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We study two-dimensional quantum turbulence in miscible binary Bose-Einstein condensates in
either a harmonic trap or a steep-wall trap through the numerical simulations of the Gross-Pitaevskii
equations. The turbulence is generated through a Gaussian stirring potential. When the condensates
have unequal intra-component coupling strengths or asymmetric trap frequencies, the turbulent
condensates undergo a dramatic decay dynamics to an interlaced array of vortex-antidark structures,
a quasi-equilibrium state, of like-signed vortices with an extended size of the vortex core. The time
of formation of this state is shortened when the parameter asymmetry of the intra-component
couplings or the trap frequencies are enhanced. The corresponding spectrum of the incompressible
kinetic energy exhibits two noteworthy features: (i) a k−3 power-law around the range of the wave
number determined by the spin healing length (the size of the extended vortex-core) and (ii) a flat
region around the range of the wave number determined by the density healing length. The latter
is associated with the small scale phase fluctuation relegated outside the Thomas-Fermi radius and
is more prominent as the strength of intercomponent interaction approaches the strength of intra-
component interaction. We also study the impact of the inter-component interaction to the cluster
formation of like-signed vortices in an elliptical steep-wall trap, finding that the inter-component
coupling gives rise to the decay of the clustered configuration.

I. INTRODUCTION

Turbulence is a complex dynamical behavior of a
chaotic dynamical system, which connects the two dis-
tinct physical properties, namely, order and chaos [1]. In
a two-dimensional (2D) fluid, there are two notable pre-
dictions in the turbulence theory: i) The existence of a
negative temperature regime and the associated forma-
tion of clusters of point vortices predicted by Onsager
[2], ii) The existence of inverse energy cascade, an en-
ergy flow towards the largest spatial length, predicted by
Kraichnan [3, 4]. These two predictions are focal to the
understanding of turbulence in 2D fluids.

The precise control over the parameters such as the
trapping frequencies and atomic interactions renders
Bose-Einstein condensates (BECs) one of the widely used
nonlinear systems to study the turbulent dynamics in
quantum fluids, where the turbulence is referred to as
quantum turbulence [5–12]. In 2D quantum fluids, a
topological excitation is a vortex with a quantized cir-
culation around the vortex core with a finite size. A
remarkable feature of the 2D quantum turbulence is the
existence of Kolmogorov’s k−5/3 law in the incompress-
ible kinetic energy spectrum, which has a similarity to
the energy cascade in classical fluids [13–15], where k is
the wave number. Furthermore, the spectrum shows a
k−3 dependence for length scales smaller than the vortex
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core size determined by the healing length [16]. While
the initial stage of the turbulent dynamics is driven by
the annihilation of the oppositely circulating vortices, the
final stage goes to the negative temperature state caused
by the “evaporative heating” of the vortex system, where
the annihilation of oppositely circulated vortices ceases
[17, 18] and exhibits a k3 scaling in the range of the small
wave number [19]. In the negative temperature state, and
in the presence of trap conditions that allow for this (e.g.
steep-wall traps allow for this, while parabolic ones sup-
press it [20]), the like-signed vortices accumulate to form
giant vortex clusters (also known as Onsager vortex clus-
ters). These clusters stay on the two opposite sides of a
bounded condensate. Recently, by initiating the turbu-
lent dynamics of the vortices, two landmark experiments
reported in Refs. [21, 22] have shown for the first time
the existence of the negative temperature state and the
Onsager vortex cluster. It has been proposed that the
cluster formation of single species vortices is also possi-
ble in the dilute atomic gases [23], and relevant consider-
ations have been extended also to the finite temperature
condensates [24].

The multi-component BEC setting, either of the same
atomic species [25–29] or of the different atomic species
[30–33], enriches significantly the phenomenology of vor-
tices due to the presence of two competing energy scales
of intra- and inter-component interactions [34]. A highly
notable feature is that the core of the one vortex can
fill with the density of the other component, result-
ing in the formation of interlaced vortex patterns or
vortex-bright structures [35–37]. In the miscible multi-
component case where the components co-exist (rather
than phase-separate), it is more relevant to refer to these
states as vortex-antidark solitons [38]. Such vortices have
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larger core size and nontrivial vortex-vortex interaction
[39, 40] as compared with those in the single-component
BEC. Hence, it is natural to inquire whether the turbu-
lent dynamics in a binary condensate may exhibit un-
precedented features. Furthermore, the two-component
system gives the freedom of investigating the turbulence
under both symmetric and asymmetric setup of param-
eters involved, where the asymmetry can represent the
cases of unequal intra-component strength [29, 41] and
asymmetric trap frequency [21].

In this paper, we study the vortex turbulence in a
2D two-component BEC. Depending on the strength of
the intra- (g11 and g22) and inter-component interac-
tions (g12), the system resides either in a miscible regime
(
√
g11g22 > g12) or in an immiscible one (

√
g11g22 < g12)

[25–30]. Recently, studies of turbulent dynamics in a
binary condensate have been reported in [42–45]. Han
and Tsubota found that different spatial distributions
of vortices in each component arose from the initially
phase imprinted vortices; the Onsager cluster formation
takes place for the case of small inter-component coupling
strength (compared to the intra-component one), while
for a large inter-component strength the system exhibits
a phase separated state where the components (and hence
their vortices) may sit at two opposite poles [46] [47].
Importantly, the turbulent dynamics in two-component
BECs may highly deviate from this phenomenology for
the following reasons: i) an initial state used in the simu-
lations of Refs. [44, 45], where vortices and anti-vortices
are distributed evenly and randomly over the condensate,
is difficult to obtain in experiments, ii) The asymmetry
in the parameters is likely to manifest itself in the exper-
imental dynamics [29].

In this work, we present turbulent dynamics in two-
component BECs induced via a stirring scheme, that
is commonly used in experiments [17, 21, 22, 48–51].
It is worth noting that [51] discussed experimental ev-
idence for the power-law in driven BECs, while more re-
cently turbulent Na-K bosonic mixtures have been stud-
ied in [52]. Here, we investigate the relevant phenomenol-
ogy in miscible two-component BECs with asymmetric
parameter settings. Since it is known that the trap ge-
ometry plays a significant role in the vortex cluster for-
mation [20, 21], we implement the dynamics in a har-
monic trap and also in a steep-wall trap [20, 48, 53]. We
find that the initial turbulence generated via a stirring
potential decays to the interlaced vortex-antidark struc-
tures mentioned above which, in turn, bear a large size
of the vortex core. This interlaced structure can be re-
garded as a quasi-equilibrium state, since the time de-
velopment of inter- and intra-component energy relaxes
and the density profile at a given moment is similar to
the interlaced vortex lattice [36]. The corresponding in-
compressible spectrum develops a k−3 power-law for the
wave numbers determined by the inverse of the spin heal-
ing length, ξs and a flat region for the range of the wave
number determined by the density healing length, ξ. It
is unlike the well known k−5/3- and k−3-power laws for

IR and UV regimes, respectively, of the two-dimensional
Gross-Pitaevskii turbulence [11, 12, 19]. The former k−3

power-law seen around ks = 2π/ξs is associated with the
vortex core properties [16]; while, the latter flat region
is caused by the bottleneck effect of the incompressible
kinetic energy flow, where the small scale vortex fluctu-
ations accumulate around the condensate periphery. In
the case of the steep-wall trap, where formation of the
Onsager cluster characterized by the large dipole moment
of the vortex charges is expected in a single-component
BEC [21, 22], the presence of the inter-component cou-
pling also causes the decay of vortices, preventing the
persistence of the cluster configuration.

The paper is organized as follows. After introducing
the formulation of the problem in Sec. II, we first study
the turbulent dynamics of miscible two-component BECs
in a harmonic potential in Sec. III. In Sec. IV, we con-
sider the turbulence in a steep-wall trap, discussing the
cluster formation of vortices and anti-vortices. Section V
is devoted to the conclusion.

II. THEORETICAL MODEL OF BINARY BECS

We begin with the effective 2D Gross-Pitaevskii (GP)
energy functional E[Ψ1,Ψ2] =

∫
E2D(r)d2r expressed in

terms of the condensate wave functions Ψj for the j-th
component (j = 1, 2), where the energy density is

E2D(r) =

2∑
j=1

[
~2

2mj
|∇Ψj |2 + Vj (r) |Ψj |2 +

gjj
2
|Ψj |4

]
+g12|Ψ1|2|Ψ2|2.

(1)

Here, the wave functions obey the normalization∫
d2r|Ψj |2 = Nj with the particle number Nj in the 2D

system. The parameter mj represents the atomic mass
of the j-th component. The 2D interaction strengths
gjk are related with a 3D coupling constant g3Djk as

gjk = g3Djk
∫
|ψ(z)|4dz/

∫
|ψ(z)|2dz with the longitudi-

nal component of the wave function being ψ(z). Here,
g3Djj = 4π~2aj/mj is the intracomponent interaction

strength and g3D12 = 2π~2a12(m1+m2)/(m1m2) the inter-
component one with the corresponding s-wave scattering
lengths aj and a12. Throughout the paper we consider
the case of equal particle numbers N1 = N2 ≡ N and
equal masses m1 = m2 = m; for completeness, we also
consider briefly the case N1 6= N2 in Appendix B 1. The
mass equality suggests our focus on a scenario of two
hyperfine states of the same gas, in particular 87Rb as
discussed below [54].

The one-body potential Vj consists of two parts de-
noted as VTj(r) and Vs(r);

VTj(r) =
1

2
mω2

rR
2
0

(√
(1 + εxj)x2 + (1 + εyj)y2

R0

)α
,(2)
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and

Vs(x, y, t) = V0 exp

[
− (x− x0(t))2 + (y − y0(t))2

σ2
0

]
,

(3)
where ωr is the radial harmonic frequency, εxj and
εyj represent the trap anisotropy along the x- and y-
directions, respectively, and R0 is the typical size of the
potential. For α = 2, Eq. (2) represents a harmonic-
oscillator potential, while for a large α it can be consid-
ered as a steep-wall potential. The additional potential
Vs(r) of Eq. (3) represents a Gaussian stirring obstacle
having a strength V0 and a width σ0. This can be created
by a blue-detuned laser beam directed axially along the
trap [55, 56].

From Eq. (1) we get the time-dependent GP equations
(GPE)

i~
∂Ψj

∂t
=

[
− ~2∇2

2m
+ Vj(r) + gjj |Ψj |2 + g12|Ψ3−j |2

]
Ψj .

(4)

In the following, we denote the physical quantities in
units of the radial harmonic oscillator, i.e., the length,
time, energy are scaled by a0, 1/ωr, ~ωr, respectively,

where a0 =
√
~/(mωr) is the radial harmonic oscillator

length. The wave function is scaled as a−10

√
N , which

leads to
∫
d2r|Ψj |2 = 1 and the dimensionless coupling

constants g̃jk = gjkNm/~2. Then, the Thomas-Fermi

radius is RTF =
√

2µ/(mω2
r) =

√
2µ̃a0 and the heal-

ing length ξ = ~/
√

2mµ = a0/
√

2µ̃ with µ = µ̃~ωr.
In Eq. (2), we take the size of the trap potential as
R0 = RTF for convenience.

III. VORTEX TURBULENCE IN A HARMONIC
TRAP

Our motivating example is that of a mixture of 2D
BECs of 87Rb atoms in the different hyperfine spin states,
e.g., |F = 1,mF = −1〉 and |F = 2,mF = 1〉. In
a harmonic trap (α = 2) with the frequency ωr =
2π × 15 Hz and the aspect ratio λ = ωz/ωr = 10.
Choosing the s-wave scattering length a1 = 100aB [29]
(aB is the Bohr radius), and N3D ≈ 6.5 × 104, we
get the parameter values as a0 ≈ 2.7µm and g̃11 =
g11Nm/~2 = 4πN3D(a1/a0)

√
λ/(2π) ≈ 2000, where

N = N3D
√
λ/a0 = 7.4 × 104/µm [20]. The inter-

component coupling strength is chosen as 0 < g12 <√
g11g22, being repulsive and in the miscible regime [54].
In order to generate the vortices, we use a stirring

technique with the use of repulsive Gaussian poten-
tial of Eq. (3) [17, 49, 57–60]. It has a strength of
V0 = 1.2µ ≈ 42.28~ωr and a width σ0 = 0.1RTF.
In Eq. (3), x0(t) = r0 cos(vt/r0) = r0 cos(2πt/T ) and
y0(t) = r0 sin(2πt/T ), where T is the period and v is the
velocity of the obstacle [58, 60]. Since it is found that
for a harmonically trapped condensate the maximum ex-
citation depends on the position of the obstacle, we fix

r0 ≈ 0.4R0, corresponding to the location where the en-
ergy required to form a vortex dipole is minimal [58, 61].

We further fix v = 0.6cs, where cs =
√
µ/m =

√
µ̃a0ωr

is the velocity of the sound wave (Bogoliubov speed of
sound).

The numerical simulations are performed as follows.
We first get the initial stationary solution through the
imaginary time propagation of the GPE (4) in the pres-
ence of the static obstacle of Eq. (3). Next, the conden-
sate is evolved via real-time simulations, being stirred by
the potential of Eq. (3) for two periods, where the obsta-
cle strength is ramped down to zero in the second period
(see Appendix A). Just after that, we set the time t = 0,
corresponding to the end of the preparation stage and
the beginning of our evolution observations. We use a
split-step fast-Fourier scheme for the numerical simula-
tion [62]. In the simulation, we consider the simulation
domain [−L/2 : L/2] × [−L/2 : L/2] with M ×M grid
points. We take M = 1024 and L = 40, unless other-
wise mentioned, and the time step ∆t in such a way that
the width of the spatial grids ∆x = L/M < ξ/a0 and the
time step satisfy ∆t < (∆x)2/2. The selection of the spa-
tial and temporal discretizations and method have been
made so as to ensure a relative norm |N(t)−N(0)|/N(0)
and a energy |E(t)−E(0)|/E(0) less than 10−2, over the
temporal horizon of our numerical simulations.

The stirring potential can generate vortices via two
mechanisms. One is the vortex–anti-vortex pair nucle-
ation which occurs at the low density region induced by
the repulsive Gaussian potential. Although the consid-
ered impenetrable obstacle with V0/µ > 1 is able to emit
a single vortex into the condensate, even when the co-
produced partner (anti-vortex) is well inside the obstacle-
induced zero-density region [58, 63, 64], a vortex and
an anti-vortex are always emitted simultaneously from
the obstacle in our setting. The other mechanism is the
vortex entrance from outside of the condensate bound-
ary due to the random distribution of phase in the low-
density periphery, where the energy cost for vortex for-
mation is minimal. Nevertheless, we confirmed in our
simulation that the second scenario is less probable, as
shown in Appendix A [65].

Now, we analyze both the vortex dynamics and the
energy spectra. To calculate the spectra we take the
average over 4 different initial conditions and these initial
conditions are obtained by changing σ0 and V0 by small
amounts.

A. Vortex dynamics in turbulent binary BECs

As a parametric example for our numerical demonstra-
tion, we set g12 = 0.95g11 and g22 = g11 ≡ g; recall that
in such systems the ability to tune scattering lengths via
Feshbach resonances exists and has been used to move,
e.g., from immiscible to miscible regimes [31]. For this set
of gij ’s, we get µ̃ = 35.23, ξ ≈ 0.119a0, RTF ≈ 8.39a0,
and cs ≈ 5.93a0ωr. By stirring the obstacle potential,
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the vortices and anti-vortices are emitted from it and
eventually form a turbulent state. For this set of param-
eters, however, we noticed that the turbulent dynamics
and the energy spectra are similar to that of a single-
component case [20, 58]. This is due to the fact that the
two components behave in the same manner under the
symmetric choice of the parameters [see Fig. 1(k-r)] and,
as a result, the vortices in both components are always
co-located. The incompressible kinetic energy spectra
exhibit the k−5/3 power law in the infrared (IR) region
kξ < 1 and k−3 power law in the ultraviolet (UV) region
kξ > 1; see, e.g. Refs. [12, 16, 17].

In reality, there are ingredients that can break the pa-
rameter symmetry between the two components. In order
to break this symmetry, we introduce a small anisotropy
in the trapping potential of Eq. (2) within the first com-
ponent as εy1 = 0.025 while the other εx(y)j = 0. An
introduction of the parameter anisotropy dramatically
changes the dynamics as seen in Fig. 1(i)-(p); contrary
to the symmetric case (a)-(h). Here the snapshots of the
density of the first and second components are shown
in the upper (i-l) and the middle (m-p) panels, respec-
tively. We see that an initial turbulent structure under-
goes gradual change into a so-called interlaced vortex-
antidark structures [38], where the density of one com-
ponent sits in the core of a vortex in the other component
[35, 36, 41, 66, 67] within our miscible configuration. In
this quasi-equilibrium state of vortex-antidark solitary
waves, vortices continue to rearrange their positions as
time evolves. On the other hand, such vortex states are
formed by minimizing the inter-component interaction
energy (shown in following paragraph) similar to the for-
mation of a well ordered interlaced vortex lattice state
[36]. Hence, we hereafter refer to this state as an inter-
laced vortex lattice state although the obtained states are
not genuinely crystallized. Moreover, the vortices in this
state are singly quantized ones with the counterclockwise
winding, as seen in Fig. 2(a) and (b). The size of the vor-
tex cores in the interlaced lattice state is determined by
the spin healing length

ξs = ξ

√
g + g12
g − g12

(5)

instead of the mass healing length ξ = a0/
√

2µ̃ [39].
Thus, the vortices have an extended core due to the spin
healing length when g12 is nearly equal to g.

We also find that the formation of the interlaced
vortex lattice state is depending on the values of g12.
To see this, we first calculate the inter and intra-
component energy. For an interlaced vortex struc-
ture, the inter-component interaction energy is mini-
mized [36]. Figure 3 shows the evolution of the intra-

Eintra(t) =
∑2
j=1(gjj/2)

∫
dr|Ψj |4 and inter-component

energies Einter(t) = g12
∫
dr|Ψ1|2|Ψ2|2. It displays that

initially the inter-component energy decreases with time;
the intra-component interaction energy concurrently in-
creases. This process is associated with the effective

phase separation due to the relative displacement of the
vortex positions of each component. Subsequently, the
inter-component energy increases and saturates close to
its value at t = 0. We noticed that this energy exchange
process that leads to the phase separation is occurring
only at higher g12 as shown in the Appendix B 3. It indi-
cates that the interlaced vortex lattice state is favorable
only at larger values of g12 and the increase in Eintra at
the earlier times reflects the large local density variation
during the phase separation process. To address the for-
mation of interlaced vortex lattice state in more detail,
we calculate the energy spectra of the compressible and
incompressible kinetic energies as shown in the next sub-
section. It is noticed that even for smaller values of the
anisotropy (εy1 ∼ 0.005) the results remain similar, yet
the time required to form such interlaced lattice varies.
Indeed, as shown in Fig. 3, the relaxation time of the
energies toward the quasi-equilibrium becomes longer as
the trap anisotropy εy1 becomes smaller, and presumably
goes to infinity in the limit of εy1 = 0.

In order to get a further insight into the turbulent dy-
namics, we calculate the angular momentum per particle

lzi = −i~
∫ ∫

dxdyΨ∗i
(
x∂y − y∂x

)
Ψi (6)

of the i-th component. Figure 4(a) shows the time evo-
lution of lzi for the components i = 1, 2 corresponding
to Fig. 1. The angular momenta of both components are
monotonically increased during the stirring process and
the time of the vanishing stirring potential determines
their value at t = 0. Although the number of vortices
and that of anti-vortices are almost equal at t = 0, the
nonuniform distribution of vortices and anti-vortices re-
sults in finite positive angular momentum. This is stem-
ming from the counterclockwise rotation of the obsta-
cle during stirring. In this case, the (counterclockwise)
vortices are distributed on average in the inner region,
where the condensate density |Ψi|2 is high, while the
(clockwise) anti-vortices are in outer region. In a similar
vein, we observed that the vortex distribution obtained
from a clockwise moving obstacle has a finite negative
angular momentum. The initial difference in the angu-
lar momenta between the components is due to the trap
anisotropy which breaks the rotational symmetry. The
two components can exchange their angular momenta
due to the presence of the inter-component mean-field
coupling. At the same time, the magnitude of the to-
tal angular momentum decays slowly as time evolves.
This is because the time derivative of the angular mo-
mentum is non-vanishing when there are asymmetries in
the trapping potential or the nonlinear mean-field en-
ergy densities [68]. Both contributions are found to play
a role. The nonlinear one reflects the (radial) symmetry
breaking induced by the stirring, while the one associ-
ated with the confinement reflects the possible deviation
from radial symmetry of the trapping potential. Dur-
ing the dynamical process, from turbulence to the quasi-
equilibrium lattice configuration, the system either ejects
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Figure 1. The first and second rows of the panels show the evolution of the density of the first component (1st row) and the second one

(2nd row) for the isotropically trapping case of εy1 = 0 at t = 0 (a,e), t = 10 (b,f), t = 50 (c,g) and t = 400 (d,h). The third and fourth

rows of the panels show the evolution of the density of the first component (top) and the second one (bottom) for εy1 = 0.025 at t = 0

(i,m), t = 10 (j,n), t = 50 (k,o) and t = 400 (l,p). The parameters are, g̃ = 2000, g12 = 0.95g, M = 1024 and L = 40.
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Figure 2. The phase profile, (a) and (b), corresponds to the (l)

and (p) in Fig. 1, respectively.

the anti-vortices through the periphery of the condensate
due to the initial stirring, or annihilation of vortex anti-
vortex pairs occurs, emitting small-amplitude (phonon)
wave packets within the condensates. The energy dissi-
pation via the vortex-phonon interaction takes place and
it eventually leads to the quasi-equilibrium configuration
of vortices, although the total energy is conserved dur-
ing the time development of the GPE. Similar relaxation
dynamics can be seen in the single-component BEC in
a rotating potential [69, 70]. When the stirring period
is increased such as 3 or 4 periods, the initial net an-
gular momentum at t = 0 is also increased, so that the
quasi-equilibrium configuration possesses more vortices
than those in Fig. 1.
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trap anisotropy εxj = εyj = 0. The parameters are, g12 = 0.95g11
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As another example of parameter asymmetry among
the components, we study the turbulent dynamics and
the angular momentum evolution for the asymmetric
intra-component coupling strength g11 = 0.975g22 [67,
71] by setting εxj = εyj = 0; see again Eqs. (10)-(11)
in [68]. The simulation result shows that the dynam-
ics is similar to Fig. 1, where the initial turbulent state
undergoes a dynamical transition into the interlaced vor-
tex lattice configuration (see Appendix B 1). The evo-
lution of the angular momenta in Fig. 4(b) shows that
the exchange process of the angular momentum eventu-
ally causes an imbalance of the angular momentum in
the quasi-equilibrium state, where the number of the re-
maining vortices in the second component is more than
that of the first component. This is in line with the
dynamical robustness of the vortices in the second com-

ponent when it bears a larger intra-component strength
g22 > g11 [72, 73].

Interestingly, such a dynamically turbulent stage and
the subsequent formation of large core vortices have been
observed in the JILA experiment of a two-component
condensate [67], where the asymmetry among the com-
ponents exists due to the population difference and the
different intra-component strengths. In the experiment,
a fraction of the first component with a vortex lattice,
which was initially prepared, was coherently transferred
to the second component. Then, an interlaced vortex lat-
tice emerged dynamically through a transient turbulent
state. The transition time from the turbulence to the
interlaced lattice was about a few seconds, which is in
reasonable agreement with our numerical results, where
the lattice structure appears after t ∼ 100, i.e., t ∼ 1 sec
in the physical units.

Finite size effects are also crucial for the interlaced vor-
tex lattice formation. To address the finite size effect, we
perform a numerical experiment in a homogeneous sys-
tem without a trap by considering a periodic boundary
condition, and by keeping the parameters g11 = 0.975g22
and g12 = 0.95g11. Due to the periodic boundary condi-
tion, the only mechanism of energy dissipation is vortex
anti-vortex annihilation and, as a result, equal numbers
of vortices and anti-vortices are expected to be main-
tained during the time evolution. The result indicates
that the vortices almost completely disappear through
the pair annihilation in the final quasi-steady state (see
Appendix B 2). Thus, the external trap plays an impor-
tant role in the formation of the interlaced vortex lattice
structure.

B. Kinetic Energy Spectra

In order to study the characteristics of the emergent
quantum turbulence (as a result of our preparation proce-
dure), we calculate the incompressible and compressible
kinetic energy spectrum, Eic(k) and Ec(k) [7, 74, 75], for
the case of εy1 = 0.025, g11 = g22, and the various values
of g12 (see Appendix C). The incompressible fluid part
of the condensate represents the divergence free compo-
nent of the condensate velocity. The spectral behavior
in the UV (large k) region represents the contribution
from the vortex core, while that in the IR (small k) re-
gion indicates the largest scales involved (of the order
of the condensate size). Figure 5(a) shows Eic(k) of the
Ψ1-component at several different times for a weak inter-
component coupling g12 = 0.1g11. The spectrum at each
time exhibits a behavior similar to a 2D single-component
BEC [76]. In the UV regime at k > ξ−1 determined by
the mass healing length, the spectrum exhibits the power-
law k−3 and this scaling continues up to kξ ∼ 2π/ξ, which
is determined by the core profile of a single vortex [16].
In the regime of kR < k < ξ−1, the spectrum clearly ex-
hibits the Kolmogorov power-law ∼ k−5/3, a character-
istic of the inverse energy cascade, where kR = 2π/RTF.
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In this regime, a vortex–anti-vortex annihilation process
strongly affects the spectral behavior due to the sound
wave emission [70, 76, 77].

It can be seen that in Fig. 5(a) the magnitude of Eic(k)
is slightly decreased for kR < k < ξ−1 while it is in-
creased for ξ−1 < k < kξ. This feature is more visi-
ble at higher g12 as shown in Figs. 5(b) and (c), where
the spectrum exhibits a plateau around k ∼ ξ−1. To
see what happens, we plot in Fig. 6(a) that the den-
sity of the incompressible kinetic energy in the real space
Eic(r) = n(r)|uic(r)|2/2, corresponding to the energy
spectrum at t = 200 of Fig. 5(c) (g12 = 0.95g11). The en-
ergy density exhibits clear spatial separation of the large-
scale structure at the central region and the small-scale
one in the periphery. This small-scale structure is the
origin of the plateau of Eic(k) for the high-wave num-
ber. The plateau can be also seen in the turbulence in
3D condensates [78], known as the bottleneck effect and
these small scale fluctuations can be suppressed by using
phenomenological dissipation [58, 79]. When we trun-
cate Eic(r) outside of a certain radius and calculate the
energy spectrum from it, the magnitude of Eic(k) at the
high wave number is suppressed, as shown in Fig. 6(b). If
we wipe out the small-scale fluctuation in the periphery,
the spectrum shows the k−3 power law for ξ−1s < k < ks,
associated with the extended vortex core in the quasi-
equilibrium state, the core size being determined by the
spin-healing length of Eq. (5). The absence of the k−5/3

power law at the later evolution stage is consistent with
our observation that the turbulence decays into the quasi-
equilibrium state.

Next, we turn to the compressible energy spectrum,
for which typical results for the same parameters with
Fig. 5 are shown in Fig. 7. Here, the early-time stage
of the spectrum exhibits the k−7/2-power law for the
UV region, which is consistent with the turbulence in
a single-component BEC for a clustering regime [58]. As
time evolves the spectrum develops a k-power law in the
IR region corresponds to the equilibration of the sound
waves [74]. Though, the k−3/2 power-law is reported for a
single-component case in the IR region [58, 74] for a small
region around k = ξ−1, the spectra of the two-component
system does not show a clear evidence for that, especially
at higher inter-component strengths

√
g12g21. But, it is

to be noted that the k−3/2 reported in the Ref. [58] for
a single component case in the clustered regime corre-
sponds to the limit

√
g12g21 → 0. We see the develop-

ment of such a power law for the wave numbers around
k = ξ−1 in this limit, but not highlighted in Fig. 7 as it
is not prominent.

Finally, we show in Fig. 8 the development of the com-
pressible, incompressible and quantum pressure energies,
Ec, Eic and Eq respectively, with respect to time. Just
after t = 0, the incompressible energy is decaying, while
the energy of the quantum pressure, Eq (see Appendix C
for the relevant definition) and compressible energy are
increased. This fast process of the energy exchange at
the initial stage indicates the higher rate of vortex-anti-
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Figure 5. The incompressible kinetic energy spectrum of the first

component in a harmonic trap (α = 2) with a small anisotropy

εy1 = 0.025 at several different times for (a) g12 = 0.1g11, (b)

g12 = 0.6g11, and (c) g12 = 0.95g11. The spectrum of the second

component shows a similar trend. The black dot-dashed and red

dashed lines serve as guide to the eye for the k−5/3 and k−3 power

laws, respectively. The vertical maroon dashed lines (from left to

right) represent kR, ks(= 2π/ξs) and kξ; the vertical brown solid

lines (from left to right) represent k = ξ−1
s and k = ξ−1. Here an

average over 4 different initial conditions is considered.

.
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Figure 6. (a) The 2D spatial distribution of the density of the

incompressible kinetic energy Eic(r) = n(r)|uic(r)|2/2 at t = 200

for g12 = 0.95g11 and εy = 0.025, corresponding to the result in

Fig. 5(c). Circles represents the region to calculate the incompress-

ible energy spectrum Eic(k) in (b), where the radius is R =7.8, 9.8,

11.7, 13.6 from the inner to outer circle. The panel (b) shows Eic(k)

calculated from Eic(k) within the region of the different R. As a

guide, k−3, k = ξ−1
s and k = ks lines are drawn.

vortex annihilation process. At later times, both the Eic

and Ec nearly saturate with their behavior being essen-
tially independent of g12. Further, the steep increase in
Eq at the initial times for higher g12 is consistent with
the increase in Eintra discussed in the previous section
due to the large density variation. Since the compress-
ible energy dominates the kinetic energy of the system
for higher g12, the incompressible energy, responsible for
the vortex motion, can be relaxed by the bigger bath of
the sound waves.

IV. VORTEX CLUSTER FORMATION

It is well-known that the systems having a bounded en-
ergy spectrum with more than one conserved quantity ex-
hibit a negative temperature regime [80]. The existence
of the negative temperature restricts the thermalization
of an isolated system. A well-known example for this case
is a bounded 2D fluid with a large number of point vor-
tices as indicated by Onsager [2]. In the negative temper-
ature regime, the like-signed vortices condense to form a
giant vortex cluster. One of the main contributions in the
further development of Onsager’s theory on the existence
of the negative absolute temperatures and the associated
vortex cluster formation is from Kraichnan [3, 4], who
conjectured that clusters of like-signed vortices originate
from the incompressible kinetic energy cascade of a 2D
system. Hints of signatures of such clustered states of
like-signed vortices were reported in Ref. [17], conducted
in a 2D trapped dilute atomic gases. Although many
theoretical investigations had connected this cluster for-
mation with the negative temperature, experimental ev-
idence showcasing the connection between the negative
temperature and the vortex cluster was absent until the
recent discovery of such states in the two remarkable ex-
periments reported in [21, 22].

It has been shown that the formation of clustered vor-
tices occurs depending on the initial vortex configura-
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Figure 7. The compressible kinetic energy spectrum of the first

component in a harmonic trap (α = 2) with a small anisotropy

εy1 = 0.025 at several different times for (a) g12 = 0.1g11, (b)

g12 = 0.6g11, and (c) g12 = 0.95g11. The spectrum of the second

component shows a similar trend. The red dashed and cyan dot-

dashed lines serve to guide the eye for the k−7/2 and k power laws,

respectively. The vertical maroon dashed lines (from left to right)

represent kR, ks and kξ; (from left to right) the dash-dotted lines

represent k = ξ−1
s and k = ξ−1. Here averages over 4 different

initial conditions are considered.
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and blue (ellipse) curves indicate the results for g12 = 0.95g, g12 =

0.6g, and g12 = 0.1g, respectively.

.

tion [18] or via an evaporative heating mechanism that
removes the low-energy vortex dipoles from the conden-
sates through vortex pair annihilation [20, 76]. Here, we
study the cluster formation of the two-component BECs,
especially the impact of the inter-component coupling
g12. One of the main factors that affect the cluster for-
mation is the vortex-sound coupling. An efficient way to
reduce such coupling is to consider a non-circular geomet-
ric trap with a non-circular obstacle [21, 53, 81, 82]. Since
it is found that a harmonic trap suppresses the cluster
formation [20], we consider an elliptical steep-wall trap
with εxj = 0.3, εyj = −0.3, and α = 50. The vortex nu-
cleation is caused by the non-circular shaped Gaussian
obstacle, which has the form

Vs(x, y, t) = V0 exp

[
−d

2
s(x− x0(t))2 + y2

σ2

]
, (7)

with ds = 3 and x0(t) = 0.6RTF sin(2πt/T ), where
RTF ≈ 8.34a0. We sweep the condensate with an obsta-
cle of strength V0 = 15µ for a half of the period T with
velocity v = 0.4vs. Here we ramp down the obstacle to
zero during the range from t = T/4 to t = T/2.

Of the numerous measures of this clustered states listed
in the references [17, 18, 20, 76, 83–86], we use the vortex
dipole moment to detect such states [76]. The dipole
moment is defined as

d = |d| =
∑
i

qiri, (8)

where qi = ±h/m and ri is the position of the vortex and
detected by measuring the Jacobian field [86–88]. Here,

the vortex positions of the wave function Ψ are mapping
to density of vortices ρv(r, t) as

ρv(r, t) = δ(Ψ)D(r, t), (9)

where the Jacobian determinant D is

D(r, t) =

∣∣∣∣∂xReΨ ∂yReΨ
∂xImΨ ∂yImΨ

∣∣∣∣ = Im(∂xΨ∗∂yΨ). (10)

The position of vortices can be determined from nonzero
values of the Jacobian field, while the rotational direction
can be determined from its sign. Here, +qi indicates the
charge of a vortex and −qi represents the charge of an
anti-vortex.

Since we have already seen the formation of large-core
vortices in the harmonic-trap resulting from the initial
stirring for an anisotropic condensate in the previous
section, here we investigate the turbulent dynamics for
g11 = 0.975g22 in an elliptical steep-wall trap. Figure 9
shows the vortex turbulent dynamics at different times
for the miscible case with g12 = 0.95g11. The upper
panel (a-d) represents the density of the first compo-
nent, while the bottom panel (e-h) represents that of
the second component. The corresponding phase pro-
files are shown in (i-l) and (m-p), respectively. Though
cluster formation is apparent in the initial stage of the
dynamics through a large dipole-moment (a) d′ ∼ 0.37,
(b) d′ ∼ 1.16, (c) d′ ∼ 0.63, in the final stage it again
leads to a quasi-equilibrium vortex-antidark structure
with d′ = 0 that persists throughout our simulations.
Here d′ = 2d/(NvR0), where Nv is the sum of vortices
and anti-vortices. Due to the nearly zero angular momen-
tum at t = 0, shown in Fig. 10(b), the number of vortices
is also nearly zero. On the other hand, for g11 = g22 we
see the vortex clusters even at larger times (see Appendix
D).

In Fig. 10, we show the evolution of the dipole moment
d′ and the time dependence of the angular momentum
per particle for different values of g12. For higher values
of g12 the dipole moment goes to zero, corresponding to
the quasi-equilibrium state without clusters as shown in
Fig. 9. On the other hand, for the lower values of g12 the
dipole moment remains finite even at larger times. The
transition to the quasi equilibrium state for higher g12
can be further understood from the angular momentum.
Though initially both components have the same angu-
lar momentum, the rate of angular momentum transfer
among the components for larger g12 is higher. Since
g22 > g11 the final angular momentum (vortices) prefers
to remain in the Ψ2-component, which is consistent with
the argument of the dynamical stability of the corre-
sponding states [72, 73]. This may lead to the long time
persistence of isolated vortex-antidark structures.

The snapshots of the density of the both the first (top
panel) and second components (bottom panel) at t = 500
shown in Fig. 11 further elucidate the transition. The
disappearance of vortices at higher g12 is a crucial factor
preventing the cluster formation.
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Figure 9. Vortex dynamics of a binary BEC in an elliptic steep-wall trap with εxj = 0.3, εyj = −0.3 and α = 50. The snapshots of the
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and the dipole moment (see the definition in Eq. (8)), respectively. The corresponding phase profiles are shown in the lower two rows of

panels. The parameters are g11 = 0.975g22, g12 = 0.95g11, g̃22 = 2000, M = 512 and L = 30.

.

V. CONCLUSIONS AND FUTURE
CHALLENGES

We have investigated the two-dimensional quantum
turbulence of miscible binary BECs, modeled by the GP
equation. We considered both the symmetric and asym-
metric setup of the system parameters where the asym-
metry is introduced through the difference of the trap
frequencies or that of the intra-component interaction
strength. We followed an analogous stirring mechanism
to the one that has been previously used in the experi-
ment of a single-component BEC to initiate the turbulent

dynamics [17, 53].
The initially generated vortices that resulted from the

stirring are located at the same position in both compo-
nents for the symmetric situation throughout its dynam-
ical evolution and exhibit a similar type of energy spec-
tra as that of a single-component condensate [16]. In the
asymmetric situation deviating slightly from the isotropic
regime, however, as time increases, we see the increased
core size of vortices with the same unit charge and the for-
mation of vortex-antidark solitonic lattices with the com-
ponents mutually filling each other (i.e., where one has a
dip associated with a vortex, the other has a bump). Be-
fore forming this vortex-antidark state the system passes
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through a turbulent stage in which transferring of an-
gular momentum among the components occurs. This
process occurs at the cost of inter-component energy. In-
terestingly, a related dynamical turbulent stage may be
directly connected with the observations of the JILA ex-
periment of a binary condensate [67], where the asym-
metry among the components was due to the population
difference and the distinct intra-component interaction
strengths [29, 41]. Furthermore, the spectra at the ini-
tial stage of turbulence dynamics feature similar power-
laws, k−5/3 power-law for the small wave number regime
(kξ < 1) and k−3 for the large wave number (kξ > 1)
regime, as in the symmetric case. We found that the de-
cay of the turbulent state at the later quasi-equilibrium
stage is caused by the spatial separation of the incom-
pressible energy density, where the small scale compo-
nents are accumulated at the periphery of the trapped
condensate. Then the spectra are characterized by the
k−3 power law in the k-range associated with the spin-
healing length and the plateau in the range of the wave
number determined by the density healing length due to
the bottleneck effect. This feature is enhanced for larger
intercomponent coupling strength g12. We also found
that the decay behavior of the turbulence significantly

suppresses the evolution toward the vortex cluster for-
mation in the case of the steep-wall trap.

The measurement of the s-wave scattering lengths for
a binary condensate of 87Rb shows an asymmetry in the
intra-component interaction strengths [29, 41]. More-
over, the ability of designing not only anisotropic po-
tentials, but, in principle, arbitrary confining conditions
is within reach in BEC experiments [89]. Hence, the dy-
namics discussed here for the asymmetric case should be
directly accessible experimentally. Our results also point
to the fact that the inter-component interaction strengths
shift the infinite temperature line, beyond which we ex-
pect the negative temperature. Similar results are re-
ported in [44, 45]; this is a direction worth exploring
further. In yet another vein, recent work has started
exploring further solitary wave structures involving more
than two components [90, 91]. Appreciating the pos-
sible scenarios in such a generalized setting involving
also the spin degree of freedom and associated magnetic
excitations may be of interest in its own right. Addi-
tionally, in a multi-component system, there exist two
phonon branches, density (in-phase) wave and spin (out-
of-phase) wave (See the equation 2 in [92]). For an
asymmetric set up in the limit g12 → g, the energy of
the spin-wave mode is lowered and can thus be excited
much easily. Hence, it is interesting to see the contribu-
tion of the density-wave and the spin-wave components
to the compressible energy. We are currently working
on that and relevant results will be presented elsewhere.
Finally, the anisotropy between the components can be
introduced via mass of the components too, and a pre-
liminary study in this direction is reported in Ref. [52],
where Na-K bosonic mixtures is considered. Also, it is to
be noted that to incorporate the quantum effects such as
quantum correlations and associated fragmentation and
the finite temperature effects, a beyond-mean-field model
has to be considered. While here we have restricted our
considerations to large atom numbers and near-zero tem-
peratures, so that the mean-field setting provides a valid
approximation, it is relevant to extend earlier works, such
as e.g. Refs. [93–96] in these interesting directions for the
multi-component system.
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Appendix A: Vortex nucleation during the stirring
procedure
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Figure 12. Snapshots of the density of the first component just

after the obstacle starts to move (a) and (b), and that for t = 0

(c) after completing the 2nd period of the stirring. The positions

of vortices and anti-vortices are plotted by (red) circles and (light

blue) triangles, respectively. Here, the parameter values correspond

to those in Fig. 1.

Figure 12 shows the snapshots of the density of the
first component during the stirring process in Sec. III,
which is before our t = 0. The obstacle induces coun-
terclockwise rotation centered at a radius r0 = 0.4RTF

beyond the critical velocities for vortex nucleation. The
snapshots show that vortices are nucleated at the zero
density region at the obstacle, in the form of vortex–anti-
vortex pairs. Note that, as shown in Fig. 12(a) and (b),
the vortices with counterclockwise circulation are emitted
into the inner region of the condensate, while the anti-

vortices with clockwise circulation are into the opposite
outer side. This imbalance of the vortex and anti-vortex
distribution is responsible for the nonzero angular mo-
mentum at t = 0.

Appendix B: Turbulent dynamics for several
different parameters

In this section, we show some numerical results not
presented in the main text.

1. Turbulent dynamics for g11 6= g22 or N1 6= N2

Here, we show the turbulent dynamics and the subse-
quent quasi-equilibrium states for the cases of g11 6= g22
or N1 6= N2 without the trap asymmetry (εy1 = 0).
The stirring procedure is the same as before. Figure 13
shows the density of the first and second components at
(a,c) t = 0 and (b,d) t = 600 for g11 = 0.975g22 and
g12 = 0.95g11, g̃22 = 2000, while N1 = N2. The dy-
namics exhibits a behavior similar to Fig. 1 and leads to
the formation of interlaced lattice state of vortices as in
Fig. 13(b) and (d). We also show the turbulent dynamics
when the particle number is slightly different N1 6= N2;
Fig. 14 shows the density of the first and second com-
ponents at (a,c) t = 0 and (b,d) t = 400. Here, the
dimensionless gij ’s assume the values indicated in the
caption. When the population difference is small, we
have observed similar dynamics as in the previous case.
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2. Turbulent dynamics and angular momentum
evolution for the homogenous condensates

In this Appendix we demonstrate the turbulent dy-
namics for the homogeneous system, where the stirring
procedure is made in a way similar to the trapped system.

We evolve the initial wave function ψi =
√
µ/(g11 + g12),

with µ = 34.78 by setting Vj = 0 in Eq. (4). We imple-
ment periodic boundary condition. Since there is no low
density region, as seen in the outside of the Thomas-
Fermi radius in the trapped system, the vortex–anti-
vortex annihilation is an only mechanism of the decay
of the vortex excitation, and as a result, equal numbers
of vortices and those of anti-vortices are expected in the
final state.

Figures 15 and 16 show the vortex dynamics and the
corresponding angular momentum transfer, respectively.
As seen in the trapped system, the snapshots of the den-
sity exhibit the transient dynamics from the turbulent
state to the dark-antidark structure. Subsequently, the
scale of the density variation is determined by the spin
healing length given by the formula [39]

ξ2s =
1

2

(
g22

µ1g22 − µ2g12
+

g12
µ2g11 − µ1g12

)
. (B1)

However, the phase profiles show that the vortices do not
survive in the long time dynamics, due to the fact that
equal numbers of vortices and antivortices undergo pair-
annihilations. This behavior can be understood from the
evolution of the angular momentum. There is a finite
angular momentum at t = 0, caused by the introduc-
tion of the stirring potential that breaks the rotational
symmetry of the system. After the long-time evolution,
the angular momentum eventually goes to zero, although
a small oscillation can be seen for the first component,
which is caused by the survived vortex and anti-vortex
seen in the phase profile of Fig. 15(d).

3. Vortex turbulent dynamics for several values of
g12

Here we discuss the g12-dependence of the turbulent
dynamics. We set g11 = g22 and εy1 = 0.025 and the vor-
tices are generated by the stirring potential in the same
way as before. Figure 17 shows the condensate density
at t = 200 for different strength of g12. It shows the
clear interlaced lattice state of the like-signed vortices
for higher g12. With decreasing g12, the vortex-antidark
lattice structure disappears and the vortex structure re-
sembles that in a single-component condensate. Also, the
vortices feature chaotic motions which cannot be inter-
preted as an interlaced lattice state.

Appendix C: Numerical Calculation of Energy
Spectra

To calculate the energy spectra [5, 13, 74, 97], we do
the decomposition as follows. The kinetic energy term
|∇Ψ|2/2 in the Hamiltonian Eq. (1) can be written as

1

2
|∇Ψ|2 =

1

2

(
n|u|2 +

∣∣∇√n∣∣2) , (C1)
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Figure 15. Snapshots of the time development for the homogeneous binary condensates after the stirring. The first and the second rows

show the density of the first component and that of the second component, respectively, at (a,e) t = 0, (b,f) t = 50, (c,g) t = 100 and (d,h)

t = 600 for M = 512 grid points. The third and fourth rows show the corresponding phase profiles. The parameters are g11 = 0.975g22,

g12 = 0.95g11 and εxj = εyj = 0.0.

where the Madelung transformation Ψ =
√
neiφ yields

the condensate density n = |Ψ|2 and the superfluid ve-
locity u = ∇φ. We do not consider the index j to rep-
resent the components. Here the first and second terms
represent the density of the kinetic energy (Eke) and the
quantum pressure (Eq), respectively, where the energies
are given by

Eke =
1

2

∫
n|u|2d2r, Eq =

1

2

∫
|∇
√
n|2d2r. (C2)

The velocity vector u now can be written as a sum over
a solenoidal part (incompressible) uic and an irrotational
(compressible) part uc as

u = uic + uc, (C3)

such that ∇ · uic = 0 and ∇ × uc = 0. We next define
the scalar potential Φ and the vector potential A of the
velocity field which satisfy the relations

√
nuic = ∇×A,

√
nuc = ∇Φ (C4)

respectively. Taking the divergence of the equation for
the scalar potential we obtain

∇2Φ = ∇ ·
(√
nuc

)
= ∇ ·

(√
nu
)
. (C5)

From this Poisson equation we numerically determine the
scalar potential Φ [75]. On applying the Fourier trans-
form to the Eq. (C5) we get

Φ̃ = −F [∇ ·
√
nu]

k2x + k2y
. (C6)
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.

After taking the inverse Fourier transform of Φ̃, we get√
nuc from Eq. (C4). Further we can find

√
nuic from

Eq. (C3).

The compressible and incompressible kinetic energies
are then

Eic,c =
1

2

∫
d2r|
√
nuic,c(r)|2, (C7)

In the k-space, the total incompressible and compressible

kinetic energy Eic,i
kin is represented by

Eic,c =
L2

2

∑
j=x,y

∫
d2k|Fj(k)ic,c|2, (C8)

where Fj(k) is the Fourier transform of
√
nuj of the j-th

component of u = (ux, uy). We can modify Eq. (C8) as

Eic,c(k) =
k

2

∑
j=x,y

∫ 2π

0

dφk|Fj(k)ic,c|2, (C9)

where we consider the polar coordinates and k =√
k2x + k2y. We numerically integrate over the k-shell

(summing over the grid points) to find Eic,c(k). Now
to get the respective kinetic energy, we integrate Eic,c(k)
with respect to k.

Appendix D: Symmetric case with g11 = g22 in
steep-wall trap

a
+1
−1

x

−8
−4
 0
 4
 8

y

(a) n1 (b) n1
a (c) n1

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007
(d) n1

−8 −4  0  4  8
x

−8
−4
 0
 4
 8

y

(e) θ1

−8 −4  0  4  8
x

(f) θ1

−8 −4  0  4  8
x

(g) θ1

−8 −4  0  4  8
x

−4

−3

−2

−1

 0

 1

 2

 3

 4
(h) θ1(h) θ1(h) θ1(h) θ1

Figure 18. The density of the first component at (a) t = 0, (b)

t = 50, (c) t = 250 and (d) t = 500. Here, the exponent of the trap

potential is α = 50. The parameters are g22 = g11, g12 = 0.95g11,

g̃22 = 2000, L = 30, and M = 512.

.

Figure 18 shows the vortex turbulent dynamics at
different times for the symmetric choice of the intra-
component couplings g22 = g11 = 2000~2/m and the
miscible regime g12 = 0.95g11. Here, both the compo-
nents behave in the same manner, the dynamics mimics
those of the single-component BEC. The measured dipole
moment (a) d′ ∼ 0.31, (b) d′ ∼ 0.79, (c) d′ ∼ 0.50, (d)
d′ ∼ 0.90 shows that even for the smaller time, the mag-
nitude of the dipole moment is much greater than zero.
Here d′ = 2d/(NvR0), where Nv is the sum of the vor-
tices and anti-vortices. The formation of vortex cluster
can be clearly discerned in the figure.
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