ
2
a

4~2~Ωm
N,

Γ̃ =
Γ

2
N =

λ2a
2~
N. (E8)

The relative strength between Λ̃ and Γ̃ is then determined by λm, β, and Ωm respectively. If we set β = 2Ω2
m/(Ω

2
m +

γ2) = 200/101 and the total particle number N = 106. Using the above parameters, we can obtained that

Λ̃ ≈ 0.06~ωR, Γ̃ ≈ 4.95~ωR, Γ̃/Λ̃ ≈ 87.87. (E9)

This ratio indicates that the predict phase transition should be attainable within current setup.
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Rakher, M. Korppi, A. Jöckel, and P. Treutlein, Physical
Review A 87, 023816 (2013).

[23] J. S. Bennett, L. S. Madsen, M. Baker, H. Rubinsztein-
Dunlop, and W. P. Bowen, New Journal of Physics 16,
083036 (2014).

[24] B. Vogell, T. Kampschulte, M. Rakher, A. Faber,
P. Treutlein, K. Hammerer, and P. Zoller, New Jour-
nal of Physics 17, 043044 (2015).

[25] N. Mann, M. R. Bakhtiari, A. Pelster, and M. Thorwart,
Physical review letters 120, 063605 (2018).

[26] H. Tan and L. Sun, Physical Review A 92, 063812 (2015).
[27] N. Mann and M. Thorwart, Physical Review A 98,

063804 (2018).
[28] A. Vochezer, T. Kampschulte, K. Hammerer, and

P. Treutlein, Physical review letters 120, 073602 (2018).
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