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A quantum cyclotron is one trapped electron or positron that occupies only its lowest cyclotron
and spin states. A master equation is solved for a driven quantum cyclotron with a QND (quantum
nondemolition) coupling to a detection oscillator in thermal equilibrium - the first quantum calcu-
lation for this coupled and open system. The predicted rate of cyclotron and spin quantum jumps
as a function of drive frequency, for a small coupling between the detection motion and its thermal
reservoir, differs sharply from what has been predicted and used for past measurements. The cal-
culation suggests a ten times more precise electron magnetic moment measurement is possible, as
needed to investigate current differences between the most precise prediction of the standard model
of particle physics, and the most accurate measurement of a property of an elementary particle.

I. MOTIVATION AND OVERVIEW

An intriguing 2.4 standard deviation discrepancy [1–4]
recently arose between the Standard Model’s most pre-
cise prediction and the measured value (Fig. 1). The best
measurement [3, 5] determines the electron magnetic mo-
ment in Bohr magnetons (µ/µB) to 3 parts in 1013 – the
most precisely determined property of an elementary par-
ticle. The SM prediction requires Dirac theory, quantum
electrodynamics, hadronic and weak interaction contri-
butions [2]. The part in 1012 agreement between SM
prediction and measurement that stood for years gave
way as a result of a more precise measurement of the
latter. The discrepancy triggered new theoretical inves-
tigations into possible physics beyond the SM [6–10]. As
this work was being reported, a second new α measure-
ment [11] contradicted the first, giving a SM prediction
that disagrees with electron’s measurement by 1.6 stan-
dard deviations, but in the other direction.
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FIG. 1. Comparison of the measured electron magnetic mo-
ment [3] with the standard model predictions [2, 4, 11]

A one-particle, quantum cyclotron is at the heart of
past and future measurements [1, 3]. A single elec-
tron, suspended indefinitely in a Penning trap, is cooled
enough that it initially occupies only one of the two stable
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cyclotron ground states, one with spin down and one with
spin up (Fig. 2). Transitions are driven between these
states and a third, the first excited cyclotron state with
spin down. The state of the quantum cyclotron is de-
tected after the drives are turned off using quantum jump
spectroscopy. The angular cyclotron and anomaly drive
frequencies, ωc and ωa, that produce one-quantum tran-
sitions, determine the magnetic moment in Bohr magne-
tons,

± µ

µB
= 1 +

ωa
ωc

=
g±
2
. (1)

The plus and minus signs are for the positron and elec-
tron, and the g-values g±, divided by 2, are other names
for the ratio of moments. The frequency ωc is the
electron cyclotron frequency. The anomaly frequency
ωa = ωs − ωc is the difference between the electron spin
precession frequency ωs and its cyclotron frequency. The
anomaly frequency ωa is directly measured instead of the
spin frequency ωs because the uncertainty in µ/µB is

thereby reduced by about a factor of ωc/ωa ≈ 103 [12].
The resonance line shapes from which these frequencies
are extracted have intrinsically different shapes.

The use of quantum nondemolition (QND) detection
methods completely evades detection backaction for de-
termining the quantum state of the cyclotron and spin
motion. Nonetheless, detection backaction still prevented
better measurements of the cyclotron and spin transition
frequencies to better determine the magnetic moments.
This backaction produced a very wide and asymmetric
quantum jump spectroscopy line shape when cyclotron
transitions were driven to determine the cyclotron fre-
quency. Even though resonant frequencies can be ex-
tracted from broad and asymmetric lines in principle, in
practice this causes a susceptibility to systematic uncer-
tainties. Significant progress in precision frequency mea-
surements typically takes place only when narrower and
more symmetric line shapes are produced. We recently
proposed a very promising method for circumventing this
detector backaction for the frequency measurements [13].
The cyclotron line shape would be much more symmet-
ric, and orders of magnitude narrower, than for previous
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measurements.
In this work we describe the quantum calculation that

is carried out to predict the narrow quantum-jump line
shapes [13] much more completely. A master equation is
solved for a driven quantum cyclotron with a QND cou-
pling to a detection oscillator, the latter being coupled
to a thermal reservoir. The predicted quantum jump line
shapes are very different than was predicted for the case
when the detection oscillator was more strongly coupled
to its environment [14, 15]. We also present for the first
time quantum calculations for (1) driven anomaly tran-
sitions, (2) directly driven spin flips, and (3) spin flips
produced by simultaneous cyclotron and anomaly drives.
The additional calculations make it possible to evaluate
and contrast possibilities for making new measurements
of the electron and positron magnetic moments.

Key to these calculations, and the possibility to mea-
sure the electron and positron magnetic moments much
more accurately, is decoupling the detection oscillator
from its thermal environment by a factor of 100 during
the time in the measurement when one-quantum transi-
tions are being driven. The parameters used in the cal-
culation are those realized in a very recent experimental
demonstration of one way that this could be done [16],
while also allowing the necessary coupling to be restored
for quantum state readout.

The outcome of the calculation is that it now seems
feasible to carry out new electron and positron magnetic
measurements that are an order of magnitude more ac-
curate than was previously possible. This would make
it possible to investigate the discrepancies between the
most precise prediction of the standard model of particle
physics, and the most accurate measurement of a prop-
erty of an elementary particle [1, 2].

Details of the quantum system are given in Sec. II.
The Hamiltonian and master equation of the system are
presented in Sec. III. Calculations of single photon exci-
tations of cyclotron and anomaly transitions are given in
Sections IV and V, respectively. Sec. VI does the same for
directly driven spin flips. Sec. VII predicts the quantum-
jump line shape for simultaneously applied cyclotron and
anomaly drives. Sec. VIII contrasts the relative advan-
tages of the different methods, and Sec. IX provides a
summary.

II. QUANTUM CYCLOTRON

A one-electron quantum cyclotron is at the heart of
the approach being investigated here. An electron or
positron in a Penning trap is confined within a spa-
tially uniform magnetic field Bẑ, along with an electro-
static quadrupole potential [12]. The possibility to use
only the ground and first excited cyclotron states of a
single isolated electron has already been demonstrated
and used for measurement [3]. The two lowest levels of
the quantum cyclotron are separated by an energy ~ωc,
where ωc is the angular cyclotron frequency introduced

above. The spin up (quantum number ms = 1/2) and
spin down (ms = −1/2) states are separated in energy
by ~ωs, where ωs is the spin precession frequency dis-
cussed above. This one-particle quantum cyclotron has
a Hamiltonian

H = ~ωs
(
a†sas − 1

2

)
+ ~ωc(a†cac + 1

2 ). (2)

The spin raising and lowering operators are

a†s |↓〉 = |↑〉
as |↑〉 = |↓〉 ,

(3)

and a†c and ac are harmonic raising and lowering opera-
tors for the cyclotron motion [12].

An electrostatic quadrupole potential added to the
magnetic field makes a Penning trap that can suspend
a single charged particle indefinitely within an extremely
high vacuum [17]. The electron (of charge −e and mass
m) oscillates along the magnetic field direction in a har-
monic oscillator potential energy,

W (z) = 1
2mω

2
zz

2 (4)

and ωz is the angular axial oscillation frequency. The
electrostatic quadrupole shifts the cyclotron frequency
slightly in a well understood way [12, 18] that can be
neglected for the purposes of this calculation.

This axial motion is used to make quantum nondemo-
lition (QND) measurements of one-quantum spin and cy-
clotron transitions [19–23]. A small magnetic bottle gra-
dient, B2z

2, is added to the spatially uniform magnetic
field, B0, of the Penning trap, The addition modifies the
axial trapping potential and shifts the frequency of the
axial oscillation. A QND detection of a one-quantum cy-
clotron excitation is possible because it shifts the axial
frequency from ωz to ωz + δc, with

δc =
eB2

m

~
mωz

≈ 2π × (3 Hz) (5)

[12], without changing the cyclotron state. (A two-
quantum cyclotron excitation would be 2δc and so on,
as will be discussed later and quantified in Eq. (15).
The one-quantum shift is just large enough to be de-
tectable. The relative shift is δc/ωz = 1.5 × 10−8 for
demonstrated experimental values [5] (B2 = 1500 T/m2

and ωz/(2π) = 200 MHz.). This bottle shift can be de-
creased in two ways – by decreasing the magnetic gradi-
ent B2 or by increasing the axial frequency, ωz. Since a
next generation experiment[1] uses B2 = 660 T/m2, we
choose the intermediate value B2 = 1200 T/m2 for the
illustrations in this paper.

The magnetic gradient is unfortunately also responsi-
ble for a backaction that broadens the range of frequen-
cies over which a driven cyclotron excitation or spin flip
can occur. The cyclotron and spin frequencies in Eq. (2)
both acquire a small z2 dependence,

ωc(z) = ωc + eB2

m z2 (6)
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ωs(z) = ωs + g
2
eB2

m z2, (7)

where the g-value is g+ for a positron and g− for an elec-
tron. A one-quantum axial excitation within the mag-
netic bottle gradient shifts the cyclotron frequency by
the same δc. A thermal distribution over n̄z axial states
(Eq. (26)) thus makes the cyclotron frequency fluctuate
over a spread of frequencies that is of order n̄zδc.

Two relativistic shifts must be mentioned, both aris-
ing from the “relativistic mass increase.” The largest is
the increase of the effective mass due to the energy of
cyclotron motion [12],

δr = − ~ωc
mc2

ωc ≈ −2π × (180 Hz). (8)

It is only a 1 part in 109 shift of the cyclotron frequency
per cyclotron quantum, but it is a large shift compared to
the experimental precision that can being attained. The
cyclotron transition frequency between quantum number
nc and nc + 1 is shifted by (nc + 1

2 ) δr. The cyclotron
frequency between the ground and first excited cyclotron
states with spin down shift by half of δr. The shift is
thus extremely important in that a cyclotron drive that
excites the first spin-down excited state, will not excite
a cyclotron excitation of the spin-up ground state. How-
ever, for the purposes of this calculation it can simply be
absorbed into ωc.

The second relativistic shift,

δcr = − ~ωc
2mc2

ωz ≈ −2π × (0.12 Hz), (9)

is about 1000 times smaller. It comes from the increase
of the effective mass due to the zero-point energy of the
axial oscillation. This coupling has much the same effect
in coupling the motions to allow QND detection as does
a magnetic bottle [12]. It also produces a corresponding
backaction. This relativistic coupling is neglected here
because it is 25 times smaller than the coupling caused
by the magnetic bottle gradient considered above.

A spin flip shifts the angular axial frequency by δs =
(g/2) δc. This is nearly the same size as the correspond-
ing cyclotron frequency shift because g

2 differs from 1 by
only a part in 1000, and experiments are not able to re-
solve these two shifts from each other. The frequency
difference ωa = ωs − ωc is measured rather than ωs [3],
and the thousand times smaller shift, δa = δs−δc, is thus
also important.

Table I gives the typical trapped electron frequencies,
damping rates, and quantum numbers used in this cal-
culation. The spin and cyclotron frequencies are for an
electron in a B = 5.3 T magnetic field, and γc is the
rate at which the first excited cyclotron state radiates
spontaneous emission to return to its ground state. This
radiation rate is substantially inhibited by a surrounding
cylindrical trap cavity [5, 24, 25]. The spin-up cyclotron
ground state radiates with a time constant so long that
we treat it as stable.

The axial frequency depends upon the trap size and
the applied trapping potential [26, 27]. Its damping rate

γz depends upon the quality factor and inductive reac-
tance of the damping and detection circuit to which it is
coupled [28]. The maximal damping rate in Tab. I applies
during particle detection. For this calculation, we assume
that this rate is electronically reduced by a factor of 100
during the time that spin and cyclotron transitions are
driven, a number that has been experimentally demon-
strated [16]. The average quantum number is for ther-
mal equilibrium with a circuit kept at 0.1 K, the ambient
temperature that has been maintained for measurements
using a dilution refrigerator [3].

The magnetron orbit of a trapped particle is important
experimentally but not for this calculation. It is a motion
at a much lower frequency. The average quantum number
in the table pertains for the sideband cooling limit [12],
and its radiation damping rate is completely negligible.
The broadening due to magnetron motion is smaller than
that due to axial motion by a factor of ωm/ωz ≈ 1/1000,
and we drop the magnetron motion term to simplify the
calculation. If necessary, the Hamiltonian and master
equation in Sec. III and Sec. IV can be naturally gener-
alized to include it.

frequency
damping

time
quantum
number

spin ωs/2π ≈ 148.5 GHz γ−1
s ≈ 108 s ms = ± 1

2

cyclotron ωc/2π ≈ 148.3 GHz γ−1
c ≈ 5 s n̄c = 0

axial ωz/2π ≈ 200 MHz γ−1
z ≈ 0.2 s n̄z = 10

magnetron ωm/2π ≈ 133 kHz γ−1
m ≈ 1017 s n̄m = 10

anomaly ωa/2π ≈ 170 MHz — —

TABLE I. The frequencies, damping rates, and quantum num-
bers used for this calculation are typical for an electron in a
Penning trap [3].

Tables I and II list the parameters used for this cal-
culation. They are mostly what has been realized exper-
imentally. Table I gives frequencies, damping times and
quantum number for the spin, cyclotron, axial an mag-
netron motion of an electron or positron in a Penning
trap. Table II compares the important frequency offsets
and corresponding time constants.

ang. frequency or rate frequency (Hz) time constant (s)

δa 0.003 60
γz 0.003 60
n̄zδa 0.03 6
γc 0.03 6
n̄zγz 0.03 6
δc 3 0.06
n̄zδc 30 0.006

TABLE II. Hierarchy of angular frequencies and rates that
are in reach for a new generations of measurements. The
numerical values are frequencies in Hz and times in seconds,
with δa/2π = 0.003 Hz and δ−1

a = 60 s, for example.

One motivation for this calculation is evaluating the
possibilities that open if a greatly reduced axial damp-
ing rate pertains while cyclotron and anomaly transitions
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are driven. The rate can be electronically switched [16] to
the low value in the table just before drives are applied,
to make one-quantum anomaly and cyclotron transitions
with an electron largely uncoupled from the bath. After
the drives are turned off, the damping rate can be elec-
tronically switched to a much larger values, as needed to
detect the particle state and to damp the axial motion.

III. HAMILTONIAN

The basic Hamiltonian for the quantum cyclotron,

H0 = ~ωs
(
a†sas − 1

2

)
+~ωc

(
a†cac + 1

2

)
+~ωz

(
a†zaz + 1

2

)
,

(10)
is the sum of independent spin, cyclotron and axial terms.
The raising and lowering operators for the spin (a†s and
as), cyclotron (a†c and ac) and axial (a†z and az) motions
are introduced in Ref. [12], along with relationships to
the position and momentum operators. The eigenstates
for H0 are direct products of independent spin, cyclotron,
and axial eigenstates |ms, nc, nz〉, with

E0(ms, nc, nz) = ~ωsms + ~ωc
(
nc + 1

2

)
+ ~ωz

(
nz + 1

2

)
(11)

as the resulting energy eigenvalues, with ms = ±1/2,
nc = 0, 1, ... and nz = 0, 1, ... . The magnetron motion
of a particle in a Penning trap is neglected because it
introduces no significant complications, and because it
can be cooled to a small radius that does not change
during a measurement.

The addition of a magnetic bottle gradient adds a cou-
pling term to make the Hamiltonian, H = H0 + V , with

V = ~
2

[
δs
(
a†sas − 1

2

)
+ δc

(
a†cac + 1

2

)]
(a†z + az)

2, (12)

when contributions smaller by order ωz/ωc are neglected.
This is a QND coupling because [H0, V ] = 0. The result
is that the energy eigenstates of H = H0 + V are the
same uncoupled states |nc,ms, nz〉 that are the energy
eigenstates of H0. The magnetic bottle shifts the energy
eigenvalues to

E(ms,nc, nz) = E0(ms, nc, nz)

+ ~δc
(
nc + 1

2

) (
nz + 1

2

)
+ ~δsms

(
nz + 1

2

)
.

(13)

That this coupling makes it possible to detect that quan-
tum spin and cyclotron states can be seen by rewriting
the energy eigenvalues as

E(ms, nc, nz) = ~ωsms + ~ωc
(
nc + 1

2

)
+ ~ω̃z

(
nz + 1

2

)
.

(14)
Monitoring the effective axial oscillation frequency

ω̃z = ωz +msδs + (nc + 1
2 )δc, (15)

thus reveals the spin and cyclotron states via their quan-
tum numbers. A feature of the QND detection is that the
axial detection backaction upon these quantum states is

completely evaded. Repeated measurements, made to
see if something else is changing these states, do not in
themselves change the quantum state.

Critical to this work is that the QND coupling V that
completely evades detection backaction in the determina-
tion of the quantum spin and cyclotron states, does not
do so for a measurement of either ωs or ωc. This can be
seen by writing the energy eigenvalues in the alternate
form,

E(ms, nc, nz) = ~ω̃sms+~ω̃c(nc+ 1
2 )+~ωz(nz+ 1

2 ). (16)

Despite the QND coupling, the effective spin, cyclotron
and anomaly frequencies all have shifts that go as the
axial quantum number

ω̃s = ωs + δs(nz + 1
2 ), (17a)

ω̃c = ωc + δc(nz + 1
2 ), (17b)

ω̃a = ωa + δa(nz + 1
2 ). (17c)

These detection backaction shifts cannot be completely
evaded because a shift due to axial zero point motion re-
mains even if the axial detection motion would be cooled
to its nz = 0 ground state. Because the shifts in this limit
are orders of magnitude smaller than what has been at-
tained, we focus upon how these zero-point limits can be
attained. We call this “circumventing” detection back-
action because of the possibility to achieve these limits
while axial detection states well above nz = 0 are popu-
lated [13].

Electron and positron magnetic moment measure-
ments require the determination of the cyclotron and the
anomaly frequencies, ωc and ωa. These frequencies can
be determined observing the rate of quantum jumps be-
tween the lowest cyclotron and spin states as a function
of the frequency of external driving forces introduced to
make these transitions. Because the axial detection mo-
tion is coupled to a thermal reservoir there is a thermal
distribution of axial states. This spreads out the range of
spin, cyclotron and anomaly frequencies at which a spin,
cyclotron or anomaly drive causes one-quantum transi-
tions. The detection backaction thus significantly broad-
ens the observed spin, cyclotron and anomaly resonance
line shapes from which the needed frequencies must be
detected.

Switching from the Schrödinger picture to the interac-
tion picture transforms away the well-understood spin,
cyclotron and axial motions in the absence of a magnetic
bottle. Terms that go as azaz and a†za

†
z oscillate rapidly

and hence average to zero in the interaction picture. The

resulting interaction Hamiltonian Ṽ = eiH0t/~V e−iH0t/~

is

Ṽ =
[
~δs
(
a†sas − 1

2

)
+ ~δc

(
a†cac + 1

2

)] (
a†zaz + 1

2

)
.

(18)

We continue using the time-independent raising and low-
ering operators from the Schrödinger picture (rather than
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FIG. 2. Quantum states of a particle in a Penning Trap.
Cyclotron transition and anomaly transition of nz = 0 state
are also shown with dotted lines. Each cyclotron state has
infinite number of axial substates.

transforming these to the interaction picture). The in-
teraction picture Hamiltonian has an energy scale set by
the tiny bottle shifts, δc and δs, rather than by the much
larger frequencies ωc, ωs and ωz.

Figure 2 represents the lowest of these quantum energy
levels, with spin down states (ms = −1/2) on the left and
spin up states (ms = 1/2) on the right. The lowest of the
infinite ladder of cyclotron states are shown (nc = 0, 1),
as are the lowest three of the infinite ladder of axial states
(nz = 0, 1, 2). For the driving forces we will consider, the
electron will essentially occupy only the three cyclotron
and spin state combinations

|1, nz〉 ≡
∣∣nc = 0,ms = − 1

2 , nz
〉
,

|2, nz〉 ≡
∣∣nc = 1,ms = − 1

2 , nz
〉
,

|3, nz〉 ≡
∣∣nc = 0,ms = + 1

2 , nz
〉
,

(19)

with nz = 0, 1, .... These are the basis of time-
independent states used for this calculation. The ba-
sis would shrink to only three states if the axial motion
would be cooled to its quantum ground state.

The electromagnetic drives that oscillate at angular
frequencies ωs + εs, ωc + εc and ωa + εa to drive spin,
cyclotron and anomaly transitions are described by the
Hamiltonians

Vs(t) = 1
2~Ωs

[
a†se
−i(ωs+εs)t + ase

i(ωs+εs)t
]

(20)

Vc(t) = 1
2~Ωc

[
a†ce
−i(ωc+εc)t + ace

i(ωc+εc)t
]

(21)

Va(t) = 1
2~Ωa

[
a†ae
−i(ωa+εa)t + aae

i(ωa+εa)t
]
. (22)

The positive Rabi frequencies Ωs, Ωc and Ωa quantify
the drive strengths, and εs, εc and εa are detunings of

the drives from resonance. In the interaction picture the
Hamiltonian drive terms are

Ṽs(t) = 1
2~Ωs

[
a†se
−iεst + ase

iεst
]

(23)

Ṽc(t) = 1
2~Ωc

[
a†ce
−iεct + ace

iεct
]

(24)

Ṽa(t) = 1
2~Ωa

[
a†ae
−iεat + aae

iεat
]
. (25)

An anomaly transition is a simultaneous cyclotron and
spin transition. The raising operator for an anomaly
transition from |2, nz〉 to |3, nz〉, for example, requires
a†a = a†sac, a lowering of the cyclotron state followed by a
raising of the spin state. A transition from the spin down
ground state to the spin up ground state is accomplished
by a†aa

†
c.

The axial and cyclotron motions are both coupled to
a thermal bath, with damping rates of γz and γc, re-
spectively. An ambient bath temperature of 0.1 K is
assumed because it has been demonstrated in experi-
ments [5]. The energy for a one-quantum axial excitation,
~ωz/kB = 0.01 K in temperature units, is instead much
smaller than 0.1 K. The axial state is thus a Boltzmann
distribution with an average quantum number

n̄z =

[
exp

(
~ωz
kBT

)
− 1

]−1

≈ kBT

~ωz
≈ 10. (26)

It may be possible to cool this motion further using cavity
sideband cooling [1], but this is not assumed here. A
cyclotron excitation requires an energy of ~ωc/kB = 7.1
K that is much larger than the 0.1 K bath temperature.
The result is that

n̄c =

[
exp

(
~ωc
kBT

)
− 1

]−1

= 1.2× 10−32 ≈ 0. (27)

The cyclotron motion essentially remains in its nc = 0
ground state [19] unless an excitation drive is applied.

For an electron or positron coupled to a thermal bath,
a density operator must be used. The density operator in
the Schrödinger picture, ρ, and the interaction picture, ρ̃
are related by

ρ̃ = eiH0t/~ρe−iH0t/~. (28)

Both ρ and ρ̃ can be expanded in the infinite base of time-
independent states in Eq. (19). The diagonal elements
are the probabilities to be in each basis state. These are
invariant under a change between the Schrödinger and
interaction pictures. Also invariant are the traces,

Pl =

∞∑
nz=0

〈l, nz|ρ |l, nz〉 =

∞∑
nz=0

〈l, nz|ρ̃ |l, nz〉 , (29)

that are the total probabilities to be in each of the 3 spin
and cyclotron states. Here, l denotes the label 1, 2, or 3
introduced in Fig. 2 and Eq. (19).
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The Schrödinger picture density operator, ρ, evolves in
time as described by a Lindblad master equation [29–31],

dρ

dt
= − i

~
[H0 + V + Vs + Vc + Va, ρ]

− γc
2

(
a†cacρ− 2acρa

†
c + ρa†cac

)
− γz

2
n̄z
(
aza
†
zρ− 2a†zρaz + ρaza

†
z

)
− γz

2
(n̄z + 1)

(
a†zazρ− 2azρa

†
z + ρa†zaz

)
.

(30)

The coherent time evolution is described by the commu-
tator term. The incoherent spontaneous emission from
the cyclotron motion (from the first excited cyclotron
state to its ground state) is described by the nonlinear
terms in line two. (As noted earlier, the heating of the cy-
clotron motion by the thermal black-body radiation for
low temperature surroundings can be neglected.) The
coupling of the axial motion and the thermal bath is de-
scribed by the last two lines. The bath temperatures
comes in via the average axial quantum number n̄z of
Eq. (26).

The interaction picture density operator, ρ̃, evolves as

dρ̃

dt
= − i

~

[
Ṽ + Ṽs + Ṽc + Ṽa, ρ̃

]
− γc

2

(
a†cacρ̃− 2acρ̃a

†
c + ρ̃a†cac

)
− γz

2
n̄z
(
aza
†
z ρ̃− 2a†z ρ̃az + ρ̃aza

†
z

)
− γz

2
(n̄z + 1)

(
a†zaz ρ̃− 2az ρ̃a

†
z + ρ̃a†zaz

)
.

(31)

As for the Hamiltonian, we use the time-independent,
raising and lowering operators from the Schrödinger pic-
ture. The damping terms transform to have the same
form in both pictures. Explicit calculation are done us-
ing the interaction picture because it is simpler. H0 is

removed, and Ṽs + Ṽc + Ṽa varies much less rapidly in
time than does Vs + Vc + Va.

IV. DRIVEN CYCLOTRON EXCITATIONS

A. Cyclotron Master Equation

A weak cyclotron drive, Vc, excites cyclotron states
|2, nz〉 from an initial state that is a thermal distribu-
tion of spin down, cyclotron ground states, |1, nz〉. The
drive provides no mechanism to flip the spin, so the states
|3, nz〉 are not populated. For a weak drive, Ωc � γc, the
probability of a cyclotron excitation is very small. We ne-
glect the possibility of a second cyclotron excitation that
follows the first, from the excited state |2, nz〉 to a higher
state, because this is much smaller still. The Hermitian
density operator for cyclotron excitation,

ρ̃ = ρ̃11 + ρ̃12 + ρ̃21 + ρ̃22 =

(
ρ̃11 ρ̃12

ρ̃21 ρ̃22

)
(32)

is the sum of four operators, each defined by

ρ̃jk ≡
∑
nz,n′

z

|j, nz〉 〈j, nz| ρ̃ |k, n′z〉 〈k, n′z| . (33)

Since ρ̃ is Hermitian, ρ̃21 = ρ̃†12.
The initial density operator at time t = 0 is diagonal

with respect to the axial quantum numbers,

〈1, nz|ρ̃|1, nz〉 = pnz
(T ) =

=

[
1− exp

(
−
~
(
ωz − 1

2δa
)

kBT

)]
exp

(
−
nz~

(
ωz − 1

2δa
)

kBT

)

≈
[
1− exp

(
− ~ωz
kBT

)]
exp

(
−nz~ωz
kBT

)
(34)

with Boltzmann factors as its nonzero elements. The
approximation is nearly exact because δa � ωz. In the
weak drive limit, we would expect this distribution of
initial states to remain essentially unchanged.

The probability P2 from Eq. (29), that the system is
excited by one quantum from its spin-down, cyclotron
ground state,

P2 =
∑
nz

〈2, nz| ρ̃ |2, nz〉 = Tr [ρ̃22] . (35)

is the sum of the probabilities for excitation to any of
the states |2, nz〉. Either the Schrodinger or interaction
picture density operator can be used since their diagonal
elements are identical.

Determining ρ̃22 requires solving the master equation

d

dt

(
ρ̃11 ρ̃12

ρ̃21 ρ̃22

)
= −i

(
a†zaz + 1

2

)( 0 −δcρ̃12

δcρ̃21 0

)
− iΩc

2

(
i2Im[ρ̃21e

iεct] eiεct (ρ̃22 − ρ̃11)
e−iεct (ρ̃11 − ρ̃22) i2Im[ρ̃12e

−iεct]

)
− γc

2

(
−2ρ̃22 ρ̃12

ρ̃21 2ρ̃22

)
− γz

2
n̄z
(
aza
†
z ρ̃− 2a†z ρ̃az + ρ̃aza

†
z

)
− γz

2
(n̄z + 1)

(
a†zaz ρ̃− 2az ρ̃a

†
z + ρ̃a†zaz

)
.

(36)

The first line describes time evolution of the density ma-

trix by Ṽ . The diagonal terms are 0 because |1, nz〉 and

|2, nz〉 are eigenstates of Ṽ for the QND measurement.
The non-diagonal terms represents the differing bottle
shift for |1, nz〉 and |2, nz〉. The second line describes
the electromagnetic cyclotron drive. The third term de-
scribes synchrotron radiation from the excited cyclotron
state at a rate γc. The fourth and fifth terms arise from
the axial damping and reservoir excitation. They do
not change Pc because they do not change either the
cyclotron or spin state.

The axial damping terms in the master equation
(Eq. (36)) generate no coherence between axial states.
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Only axially diagonal terms, 〈i, nz|ρ̃|j, nz〉 are nonzero,
where i and j are the labels for the states we consider
(Eq. (19)). The transformation

pij;nz (t) = 〈i, nz|ρ̃(t)|j, nz〉 ei(i−j)εct. (37)

makes these coefficients carry all the time dependence.
Notice that the probability to be in each of the cyclotron
and spin states of Eq. (29) is also the trace

Pl =

∞∑
nz=0

〈l, nz|p |l, nz〉 , (38)

where p has components pjk, and l denotes 1, 2, or 3 in
Fig. 2 and Eq. (19). This is because the diagonal matrix
elements with i = j are equal to the those for the density
operator in the Schrodinger picture and the interaction
picture. For the cyclotron excitation being considered in
this section, P3 = 0 because the states |3, nz〉 are never
populated.

The differential equations after the transformation are

d

dt
p11;nz (t)

= [−γz (2n̄z + 1)nz − γzn̄z] p11;nz (t)

+ γcp22;nz
(t)− ΩcIm [p12;nz

]

+ γzn̄znzp11;nz−1(t) + γz(n̄z + 1)(nz + 1)p11;nz+1(t)
(39a)

d

dt
p12;nz (t)

=
[
i
(
−εc + δc

(
nz + 1

2

))
− 1

2γc − γz(2n̄z + 1)nz − γzn̄z
]
p12;nz

(t)

− iΩc
2

(p22;nz
(t)− p11;nz

(t))

+ γzn̄znzp12;nz−1(t) + γz(n̄z + 1)(nz + 1)p12;nz+1(t)
(39b)

d

dt
p22;nz

(t)

= [−γc − γz (2n̄z + 1)nz − γzn̄z] p22;nz
(t)

+ ΩcIm [p12;nz ]

+ γzn̄znzp22;nz−1(t) + γz(n̄z + 1)(nz + 1)p22;nz+1(t).
(39c)

These equations are to be solved for the initial conditions
p12;nz

(0) = p22;nz
(0) = 0 and p11,nz

(0) = pnz
(T ). Be-

cause the states |3, nz〉 are never populated, the pj,k = 0
when either j = 3 or k = 3.

Equations (39a-39c) is a matrix equation for the vec-
tors ~pij(t) with components pij;nz

,

d

dt
~p11(t) = R(0, 0, 0) ~p11(t)− ΩcIm [~p12(t)] + γc~p22(t)

(40a)

d

dt
~p12(t) = R(εc, δc, γc) ~p12(t)− iΩc

2
(~p22(t)− ~p11(t))

(40b)

d

dt
~p22(t) = R(0, 0, 2γc) ~p22(t) + ΩcIm [~p12(t)] . (40c)

The states |3, nz〉 are never populated so all The non-zero
elements of the time-independent matrix are

R(ε, δ, γc)nz,nz−1 =γzn̄znz (41a)

R(ε, δ, γc)nz,nz
=i
[
−ε+ (nz + 1

2 )δ
]
− 1

2γc

− γz(2n̄z + 1)nz − γzn̄z (41b)

R(ε, δ, γc)nz,nz+1 =γz(n̄z + 1)(nz + 1). (41c)

The initial conditions for the vector differential equations
above are ~p11(0) = ~p(T ) and ~p12(0) = ~p22(0) = 0.

B. Steady-State Cyclotron Line Shape

After transients have died out in a time

t� γ−1
c , (42)

a weak drive with Ωc � γc produces a steady state in
which driven cyclotron excitation balances the incoherent
spontaneous emission of synchrotron radiation. Clearly,

P1 = Tr[p11] =
∑
nz

p11;nz
(t) ≈

∑
nz

pnz
(T ) = 1 (43)

P2 = Tr[p22] =
∑
nz

p22;nz (t)� 1 (44)

and terms involving ~p22 are negligibly small compared
to those involving ~p11. The resulting steady state, from
Eq. (40) with the time derivatives set to zero and the
mentioned approximation is described by

R(εc, δc, γc) ~p12 + iΩc

2 ~p(T ) = 0 (45)

R(0, 0, 2γc) ~p22 + ΩcIm [~p12] = 0. (46)

The latter can be simplified because

∞∑
nz=0

(R(0, 0, 2γc) ~p22)nz
= −γcTr [p22] , (47)

because axial damping does not change the total pop-
ulation in states |2, nz〉, and because R(0, 0, 2γc) has a
simple structure.

The result is a steady state probability for weak drive
cyclotron excitation, P2 as defined in Eq. (29), given by

P2 = P (Ωc, εc, δc) (48)

P (Ω, ε, δ)≡ − Ω2

2γc
Im

[ ∞∑
nz=0

(
iR(ε, δ, γc)

−1~p(T )
)
nz

]
.(49)

We use arguments without subscripts in P (Ω, ε, δ) be-
cause this function with other arguments will also de-
scribes other steady-state line shapes in what follows.

For the limiting case of a T = 0 bath, n̄z = 0 and
~p(T ) collapses to a single element p0(T ) = 1. Only the
reciprocal of R(ε, δ, γc)0,0 = −iε+ iδ/2− 1

2γc contributes
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to Eq. (49). The steady state line shape for a weak drive,
P (Ω, ε, δ), thus becomes a Lorentzian,

P0(Ω, ε, δ) =

(
Ω

γc

)2 (
1
2γc
)2(

ε− 1
2δ
)2

+
(

1
2γc
)2 (50)

in the T = 0 limit. The full width at half maximum of
this line shape is γc. The line shape maximum is shifted
to ε = δ/2. That this shift is due to the coupling of zero-
point fluctuations of the axial motion can be seen by
setting nz = 0 for the appropriate frequency in Eq. (17).
The steady state probability for being excited with a res-
onant weak drive is (Ω/γc)

2. This is a very small fraction
for a weak drive with Ω� γc.

The symmetric and narrow Lorentzian cyclotron line
shape that would pertain for T = 0 would be ideal ex-
perimentally in some respects. Cavity sideband cooling
with a extremely small γz has been proposed [12] as way
to attain this limit. This calculation, however, is an in-
vestigation of what can be done for a temperature of 0.1
K, an achieved temperature that is close to but not at
this limit.

C. Classical Brownian Motion Line Shape Limit

Before the quantum treatment of the coupled spin, cy-
clotron and axial system presented above, the calculated
line shape that was compared to experiment [12, 14, 15]
assumed the axial detector motion was a classical har-
monic oscillation driven by thermal noise. The Brown-
ian motion line shape that resulted from a weak drive is
given in terms of a line shape function,

χ(ε, γz, n̄z)

=
4

π
Re

[
γ′γz

(γ′ + γz)
2

∞∑
k=0

(γ′ − γz)2k
(γ′ + γz)

−2k(
k + 1

2

)
γ′ + 1

2 (γc − γz)− iε

]
,

(51)

in our notation. (The argument ε for χ(ε, γz, n̄z), like
for the function P of Eq. (49), will be equal to one of
εc, εa or εs, as will be specified in context.) The bath
temperature T enters via

γ′ =
√
γ2
z + 4iγzn̄zδ, (52)

since this bath temperature determines n̄z, while δ and ε
are equal to δc (δa) and εc (εa) respectively for cyclotron
(anomaly) transition. The steady state pertains when
the transition rate (π/2)Ω2χ (Eq. (5.19) of [12]) equals
the decay rate γc × P (Ω, ε, δ). Thus

P (Ω, ε, δ) =
πΩ2

2γc
χ(ε, γz, n̄z) (53)

is the classical, Brownian motion line shape.
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FIG. 3. Comparison of quantum calculation (solid) and classi-
cal calculation (dashed) with the different γ′zs for weak drive
(Ωc = 0.1γc) in cyclotron transition. The two calculations
agree when n̄zγz > δc as illustrated for damping rates γz for
(a-c) that are 1000, 100, 10 times the value in Table. II. The
lineshape for the γz in the table is presented later in Fig. 5.

D. Discussion of the Quantum Cyclotron Line
Shape

The quantum steady-state lineshape (solid in Fig, 3) is
very close to the Brownian motion steady-state line shape
(dashed in Fig, 3) when n̄zγz � δc. This was true for
the 2008 measurement for which n̄zγz ≈ 6δc (using pa-
rameters from Table. III). For weaker axial damping the
two line shapes predict every different results, however.

The master equation for driven cyclotron excitation
can be solved numerically to reveal the time evolution
of the probabilities. It can also be integrated directly to
examine the effect of power broadening when the weak
drive condition (Ωc � γc) is not satisfied. Both will be
illustrated.

Figure 4 illustrates the time evolution for a cyclotron
drive that is weak (Ωc = 0.1γc, resonant (εc = δc/2) for
the realistic experimental conditions in Table II. The
probability to be in the |2, nz〉 states increases from zero
to reach a steady state for t � 1/γc. The cyclotron
damping time 1/γc sets the scale for the transients to
die out. The much larger probability to be in the initial
|1, nz〉 states stays close to unit probability. The black
curve in the figure shows the small decrease from unit
probability needed to conserve probability.
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P2

P1 - 1���
 

FIG. 4. Time evolution in response to a weak and resonant
cyclotron drive applied for 10 cyclotron damping times, in-
dicated by vertical gray lines. The probability to be in the
|2, nz〉 states (blue) reaches a steady state after transients die
out on a time scale give by the cyclotron damping time, 1/γc.
The probability to be in the |1, nz〉 states is shown in black
with unit probability subtracted out.

The resonance line shape for cyclotron excitation is
obtained by numerically integrating the master equation
from the stated boundary conditions at time t = 0 to
time t for various values of the drive detuning, εc, as
illustrated in Fig. 5. The probability to be in the states
|2, nz〉 at time t = 10γ−1

c is shown for a cyclotron drive
that is weak (Ωc = 0.1γc), for the realistic experimental
conditions in Table II.
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FIG. 5. Quantum cyclotron line shape (solid) with clearly
resolved axial quantum states (for a weak cyclotron drive with
the larges peak normalized to 1) for the quantum calculation
(solid), but not for the classical Brownian motion line shape
(dashed). The quantum line shape is a huge improvement on
the line shape used for the best measurement (dotted).

The first narrow peak to the left in the figure shows the
probability versus drive frequency for making a cyclotron
excitation from the cyclotron ground state while the ax-
ial motion is in its ground state with nz = 0. The series

0.46 0.48 0.5 0.52 0.54
cδ/cεdetuning 

0

0.2

0.4

0.6

0.8

1

re
la

tiv
e 

pr
ob

ab
ili

ty

c
γ=0.1 cΩ

weak drive

c
γ=cΩ

strong drive

9 9.5 10 10.5 11
 in pptcω /cεfrequency detuning 

FIG. 6. Cyclotron line shape for the resolved nz = 0 axial
state and a weak drive (solid curve, Ωc = 0.1 γc) has a full-
width at half maximum of about 3γc. The master equation
integrated for 10 cyclotron damping times and the steady-
state line shape (solid) coincide. A 10 times stronger drive
(dashed, Ωc = γc), only slightly increases the linewidth.

of narrow cyclotron resonances, the first evidence of axial
quantization, are for successively higher values of nz go-
ing right. Resolving these narrow peaks becomes possible
only for the small axial damping rate that is now possible
experimentally [16]. Each of the peak corresponds to one
quantum excitation of cyclotron motion for different nz.
This quantum line shape is very different than was ob-
served previously, and it is completely inconsistent with
the classical cyclotron line shape, of course. The narrow
peaks correspond to resolved quantum states of the ax-
ial motion which could not previously be observed. The
left peak is for nz = 0, the next for nz = 1, and so on.
There are many peaks because the average axial quan-
tum number is n̄z = 10 for the experimental conditions in
Table II. The individual peaks are resolved because two
conditions are met. First, n̄zγz � δc, i.e. the width of
each axial state, n̄zγz, is much smaller than the magnetic
bottle shift per axial quantum, δc. Second, γc � δc, i.e.
the cyclotron damping width is much smaller than the
magnetic bottle shift per axial quantum, δc.

The good news from this calculation for potential mea-
surements is how much narrower the nz = 0 resonance
peak is compared to the cyclotron line shape used for the
last electron magnetic moment measurement (dotted in
Fig. 5 with experimental parameters in Table III). In
fact, the linewidth of the nz = 0 peak is only a factor of
3 larger than the cyclotron linewidth, γc (Fig 6). This
is consistent with the indication from Eq. (39c) that the
linewidth is of order γc + 2n̄zγz. Cavity-inhibition of
spontaneous emission makes γc very small [25]. A low
temperatures makes n̄z small, and the previously men-
tioned new method makes γz small [16].

More good news for possible measurements is that the
nz = 0 peak is quite symmetric about its center fre-
quency. This is generally a big help in precisely identi-
fying the center frequency of a resonance. The dotted
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ang. frequency or rate frequency (Hz) time constant (s)

δa 0.004 40
γz 1 0.16
n̄zδa 0.09 1.7
γc 0.03 6
n̄zγz 23 0.007
δc 4 0.04
n̄zδc 92 0.0017

TABLE III. Hierarchy of angular frequencies and rates used
on the best completed experiments [3, 5], to be compared
with the previous table. The axial temperature was also as
low as n̄z = 23. The numerical values are frequencies in Hz
and times in seconds.

line in Fig. 5 illustrates the big contrast to the highly
asymmetric classical line shape used for previous mea-
surements.

The small probability, 3.1×10−4, that a weak cyclotron
drive (Ωc = 0.1γc) will make an excitation within 10
cyclotron damping times (53 seconds) is of some concern.
However, increasing the cyclotron drive strength to Ωc =
γc increases the probability for an excitation to 2.2 ×
10−2 while increasing the full linewidth from 3 to only
3.6 cyclotron decay widths (solid and dashed curves in
Fig. 6). This cyclotron linewidth is narrow enough to
make possible magnetic moment measurements that are
orders of magnitude more accurate than the current limit
(assuming the anomaly frequency is determined with a
similar accuracy). Because the power broadening is so
small, even stronger drives could be used to track a slowly
drifting magnetic field [3].

The offset of the nz = 0 resonance from εc = 0 to εc =
δc/2 is due to the zero point motion of the quantum axial
oscillator. Measuring this peak and its neighbor would
determine this offset more accurately than is needed for
dramatically improved magnetic moment measurements,
since these two peaks are spaced by twice the offset. This
could be an important new option for precisely measuring
the offset.

In summary, this quantum calculation demonstrates
the exciting possibility to fully resolve the axial quantum
structure in the cyclotron line shape. With the achiev-
able reductions in axial damping in Table II, a cyclotron
resonance for a particle in its axial ground state can be
fully resolved. This will make it possible to determine the
cyclotron frequency (one of two frequencies needed for
a magnetic moment measurement) orders of magnitude
more precisely. The broad cyclotron linewidth (larger
than n̄zδc) that limited past measurements is essentially
removed.

V. CALCULATING THE ANOMALY LINE
SHAPE

A. Anomaly Master Equation

An anomaly drive Va will transfer population from a
thermal distribution of stable, spin-up, cyclotron ground
states, |3, nz〉 to the unstable states, |2, nz〉. These states
will then decay via the spontaneous emission of syn-
chrotron radiation to the stable spin-down ground states
|1, nz〉. The attractive feature for measurement is that
there is no need to detect an unstable state population
before it decays.

The density operator needed to describe anomaly tran-
sitions,

ρ̃ ≡
(
ρ̃22 ρ̃23

ρ̃32 ρ̃33

)
, (54)

does not need to include the stable lower states, |1, nz〉,
though it must include decay to these states. It has the
upper and lower energy states in the same relative ma-
trix locations as in the previous section. What must be
calculated is the loss of probability from the initial state
during the time that the drive is applied, since this is the
probability that a spin-flip transition takes place.

The master equation in the interaction representation
is then a lot like Eq. (36), with the indices 1 → 2 and
2→ 3,

d

dt

(
ρ̃22 ρ̃23

ρ̃32 ρ̃33

)
=− i

[
a†zaz +

1

2

](
0 −δaρ̃23

δaρ̃32 0

)
− iΩa

2

(
i2Im[ρ̃32e

iεat] eiεat (ρ̃33 − ρ̃22)
e−iεat (ρ̃22 − ρ̃33) i2Im[ρ̃23e

−iεat]

)
− γc

2

(
2ρ̃22 ρ̃23

ρ̃32 0

)
− γz

2
n̄z
(
aza
†
z ρ̃− 2a†z ρ̃az + ρ̃aza

†
z

)
− γz

2
(n̄z + 1)

(
a†zaz ρ̃− 2az ρ̃a

†
z + ρ̃a†zaz

)
.

(55)

The term that is different is the cyclotron damping term
that is proportional to γc. This is because the lower
rather than the upper of the two sets of states is unstable.
The vanishing element in the matrix comes because the
states |3, nz〉 do not decay.

The discussion follows essentially the same steps dis-
cussed in the previous section. The differential equations
are

d

dt
~p22(t) = R(0, 0, 2γc) ~p22(t)− ΩaIm [~p23(t)] (56a)

d

dt
~p23(t) = R(εa, δa, γc) ~p23(t)− iΩa

2
(~p33(t)− ~p22(t))

(56b)

d

dt
~p33(t) = R(0, 0, 0) ~p33(t) + ΩaIm [~p23(t)] , (56c)



11

These equations are to be solved for the initial conditions
~p33(0) = ~p(T ) and ~p23(0) = ~p22(0) = 0.

B. Quasi Steady State Solution

Coherent, driven anomaly transitions can balance the
incoherent spontaneous emission of synchrotron radiation
to produce a quasi steady state. For a weak drive (Ωa �
γc), the system remains mostly in its initial state, so

P3 = Tr[p33] =
∑
nz

p33;nz
(t) ≈

∑
nz

pnz
(T ) = 1 (57)

P2 = Tr[p22] =
∑
nz

p22;nz (t)� 1. (58)

The quasi steady state pertains in the time range

γ−1
c � t� γ−1

c

(
γc
Ωa

)2

. (59)

The time must be long enough for transients to die out.
It must be short enough that Eq. (58) remains valid, with
the upper time limit justified presently. What is detected
is the probability P1 to end up in the spin-down cyclotron
ground state. This probability increases as

dP1

dt
= γcP2 (60)

via synchrotron emission from P2 at rate γc.
For the quasi steady state, the time derivatives of ~p22

and ~p23 are set to zero in Eq. (58), though that of ~p33 is
not, so that

R(εa, δa, γc) ~p23 − iΩa

2 ~p(T ) = 0 (61)

R(0, 0, 2γc) ~p22 − ΩaIm [~p23] = 0. (62)

Because R(0, 0, 2γc) has a simple structure,

P2 = Tr [p22] = − 1

γc

∞∑
nz=0

(R(0, 0, 2γc) ~p22)nz
. (63)

Eqs. (60-63) together give a quasi steady state rate

dP1

dt
= γcP (Ωa, εa, δa) (64)

that is the same function that described the steady state
for cyclotron excitation Eq. (49) multiplied by γc. With
anomaly arguments rather than cyclotron arguments,
however, the function takes an entirely different shape.

When the drive is applied for time td and then turned
off, the probability P1 eventually becomes the integral of
dP1/dt at time td plus P2(td), because the latter prob-
ability is transferred to the spin-down ground state by
spontaneous emission from the cyclotron excited state.
Approximating dP1/dt with the quasi steady state value
in Eq. (64) gives

P1;total ≈ (tdγc + 1)P (Ωa, εa, δa). (65)

This slightly overstates the transition probability because
dP1/dt increases before the quasi steady state is estab-
lished, but the line shape is approximately right.

The T = 0 limit of the quasi-steady-state anomaly
line shape for a weak drive becomes a Lorentzian,
(tdγc + 1)P0(Ωa, εa, δa), similar to what was discussed
for cyclotron resonance. On resonance, the quasi steady
state probability to be in state |2, 0〉 at T = 0 is (Ωa/γc)

2.
This is extremely small for a weak anomaly drive with
Ωa � γc. For the cases we consider, with temperatures
not far from 0, we expect that the rate to transfer pop-
ulation from the initial |3, nz〉 states to the final |1, nz〉
states goes as this small probability times the rate γc to
decay form |2, nz〉 to |1, nz〉. The population transfer will
be small (as needed to have a quasi steady state) as long
as the time is short compared to the inverse of this rate,
which gives the upper time limit in Eq. (59).

C. Discussion of the Anomaly Line Shape

Figure 7 is a numerical solution to the master equa-
tion for an anomaly drive that is weak (Ωa = 0.1γc) and
resonant (at a drive detuning εa = 5δa) for the realis-
tic experimental conditions in Table II. The probability
P2 increases from zero to reach a quasi steady state in
several cyclotron damping times, whereupon the proba-
bility P1 increases linearly. The probability to be in the
initial spin-up ground state, P3, decreases only slightly
from unity to conserve probability.

P1

P2

P3 - 1
���

�

FIG. 7. Time evolution in response to a weak (Ωa = 0.1γc)
and resonant anomaly drive (at a drive detuning εa = 5δa)
with a cyclotron damping times indicated by vertical grid
lines.

The resonance line shapes for driven anomaly transi-
tions in Fig. 8 are for a weak drive (Ωa = 0.1γc) and
the realistic experimental conditions in Table II. The
probability P1;total = P1(td) + P2(td) is plotted versus
the detuning εa of the drive from ωa. The sold curve is
obtained by numerically integrating the master equation
for ten cyclotron damping times, t = 10γ−1

c . The quasi
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steady state solution (dashed) overestimates the proba-
bility because it takes some time to increase the transi-
tion rate to the steady state. However, the normalized
line shapes in Fig. 8b shows that the quasi steady state
line shape correctly predicts the shape.

In Fig. 8, the classical Brownian motion line shape
(dotted) is remarkably close to the solution to the mas-
ter equation obtained by direct integration (solid), quite
unlike the case for the cyclotron line shape. Figure 9
compares quantum and classical calculations with three
realizable values of γz. For the best measurement [3],
with n̄zγz = 6 × 103δa (Table. III), the two calculations
predicts same line shape.

frequency detuning εa/ωa in ppt

classical Brownian motion lineshape

steady-state solution to 

   the master equation

 integrated 

master equation

-400 0 400 800 1200

-400 0 400 800 1200

�����

FIG. 8. (a) Anomaly line shape for spin flip transition induced
by a weak anomaly drive. The integrated solution of the mas-
ter equation for time 10/γc (solid) is compared to the quasi
steady state solution (dashed) and the classical Brownian mo-
tion line shape (dotted). (b) The integrated and steady-state
solutions coincide when normalized to their peak probability.
These line shape is much narrower than the ±300 ppt un-
certainty of the best measurement (represented by the ”error
bar”).

What is so different from the case of the cyclotron line-
shape is that the circumvention of detection backaction
that was possible in the cyclotron case is not possible for
the anomaly lineshape. The axial quantum states are not
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FIG. 9. Comparison of quantum calculation (solid) and classi-
cal calculation (dashed) with the different γ′zs for weak drive
(Ωc = 0.1γa) and 10γ−1

c drive time in anomaly transition.
The damping rates γz for (a-c) are 1000, 100, 10 times the
value in Table. II, respectively.

resolved within the anomaly lineshape for the realistic
parameters of Table II. The reason is that the anomaly
frequency shift per axial quantum of excitation is about
10 times smaller than both the cyclotron damping width
γc and the axial decoherence width n̄zγz. The anomaly
frequency must be extracted from a resonance line with
a calculated linewidth that is about 2.2 γc. The shape is
slightly asymmetric with a tail toward higher frequencies
because more populated axial states have nz > n̄z.

The good news that the calculation nonetheless brings
for measurements is that the predicted linewidth (for the
realistic conditions of Table II) is much narrower than
previously realized. The “error bar” in the figure cor-
responds to the ±300 ppt uncertainty (ppt = 1 part in
1012) of the most accurate measurement to date [3, 5].
The full halfwidth of the predicted lineshape is 60% of the
error bar, so a modest linesplitting of only a factor of 6
would suffice for a ten times more accurate measurement
of the electron magnetic moment.

D. Temperature and Damping Dependence

Once the detection backaction is circumvented [13],
determining ωc from the cyclotron lineshape should no
longer be the leading impediment to measuring the elec-
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tron and positron magnetic moments orders of magni-
tude more precisely than has been possible. Since a sim-
ilar method is not available for measuring the anomaly
frequency ωa, this promises to be the central challenge
for future measurements. The lineshape prediction dis-
cussed in the previous section suggests the possibility for
a ten-fold improvement if the experimental parameters
that currently seem feasible (Tab. II) are realized. The
purpose of this section is to search for possible reductions
in anomaly linewidth that may be possible with reduc-
tions in axial temperature, cyclotron damping rate, and
axial damping rate beyond the values in the table.

Fig. 10 shows anomaly line shapes for a weak drive
(Ωa = γc/10) for temperatures of 100 mK (black solid),
50 mK (black dashed) and 25 mK (black dotted). The
other parameters used are from Table II). The most accu-
rate measurement was done at an ambient temperature
of 100 mK [3], with a demonstrated electron cyclotron
temperature of 100 mK and a demonstrated axial tem-
perature as low as 230 mK. The temperature in the table
assumes that with better detectors under development,
that the latter temperature can be reduced to the am-
bient. However, dilution refrigerators can reach lower
temperatures if the heat load can be made low enough.
Also, cavity-sideband cooling is a possible method to re-
duce the axial temperature below the ambient apparatus
temperature [1]. The anomaly lineshapes clearly reduce
and the lines become more symmetric for lower axial tem-
peratures.

a a

25 mK

50 mK

100 mK25 mK

50 mK

100 mK

/

FIG. 10. Probability of a spin-flips caused by a driven
anomaly transitions for cyclotron and axial reservoir tempera-
tures of 100 mK (solid), 50 mK (dashed) and 25 mK (dotted).
The black curves are the experimentally accessible parameters
in Table II. The blue curves are for a ten-fold reduction in
the cyclotron damping rate below the value in the table.

The blue curves in Fig. 10 show the large anomaly line-
shape reduction that comes from lowering the cyclotron
radiation rate by a factor of ten. The most accurate
experiment achieved the low damping rate in the table
by using a microwave cavity to suppress the spontaneous
emission of synchrotron radiation [25] by a factor of about
200. An lower loss microwave cavity could further reduce

the cyclotron damping rate to produce the narrower line-
shapes. This would slow the measurement because it
takes several cyclotron damping times for the population
excited to states |2, nz〉 to decay to the ground state,
but the damping rate could varied by tuning ωc closer or
further from cavity microwave resonances [5].

Reducing the axial temperature without reducing γc
reduces the linewidth somewhat. A bigger consequence
is that the doing so reduces the asymmetry of the line
shape, which should make it possible to identify the res-
onance frequency more reliably. The effects of the axial
damping rate have also been investigated. Further reduc-
tions in the axial damping rate do not noticeably change
any of the curves in Fig. 10.

The possibly to use cavity sideband cooling of the ax-
ial motion has been mentioned as a possible route to
narrower resonance linewidths [1]. Once the cooling is
stopped, the axial motion would then reequilibrate at the
bath temperature at a rate γz. This is not a steady state,
of course, but we can investigate the possibility by di-
rectly integrating the master equation. Fig. 11 shows the
probability of a spin-flip caused by a weak anomaly drive
(Ωc = 0.1γc) applied for a 100 mK temperature bath
(solid). For this illustration, the axial motion is initially
assumed to be cooled to the T = 0 limit so that only the
lowest axial quantum state is initially populated. This
causes the linewidth to narrow from ±190 ppt to ±130
ppt (dashed). The line shape also is more symmetric
about its center, and the offset frequency is smaller. The
drive is applied for time 10/γc in this illustration, which
is one axial damping time 1/γz. For the parameters we
are using for this illustration (Table II), the linewidth
gets broader for shorter driving times because of the lim-
ited drive duration, so narrower resonances would come
for a smaller γz.
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FIG. 11. Probability of a spin-flips caused by a driven
anomaly transitions for a 100 mK temperature bath (solid).
If the axial motion is initially cooled to the T = 0 limit so that
only nz = 0 is initially populated, then the linewidth narrows
from ±190 ppt to ±130 ppt, becomes more symmetric and
has a slightly smaller offset frequency.

Achieving detection circumvention by resolving the ax-
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ial states in the anomaly line shape, just as for the cy-
clotron line shape, would require increasing the bottle
shift δa per axial quantum by a factor of 100 or more.
This is to make the bottle shift much larger than both the
axial decoherence width (n̄zγz) and the cyclotron damp-
ing width (γc). The solid curve in Fig. 12 shows the
anomaly line shape for the parameters in Table II. The
anomaly lineshape broadens for a 10 times larger bottle
gradient. For a 100 times larger bottle the line begins to
separate into peaks that correspond to individual axial
quantum states. Magnetic bottle gradients of the size
needed have been produced, but only for Penning traps
that are smaller than is otherwise desirable for electron
and positron measurements [32–38]. However, the figure
illustrates that resolving the axial quantum states is not
an advantage in that the linewidth of the lowest resolved
peak is a bit bigger than the anomaly linewidth already
considered. As mentioned above, the linewidth from both
the cyclotron damping and the axial decoherence broad-
ening do not decrease with bottle gradient size.
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FIG. 12. Probability of a spin-flips caused by a driven
anomaly transitions for the typical magnetic bottle in Ta-
ble II (solid), 10 times larger bottle (dashed) and 100 times
larger bottle(dotted).

This cursory survey of anomaly line shapes reveals no
obvious way to make a single large additional reduction
in the anomaly linewidth beyond the order of magnitude
that has been discussed.

VI. DIRECTLY DRIVEN SPIN FLIPS

A spin drive Vs transfers population between the spin-
down and spin up cyclotron ground states, |1, nz〉 and
|3, nz〉, both of which are stable. In this section, we apply
a spin-flip drive with a Rabi frequency Ωs to an initial
population in |1〉, with no cyclotron or anomaly drives
(i.e. Ωc = 0 and Ωa = 0). If only one axial detection
state was populated this would be the prototypical “Rabi
flopping” of the two states of a spin qubit. A distribution

of axial detection states has a backaction that makes a
superposition of spin frequencies, the effect of which is
calculated and discussed here.

The master equation for the density operator describ-
ing this case, in the interaction representation, is

d

dt

(
ρ̃11 ρ̃13

ρ̃31 ρ̃33

)
= −i

(
a†zaz + 1

2

)( 0 −δsρ̃13

δsρ̃31 0

)
− iΩs

2

(
i2Im[ρ̃31e

iεst] eiεst (ρ̃33 − ρ̃11)
e−iεst (ρ̃11 − ρ̃33) i2Im[ρ̃13e

−iεst]

)
− γz

2
n̄z
(
aza
†
z ρ̃− 2a†z ρ̃az + ρ̃aza

†
z

)
− γz

2
(n̄z + 1)

(
a†zaz ρ̃− 2az ρ̃a

†
z + ρ̃a†zaz

)
.

(66)

This master equation is the same as for driven cyclotron
transitions (Eq. (36)) except that the state |2〉 is replaced
by |3〉 and the damping term γc is replaced by γs ≈ 0 (see
Tab. I).

The master equation can be solved exactly in the same
way as the cyclotron transition. We assume the ini-
tial population is distributed in the state |1, nz〉 with
the Boltzmann distribution as Eq. (34). In vector form,
Eq. (66) is

d

dt
~p11(t) = R(0, 0, 0) ~p11(t)− ΩsIm [~p13(t)] (67a)

d

dt
~p13(t) = R(εs, δs, 0) ~p13(t)− iΩs

2
(~p33(t)− ~p11(t))

(67b)

d

dt
~p33(t) = R(0, 0, 0) ~p33(t) + ΩsIm [~p13(t)] . (67c)

In general, these equations will be solved for an initial
values of the density operators at t = 0.

Since the damping between the spin states |1〉 and |3〉
is essentially zero, the steady state is not as obvious as in
the case for cyclotron transitions. The axial decoherence
term n̄zγz in Eq. (67) does not induce transition between
|1〉 and |3〉, but there is still a useful quasi steady state
solutions for the “weak” drive limit, Ωs � n̄zγz.

A. Steady State

If the spin-flip drive is applied for a long time, t �
n̄zγz/Ω

2
s, and n̄zγz 6= 0, there is a steady state described

by setting the time derivatives in Eqs. (67) to zero,

R(0, 0, 0) ~p11(t)− ΩsIm [~p13(t)] = 0 (68a)

R(εs, δs, 0) ~p13(t)− iΩs
2

(~p33(t)− ~p11(t)) = 0 (68b)

R(0, 0, 0) ~p33(t) + ΩsIm [~p13(t)] = 0. (68c)

Summing Eqs. (68a) and (68c) over nz, and using

∞∑
nz=0

(R(0, 0, 0) ~p11)nz
=

∞∑
nz=0

(R(0, 0, 0) ~p33)nz
= 0,

(69)
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gives ~p13 = 0 and equal populations

∞∑
nz=0

(~p11)nz
=

∞∑
nz=0

(~p33)nz
=

1

2
. (70)

of spin up and spin down states. The interaction of the
axial motion with its thermal reservoir produces a spread
of Rabi Flopping frequencies, averages out the net Rabi
flopping between the two spin states.

B. Quasi Steady State

A steady state with equal spin up and spin down pop-
ulations is not useful for determining the spin frequency
ωs. There is a quasi steady state, however. For a “weak
drive” with Ωs � n̄zγz that does not appreciably change
the initial Boltzmann distribution ~p11 ≈ ~p(T ) of axial
states, there is an excitation rate

dP3

dt
=

d

dt

[ ∞∑
nz=0

~p33;nz (t)

]
. (71)

The drive must be applied for a time in the range

(n̄zγz)
−1 � t�

(
Ω2
s

n̄zγz

)−1

, (72)

long compared to the dephasing time n̄zγz but short com-
pared to the time for approaching the steady-state with
equal spin-up and spin-down populations. Fig. 14 shows
an example of the time evolution.

Eq. (67c) gives

d

dt
~p33(t) = ΩsIm [~p13(t)] , (73)

when a small excitation ~p33 ≈ 0 is assumed. The steady-
state ~p13(t) comes from solving Eq. (67b),

~p13(t) = R−1(εs, δs, 0)

[
−iΩs

2
(~p33(t)− ~p11(t))

]
= i

Ωs
2
R−1(εs, δs, 0) ~p(T ),

(74)

for ~p11 ≈ ~p(T ) and |~p33| � 1. The transition rate is then

dP3

dt
=

Ω2
s

2
Im

[ ∞∑
nz=0

(
iR−1(εs, δs, 0)~p(T )

)
nz

]
. (75)

This rate is essentially the line shape defined in Eq. (49)
except for the cyclotron damping rate γc and the param-
eters for spin flip transition Ωs, εs and δs.

The directly driven spin flip transition rate in
Fig. (14a) is very similar to the cyclotron line shape of
Fig. (5a) for same experimental conditions in Table II.
A spin-flip resonance for every axial quantum state is
clearly resolved. The line shapes for classical calcula-
tion (Eq. (51)) and for the best measurement parameters
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FIG. 13. The probabilities for spin up (red) and and spin
down minus 1 (black) in (a), and for the derivatives of these
probabilities (b) as a function of time for a spin flip drive
tuned to the nz = 0 cyclotron resonance, with Rabi frequency
Ωs/(2π) = 0.01 Hz and other parameters in Tab II. The
horizontal grids are spaced by (n̄zγz)−1 The vertical grids
show quasi steady state values.

(Tab. III) are also shown for comparison. Figure 14(b)
compares the line shape for spin flip (solid line) compared
to the one for the cyclotron transition (dashed line) with
the parameters in Tab. II. Since the magnetic bottle pa-
rameters are related by δs = g/2 × δc ≈ 1.001δc, the
transition rate line shape for spin flip (Eq. (75)) is much
the same as the cyclotron line shape. The only difference
from the small damping rate γs ≈ 0 appears when focus-
ing on the nz = 0 peak (fig. 14(b)). Because of the neg-
ligible spin-flip damping rate, the full-width at the half
maximum of the peak 2n̄zγz is slightly narrower than
the cyclotron’s linewidth γc+ 2n̄zγz. The spin transition
line shape peaks can be made even narrower by reducing
γz further. The possibility to use the spin-flip transition
probability is discussed and compared to alternatives in
Sec. VIII.
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FIG. 14. (a) Quantum spin-flip line shape (solid) for a weak
drive with the largest peak normalized to 1 and for the classi-
cal Brownian motion line shape(dashed). The line shape used
for the best measurement (dotted) is also shown. (b) Nor-
malized probability of a spin-flip transition (solid) compared
to the cyclotron transition (dashed). The horizontal scale is
εs/δs for the spin transition and εc/δc for the cyclotron tran-
sition.

VII. TWO-DRIVE SPIN FLIPS

A. Master Equation

Spin flips (from the spin down ground state |1〉 to the
spin up ground state |3〉) can also be driven using simul-
taneously applied cyclotron and anomaly drives (Ωc > 0
and Ωa > 0 with Ωs = 0) instead of the direct spin flip
drive discussed in Sec. VI. A practical advantage is that
the stable final state would remain unchanged as long as
is needed to detect it. This was true for the anomaly
transitions considered above, but not for cyclotron tran-
sitions that must be detected before cyclotron decay. A
quantum calculation is needed to ascertain whether two
photon transitions would be less sensitive to slow drifts
of the magnetic field insofar as the spin and cyclotron
motion will experience the same average magnetic field.

The three sets of states in Eq. (19) are involved in flip-
ping the spin via the two drives. The density operator in
the interaction picture can be written in terms of oper-

ators pjk proportional to the operators ρ̃jk of Eq. (33),
such that

ρ̃ =

 p11 p12e
iεct p13e

i(εc+εa)t

p21e
−iεct p22 p23e

iεat

p31e
−i(εc+εa)t p32e

−iεat p33

 . (76)

The transformation puts the master equation in the form

d

dt

p11 p12 p13

p21 p22 p23

p31 p32 p33

 =

− i

 0 εcp12 (εc + εa)p13

−εcp21 0 εap23

−(εc + εa)p31 −εap32 0


− i
(
a†zaz + 1

2

) 0 −δcp12 −δsp13

δcp21 0 −δap23

δsp31 δap32 0


− iΩc

2

i2Im[p21] p22 − p11 p23

p11 − p22 i2Im[p12] p13

−p32 −p31 0


− iΩa

2

 0 −p13 −p12

p31 i2Im[p32] p33 − p22

p21 p22 − p33 i2Im[p23]


− γc

2

−2p22 p12 0
p21 2p22 p23

0 p32 0


− γz

2
n̄z
(
aza
†
zp− 2a†zpaz + paza

†
z

)
− γz

2
(n̄z + 1)

(
a†zazp− 2azpa

†
z + pa†zaz

)
.

(77)

All time dependence is now within the components pij .
For a thermal distribution of initial axial states, the

operators pij are axially diagonal, with diagonal compo-
nents, pij;nz = 〈i, nz|pij |j, nz〉. The master equation is
then given by the differential equations,

d

dt
p11;nz

(t)

= [−γz(2n̄z + 1)nz − γzn̄z] p11;nz
(t)

+ γzn̄znzp11;nz−1(t) + γz(n̄z + 1)(nz + 1)p11;nz+1(t)

− ΩcIm [p12;nz (t)] + γcp22;nz (t) (78a)

d

dt
p22;nz

(t)

= [−γc − γz(2n̄z + 1)nz − γzn̄z] p22;nz
(t)

+ γzn̄znzp22;nz−1(t) + γz(n̄z + 1)(nz + 1)p22;nz+1(t)

+ ΩcIm [p12;nz (t)]− ΩaIm [p23;nz (t)] (78b)

d

dt
p33;nz

(t)

= [−γz(2n̄z + 1)nz − γzn̄z] p33;nz
(t)

+ γzn̄znzp33;nz−1(t) + γz(n̄z + 1)(nz + 1)p33;nz+1(t)

+ ΩaIm [p23;nz (t)] (78c)

d

dt
p12;nz

(t)



17

=
[
i
(
−εc + δc

(
nz + 1

2

))
− 1

2γc − γz(2n̄z + 1)nz − γzn̄z
]
p12;nz (t)

+ γzn̄znzp12;nz−1(t) + γz(n̄z + 1)(nz + 1)p12;nz+1(t)

− iΩc
2

(p22;nz
(t)− p11;nz

(t)) + i
Ωa
2
p13;nz

(t) (78d)

d

dt
p23;nz (t)

=
[
i
(
−εa + δa

(
nz + 1

2

))
− 1

2γc − γz(2n̄z + 1)nz − γzn̄z
]
p23;nz

(t)

+ γzn̄znzp23;nz−1(t) + γz(n̄z + 1)(nz + 1)p23;nz+1(t)

− iΩa
2

(p33;nz
(t)− p22;nz

(t))− iΩc
2
p13;nz

(t) (78e)

d

dt
p13;nz

(t)

=
[
i
(
− (εc + εa) + δs

(
nz + 1

2

))
− γz(2n̄z + 1)nz − γzn̄z

]
p13;nz (t)

+ γzn̄znzp13;nz−1(t) + γz(n̄z + 1)(nz + 1)p13;nz+1(t)

− iΩc
2
p23;nz

(t) + i
Ωa
2
p12;nz

(t). (78f)

The general time-dependent solution of these equations
has initial conditions p11,nz

(0) = pnz
(T ), with pij,nz

(0) =
0 all other i and j.

In terms of R(ε, δ, γc) from Eq. (41) and vectors ~pij
with components pij;nz

= 〈i, nz|pij |j, nz〉, the vector
equations of motion are

d

dt
~p11(t) = R(0, 0, 0)~p11(t)

− ΩcIm[~p12(t)] + γc~p22(t) (79a)

d

dt
~p22(t) = R(0, 0, 2γc)~p22(t)

+ ΩcIm[~p12(t)]− ΩaIm[~p23(t)] (79b)

d

dt
~p33(t) = R(0, 0, 0)~p33(t)

+ ΩaIm[~p23(t)] (79c)

d

dt
~p12(t) = R(εc, δc, γc)~p12(t)

− iΩc

2 (~p22(t)− ~p11(t)) + iΩa

2 ~p13(t) (79d)

d

dt
~p23(t) = R(εa, δa, γc)~p23(t)

− iΩa

2 (~p33(t)− ~p22(t))− iΩc

2 ~p13(t) (79e)

d

dt
~p13(t) = R(εc + εa, δs, 0)~p13(t)

− iΩc

2 ~p23(t) + iΩa

2 ~p12(t). (79f)

The initial conditions are ~p11(0) = ~p(T ), with ~pij(0) = 0
for all other i and j. Small, non-resonant excitations to
more highly excited states are neglected. For the pa-
rameters being considered in this work, we found that
simultaneously solving 900 differential equations deter-
mine the solution to the master equation numerically for
cyclotron and anomaly drives applied at the same time.

B. Quasi Steady State

A quasi steady state is produced when weak cyclotron
and anomaly drives, with

Ωc � γc (80)

Ωa � γc, (81)

are applied for a time t in the range

γ−1
c � t� γc/Ω

2
a. (82)

The time must be long compared to the cyclotron damp-
ing time to allow transients to dies out. It must be short
compared to the time it takes to transfer an appreciable
population to the spin up spin states.

Fig. 15 illustrates the time evolution for weak drives
(Ωc = Ωa = 0.1γc that are resonant, and for the realis-
tic experimental conditions in Table II. The sum of the
probabilities to be in the states |l, nz〉

Pl =

∞∑
nz=0

pll;nz
(83)

(from Eqs. (29) and (38)) is plotted for l = 1, 2, 3. The
drives are turned on at time t = 0 and the time evolu-
tion shown continues for ten cyclotron damping period,
to t = 10/γc. The probability P2 to be driven into the
|2, nz〉 states (blue) increases from zero to reach a quasi
steady state after the transients die out in several cy-
clotron damping times 1/γc. The probability P1 to re-
main in the initial |1, nz〉 states, minus unit probability,
is shown in black. It remains at essentially unit probabil-
ity, decreasing only slightly to conserve probability. The
much smaller probability (solid red) to transition to the
cyclotron ground states with spin up, |3, nz〉, gradually
increases at first, and then increases linearly for much of
the 10/γc time evolution. The solid red curve in Fig. 16
illustrates how it is the derivative dP3/dt that reaches a
quasi steady state.

An approximate analytic expression for the quasi
steady state rate

dP3

dt
=

d

dt

∞∑
nz=0

p33;nz
(t) = ΩaIm

[ ∞∑
nz=0

p23;nz
(t)

]
, (84)

comes from summing Eq. (79c) over all axial states and
simplifying using

∑∞
nz=0 (R(0, 0, 0)~p33)nz

= 0. The quasi
steady state is also described by

~p11 = ~p(T ) (85a)

R(0, 0, 2γc)~p22 + ΩcIm[~p12] = 0 (85b)

R(εc, δc, γc)~p12 + iΩc

2 ~p11 = 0 (85c)

R(εa, δa, γc)~p23 − iΩa

2 (~p33 − ~p22)− iΩc

2 ~p13 = 0 (85d)

R(εc + εa, δs, 0)~p13 + iΩa

2 ~p12 = 0. (85e)

The first of these equations states that ~p11 then remains
at the initial thermal equilibrium value, ~pnz

(T ). The re-
maining equations assume |p11;nz

| � |p22;nz
|, |p11;nz

| �
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resonant. The quasi steady state estimate (dashed) slightly
overstates the transition rate.

|p13;nz |, and |p12;nz | � |p32;nz |, and the time derivatives
of ~p12, ~p22 and ~p23 are neglected. The drives must also be
applied for a time t� (n̄zγz)

−1, so that the time deriva-
tive of ~p13 can be neglected because of the decoherence
of the superposition of axial states at a rate n̄zγz. (This
last condition does not hold when there in only one axial
state in the T → 0 limit.)

The solutions to these linear equations are

~p12 = −iΩc

2 R(εc, δc, γc)
−1~p(T ) (86a)

~p22 = −ΩcR(0, 0, 2γc)
−1Im[~p12] (86b)

~p13 = −iΩa

2 R(εc + εa, δs, 0)−1~p12 (86c)

~p23 = 1
2R(εa, δa, γc)

−1 [iΩc~p13 − iΩa~p22 + iΩa~p33] .
(86d)

The last of these equations does not yet describe a steady
state because it depends upon the growing ~p33.

Eq. (86d) can be substituted into Eq. (84) to allow
an estimate of how rapidly ~p33 grows in time. The time
dependent parts are

d

dt

∞∑
nz=0

p33;nz
=

Ω2
a

2
Im

[
i

∞∑
nz

(
R(εa, δa, γc)

−1~p33

)
nz

]
+ C,

(87)

with C represents terms which do not depend upon time
for t � γ−1

c . Roughly speaking, ~p33 (i.e. the diago-
nal elements of p33) approaches its steady state with a
rate going as Ω2

a|R(εa, δa, γc)
−1|. The magnitude of the

transformation matrix roughly goes as its eigenvalues,
n̄zγz + γc > γc. This means that the time constant is
longer than Ω2

a/γc, more than a thousand seconds with
realistic parameters in Table II. For a realistic drive time
t � (Ω2

a/γc)
−1, the last term in Eq. (86d) can be ne-

glected, as needed to make a steady state equation.
The quasi steady state spin-flip rate as a function of

detunings dP3(εc, εa)/dt is thus

dP3(εc, εa)

dt
=

Ω2
aΩ2

c

8
Im

[ ∞∑
nz=0

(
iR(εa, δa, γc)

−1 ~W

)
nz

]
,

(88a)

~W =− 2R(0, 0, 2γc)
−1Im[iR(εc, δc, γc)

−1~p(T )]

−R(εc + εa, δs, 0)−1R(εc, δc, γc)
−1~p(T )

(88b)

using Eqs.(84) and (86a-86d). The first term in ~W de-
scribes sequential one photon transitions (Fig. 18(b)).

The second term in ~W , depending as it does upon
R(εc+εa, δs, 0), adds the effect of direct two photon tran-
sitions (Fig. 18(c)).

Figure 16 compares this quasi steady state derivative
(dashed) from the complete solution (solid). The deriva-
tive rises to almost the quasi steady state value and then
begins to decrease.

C. Line shapes for Simultaneous Cyclotron and
Anomaly Drives

Quasi steady state line shapes dP3(εc, εa)/dt are illus-
trated in Figs. 17 and 18 as a function of the anomaly
and cyclotron drive frequencies. The vertical scale is the
detuning εa of the anomaly drive from ωa, scaled by δa.
The horizontal scale is the detuning εc of the cyclotron
drive from ωc, scaled by δc. The contours are for proba-
bilities of making a transition from the initial spin-down
ground states to spin-up states.

The dependence of the line shapes upon the axial
damping rate γz is illustrated in Fig. 17. Except for this
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FIG. 17. The two-drive line shapes change dramatically as
a function of the axial damping rate, γz. Contours of the
quasi steady state dP3(εc, εa)/dt are shown as a function of
the scaled detunings from ωc and ωa of the cyclotron and
anomaly drives. Parameters other than γz are from Tab. II.

damping rate, the experimental parameters from Table II
are used. As the axial damping rate is lowered, the con-
tributions from individual axial quantum states become
resolved as resolved “islands” in Fig. 17f, for the lowest
axial damping realized in the laboratory so far [16] while
yet allowing quantum jump spectroscopy.

The narrowest transition peak in Fig. 17(f), corre-
sponding to nz = 0, are potentially the most useful
for measuring an electron or positron magnetic moment.
Fig. 18(a) shows the contour of dP3(εc, εa)/dt. The con-
tours shown are at 75%, 50% and 25% of the peak ampli-
tude. The anomaly and cyclotron drive frequencies are
specified as scaled detunings of these frequencies from ωa
and ωc. Fig. 18(b) and (c) shows the decomposed con-
tributions from the first and second terms in Eq. (88b).
The dotted line shows where εc + εa = δs/2, which cor-
responds to the sum of two drive frequencies being equal
to ωs + δs/2. The sum of (b) and (c) gives the tilted
contour in (a). The drives for this example are weak,
with Ωc = Ωa = γc/10, and the realistic experimental
parameters of Table II) are used. Notice that the peak
of the contour slightly deviates from εc + εa = δs/2. The
anomaly resonance does not resolve into separate peaks
for various nz, and the composite peak is thus shifted
from εa = δa/2.

A significant challenge to using two drives is the ex-
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FIG. 18. (a) The quasi steady state line shape dP3(εc, εa)/dt
for the resolved peak corresponding to nz = 0 in Fig. 17f. The
the contours shown are at 75%, 50% and 25% amplitudes rel-
ative to the peak value. The anomaly and cyclotron drive
frequencies are given in terms of the scaled detunings of these
frequencies from ωa and ωc. The interior black lines indicate
the drive frequencies scanned in Figs. 19 and 20. (b) and
(c) shows the contribution from the first and second terms in
Eq. (88b) respectively. The colors indicate the amplitude rel-
ative to the peak value in (a). The dotted line, εc +εa = δs/2,
indicates when the cyclotron and anomaly drive frequencies
sum to the resonance ωs + δs/2.

tremely small transition rates. The maximum rate is for
a cyclotron drive detuning εc = δc/2 (Fig. 19) and a
anomaly detuning of about εa = 0.2γc = 2δa (Fig. 20).
Weak drives, with Ωc = Ωa = γc/10, applied for a time
t = 10/γc ≈ 53 s, a time long enough for cyclotron tran-
sients to die out, avoids power broadening of the reso-
nance lines. However, the transition probability in time
t is then approximately given by dP3

dt × t. The challenge
is that the maximum transition probability is then about
2.5×10−5 (Fig. 16). This is a factor of 103 times smaller
than the peak cyclotron excitation rate for the one-drive
case, and is likely too small to be useful. A careful study
will thus be required to determine the drive strengths and
durations that can be used to get an acceptable rate and
broadening. This seems possible, and such transitions
have been used in experiments to prepare the desired
spin state for measurement [3]. However, numerical so-
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Fig. 18(a). The quasi steady state line shape (dashed) has
the same shape as is numerically calculated (solid) but with
a slightly different amplitude.

lutions of the differential equations will be required since
the weak drive limit will not apply. The optimisation,
when it is well motivated, would take some time to carry
out given the size of the parameter space, even though
we have demonstrated that it is feasible with the codes
available.

An intriguing possibility is that measurements made
using simultaneous cyclotron and anomaly drives might
be much less sensitive to magnetic field drifts because
an cyclotron excitation and an anomaly transition would
both take place before the field could drift much. (Con-
siderable time passed between the measurements of these
frequencies in past measurements.) A study of this possi-
bility would also require using the numerical solutions of

the differential equations along with a realistic model of
linear or quadratic magnetic field drift. Again, although
we have demonstrated that this should be possible, it
would take considerable time to carry this out.

VIII. PROSPECTS FOR ELECTRON AND
POSITRON MAGNETIC MOMENT

MEASUREMENTS WITH SIGNIFICANT
ACCURACY IMPROVEMENTS

A. First Possibility

As discussed in Sec. II, two extremely precise frequency
measurements must be made to use the quantum cy-
clotron to determine the electron or positron much more
precisely. For all measurements so far, the anomaly and
cyclotron frequencies have been measured, and

±µ/µB = 1 + ωa/ωc (89)

has been used to deduce the magnetic moment in Bohr
magnetons. A 3 × 10−14 measurement, ten times more
precise than existing measurements, requires that the fre-
quency ratio be measured to 3× 10−11.

For a cyclotron frequency measurement at 150 GHz,
the largest impediment to an improved measurement is
the detection backaction width n̄zδc that is of order 30
Hz and 2 × 10−10. Fortunately, our proposal to circum-
vent detector back action [13] elaborated in this work
provides a way to keep this backaction from contributing
to the uncertainty of a new measurement. We showed
that the remaining cyclotron line shape is very symmet-
ric, with widths coming from cyclotron damping width
γc and axial decoherence n̄zγz. In Sec. IV we saw that
these contribution together were about 3 time the cy-
clotron damping width, a width of 0.1 Hz and fractional
width of 6×10−13. These values are a factor of 50 smaller
than is needed for the the contemplated measurement.

With the cyclotron detection backaction circumvented,
the anomaly frequency uncertainty becomes the largest
challenge. The three linewidth contributions are γc from
cyclotron decay, n̄zγz from axial state decoherence, and
n̄zδa from detection backaction, the latter contributing
asymmetry to the line shape. These are all comparable
in size at about 0.03 Hz which, because the cyclotron
frequency is 1000 times smaller than the anomaly fre-
quency, is a much larger fractional uncertainty of about
2 × 10−10. The desired measurement uncertainty thus
seems attainable if the anomaly frequency can be ex-
tracted from the resonance line shape with an uncertainty
ten times smaller than these contributions to the anomaly
line shape. This work thus suggests that a ten times im-
proved measurement should be possible.
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B. Second Possibility

Because the uncertainty in the anomaly frequency now
seems to be the largest challenge for an improved mea-
surement, we consider the option of instead determining
the magnetic moment from the ratio of the spin and cy-
clotron frequencies,

±µ/µB = ωs/ωc. (90)

A direct spin-flip drive (Sec. VI) or simultaneous cy-
clotron and anomaly drives (Sec. VII) to determine ωs.
The daunting challenge is that this frequency ratio must
then be determined to the desired precision in the elec-
tron and positron magnetic moment of 3× 1014, a factor
of 1000 better than for possibility one above.

For the cyclotron linewidth of of 0.1 Hz and fractional
linewidth of 6 × 10−13 noted above, the cyclotron fre-
quency would need to be extracted to a precision that was
at least 30 times narrower than the anticipated linewidth.
This may not be an unreasonable linesplitting given that
the line shape should be symmetric about the cyclotron
frequency once the the detection backaction is circum-
vented.

Directly driving spin flips to determine the spin fre-
quency to the same precision would also be required, the
first time that this would be realized with a quantum
cyclotron. A two photon cyclotron plus anomaly transi-
tion would be an alternative. As for the cyclotron line
shape, detection backaction that would make the reso-
nance line shape broad and asymmetric can be circum-
vented. Because the two spin states are effectively stable,
there would be no contributions to the line width from
decay of an unstable state though the axial decoherence
width n̄zγz would persist. This is an alternative route to
a new measurement, in principle.

C. Magnetic Field Instability

The quantum calculations support the viability of both
of the measurement possibilities outlined above. For the
immediate future, however, measurements will almost
certainly rely upon the first possibility – measuring an
electron or positron’s anomaly and cyclotron frequencies.
The reason is that the magnetic field produced by the
best of superconducting solenoids drifts in time. The
demonstrated drift rates (about 1 part in 1010 per hour
[39]) is slow enough to make it possible to alternate de-
terminations of the anomaly and cyclotron frequencies
rapidly enough to make a new measurement. This source
of systematic uncertainty had to be carefully managed al-
ready in past measurements [5].

To obtain the same precision using the second mea-
surement possibility, alternating instead measurements
of the spin and cyclotron frequencies, requires measuring
these frequencies 1000 times more rapidly or producing a
much more stable magnetic field. The source of labora-
tory magnetic field instability and its reduction, whether

by better solenoid design or shielding against changes in
magnetic flux, is an interesting and important topic but
it is beyond the scope of this calculation.

IX. SUMMARY AND CONCLUSIONS

A quantum calculation is carried out for a driven one-
electron quantum cyclotron with a quantum nondemo-
lition (QND) coupling to a harmonic detection motion.
The quantum spin and cyclotron motions have a QND
coupling to a quantum axial detection motion, which in
turn is coupled to a thermal reservoir. External drives
are applied to produce one-quantum transitions between
the lowest spin and cyclotron states.

A master equation is used to describe the driven mo-
tion of this open quantum system. Convenient steady
state solutions and resonance lineshapes for weak drives
are presented, illustrated and discussed. Numerical so-
lutions reveal the time evolution and check the steady
state line shapes. Calculations of driven cyclotron ex-
citations and driven anomaly transitions are presented,
along with calculations for directly driven spin flips and
spin flips driven by simultaneous anomaly and cyclotron
drives. For a next generation of measurements, the first
two of these four drive options turn out to be the most
promising. For weakly driven cyclotron and spin exci-
tations, the predicted steady-state lineshapes for experi-
mental parameters that have recently become accessible,
are very different than the Brownian motion prediction
used to interpret past measurements.

An exciting result is the emergence of extremely nar-
row quantum resonances that appear within the cy-
clotron resonance line, corresponding to resolved quan-
tum states of the axial detection oscillator. These sym-
metric lines are about 100 time narrower than the broad
and asymmetric cyclotron line shape that has been the
biggest obstacle to a new generation of magnetic mo-
ment measurements. Resolving these narrow peaks cir-
cumvents the detection backaction that would otherwise
cause broad and asymmetric cyclotron resonance lines,
reducing it to what is caused by only the zero-point mo-
tion of the detection motion, even many more detection
states are populated. The circumvention opens the way
to the much more precise measurements of the cyclotron
frequency that are needed to determine the electron and
positron magnetic moments.

Given the new method to measure the cyclotron fre-
quency extremely accuracy, measuring the anomaly fre-
quency precisely will become the biggest challenge to
more precise magnetic moment measurements. The
anomaly line shape cannot be resolved into narrow sym-
metric peaks that correspond to individual quantum
states of the axial detection motion. Nonetheless, the
calculations suggest that an anomaly line shape can be
produced that will make possible measurements that are
perhaps an order of magnitude more precise. An initial
survey of the effect of changing experimental parameters
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(e.g. cyclotron damping rate and lower ambient temper-
ature) upon the anomaly lineshape identifies possible fu-
ture upgrade paths, though none of these by itself is a
large step.

The electron and positron magnetic moments are the
most precise predictions of the Standard Model of Parti-
cle Physics – the fundamental mathematical description
of physical reality. Whether the current discrepancy be-
tween the measured electron magnetic moment and the
Standard Model prediction is a hint of physics beyond
the Standard Model is not yet known, but it warrants

investigation. The calculation and methods in this work
indicate how this may be possible.
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ture 588, 61 (2020).
[12] L. S. Brown and G. Gabrielse, Rev. Mod. Phys. 58, 233

(1986).
[13] X. Fan and G. Gabrielse, Phys. Rev. Lett. (in press) ,

arXiv:2008.01898 (2020).
[14] L. S. Brown, Phys. Rev. Lett. 52, 2013 (1984).
[15] L. S. Brown, Ann. Phys. (N.Y.) 159, 62 (1985).
[16] X. Fan, S. E. Fayer, T. G. Myers, B. A. D. Sukra, G.

Nahal, and G. Gabrielse, Rev. Sci. Instr. (in press) ,
arXiv:2011.08136 (2020).

[17] G. Gabrielse, X. Fei, L. A. Orozco, R. L. Tjoelker, J.
Haas, H. Kalinowsky, T. A. Trainor, and W. Kells, Phys.
Rev. Lett. 65, 1317 (1990).

[18] L. S. Brown and G. Gabrielse, Phys. Rev. A 25, 2423
(1982).

[19] S. Peil and G. Gabrielse, Phys. Rev. Lett. 83, 1287
(1999).

[20] V. B. Braginsky, Y. I. Vorontsov, and K. S. Thorne, Sci-
ence 209, 547 (1980).

[21] C. M. Caves, K. S. Thorne, R. W. P. Drever, V. D. Sand-
berg, and M. Zimmermann, Rev. Mod. Phys. 52, 341
(1980).

[22] V. B. Braginsky and F. Y. Khalili, Rev. Mod. Phys. 68,
1 (1996).

[23] M. F. Bocko and R. Onofrio, Rev. Mod. Phys. 68, 755
(1996).

[24] J. N. Tan and G. Gabrielse, Appl. Phys. Lett. 55, 2144
(1989).

[25] G. Gabrielse and H. Dehmelt, Phys. Rev. Lett. 55, 67
(1985).

[26] G. Gabrielse and F. C. MacKintosh, Intl. J. of Mass Spec.
and Ion Proc. 57, 1 (1984).

[27] G. Gabrielse, Phys. Rev. A 29, 462 (1984).
[28] D. J. Wineland and H. G. Dehmelt, J. Appl. Phys. 46,

919 (1975).
[29] G. Lindblad, Comm. Math. Phys. 48, 119 (1976).
[30] V. Gorini, A. Kossakowski, and E. C. G. Sudarshan,

Journal of Mathematical Physics 17, 821 (1976).
[31] K. Jacobs, Quantum Measurement Theory and its Appli-

cations (Cambridge University Press, ADDRESS, 2014).
[32] J. DiSciacca, M. Marshall, K. Marable, G. Gabrielse, S.

Ettenauer, E. Tardiff, R. Kalra, D. W. Fitzakerley, M. C.
George, E. A. Hessels, C. H. Storry, M. Weel, D. Grzonka,
W. Oelert, and T. Sefzick, Phys. Rev. Lett. 110, 130801
(2013).

[33] J. DiSciacca and G. Gabrielse, Phys. Rev. Lett. 108,
153001 (2012).

[34] J. DiSciacca, M. Marshall, K. Marable, and G. Gabrielse,
Phys. Rev. Lett. 110, 140406 (2013).

[35] S. Ulmer, C. C. Rodegheri, K. Blaum, H. Kracke, A.
Mooser, W. Quint, and J. Walz, Phys. Rev. Lett. 106,
253001 (2011).

[36] S. Ulmer and et al. (BASE Collaboration), Nature 524,
(2015).

[37] C. Smorra, S. Sellner, M. J. Borchert, J. A. Harrington,
T. Higuchi, H. Nagahama, T. Tanaka, A. Mooser, G.
Schneider, M. Bohman, K. Blaum, Y. Matsuda, C. Os-
pelkaus, W. Quint, J. Walz, Y. Yamazaki, and S. Ulmer,
Nature 550, 371 (2017).

[38] G. Schneider, A. Mooser, M. Bohman, N. Schön, J. Har-
rington, T. Higuchi, H. Nagahama, S. Sellner, C. Smorra,
K. Blaum, Y. Matsuda, W. Quint, J. Walz, and S. Ulmer,
Science 358, 1081 (2017).

[39] X. Fan, S. E. Fayer, and G. Gabrielse, Review of Scientific
Instruments 90, 083107 (2019).

[40] B. D’Urso, Ph.D. thesis, Harvard University, 2003, (the-
sis advisor: G. Gabrielse).


