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4Department of Mathematics and Program in Applied Mathematics University of Arizona Tucson, AZ 85721-0089 USA
5Instituto de F́ısica Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), 07122 Palma de Mallorca, Spain
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We study the quantum motion of an impurity atom immersed in a Bose Einstein condensate in
arbitrary dimensions. It was shown, for all dimensions, that the Bogoliubov excitations of the Bose
Einstein condensate act as a bosonic bath for the impurity, where linear coupling is possible for
certain regime of validity, which was assessed only in one dimension. Here we present, for the first
time, the detailed derivation of the d-dimensional Langevin equations that describe the quantum
dynamics of the system, and of the associated generalized tensor that describes the spectral density
in the full generality, and assess the linear assumption in all dimensions. As results, we obtain,
when the impurity is not trapped, the mean square displacement in all dimensions, showing that
the motion is super diffusive. We obtain also explicit expressions for the super diffusive coefficient
in the small and large temperature limits. We find that, in the latter case, the maximal value of this
coefficient is the same in all dimensions, but is only reachable in one dimension, within the validity
of the assumptions. We study also the behaviour of the average energy and compare the results for
various dimensions. In the trapped case, we study squeezing and find that the stronger position
squeezing can be obtained in lower dimensions. We quantify the non-Markovianity of the particle’s
motion, and find that it increases with dimensionality.

I. INTRODUCTION −

The concept of a quasiparticle plays a fundamental role
in physics, allowing to greatly simplify the description of
numerous complex phenomena. A paradigmatic classi-
cal problem, in which quasiparticles appear, is the study
of an electron interacting with a surrounding dielectric
crystal. Its dynamics can be approximated by a much
simpler dynamics of an electron with a different mass,
called polaron, traveling through free space. This classi-
cal theory (see historical note in [1]) keeps inspiring new
developments in physics. In particular, it plays an im-
portant role in the recent studies of the Bose polaron –
the quasiparticle associated with an impurity immersed
in a Bose-Einstein condensate (BEC).

Bose polarons were investigated in diverse experiments
on impurities immersed in bosonic gases. To begin with,
the quantum dynamics of impurities in Bose gases were
examined in [2, 3], while technical aspects of experiments
with Cs impurities were studied in [4]. The phononic
Lamb shift in the context of ultracold bosons was ob-
served in [5]. In addition, in these first experiments,
charged, ionic or fixed impurities and their dynamics
were studied: a quantum spin of a localized neutral im-
purity [6], fermions in a Bose gas [7, 8], ions embedded
in a BEC [9, 10]. Quantum dynamics of spin impurities
and fermions immersed in a Bose gas in an optical lattice
were studied in Refs. [11, 12]. More recent experiments
define the state-of-the-art of the field: in [13] existence

of a well-defined quasiparticle state of an impurity in-
teracting with a BEC was demonstrated, while in [14]
the strong interacting regime, which is natural for po-
laron problems, was investigated. In [15], a Bose polaron
was studied near criticality, which provided important
insights into the physics of quasiparticles in the vicinity
of quantum critical points, that are otherwise much more
difficult to study in other physical systems.

The polaron theory was first developed in the strong
coupling limit, and later extended to the intermediate
and weakly interacting regimes. In the context of the
Bose polaron problem, a large part of the theoretical
effort deals with the weak regime, described by the so
called Fröhlich Hamiltonian. This theoretical approach
studies effective mass, quantum dynamics, [16–22], col-
lision dynamics [23], the behaviour in a d-dimensional
BEC near the critical temperature [24], particularly in
two-dimensions [24, 25], and related aspects of the sys-
tem. Some studies in the weak regime considered the
impurity as a quantum Brownian particle in a BEC or
in a so called Luttinger liquid [26–30]. In a beautiful se-
ries of papers [31–36], this approach was used to study
friction of a initially moving heavy particle in a dense
non-interacting BEC, which is decelerated by emission
of gapless modes into the condensate (Cerenkov radia-
tion) and eventually comes to rest for ideal bosons, or
performs a ballistic motion for weakly interacting ones.
Importantly, Monte Carlo studies, in some instances be-
yond the regime of validity of the Fröchlich Hamiltonian,
allow to benchmark the aforementioned theoretical re-
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sults [37–40]. Other works focused on the intermediate
and strong coupling regimes [41–49], and on the non-zero
temperature systems [50–53].

Yet other works studied the quenched dynamics,
prethermalization, critical slow-down, and orthogonal-
ity catastrophe using the multi-configuration time-
dependent Hartree method, both in weak and strong
interaction regimes [54–58]. Also, several papers in-
vestigated ejection and injection spectroscopy related to
Bose polarons and the orthogonality catastrophe [59, 60],
as well as bound states [61–64]. A number of notable
works study two polarons immersed in a BEC (Bose bi-
polaron) [65, 66] and the problem of an impurity in a
two-component BEC [67, 68]. There has recently been a
renewed interest in the polaron problem in mathematical
physics literature. See in particular: [69–71]. Finally a
series of papers deal with applications of Bose polarons
in quantum thermometry [72–75] and thermodynamics
[76–78].

In the present paper we offer the detailed derivation of
the open quantum systems approach to the Bose-polaron
problem in arbitrary dimensions. We then take advan-
tage of the obtained theoretical framework to get new
insight into different aspects of the dynamics of an impu-
rity immersed in a d-dimensional BEC and its relation-
ship with dimensionality.

The study of the Bose polaron from the open quan-
tum system perspective requires a first step in which
the Hamiltonian of the system is put in the form of a
Caldeira-Legget Hamiltonian, where the system is the
impurity, the Bogoliubov excitations of the BEC play
the role of the environment, and there is a coupling
term between impurity and this environment. Some of
us did such derivation in [26] for an homogeneous one-
dimensional system and in [27] for an inhomogeneous
(trapped) system. In both cases, the coupling term in
the initial Hamiltonian was non-linear, which would lead
to quantum stochastic equations with inhomogeneous
damping and multiplicative noise. This is not always
tractable in the case of non-Ohmic spectral densities [79–
81], presenting a challenge for mathematical physics. The
recipe used in both cases was to linearize this coupling
term, and subsequently to establish the regimes of va-
lidity in which this assumption holds. For the trapped
case, a second source of inhomogeneity was the trap it-
self, which required a further assumption, i.e. to assume
that the impurity was close to the center of the BEC
all over the dynamics. A second step is to derive the
spectral density: this arises directly from the Bogoliubov
energy spectra and the assumption that the environment
is large, and its state at finite temperature T follows bose
statistics.

The research in [26] followed a full characterization of
the one-dimensional homogeneous case, but was far from
complete in two and three dimensions. While the deriva-
tion of the Hamiltonian in the form of Caldeira-Legget’s
one was done, the derivation of the equations of motion
was only performed in one-dimension. Moreover, while

the assumption of linearity of the interaction term was
done in every dimension, it was only assessed in one-
dimension. Also, other assumptions, like the limit on
the strength on interactions in two and three dimensions
was not discussed. The second step, i.e., to derive the
spectral density was performed in all dimensions in [26],
but, as we show in the present work, its derivation re-
quires a more systematic treatment of all parameters in
two and three dimensions. As most experiments take
place in two and three dimensions, a need to treat care-
fully these aspects is evident. Particularly: 1) to offer a
detailed derivation of the quantum Langevin equations
in all dimensions (which is absent in previous works);
2) a detailed derivation of the generalized d-dimensional
spectral density; and 3) a numerical assessment of the
linear assumption in two and three dimensions in every
numerical example. In the present paper we detail these
questions, assessing that the limits established by the as-
sumptions are fulfilled in all dimensions.

Once set the theoretical framework, several aspects of
interest are reachable via solving the quantum Langevin
equations. Some of these questions are, when the im-
purity is not trapped: 1) to characterize the out-of-
equilibrium long-term behaviour of the impurity. It in-
cludes both to characterize the kind of anomalous diffu-
sion and to derive the diffusion coefficient. 2) To study
the behaviour of the variance of the momentum, and
therefore of the energy. When the impurity is trapped,
the questions are: 3) to characterize the stationary state,
by means of its covariance matrix. 4) To quantify the
position squeezing as a function of the parameters. 5) To
quantify non-Markovianity, as the system shows memory
effects. These aspects were treated for one-dimension in
[26] for homogeneous and in [27] for inhomogeneous sys-
tems. In the present work we complete the study in 2D
and 3D, but particularly we add results valid in all di-
mensions. For the untrapped case, we obtain 1) explicit
expressions of the diffusion coefficients in low and high
temperature limits, showing that this coefficient has a
maximum as a function of the impurity-boson coupling,
and that this maximal value is equal in all dimensions;
furthermore, that the maximum is reached for values that
fulfil the assumptions only in one dimension; 2) we also
offer expressions of the average energy in all dimensions;
for large temperature limits, we find its expressions. In
the large temperature limit, it has a maximum for cer-
tain values of the impurity-boson coupling; at this value,
and in all dimensions, equipartition theorem is fulfilled.
On the other hand, in the small temperature limit, the
maximum average energy is shown to be explicitly depen-
dent on the dimension involved. 3) We discuss in detail
the mass renomalisation of the Bose-polaron, and com-
pare with existing results and among dimensions. For
the trapped case, we obtain 1) position and momentum
stationary variances, and show that the position variance
is connected to the imaginary part of the susceptibility in
the corresponding dimension. 2) We also evaluate posi-
tion squeezing in all dimensions. We argue that position
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squeezing is larger at smaller dimensions. Finally, we
evaluate non-Markovianity in all dimensions, and justify
that it increases with interactions and dimensionality.

The paper is organized as follows: in section II we
present the assumptions and derivations that permit to
obtain the (linearized) quantum Brownian motion Hamil-
tonian (cf. Eq. (20)) from the initial second quan-
tized one. In section III we obtain the generalized d-
dimensional spectral density. We study, in all dimen-
sions, the quantum dynamics in the non-trapped and
trapped case in section IV, and non-Markovianity in sec-
tion V. We finally conclude in section VI. In appendices
A and B we include the detailed derivation of the gener-
alized d-dimensional spectral density and vectorial quan-
tum Langevin equations, as they are per se important
results of this paper. In appendix C we present the ex-
pressions for the position and momentum variances of
the generalized Langevin equations. In appendix D we
discuss the the validity of our approximations. Finally,
in appendix E we enlighten about the frequency cutoff
used in our analysis.

II. HAMILTONIAN AND BOGOLIUBOV
MODES−

We start by considering an impurity atom with mass
mI immersed in a d-dimensional ultracold gas of N
bosons. The interaction between the bosons occurs
through the scattering potential VB(r). We denote by
Ψ(r) (Ψ†(r)) the annihilation (creation) field operator
of the atoms at the position r, which fulfills canonical
bosonic commutation relations [Ψ(r),Ψ†(r)] = δ(r− r′).
The bosonic density therefore takes the form nB =
Ψ†(r)Ψ(r). The total Hamiltonian is given by

H = HI +HB +HBB +HIB. (1)

Here, the four terms represent the Hamiltonians of the
impurity being kept in an external potential Uext(r),
bosons in a potential Vext(r), the boson-boson atomic
interaction and the impurity-boson atomic interaction,
respectively. Within the second quantization formalism,
their explicit forms are [26]

HI =
P2

2mI
+ Uext(r), (2)

HB =

∫
ddr Ψ†(r)

(
P2

B

2mB
+ Vext(r)

)
Ψ(r)

=
∑
k

εka
†
kak, (3)

HBB = gB

∫
ddr Ψ†(r)Ψ†(r)Ψ(r)Ψ(r)

=
1

2V

∑
k,k′,q

VB(q)a†k′−qa
†
k+qak′ak, (4)

HIB = gIBnB =
1

V

∑
k,q

VIBρI(q)a†k−qak. (5)

In the above expressions, Vext(r) denotes the external po-
tential experienced by the Bosons which are contained in
a (box of) volume V of the hyperspace. From now on, we
assume a homogenous BEC, that is, Vext(r) = 0 along the
direction of the impurity motion. For the impurity, the
external potential is Uext(r), and we will study two cases:
a free or a parabolically trapped impurity. The bosonic

operators ak(a†k) destroy (create) a boson of mass mB

having wave vector k and energy εk = (~k)
2
/(2mB)−µ,

measured from its chemical potential µ. In addition,
the quantities VB and VIB represent the Fourier trans-
form Fq[.] of the impulsive (contact) boson-boson and
impurity-boson interactions respectively. Their explicit
expressions are:

VB(q) = gBFq[δ(r− r′)], (6)

VIB(q) = gIBFq[δ(r− r′)]. (7)

Here, the respective coupling strengths are gB and gIB.
They are mainly determined by the corresponding scat-
tering lengths and densities [82, 83] and their explicit
expressions will be given later. We assume that the im-
purity density is low enough, which allows us to neglect
the terms describing the interaction between impurities.
The (dimensionless) density of the impurity in the mo-
mentum space is given by

ρI(q) =

∫ ∞
−∞

dr′ e−iq.r
′
δ(r′ − r). (8)

Next, for the sake of completeness, we review how to
construct the Fröhlich Hamiltonian, which describes the
linear interaction between the motional position quadra-
ture of the impurity and the Bogoliubov bosonic modes of
BEC. The goal is to show that such linear regime allows
us to model the impurity as a quantum Brownian parti-
cle which experiences an effective environment formed by
the Bogoliubov Bosonic modes of the BEC (as derived in
[26]).

Given that the Hamiltonian of the Bosonic interaction
is not in bilinear form, we linearize it and replace the cre-
ation and annihilation operators by their average values√
N0. Below a critical temperature, the atoms mainly

occupy the ground state forming a BEC, however, we ne-
glect terms proportional to Nk (k 6= 0) i.e. the number
of particles out of the ground state. In order to diag-
onalise the bath modes, we further apply the following
Bogoliubov transformation

ak = ukbk − vkb†−k , a−k = ukb−k − vkb†k. (9)

The transformation coefficients are

u2
k =

1

2

(
εk + n0VB

Ek
+ 1

)
, (10)

v2
k =

1

2

(
εk + n0VB

Ek
− 1

)
, (11)
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where n0 is the (constant) density of particles in the
ground state of the homogeneous gas and the Bogoliubov
energy spectrum is given by

Ek = ~ωk = ~c |k|
√

1 +
1

2
(ξk)

2
, (12)

with

ξ =
~√

2gBmBn0
, c =

√
gBn0

mB
=

~√
2mBξ

, (13)

representing the coherence length and the speed of sound,
respectively. The effective bath Hamiltonian under such
transformation reads [82]

HB +HBB =
∑
k6=0

Ekb
†
kbk. (14)

Here, we have neglected the non-operator terms which
simply shift the energy level of the atoms in BEC. We
approximate the bosons-impurity interaction in a similar
way. Further, we only keep the terms proportional to√
N0, where the macroscopic occupation of the conden-

sate holds as expressed by the condition Ni 6=0 � N0 .
By discarding the terms which might cause non-physical

instabilities and those bilinear in
√
N0, we obtain the

Hamiltonian

HIB = n0VIB +

√
n0

V

∑
k6=0

ρ(k)VIB(ak + a†k). (15)

The first term represents simply the constant mean field
energy and provides the shift of the energy of polaron.
For the purposes here, it can be neglected. By further
invoking the transformation from Eq. (9) into Eq. (15),
one gets

HIB =

√
n0

V

∑
k6=0

ρ(k)VIB (uk − vk) (bk + b†−k)

=

√
n0

V

∑
k6=0

ρ(k)VIB

√
εk
Ek

(bk + b†−k), (16)

where once again we have discarded the non-operator
terms. Since the density is dependent on the position of
the impurity, we insert its expression into Eq. (16), which
results in the interaction between impurity position and
bath variables given by

HIB =
∑
k6=0

Vke
ik·r(bk + b†−k). (17)

Importantly, Vk contains the impurity-Boson coupling
coefficient, and takes the form

Vk = gIB

√
n0

V

[
(ξk)2

(ξk)2 + 2

] 1
4

. (18)

The interaction in the Eq. (17) is the interaction part
of the Fröhlich Hamiltonian. Under the assumption that
one restricts the calculation to the limit k · r � 1, the
interaction reads

HIB =
∑
k6=0

Vk (1 + ik · r) (bk + b†−k). (19)

We further simplify it by redefining the Bogoliubov
modes operator bk → bk − vk/Ek1, to absorb terms pro-
portional to identity operator. After all these simplifica-
tions, the final form of the Hamiltonian of the impurity
in a BEC reads

H = HI +
∑
k 6=0

Ekb
†
kbk +

∑
k6=0

~gk · r πk, (20)

with

gk = kVk/~ , πk = i
(
bk − b†k

)
. (21)

The Hamiltonian in Eq. (20) describes a linear interac-
tion between the impurity center of mass motion and a
bath of the Bogoliubov modes of a BEC. It thus has a
form of the Quantum Brownian Motion (QBM) Hamil-
tonian, in which the impurity plays the role of a Brown-
ian particle while the modes of BEC act as an effective
Bosonic environment as represented by its (dimension-
less) momenta πk.

III. d-DIMENSIONAL SPECTRAL DENSITY−

The Hamiltonian derived in the previous section allows
us to study the quantum dynamics of an impurity, taking
advantage of the analogy with the QBM model. To char-
acterise the bath, we write its self-correlation function
as

C(τ) =
∑
k6=0

~gk 〈πk(τ)πk(0)〉 . (22)

Here gk = gk gk
T is the coupling tensor. The environ-

ment is made of bosons whose state at finite tempera-
ture T follows the Bose-Einstein statistics. Therefore,
the mean number of bosons in each of the modes reads

〈b†kbk〉 =
1

exp(~ωk/kBT )− 1
. (23)

In order to calculate the correlation, we invoke the ex-
pression for the dimensionless momenta and make use of
Eq. (23) and Eq. (22) which results in

C(τ) =
∑
k6=0

~gk
[
coth

(
~ωk

2kBT

)
cos(ωkτ)− i sin(ωkτ)

]
≡ ν(τ)− iλ(τ), (24)
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where the real and imaginary part of the self-correlation
function are given by

ν(τ) =

∫ ∞
0

J(ω) coth

(
~ω

2kBT

)
cos(ωτ)dω, (25)

λ(τ) =

∫ ∞
0

J(ω) sin(ωτ)dω = −mIΓ̇(τ). (26)

Moreover, the damping kernel Γ(t) can be obtained from

Γ(t) = (1/mI)

∫ ∞
0

dω(1/ω)J(ω) cos(ωt). (27)

In the above expressions we have introduced the spectral
density J(ω), which fully characterises the effects of the
bath on the system. This information is contained in the
coupling strengths of the various modes of the bath with
the system. The spectral density is defined as

J(ω) =
∑
k6=0

~gkδ(ω − ωk). (28)

In the present case, the couplings of the impurity (sys-
tem) and bosons (bath) interaction can be derived from
first principles. It is therefore possible to obtain the ex-
act expression for the spectral density. This scenario is
in contrast to various complicated system-bath interac-
tions, where it is hard to get an exact form of the spectral
densities, such as in bulk mechanical structure akin to
opto-mechanical setup [84–86]. While the case of spec-
tral density in 1d has been studied in [26], here we derive
it systematically in d = {1, 2, 3} dimensions of the quasi
momentum space. In appendix A, we derive the expres-
sion for the spectral density tensor, which is given by

Jd(ω) = d−1 [Jd(ω)] I d×d, (29)

where I d×d is the identity matrix and the scalar function
Jd(ω) in d dimensions is given by

Jd(ω) =

(
Sd

(√
2
)d

(ηd)2(Λd)d+2

(2π)d

)
×


[(

mB

[gB,d][
d

d+2 ]n0,d

)(√
ω2

(Λd)2 + 1− 1
)]( d+2

2 )

(√
ω2

(Λd)2 + 1
)

 . (30)

For d = 1, 2 and 3 we have S1 = 2, S2 = 2π and
S3 = 4π respectively. Moreover, we have defined the
d−dependent characteristic frequency Λd = (gB,dn0,d)/~
because the boson-boson coupling and the density dif-
fer in various dimensions. We also write the impurity-
boson coupling in the units of the boson-boson coupling
as ηd = (gIB,d/gB,d). Such characterization allows us to
study the long-time dynamics of the impurity in the fol-
lowing sense: one can identify two opposite limits in the

above expression i.e. ω � Λd and ω � Λd in which Λd

appears naturally as the characteristic cutoff frequency
which distinguishes between the low and the high fre-
quencies of the bath. The low-frequency behaviour is
attributed to the linear part of the Bogoliubov spectrum
[26]. From the Tauberian theorem [87], one can obtain
the long-time behaviour of a function which is determined
by the low frequency response of its Laplace transform.
The above low-frequency choice is therefore a natural way
of studying the dynamics perturbed by the bath that acts
beyond the very short transient regime. Note that, for
d = 1 the above expression reduces to the one dimen-
sional spectral density used in [26]. To the lowest order
of ω/Λd, the expression for the spectral density with the
low frequency response of the bath is given by

Jd(ω) ' Sd (ηd)
2

2(2π)d

(
mB

[gB,d][
d

d+2 ] n0,d

)( d+2
2 )

× ωd+2. (31)

This expression gives the scaling of the frequency for the
spectral density function in all dimensions. We point
out that due to the spherical symmetry of the bath, the
spectral density tensor is a diagonal matrix. As a conse-
quence, the noise and damping kernels given by Eq. (25)
and Eq. (27) are also diagonal. We now give further de-
tails about the other parameters involved. In dimension
d, the coupling constant gB,d and boson density n0,d have
the form

gB,d =
Sd~2a3

mB

(√
~/mBωd

)3−d , n0,d = (n0,1)
d
, (32)

their units being J ·md and m−d respectively. Here we
have written these expressions in terms of the three-
dimensional scattering length a3 and one-dimensional
density n0,1. We have further assumed transverse con-
finement of the boson gas with a harmonic trap having a
Gaussian ground state [88], which makes the cases d < 3
to be the quasi one- and two-dimensional. We emphasize
that the parabolic potential is introduced only in the di-
rection transverse to the direction under investigation.
The dynamics we study is thus still confined to a box
potential, making the homogeneity of Boson gas to be a
valid approximation. Moreover, the zero point fluctua-
tions of the condensate are characterised by the trapped
frequencies ωd = {ω1 = ω⊥, ω2 = ωz, ω3 = 0}. For in-
stance, when we consider one, two- and three-dimensional
condensate to be confined in the x direction, in the x− y
plane or in the volume x− y− z respectively, the explicit
form of the potential may be given by

Vext(r) =


(1/2)mBω

2
⊥
(
y2 + z2

)
, for d = 1

(1/2)mBω
2
z

(
z2
)
, for d = 2

0 , for d = 3.

(33)

Note that for d = 3 there is no parabolic confinement and
therefore the expressions are independent of the trapping
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frequency. It is then possible to define a characteristic
time τd which is raised to the power d in the expression
for the spectral function, which is given by

Jd(ω) = mI (τd)
d
ωd+2 where

(τd)
d ≡ Sd (ηd)

2

2(2π)dmI

(
mB

[gB,d][
d

d+2 ] n0,d

)( d+2
2 )

. (34)

It is evident that the spectral density has a super-ohmic
dependence on the frequency in all dimensions. It is
therefore expected that the bosonic bath would induce
a non-Markovian dynamics of the impurity [86]. More-
over, it can be shown that the increasing nature of the
spectral density makes certain quantities, such as mo-
mentum dispersion, diverge. It is therefore customary to
define the ultraviolet cutoff K(ω,Λd) in order to suppress
the contribution of high frequencies [26]. After this, the
expression for the spectral density reads

Jd(ω) = mI (τd)
d
ωd+2K(ω,Λd). (35)

In the following we study the impurity dynamics, vary-
ing the dimension and d-dependent cutoff function in the
expression of the spectral density.

IV. DYNAMICS AND CONTROL −

To study the quantum dynamics of the impurity atom,
we write down the equations of motion in the Heisenberg
picture. The impurity, which is immersed in a bath of
dimension d, is further trapped by a harmonic poten-
tial. In dimensions 1, 2 and 3, the potential is Uext(x) =
(1/2)mIΩ

2
(
x2
)
, Uext(x, y) = (1/2)mIΩ

2
(
x2 + y2

)
and

Uext(x, y, z) = (1/2)mIΩ
2
(
x2 + y2 + z2

)
respectively.

Here, we have assumed equal trapping frequency in all
the directions available to the impurity dynamics. The
free QBM is therefore characterised by setting Ω = 0 in
all the cases. We write the equation of motion in vectorial
form as

Ẋ(t) =
i

~
[H,X(t)] =

Ṗ (t)

mI
, (36)

Ṗ (t) =
i

~
[H,P (t)] = −mIΩ

2Ẋ(t)− ~
∑
k

gkπk(t), (37)

ḃk(t) =
i

~
[H, bk(t)] = −iωkbk(t)− gkTX(t), (38)

ḃ†k(t) =
i

~

[
H, b†k(t)

]
= −iωkb†k(t)− gkTX(t). (39)

Here H represents the Hamiltonian of the system given
by Eq. (20). In general, the dimension of the vectors in
the above equations is d, the dimension of the bath. In

appendix B, we combined these equations to obtain an
equation of motion for the impurity position vector:

Ẍ(t) + Ω2X(t) + ∂t

∫ t

0

Γ(t− s)X(s)ds

= (1/mI)B(t). (40)

Here, the quantum Brownian stochastic force B(t) stands
for

B(t) =
∑
k

i~gk(b†ke
iωkt − bke−iωkt). (41)

In any given dimension, the diagonal damping kernel
when equal weighting for all the directions is taken, will
suffice to study the motion along any one of the coor-
dinate axis. However for different dimensions, the spec-
tral density will bring different level of super-ohmicity,
as stated by Eq. (35). Therefore, the form of the noise
and damping kernels will also differ according to the di-
mension involved. As a result, the impurity motion is
different for different dimensions, despite being studied
along one particular coordinate axis. One can then aim
to study such a motion by constructing a unit vector
(1, 0, 0) (i.e. along the x direction) and taking dot prod-
uct with Eq. (40). This results in

ẍ(t) + Ω2x(t) + ∂t

∫ t

0

Γxxd (t− s)x(s)ds =

(
1

mI

)
Bx(t).

(42)

Note that the tensor components satisfy Γxyd = Γxzd = 0.
Interestingly, this kind of linear quantum Langevin-like
equations are quite general, and appear in various physi-
cal systems (see for instance [89], where the variable is the
population imbalance in a double well). Of course, the
entire physics is hidden is the concrete form of the noise
and damping kernels (whose properties are determined
by both the spectral function and the state of the bath,
Eq. (25) and Eq. (27)). Additionally, from the structure
of the integral term in the Eq. (42), it is obvious that
damping kernel is non-local in time. This implies that the
dynamics of the impurity depends on its history. There-
fore, in general the impurity motion displays memory ef-
fects. Only in the case of Ohmic spectral density (linear
function of ω) the memory damping kernel reduces to a
Dirac delta function and describes the time-local dynam-
ics of the standard damped harmonic oscillator. The time
local behaviour is violated in similar experimental config-
uration [86] and surge of non-Markovianity is addressed
elsewhere [90–92]. The formal solution to Langevin-like
Eq. (42) takes the form

x(t) =G1,d(t)x(0) +G2,d(t)ẋ(0) + (1/mI)

∫ t

0

ds

×G2,d(t− s)Bx(s), (43)

where the Green’s functions G1,d and G2,d are defined in
terms of their Laplace transforms

LS,d [G1,d(t)] =
S

S2 + Ω2 + SLS,d [Γxxd (t)]
, (44)
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Figure 1. (Color online) Dynamics of the propagator G2(t)
in the untrapped case for various dimensions. The solution
obtained by the Zakian method is indicated with the hollow
geometrical shapes with guiding legend (only in this case)
shown in the inset of the figure. Moreover, the corresponding
(i.e. with the same parameter and the dimension) asymptotic
behaviors given by Eq. (51), which all are purely linear func-
tions, are shown- with red solid line, black dotted line and the
orange dashed dotted line representing the (d = 1), (d = 2)
and (d = 3) cases respectively. In the long time limit, both
solutions match for all dimensions. The results refer to an
impurity K with mass mI = 6.4924249 × 10−26kg, immersed
in a gas of Rb with mass mB = 1.4192261 × 10−25kg. The
one-dimensional boson density is n0,1 = 7(µm)−1. We fix
the three-dimensional scattering length a3 = 100 a0, where
a0 is the Bohr radius. Here, the time axis is scaled with the
one-dimensional characteristic frequency ω0 ≡ (~n2

0,1/mI).

LS,d [G2,d(t)] =
1

S2 + Ω2 + SLS,d [Γxxd (t)]
. (45)

Moreover, they satisfy the following initial conditions

G1,d(0) = 1, Ġ1,d(0) = 0, (46)

G2,d(0) = 0, Ġ2,d(0) = 1. (47)

From now on, the dynamics in the case when high fre-
quencies are suppressed, will be analyzed by introducing
a sharp cutoff. The latter is given by K = Θ(Λd − ω),
where Θ is the Heaviside step function. The chosen sharp
cutoff function, at one hand, allows to restrict the anal-
ysis strictly within the linear part of the Bogoliubov dis-
persion relation and it covers the frequency spectrum for
the linear interaction we have considered (see Appendix
E for further details). On the other hand, it makes the
following calculations convenient to deal with. Note that
it has been shown previously that the dynamics under in-
vestigation is independent of the type of cutoff function
[26]. We further use Eq. (27) to compute the damping
kernel in any dimension d

LS,d [Γxxd (t)] =
(Λd)

d+2
(τd)

d
2F1

(
1, d+2

2 ; d+4
2 ;− (Λd)2

S2

)
d(d+ 2)S

,

(48)

with 2F1 [.] denoting the hypergeometric function.

A. Untrapped Case

Let us first study the free QBM, that is the untrapped
case Ω = 0. The quantities of interest in this case are
the mean squared displacement MSDd(t) (see definition
below, Eq. (53)) and the average kinetic energy Ed(t) of
the impurity. The motion is fully characterised by the
functions G1(t) and G2(t) which are the inverse Laplace
transform of Eq. (44) and Eq. (45) respectively. Exact
analytical expressions for these functions are hard to ob-
tain. Note however, that the Laplace transform of both
of these functions are expressed in terms of the Laplace
transform of the damping kernel. In the regime of in-
terest |S| � Λd, which characterises the low frequency
response, we have approximately

LS,d [Γxxd (t)] = d−2(Λdτd)dS. (49)

We therefore obtain the asymptotic expressions for the
Laplace transforms of the position and momentum prop-
agators

LS,d [G1,d(t)] =
1

αdS
and LS [G2,d(t)] =

1

αdS2
,

(50)

where αd = 1 + d−2(Λdτd)d. Their time domain repre-
sentations read

G1,d(t) = 1/αd , G2,d(t) = t/(αd). (51)

We note that such expressions do not satisfy the bound-
ary conditions stated in Eq. (46) and Eq. (47). However,
this is justified since the above solution refers to long-time
behaviour. Several algorithms exist for the numerical
computation of the inverse Laplace transform of an arbi-
trary function. Here we employ the Zakian method [93]
to compute the inverse Laplace transform of Eq. (44)
and Eq. (45). This method approximates the inverse
Laplace transform f(t) of a function F (S) through

f(t) ' 2

t

N∑
j=1

< [kjF (Ξj/t)] , (52)

with the values of the complex parameters kj and Ξj
given in Ref. [93]. In order to check the equivalence
between the asymptotic form of G2(t) and its Zakian ap-
proximation, we plot both in Fig. 1. It turns out that
they agree in the long time limit. From here on we will be
employing them interchangeably according to our compu-
tational convenience. It is evident from Eq. (43) that the
function G2(t) is responsible for the propagation of the
initial velocity of the impurity. From the results shown
in Fig. 1, such a function follows a ballistic profile in any
dimension, i.e. it is a linear function of time.

1. Mean Square Displacement

In this section we discuss the mean squared displace-
ment (MSD) of the impurity motion which is a measur-
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able quantity in cold-atom experiments [2]. The MSD is
defined as

MSDx,d(t) =
〈

[x(t)− x(0)]
2
〉
. (53)

The expression of the MSD for the generalised
Heisenberg-Langevin equations is given in the Ap-
pendix C. For the system at hand, we employ the asymp-
totic expressions of the Green’s functions to evaluate the
MSD in different dimensions. Its dynamical part is given
by

MSDx,d(t) =

(
t

αd

)2

〈ẋ(0)2〉+
1

2(αdmI)2

∫ t

0

du

∫ t

0

dv

× (t− u)(t− v)〈{Bx(u), Bx(v)}〉. (54)

Additionally, using the diagonal form of the noise tensor
given in Eq. (25), one can obtain the relation between
the correlation characterised by the positive commutator
〈{Bx(u), Bx(v)}〉 and the component νxx(t) of the noise
kernel (fluctuation-dissipation relation) [28] . Explicitly,

〈{Bx(u), Bx(v)}〉 = 2~νxx(u− v). (55)

Substituting the d-dimensional spectral function with a
sharp cutoff into the noise component we get

MSDx,d(t) =

(
t

αd

)2

〈ẋ(0)2〉+
~ d−1 (τd)

d

mI(αd)2

∫ t

0

du

∫ t

0

dv∫ Λd

0

dω(t− u)(t− v) coth

(
~ω

2kBT

)
cos [ω (u− v)]ωd+2.

(56)

By performing the two-dimensional integration over the
time variables u and v, followed by an integration over
the variable ω, we evaluate the expression for the low
temperature regime, where coth (~ω/2kBT ) → 1 holds.
In the long time limit, the resulting expression for the
MSD is dominated by the terms proportional to t2 and
its explicit expression turns out to be

MSDLT
x,d(t) =

[
〈ẋ(0)2〉+

~ (τd)
d

(Λd)
d+1

mId(d+ 1)

](
t

αd

)2

(57)

In the regime which fulfills the conditions stated above,
the MSD is proportional to the square of the time for
all dimensions. In the normal diffusion scenario, the
MSD shows a linear dependence on time. If, on the con-
trary, the MSD is non-linear in time, proportional to tα

with an exponent higher than one, the diffusion is called
anomalous and the motion is called superdiffusive. In
the present case, superdiffusion is a consequence of the
super-ohmic spectral density in every dimension. The
coefficient in the second term is called the superdiffusion
coefficient Dx,d and can be interpreted as the average
of the square of the speed with which the impurity runs
away. We thus have

DLT
x,d =

~ (τd)
d

(Λd)
d+1

mId(d+ 1) (αd)
2 . (58)

Figure 2. (Color online) High temperature super diffusion
coefficient in various dimensions as a function of the coupling
strength. The solid, dashed and dotted curves represent the
d = 1, d = 2 and d = 3 cases respectively. We set temperature
T = 0.15µK, which fulfills the high temperature condition
kBT > Max [~Λd] (see text). The rest of the parameters are
the same as in Fig. 1. The vertical solid, dashed and dotted
lines fix the critical coupling for the Fröhlich Hamiltonian to
be valid in one, two and three dimensions, respectively.

One can perform a similar analysis of the high tem-
perature regime, which is followed by the approximation
coth (~ω/2kBT )→ (2kBT/~ω). We remark that the con-
dition kBT > Max [~Λd] implies the high temperature
regime in any dimension. Here Max[.] is the maximum
of the cutoff frequencies of different dimensions. This
means that all the Bogoliubov modes of the bath will be
thermally populated in any of the considered dimensions.
However, while the cutoff frequency in dimension d scales

as Λd ∼ (n0,1)
d
, it also depends on the boson coupling

constant in the corresponding dimension and therefore
on the transverse confinement of the boson gas [cf. Eq.
(32)]. Inserting the values of the parameters used in this
article, we obtain Λ2 > Λ3 > Λ1. The high tempera-
ture regime holds as long as kBT > ~Λ2. In this regime,
the MSD again scales with the square of the time. The
dimension-dependent superdiffusion coefficient takes the
form

DHT
x,d =

2kBT (τd)
d

(Λd)
d

mId2 (αd)
2 . (59)

It is clear from this expression that the superdiffusion co-
efficient is proportional to the temperature of bath and
inversely proportional to the mass of the impurity. One
can further write the high temperature superdiffusion co-
efficient as an explicit function of the coupling parameter:

DHT
x,d =

[
2kBT

mI

][
βdη

2

(βd)
2
d−2η4 + 2βdη2 + d2

]
. (60)

Here, we have defined the quantities

βd ≡ (Λdτd,s)
d

where (τd,s)
d ≡ η−2 (τd)

d
. (61)
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Figure 3. (a-c): Dynamics of the average energy for 1d, 2d and 3d, respectively. The coupling strengths are shown in the
legend for every case. The rest of the parameters are kept same as before.

In dimension d, the maximum of this function occurs at

ηmax,d =
d√

(Λdτd,s)
d
. (62)

and has the same maximal value in all dimensions:

DHT,max
x,d =

(
1

mI

)(
kBT

2

)
. (63)

In Fig. 2, we plot the high temperature superdiffusion co-
efficient for a range of coupling strengths, covering the al-
lowed critical coupling in every dimension (see appendix
D for the validity of the Fröhlich Hamiltonian). In all di-
mensions, for sufficiently weak coupling strengths, one
observes a corresponding increase of the bath-induced
momentum diffusions of the impurity as the coupling
strength increases. However, above ηmax,d, the super dif-
fusion coefficient is reduced as the coupling grows. Such
a damped regime occurs only in the one-dimensional case
within the Fröhlich regime, where the impurity may exert
both underdamped and overdamped motion. (In higher
dimensions the over damped regime occurs past the ver-
tical line that signals the value of the coupling, critical
for the validity of the Fröhlich Hamiltonian.) We finally
remark that the condition for the occurrence of both of
these characteristic motions within the Fröhlich regime
turns out to be ηmax,d < ηc,d. The latter are the critical
couplings of Fröhlich regime given in the appendix D and
correspond to the vertical lines shown in the Fig. 2.

2. Average Energy

We now turn to the average kinetic energy E(t) of the
impurity, corresponding to the observed coordinate. This
can be computed from the variance of the corresponding
momentum operator reading

Ex,d(t) =
〈p2
x,d(t)〉
2mI

(64)

The generalized expression for the variance of the mo-
mentum is given in the appendix C. Using the dimension-
dependent asymptotic expressions for G1(t) and G2(t) we

obtain

Ex,d(t) =
〈p2
x,d(0)〉

2mI (αd)
2 +

~
2mI (αd)

2

∫ t

0

du

∫ t

0

dv νxxd (u− v).

(65)

For any arbitrary temperature, it is difficult to obtain
from here an analytic expression. Here we are mainly in-
terested in the ultracold regime. This means that all the
bath modes are now in a collective vacuum state. There-
fore, in the zero-temperature limit, the above expression
further reduces to

ELT
x,d(t) =

〈p2(0)〉
2mI (αd)

2 +
~ (Λd)

d+1
(τd)

d

(αd)
2
d(d+ 1)

+

~ (Λd)
d+1

(τd)
d

(αd)
2
d(d+ 1)

(
1F2

(
d

2
+

1

2
;

1

2
,
d

2
+

3

2
;−1

4
(Λd)

2
t2
))

.

(66)

Here, the first term represents the initial mean energy of
the impurity determined by its initial momentum vari-
ance. Additionally, there is a rescaling of the mass of the
impurity due to the interaction with the bath. The ad-
ditional mass term depends on the dimensionality of the
bath through Λd and τd. The second term is the steady
state mean energy of the impurity which is determined by
the impurity-bath coupling and density of the bath, again
through the same parameters. The last term of the ex-
pression contains information about the energy variation
in time. We plot the energy function in Fig. 3 a-c) for dif-
ferent dimensions. In all dimensions, the energy oscillates
in time. This clearly shows the energy exchange between
the system and the bath. Where the energy increases, it
is due to an energy absorbed from the bath. The back
flow of energy is a manifestation of memory effects in
the QBM [94]. Moreover, deep inside the weak coupling
regime, the bath perturbs the system more strongly as
the coupling strength increases. In any dimension, this
results in the higher initial increasing peak for a larger
coupling constant. The overall profiles of all the energy
functions tend to approach their asymptotic steady state
values.

A similar analysis can be performed for the high tem-
perature case, as was done in the previous section for the
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MSD. We treat the problem classically, meaning that the
the symmetrised noise correlation function (cf. Eq. (55)
and Appendix C ) would act as the classical analogue in
the present quantum formulation [95]. As for the dynam-
ical part of the energy expression, the classical regime is
further obtained by requiring the conditions t→∞,
~ → 0 and kBT � ~ω. In these limits, the energy Ecl,ss

x,d
becomes

Ecl,ss
x,d = 2kBT

[
βdη

2

(βd)
2
d−2η4 + 2βdη2 + d2

]
. (67)

The above expression is once again maximised at ηmax,d

giving an upper bound to the kinetic energy of the im-
purity reading

Ecl,ss
x,d,max = kBT/2. (68)

Remarkably, this is the familiar equipartition theorem
that holds in any dimension. It follows from these re-
sults that ηmax,d is the value of the system-bath coupling
at which the impurity reaches thermal equilibrium with
the Bogoliubov bath. It is also possible to calculate the
steady state maximum average kinetic energy in the low
temperature limit. It turns out that such maximum oc-
curs at the same ηmax,d in the corresponding dimension,
however in contrast to the high temperature case, the
maximum of kinetic energy is strongly dependent on the
dimension involved. This is given by,

ELT,ss
x,d,max =

~Λdd

4 (d+ 1)
. (69)

These results are explained by the fact that in the high
temperature case, the bath tends to thermalise the impu-
rity motion and according to the equipartition theorem,
the energy is equally distributed amongst the various de-
grees of freedom, which are offered by the the dimension
involved. On the other hand, the ground state quantum
properties (i.e. appearance of the ~ in Eq. (69)) of the
impurity are explicitly dependent on the dimension and
the maximum of the average kinetic energy of the im-
purity is followed by a bound which is set by the cutoff
frequency of the Bogoliubov bath.

3. Mass renormalization

In the Bose polaron literature, as for the traditional
polaron, it is central to examine the mass renormaliza-
tion, i.e. the way the phonon cloud reduces the impurity
mobility can be seen as an increase in an effective mass.
This is also apparent with the open quantum system ap-
proach. Let us define the renormalized mass as

m∗I,d = mI ∗ α2
d, (70)

where as usual d stands for dimensions and αd = 1 +
d−2(Λdτd)d, was defined below Eq. (50). We identify

Figure 4. (a): Inverse of the Polaron mass in the 1d case
against the dimensionless coupling η without any fitting pa-
rameter. (b): Same as in (a) but with a fitting parameter
given by 0.1gB,1d. We keep the parameters same as in the
work of Catani. The vertical gray dashed line sets the upper
bound for the dimensionless coupling η in the Fröhlich regime.

now that the mass renormalization appears in many of
the expressions above, e.g. in the diffusion coefficient
(see Eqs. (58) and (59)) or in the first term of the aver-
age energy (see Eq. (66)). Let us thus analyze the mass
renormalization in some detail in the one and three di-
mensional cases.

In the 1d case, the present QBM analysis of the Bose-
polaron allows us to get an analytical expression of the
inverse of the renormalised Bose Polaron mass m∗I,1. We
can extract it from √

mI

m∗I,1
=

1

α1
, (71)

as it offers the possibility to compare our numerics with
other results from the literature. For example in the work
of Catanti [2], the quantum Langevin equations without
the memory effects have been employed to study the mass
renormalisation theoretically and the results are further
linked to the experiment performed on the Bose-Polaron
in the 1d case. Therein, the theory requires a fitting pa-
rameters for the gB,1 in order to satisfy the experimen-
tal data. In the present case, we take into account the
memory effects yet only with linear interaction. In Fig.
4(a) we plot the mass renomalisation against the cou-
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pling η in the QBM case along with other’s results. As
shown, the current theoretical results within the Fröhlich
limit satisfy the experimental data of the Catani’s work
comparatively better and without any fitting parameters.
However, excellent agreements with the experimental re-
sults are obtained with a small fitting parameters for the
coupling gB,1. This is shown in the Fig. 4(b). In both
the figures, we also plot the results put forth by other ap-
proaches, such as diffusion Monte Carlo (DMC) (beyond
the Fröhlich regime) and renormalisation group (RG) ap-
proaches. These are both demonstrated in Ref. [39].

We now turn towards the 3d case of the mass rena-
tionalisation. This has been extensively discussed in Ref.
[18, 20]. In particular, the quantity

m∗I,3
mI
− 1 (72)

has been accounted for the mass renormalisation and it
is analysed against the coupling constant given by

αc,3 ≡
(aIB,3)2

(aB,3) ξ3
. (73)

Here, the 3d impurity-Boson aIB,3 and Boson-Boson
aBB,3 ≡ a3 (i.e. stated before as a3) scattering lengths
are respectively connected to their corresponding cou-
plings via the expressions

gIB,3 =
2π~2aIB,3

mR
, gB,3 =

4π~2aB,3

mB
, (74)

whereas, mR = mBmI/ (mB +mI) is the reduced mass.
We first evaluate the quantity given by Eq. (72). In terms
of the 3d cutoff frequency Λ3 and the characteristic time
τ3, it reads,

m∗I,3
mI
− 1 =

2

32
(Λ3τ3)

3
+

1

34
(Λ3τ3)

6
. (75)

We now reformulate this expression in terms of the cou-
pling constant αc,3. By employing the Eq. (74) we get

(αc,3)
2

=
2 (mB)

3
n0,3 (gIB,3)

4

π2~6gB,3

(
mI

mI +mB

)4

. (76)

Therefore from Eq.(75), the renormalised mass in the 3d
case takes the form

m∗I,3
mI
− 1 =

∑
j=1,2

(
2

j × 3(2j)
(
4
√

2π
)j
) 1(

mI

mB

) + 1

2j

×

(
mI

mB

)−j
(αc,3)

j
, (77)

which turns out to be contained by the linear and the
quadratic order polynomials of αc,3. In order to make
a comparative study, we plot this quantity along with
the other results, such as those obtained by the mean
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Figure 5. (a): Bose-polaron mass in the 3d case against the 3d
coupling constant αc,3. The mass ratio mI/mB has the value
0.26, which is the same as taken in the Ref. [20] (b): The in-
verse of the polaron mass for different dimensions against the
dimensionless coupling constant η. These results refer to an
impurity K with mass mI = 6.4924249 × 10−26kg, immersed
in a gas of Rb with mass mB = 1.4192261 × 10−25kg. The
one-dimensional boson density is n0,1 = 7(µm)−1. We fix the
three-dimensional scattering length a3 = 100 a0.

field (MF), correlated Gaussian wavefunctions (CGWs)
and renormalisation group (RG) approaches. All of these
results are well demonstrated in Ref. [20] (see also refer-
ences therein). As shown in Fig. 5 (a), the QBM result
matches the rest of the approaches suitably well in the
small coupling limit αc,3 < 1. Moreover, the order of the
renormalised mass for the QBM case remains the same
as obtained by the RG approach and both of these follow
the same trend. Such curved trends are in contrast to the
MF and CGWs approaches which both mimic linear be-
haviours. Finally we plot the inverse of the polaron mass
for all the dimensions in Fig. 5 (b). Interestingly, it turns
out that the mass renormalisation effect is stronger in the
lower dimension when studied against the dimensionless
coupling η.

B. Trapped Case

In recent years, there has been an increased interest
on trapped impurities within cold atomic media. For
instance, the bound states of the trapped impurities pro-
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vide a platform to test the existence of synthetic vacuum
of the hosting medium by witnessing the induced Lamb-
shifts [5]. Additionally, trapped impurities in BECs can
serve as highly controlled phononic q-bits [7, 96]. Hence,
theoretical study of a trapped impurity as an open quan-
tum system, as in this work, can be valuable in all of
the aforementioned cases. In the trapped case, we con-
fine the impurity into a harmonic trap with frequency Ω.
We compute the functions G1(t) and G2(t) by employing
the Zakian method. Their time dynamics is shown in
Fig. 6 (a-b). In all dimensions, both of these functions
oscillate out of phase by π/2. This reflects the fact that
position and momentum are the two quadratures of the
impurity motion. Note that the information of the ini-
tial position and the momentum variances is carried by
the functions G1(t) and G2(t) respectively (see appendix
C). The decay of these functions provides insights into
the system dynamics. First of all, such decay shows that
the impurity dynamics is stable. In general, the stability
analysis of the dynamics can be performed more rigor-
ously, e.g. through the Routh–Hurwitz stability criterion
[97]. However, given the absence of the analytical form
of G1(t) and G2(t) (or their Laplace transforms), we rely
on a numerical evaluation of their profiles. In fact, both
of these functions approach to zero as t → ∞. In effect,
the system dynamics becomes independent of its initial
conditions and its behaviour is completely determined by
the bath state. It can be seen that in the long time limit,
each one of them collapses to a single curve for all the
cases displayed in Fig. 4. On the contrary at initial short
times, their amplitudes and phases are mismatched for
different initial conditions. The differences coming from
different coupling parameters and dimensions also vanish
in the long time limit. This leads to the insight that the
steady state regime is completely determined by the bath
state and the system tends to equilibrate with the local
state of the bath.

We now turn to the study of the steady state dynamics
of the impurity. Since the input Bogoliubov bath modes
are in a Gaussian thermal state, and the linear dynam-
ical map (42) preserves Gaussianity, the time evolution
of the covariance matrix fully characterises the impurity
dynamics. Here we are interested in the position and
momentum variances. Their expressions for the case of
generalised Langevin equations are given in appendix C.
In particular, we are interested in the position variance
of the impurity in the steady state regime as a function of
the dimension and other parameters such as temperature
of the bath. This is because in larger dimensions, the im-
purity will have more degrees of freedom (dof) and one
wants to see how the energy is distributed among them
in the steady state. This is particularly interesting in the
finite temperate case, where the system is more prone to
achieve a thermal equilibrium with the bath.

We first calculate the position variances for the trapped
case in the steady state regime. We start from its expres-
sion given in the appendix C. By invoking the component
of noise tensor which is responsible for the x-directed
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Figure 6. (a-b) Dynamics of G1(t) and G2(t) in the trapped
case for 1d, 2d and 3d with the corresponding dimensions and
couplings shown in the legend. In all the cases we have set
Ω = 4π × 500 Hz. Rest of the parameters are same as in
Fig. 1.

motion and in the long time limit, for the d-dimensional
system we have〈

x2
〉

d
= lim
t→∞

~
m2

I

∫ t

0

du

∫ t

0

dvG2,d(t− u)G2,d(t− v)

× νxxd (u− v). (78)

This can be further written as〈
x2
〉

d
= lim
t→∞

~
m2

I

∫ ∞
0

dωJxxd (ω) coth (~ω/2kBT )∫ t

0

du

∫ t

0

dvG2,d(t− u)G2,d(t− v) cos [ω (u− v)] . (79)

We now define the collective function Qd(ω)

Qd(ω) ≡ lim
t→∞

(1/2)

(
1

m2
I

)∫ t

0

du

∫ t

0

dv

×G2,d(t− u)G2,d(t− v)
[
eiωue−iωv + c.c.

]
=

(
1

m2
I

)
(1/2) lim

t→∞

∫ t

0

dũe−iωũG2,d(ũ)

∫ t

0

dṽeiωṽ

G2,d(ṽ) + c.c. (80)

so that〈
x2
〉

d
= ~

∫ ∞
0

dωJxxd (ω) coth (~ω/2kBT )Qd(ω). (81)
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Figure 7. (a-c) Steady state position squeezing of the impurity as a function of temperature for the case of 1d, 2d, and 3d,
respectively.

In the second equality of Eq. (80), we have defined new
variables ũ = t − u and ṽ = t − v. It turns out that
each term is the product of two copies of the Laplace
transform of G2,d(ũ), evaluated at S = −iω and S = iω.
We therefore obtain

Qd(ω) =

(
1

m2
I

)
LS=−iω,d [G2,d(t)]LS=iω,d [G2,d(t)] .

(82)

We now introduce the frequency dependent func-
tions ξxxd (ω) ≡ <

{
LS̄,d [Γxxd (t)]

}
and θxxd (ω) ≡

=
{
LS̄,d [Γ (t)]

}
which are respectively the real and imag-

inary parts of the Fourier domain tensor component of
the damping kernel. They are obtained by the analytic
continuation of Eq. (48) with S̄ = −iω+0+. This allows
us to write the function in Eq. (82) as

Qd(ω) =

(
1

m2
I

)(
1

[Ω2 − ω2 − ωθxxd (ω)]
2

+ [ωξxxd (ω)]
2

)
.

(83)

Additionally, from the relation between the damping ker-
nel and the spectral density tensor components given in
the Eq. (27), one can derive the equation[98]

Jxxd (ω) =
mIωξ

xx
d (ω)

π
. (84)

By inserting Eq. (83) and Eq. (84) back into the Eq.
(81), we finally obtain

〈
x2
〉

d
=

~
π

∫ ∞
0

dω coth

(
~ω

2kBT

)
χ̃
′′

d(ω), (85)

where the function χ̃
′′

d(ω) equals

χ̃
′′

d(ω) =
1

mI

ξxxd (ω)ω

[ωξxxd (ω)]
2

+ [Ω2 − ω2 + ωθxxd (ω)]
2 . (86)

From the direct inspection of Eq. (43), it turns out that
this function is the imaginary part of the susceptibility

χ̃d = χ̃
′

d + iχ̃
′′

d . The susceptibility function can be ob-
tained by extracting the linear response function from

Eq. (43) in the Laplace domain. We can continue an-
alytically to pass to the frequency representation (i.e.
Fourier domain). Note that the function defined above is
nothing but the absolute square of the susceptibility i.e.
|χ̃d(ω)|2 = Qd(ω).

It follows from these results that the steady state posi-
tion variance is fully determined by the functions ξxxd (ω)
and θxxd (ω). In addition, note that the upper limit of
the Eq. (85) is reduced to the cutoff frequency in ev-
ery dimension due to the unit step function involved in
spectral function. We perform an analytic continuation
of Eq. (48) to get these functions in the low frequency
limit ω � Λd (up to first few orders of ω) for each of
the dimensions. Such a process is straightforward for
d = 1 and d = 3, since both can be expanded as polyno-
mials of ω. This is not the case for d = 2, since in this
case the expression contains a logarithmic transcendental
function of the frequency. In order to study this function
for low frequencies, we evaluate it numerically below the
cutoff, and use this for a numerical evaluation of the po-
sition variance. We pass to the dimensionless (scaled)
position quadrature by introducing x́ ≡ x/xzpf , where

xzpf ≡
√
~/2mIΩ is the zero-point fluctuation (ground

state width) of the harmonically bound impurity. The
Heisenberg uncertainty relation, for the standard devia-
tions of the conjugate position and momentum operators,
in the scaled variables becomes

∆x́d∆ṕx́,d > 1. (87)

On the other hand, if one of these standard deviations
falls below unity, it is said to have achieved a squeezed
state. The squeezing is a pure quantum effect where
quantum noise is driven below its ground state uncer-
tainty for one of the conjugate observables. The me-
chanical squeezed states are of great significance in high
precision displacement sensing [99]. One may also ex-
press such standard deviations in the scaled coordinates.
For the position and momentum, we get

∆x́d =

√
2mIΩ 〈x2〉d

~
, ∆ṕx́,d =

√
2 〈p2

x〉d
~mIΩ

. (88)

From here on, we focus on the position quadrature. Be-
fore proceeding to study position squeezing, we com-
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ment on the equipartition theorem in our system. In
the present case, we have a thermostat with the large
number of modes of the Bogoliubov bosonic bath. Addi-
tionally, one can tune the temperature of the bath suffi-
ciently high for all the modes to be thermally populated.
In the long time limit, the bath achieves a thermal equi-
librium steady state. An immersed impurity would there-
fore tend to equilibrate too, once the temperature of the
bath is kept above (or close to) its trap frequency. In
thermal equilibrium, equipartition theorem states that
the amount of energy (1/2)kBT is distributed per degree
of freedom. We thus have

(1/2)kBT = (1/2)mIΩ
2
〈
x2
〉

d
. (89)

and thus the standard deviation in the dimensionless co-
ordinate reads

∆x́d =
√

2T́ , where T́ ≡ (kBT )/(~Ω). (90)

By checking that the position squeezing parameter
asymptotically approaches the equipartition profile as
stated in the last equation, one can verify that impurity
motion follows the equipartition theorem. This is indeed
the case, as shown in Fig. 7 (a-c). As the thermal energy
kBT becomes equal to the quantum energy ~Ω, all the
cases approach the equipartition profiles. Note that this
holds in all dimensions d = 1, 2, 3, despite the fact that
the tensor component of the bath spectral density Jxx,
which is responsible for the x-directed motion, scales as
d−1 [cf. Eq. (29)].

On the other hand, the differences between the profiles
corresponding to different dimensions are apparent when
one examines the magnitude of the position squeezing
achieved. Although a direct comparison is not possible
due to different ranges of coupling compatible with the
Fröhlich regime, it is apparent that squeezing is more pro-
nounced in lower dimensions. The amount of squeezing
is proportional to the coupling strength and it is achieved
at quite low temperature. The squeezing effect is purely
due the interaction with the bath and it occurs without
an external control of the impunity motion. It is referred
to as genuine position squeezing [26].

V. MEMORY EFFECTS

In this section, we briefly analyse the memory effects.
In general, one expects to see Makovian dynamics when
the spectral density of the bath is Ohmic, and for suf-
ficiently high temperature and weak coupling, such as
that obtained with a Dirac delta like damping kernel in
Eq. (42). On the contrary, the super-Ohmic nature of
the bath is generally assumed to lead to non-Markovian
dynamics of the system, i.e. to memory effects. We
will use the super-Ohmic spectral densities of the bath
we obtained for different dimensions to study the rela-
tion between the expected non-Markovian effects and di-
mensionality. In order to quantify the amount of non-
Markovianity, a number of measures have been proposed
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Figure 8. a) Non-Markovianity in units of (gB,1 n0,1 mI) /~
as a function of the system-bath coupling strength. The blue-
Solid and red-dashed profiles represent 1d and 2d, respec-
tively. The vertical lines correspond to the Fröhlich bound. b)
The J-distance as a measure of the relative position variance.
We have set the coupling parameter η = 3.5 and γ = 10 Ω for
every dimension. Here, the solid, dashed and dotted profiles
correspond to 1d, 2d and 3d, respectively.

so far [100]. Here, we apply the criteria related to the
back flow of information. It has been shown that such
back flow of information can be expressed in terms of the
trace distance [101] and the fidelity [102] of two states.
For Gaussian states, the latter has an analytical form.
More specifically, the non-Markovianity Nd based on the
back flow of information through the fidelity criterion is
explicitly related to the noise kernel and is given by

Nd =

∫
∆d<0

∆d(t)dt with (91)

∆d(t) =

∫ t

0

νxxd (s) cos(Ωs). (92)

In our case, the noise kernel is given by Eq. (25) which
depends on the dimension of the system. The above mea-
sure can be obtained by first calculating the definite in-
tegrals over the variables ω and s, and then integrating
the resulting function ∆d(t) over the time region where
it is negative. In the study of non-Markovianity through
this measure, we focus on the comparison between the
cases of d = 1 and d = 2 dimensions. In Fig. 8 a),
we plot the measure Nd for the zero temperature case
(i.e. when the cotangent in Eq. (25) equals 1) for
a range of values of the system-bath coupling. Clearly
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the non-Markovianity measure is showing a monotoni-
cally increasing behaviour on the logarithmic scale, as
we enhance the system-bath coupling. In addition, as we
move from low to higher dimension with the correspond-
ing higher level of super-Ohmicity, larger non-Markovian
effects are witnessed: the non-Markovianity is at least an
order of magnitude larger in d = 2 than in d = 1.

Another measure of memory effect is the J-distance
JD, which has been introduced in Ref. [27]. This is a
quantitative measure of the relative position variance be-
tween the case where the spectral density is super-Ohmic
and the case where it is Ohmic. The Ohmic case corre-
sponds to the time-local form of the damping kernel and
has spectral density JOhm = mIγω, where we have in-
troduced the phenomenological damping constant γ. We
may explicitly write the J-distance as

JDd =

∣∣∣∣ 〈x2〉d − 〈x2〉Ohm,d

〈x2〉d + 〈x2〉Ohm,d

∣∣∣∣ . (93)

Here 〈x2〉Ohm,d is the position variance that would be
obtained, had we assumed an Ohmic Spectral density
with the same cutoff function. In Fig. 8 (b), we plot
this quantity for different dimensions as a function of
temperature. It turns out that for a similar system-bath
coupling strength JDd assumes largest values for d = 3.
This is supported by the argument that in a higher di-
mension super-ohmicity affects the dynamics stronger,
leading to a larger deviation from the ohmic case. In ad-
dition, the non-Markovian effects are more pronounced
near zero temperature i.e. a vacuum bath. As the tem-
perature grows, dynamics tends to achieve the thermal
steady state both for Markovian and non-Markovian sce-
narios. The relative difference in Eqn. (93) then ap-
proaches zero.

VI. CONCLUSIONS

In this work, we studied from the quantum open sys-
tems perspective the dynamics of an impurity immersed
in a d-dimensional BEC. In particular, we offered a de-
tailed derivation of the Langevin equations and the as-
sociated generalized d-dimensional spectral density. We
derived an expression for the tensor that describes this
spectral density in full generality. Particular attention
was given to the case of a spherically symmetric bath,
which implied a diagonal form for this tensor. In addi-
tion, the tensors for the noise and damping kernels were
calculated; these tensors enter the vectorial Langevin-like
equations of motion. All these technical aspects, allowed
to study in detail the dependence of the dynamics of the
impurity on the dimensionality.

We considered both untrapped and trapped scenarios
for the impurity. In the untrapped case, we performed
in all dimensions the calculation of the mean square dis-
placement, showing that the motion is superdiffusive. We
derived explicit expressions for the superdiffusivity coef-
ficient in the low and high temperature limits. In the

latter limit we found that this coefficient has a maxi-
mum as a function of the impurity-boson coupling. The
maximal value of the coefficient is equal in all dimen-
sions, but the value of the coupling at which it occurs is
dimension-dependent. It lies within the limits of validity
of the Fröhlich model in one dimension only. We calcu-
lated also the average energy, for which we obtained the
generalized expression for the variance of the momen-
tum; the expression of average energy in the ultracold
regime was calculated explicitly. These results confirm
the expected rescaling of the mass of the impurity as a
consequence of its interaction with the bath, whose spe-
cific value depends on the dimensionality. The behaviour
of the energy in all dimensions is oscillatory, with a back-
flow of the energy between the bath and the impurity—a
memory effect. We performed a similar analysis for the
large temperature limit, finding the expressions for very
large times and in the classical limit. These expressions
exhibit maximum at certain value of the impurity-boson
coupling and, amazingly, at this value of the coupling, the
equipartition theorem is fulfilled in all dimensions, so the
impurity is in a thermal equilibrium with the Bogoliubov
bath. We also discussed the Bose-polaron renormalized
mass, comparing with results from the literature.

In the trapped case, we obtained the steady state and
characterized it with its covariance matrix. To this end,
we obtained the expressions of the position and momen-
tum variances. We identified the position variance is con-
nected to the the imaginary part of the susceptibility. To
calculate the position variance explicitly is possible in one
and three dimensions, but in two dimensions it involves
a logarithmic transcendental function of the frequency,
so we proceeded numerically. We saw that one can find
squeezing in all dimensions, which is an important result
as it can be used for applications in quantum technolo-
gies, such as quantum sensing and metrology. Here we
evaluated it in any dimensions, which is relevant for many
experimental set-ups. In the high temperature limit we
calculated the equipartition profile and showed that in
all dimensions the variances tend to this limit as tem-
perature is increased. We found that, although a direct
comparison among dimensions is not possible within our
framework, due to different ranges of admissible coupling
strengths within the Fröhlich regime, the magnitude of
the position squeezing achieved is different, and at low
dimensions one can obtain stronger position squeezing.

Finally, we also computed the amount of non-
Markovianity in all dimensions via two quantifiers: the
backflow of energy and the, so called, J-distance. Again,
the direct comparison among dimensions is not possi-
ble, due to different parameter regimes. For the back
flow of energy, we only perform the calculation in one
and two dimensions, as for increased dimensions more
and more cumbersome functions appear in the expres-
sions, which complicate the analysis. Nevertheless this
suffices to show that non-Markovianity grows with in-
teractions and increases with dimensionality. The latter
effect is also apparent in the calculation of the J-distance,
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which shows that the non-Markovian effects are sizeable
in higher dimensions. As an outlook, we foresee that
this work will permit to continue the explorations of the
Bose polaron problem in different quantum technologies,
where the role of squeezed states and of non-Markovian
effects may be important. Finally, we also hope that in
the future, this work will provide the starting point for
investigations of more complex trapping settings, both
for the impurity as well as for the bath itself.
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Appendix A: Spectral density tensor

In this appendix we derive the spectral density tensor
by employing the Bogoliubov dispersion relation. We
start from the form of the coupling gk given by Eq.
(21) and the definition of the spectral density tensor in
Eq. (28). In general, the large number of the oscilla-
tors within the Bogolibouv bath allows us a continuous
variable to label modes in the k-space. In the following,
we use matrix representation of all the vectors (or, more
generally, tensors). We perform the mathematical con-
struction for each dimension in the k space separately.
3d Bath : A three dimensional k-space representing

the Bogolibouv bath is spanned by kx, ky and kz. We
introduce the polar angle φ (angle with kz direction )
and azimuthal angle θ (angle with kx direction) in the
k-space. By employing Eq. (21), the vectorial coupling

is written in these angles as

gk = (1/~)

[Vkk cos(θ) sin(φ), Vkk sin(θ) sin(φ), Vkk cos(φ)]
T
. (A1)

The coupling tensor is given by gk ≡ gk gk
T . Here [.]

T

denotes the transpose conjugation. The spectral density
tensor is

J(ω) =
∑
k

~gkδ (ω − ωk) . (A2)

In the continuum limit, we perform the transformation∑
k

→
∫

V

(2π)3
d3k. (A3)

Integrating over dk × kdφ × k sinφdθ with appropriate
limits, we obtain the explicit expression of the spectral
density tensor J3(ω) in the 3d case:

J3(ω) =
V

(2π)3

∫ ∞
0

dk

∫ π

0

kdφ

∫ 2π

0

k sinφdθ×(
~ gk

∑
kω

1

∂kωk|k=kω

δ (k − kω)

)
. (A4)

Here we have replaced the delta function with the ω ar-
gument by one with the k argument, inverting the rela-
tion between these variables, as given by the dispersion
relation Eq. (12). Moreover, the kω are the roots of the
argument of the former delta function i.e. of the equation
ω − ωk = 0. A calculation shows that the contributing

real root is kω = ξ−1(
√

1 + 2(ξω/c)2 − 1)1/2.
2d Bath : We parametrize the two dimensional k-

space by the azimuthal angle θ and the radial vector am-
plitude k. We define in this case the two dimensional
vector

gk = (1/~) [Vkk cos(θ), Vkk sin(θ)]
T
. (A5)

The calculation of the spectral density tensor is similar
as in the previous case; the difference is that here we
calcuate the integrals

J2(ω) =
V

(2π)2

∫ ∞
0

dk

∫ 2π

0

kdθ×(
~ gk

∑
kω

1

∂kωk|k=kω

δ (k − kω)

)
. (A6)

1d Bath : For one dimensional k-space, one can per-
form the integral along the radial direction (i.e. along
the particular coordinate of the k space) by employing
the zeroth order tensor (scalar)

gk = (1/~2)
[
V 2
k k

2
]
. (A7)
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To cover the entire k-space in this case, one has to count
each mode twice. We therefore get

J1(ω) =
2V

(2π)

∫ ∞
0

dk×(
~ gk

∑
kω

1

∂kωk|k=kω

δ (k − kω)

)
. (A8)

By inserting the expression for Vk from Eq. (18), we
perform integrations in all the cases for each of the tensor
components. Due to the symmetry of the k space, the
integrals of the off-diagonal elements are zero. The final
formula for the spectral density tensor in d-dimensions is

Jd(ω) =
Jd(ω)

d
I d×d, (A9)

where I d×d is the identity matrix and the scalar function
Jd(ω) in dimension d is

Jd(ω) =

(
Sd

(√
2
)d

(ηd)2(Λd)d+2

(2π)d

)
×


[(

mB

[gB,d][
d

d+2 ]n0,d

)(√
ω2

(Λd)2 + 1− 1
)]( d+2

2 )

(√
ω2

(Λd)2 + 1
)

 .

(A10)

Here for d = 1, 2 and 3 we have S1 = 2, S2 = 2π
and S3 = 4π, respectively. Moreover, we have intro-
duced the characteristic frequency Λd = (gB,dn0,d)/~.
We also write the impurity-boson coupling in the units
of the boson-boson coupling as ηd = (gIB,d/gB,d) (see
main text for d-dependence of these quantities). This
justifies the formula for the spectral density tensor for
d− dimensional bath, used in Section III.

Appendix B: Vectorial equation of motion

In this Appendix, we derive the equations of motion for
the coordinates of impurity. We restrict the discussion to
the three-dimensional case. We start by combining Eq.
(36) and Eq. (37) of the main text to get the vectorial
equation

Ẍ(t) + Ω2X(t) = − i~
mI

∑
k

gk(bk(t)− b†k(t)). (B1)

The time-dependent bosonic annihilation and creation
operators of the Bogoliubov modes can be extracted from
the first-order linear inhomogeneous equations Eq. (38)
and Eq. (39).

bk(t) = bke
−iωkt + h−k (t),

b†k(t) = b†ke
+iωkt + h+

k (t). (B2)

Here, h−k (t) and h+
k (t) represent particular solutions of

the following two inhomogeneous differential equations

ḃk(t) + iωkbk(t) = −gkTX(t), (B3)

ḃ†k(t)− iωkb†k(t) = −gkTX(t). (B4)

It is obvious that an excitation in the Bogoliubov mode
of momentum k depends on all coordinates of the im-
purity. Employing the technique of Green’s function we
construct the solutions corresponding to each direction
(cf. [26]) and using the superposition principle, we get

h±k (t) =

∫ t

0

(1/2)e∓iωtgk
TX(s)ds. (B5)

We insert these expressions into Eq. (B2) and substitute
the result into the right-hand side of Eq. (B1), to obtain
the equation of motion of the impurity coordinates

Ẍ(t) + Ω2X(t)− ~
mI

∑
k

gk

∫ t

0

X(s) sin[ωk(t− s)]ds

= (1/mI)B(t), (B6)

where the vectorial Brownian stochastic force represents

B(t) =
∑
k

i~gk(b†ke
+iωkt − bke−iωkt). (B7)

By using Eq. (25) and Eq. (28), we further write the
above expression in terms of the noise tensor:

Ẍ(t) + Ω2X(t)− 1

mI

∫ t

0

λ(t− s)X(s)ds

= (1/mI)B(t). (B8)

Since noise and damping kernel are related by

− 1

mI

∫ t

0

λ(t− s)X(s)ds =

∫ t

0

Γ̇(t− s)X(s)ds

= ∂t

∫ t

0

Γ(t− s)X(s)ds− Γ(0)X(s), (B9)

we finally arrive at

Ẍ(t) + Ω̃2I X(t)− ∂t
∫ t

0

Γ(t− s)X(s)ds

= (1/mI)B(t), (B10)

where we have introduced a renormalized frequency of
the impurity:

Ω̃2I = Ω2I − Γ(0). (B11)

From here on, we will neglect such frequency re-
normalisation contributed by the term Γ(0). This term
grows as the interaction strength between the impurity
and the bath increases, and could potentially lead to
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a negative re-normalised frequency for the harmonically
trapped impurity. This, in practice, would correspond
to effectively having an impurity trapped in an inverse
parabolic potential, for which no stable solution in the
long time limit exists. In view of this, as in [26], we
make sure that we always consider values of the param-
eters for which this renormalized frequency is positive.
This issue could have equivalently been solved by arti-
ficially introducing a counter-term in the Hamiltonian
that would guarantee positivity of the Hamiltonian and
translational invariance, but we prefer to use the physical
Hamiltonian that we obtained directly from the Hamil-
tonian describing the original Bose polaron.

Appendix C: Expressions of the position and
momentum variances for the generalized Langevin

equations

The quantum covariance matrix is defined as [103]

σkl =
1

2
〈{Rk, Rl}〉 − 〈Rk〉〈Rl〉. (C1)

Here the Rk represent the quadratures of the motion.
For zero mean value, the matrix contains in particular the
variances of the impurity position 〈x2(t)〉 and momentum
〈p2(t)〉 as its diagonal terms. Note that we have omitted
the operator notation for convenience. Assuming that
the bath and system variables are initially uncorrelated,
we obtain the expressions

〈x2(t)〉 = G2
1(t)〈x2(0)〉+G2

2(t)〈ẋ2(0)〉+
1

2m2
I

∫ t

0

du

∫ t

0

dvG2(t− u)G2(t− v)〈{B(u), B(v)}〉,

(C2)

〈p2(t)〉 = m2
I Ġ

2
1(t)〈x2(0)〉+ Ġ2

2(t)〈p2(0)〉+
1

2

∫ t

0

du

∫ t

0

dvĠ2(t− u)Ġ2(t− v)〈{B(u), B(v)}〉. (C3)

The expression for the mean square displacement MSD
takes the form

MSD(t) = (G1(t)− 1)2〈x2(0)〉+G2
2(t)〈ẋ2(0)〉+

1

2m2
I

∫ t

0

du

∫ t

0

dvG2(t− u)G2(t− v)〈{B(u), B(v)}〉.

(C4)

Appendix D: Validity of Fröhlich Hamiltonian

In the main text we use the linear Fröhlich Hamil-
tonian while discarding the two-phonon scattering pro-
cesses. This is based on the assumption that the con-
densate density in the d-dimension, n0,d, is much larger

than the density of the phonons excited due to the in-
teraction with the impurity [104]. As stated in [105], an
approximated criterion on the coupling parameter ηd for
the Fröhlich Hamiltonian to be valid in the d-dimension
is given by

ηd < ηc,d

=

√4(2π)d

Sd

n0,d (ξd)
d

=

~√2(2π)d

Sd

cd (ξd)
d−1

gB,d

=

√22−d(2π)d

Sd

 [n0,d]
2−d
2


(√

~/mBωd

)3−d

Sda3


d
2

.

(D1)

In the above expression we have written the final equality
in terms of the three dimensional scattering length a3

based on the harmonic confinement of the condensate
in the transverse direction (see main text). From the
second-to-last inequality one can get the expression for
d = 3

gIB,3 . 2πc3 (ξ3)
2

(D2)

(where we put ~ = 1). The same bound was reported
in [104]. On the other hand, for d = 1, the last equality
leads to the following scaling for the bound on the critical
coupling:

ηc,d ∼
√
n0,1a1 ; where a1 = (~/mBω⊥) /a3, (D3)

stated also in [26, 39]. Typically for a boson gas made
of Rb87 atoms, the scattering length a3 = 100a0 with a0

denoting the Bohr radius [104]. Moreover, let the trans-
verse frequencies be {ω⊥, ωz} = 2π × 34 kHz as in the
optical lattice [2]. This implies the following numerical
bounds on the coupling, depending on the dimension:

ηc,d ∼


3.7, for d = 1,

4.4, for d = 2,

9.8, for d = 3,

(D4)

which are the values represented as vertical lines in the
figures in Figs. 2 and 8.

Appendix E: A note on the cutoff

The system we consider is similar to a system of non-
relativistic harmonic oscillator interacting with photons
in a full framework of quantum electrodynamics (QED)
in the dipole approximation. The only difference is in
the couplings gk, which actually diverge faster than in
QED case. In the QED case, one can try to intro-
duce a regularizing cutoff, and then apply renormaliza-
tion techniques, but that procedure leads to unphysical
“run-away” self-accelerating solutions (cf. [106–108] and



19

references therein). Therefore, the only reasonable so-
lution is to introduce a cutoff. In the case of harmonic
oscillator, the natural cutoff is Γcut = 2πc/l, where l is
the characteristic size of the harmonic oscillator, which
defines the validity region of the dipole approximation.
In the present case, the cutoff is thus determined by the
velocity of sound and the characteristic order of magni-
tude of the region of validity of the linearization approx-
imations, Eq. (19), that is Γcut ' 2πc1/rchar.

We calculate the cutoff frequency within the linear
regime in the 1d case. The characteristic size of the im-
purity mechanical oscillator is given by the zero point
fluctuation of the position operator and formulated as

xzpf =
√
~/2mIΩ. This leads to

Γcut,1 '
2πc1√
~/2mIΩ

, (E1)

where c1 is the Bogoliubov speed of sound (cf. Eq. (13))
and it depends on the boson-boson coupling gB,1 and the
density of the Boson n0,1. Typical values of these param-

eters, as expressed in the main text, are 2.385×10−37J.m

and 7(µm)−1 respectively. This leads to the calculated
value of the cutoff frequency Γcut,1 = 59.42 kHz. On
the other hand, the chosen cutoff, which covers the en-
tire linear Bogoliubov dispersion relation, is given by
Λ1 = (2πgB,1n0,1) /~ ' 99.4 kHz. We thus have both
the cutoff at the same order of magnitude and our chosen
cutoff covers the frequency spectrum for the linear regime
of the Fröhlich interaction Hamiltonian (cf. Eq. (19)) i.e.
Γcut,1 . Λ1. Such a statement is fulfilled for all the di-
mensions. In particular, the characteristic length scale in

a given dimension reads rchar,d =
√
d~/2mIΩ, with d the

dimension, and the condition Γcut,d = (2πcd) /rchar,d <
Λd is fulfilled in our numerics.

These estimates can easily be generalized to 2d and
3d, as well as to finite temperatures. For example, the
characteristic size of the impurity grows at non zero T
as ∝ (nth + 1)1/2, while the speed of sound, due to its

dependence in density, as ∝ (nth + 1)−d/4, where nth

is the average number of thermal excitations. In effect,
the charcteristic value for Γcut,d scales then as ∝ (nth +

1)−d/4−1/2; all these estimates are consistent with the
values used in this paper.
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