
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Diagonal catalysts in quantum adiabatic optimization
Tameem Albash and Matthew Kowalsky

Phys. Rev. A 103, 022608 — Published 15 February 2021
DOI: 10.1103/PhysRevA.103.022608

https://dx.doi.org/10.1103/PhysRevA.103.022608


Diagonal Catalysts in Quantum Adiabatic Optimization

Tameem Albash1, 2 and Matthew Kowalsky3, 4

1Department of Electrical and Computer Engineering,
University of New Mexico, Albuquerque, New Mexico 87131, USA

2Department of Physics and Astronomy and Center for Quantum Information and Control,
CQuIC, University of New Mexico, Albuquerque, New Mexico 87131, USA

3Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA
4Center for Quantum Information Science & Technology,

University of Southern California, Los Angeles, California 90089, USA

We propose a protocol for quantum adiabatic optimization, whereby an intermediary Hamiltonian
that is diagonal in the computational basis is turned on and off during the interpolation. This
‘diagonal catalyst’ serves to bias the energy landscape towards a given spin configuration, and we
show how this can remove the first-order phase transition present in the standard protocol for
the ferromagnetic p-spin and the Weak-Strong Cluster problems. The success of the protocol also
makes clear how it can fail: biasing the energy landscape towards a state only helps in finding the
ground state if the Hamming distance from the ground state and the energy of the biased state are
correlated. We present examples where biasing towards low energy states that are nonetheless very
far in Hamming distance from the ground state can severely worsen the efficiency of the algorithm
compared to the standard protocol. Our results for the diagonal catalyst protocol are analogous to
results exhibited by adiabatic reverse annealing, so our conclusions should apply to that protocol
as well.

I. INTRODUCTION

The ubiquity of optimization problems continues to
nurture the study and development of new algorithms to
reduce the computational cost of solving them. Quantum
adiabatic optimization [1–5] (QAO) is an approach that
uses a sufficiently slow quantum evolution subject to an
interpolating Hamiltonian H(s), s ∈ [0, 1], to find the so-
lution to the optimization problem encoded in the ground
state of the problem Hamiltonian HP at the end of the
interpolation, H(1) = HP. Recent progress in the devel-
opment of large-scale qubit systems [6–9] has increased
the impetus to better understand when we can expect
QAO to provide a quantum advantage over classical al-
gorithms for real-world optimization problems. To date,
such advantages are only known in the oracular setting
[10, 11]1.

In an analogous manner to its classical counterpart
[13], QAO relies on the adiabatic theorem of quantum
mechanics [14–18] to provide a guarantee that evolutions
satisfying the adiabatic condition will have a high over-
lap with the ground state of HP. The condition on how
slowly the evolution must be performed is usually stated
as a condition on the total evolution time tf , whereby
tf must be much greater than some power of the inverse

minimum energy gap ∆−1min of H(s) along the interpola-
tion. This then gives a convenient way to express the
computational time-cost of the algorithm, with the scal-
ing of the minimum gap with system size n often reported
as representing the efficiency of the QAO algorithm.

1 The exponential speedup in Ref. [12] is not strictly speaking in
the adiabatic setting.

In the standard (‘S’) QAO setting, the interpolat-
ing Hamiltonian is written as a linear combination of
a ‘driver’ Hamiltonian HD and a ‘problem’ Hamiltonian
HP that is diagonal in the computational basis:

HS(s) = (1− s)HD + sHP , (1)

where for simplicity we have taken a linear interpola-
tion for the annealing schedule. We take the single qubit
computational basis {|0〉, |1〉} to be the eigenstates of the
Pauli-z operator, σz|0〉 = |0〉, σz|1〉 = −|1〉, correspond-
ing to the spin up and spin-down states respectively. The
driver Hamiltonian is usually taken to be the uniform
transverse field Hamiltonian HD = −

∑
i σ

x
i .

Increased experimental control capabilities of quan-
tum annealing system [19, 20] has lead to a resurgence
of interest in different interpolation paths than those
used in standard quantum annealing. Notably, there
has been renewed interest in ‘adiabatic reverse annealing’
[21, 22] (ARA), or ‘sombrero AQC’ [23], whereby the in-
terpolation starts from a diagonal local-field Hamiltonian
HB = −

∑
i εiσ

z
i that encodes a classical spin configura-

tion ~ε ∈ {−1, 1}n as its ground state. The spin state ~ε
will generically disagree with the ground state of HP over
some subset of the indices i. We denote the fraction of
spins that agree with the ground state of HP by c.

Studying the performance of ARA on the p-spin model,
Ref. [21] found that above a critical value of c, the scal-
ing of the minimum gap changes from exponentially clos-
ing to only polynomially closing, indicating an exponen-
tial improvement in the performance of the algorithm.
These results have been taken as a positive indication
that greater control of and choices for the interpolating
Hamiltonian may result in dramatically improved perfor-
mance for solving hard optimization problems.

Here we propose an alternative interpolating path



2

using the same terms of the ARA Hamiltonian,
{HD, HB, HP}, but that is more akin to the standard
interpolation in that the initial Hamiltonian is the driver
Hamiltonian:

HDC(s) = (1− s)HD + λs(1− s)HB + sHP . (2)

In the new interpolation, the Hamiltonian HB is intro-
duced as a ‘catalyst’ Hamiltonian [24–27] that is turned
on and off during the interpolation. Because this catalyst
is diagonal in the computational basis, we refer to it as a
‘diagonal catalyst’ (DC). This new approach reproduces
the exponential improvement in the performance of solv-
ing the p-spin model over the standard QAO algorithm,
with the added benefit that it makes clear the role of
the catalyst HB in providing the performance improve-
ment: it works by biasing the energy landscape towards
the target solution.

Our analysis also highlights two important limitations
of this approach. First, as the value of p increases,
the overall strength of the catalyst Hamiltonian must be
made larger, and in the limit of p→∞, where the p-spin
model becomes similar to the problem of unstructured
search [10, 28], maintaining an exponential improvement
requires the overall strength to increase linearly with sys-
tem size.

Second, it becomes clear that biasing the energy land-
scape only works if we are biasing towards the target
state, where the relevant distance measure is Hamming
distance and not how close they are in energy. We high-
light this by constructing instances where the low-lying
energy states of HP are far in Hamming distance from
the ground state, and biasing towards these states makes
the performance of the algorithm significantly worst than
the standard protocol.

Our paper is structured as follows. In Sec. II, we study
the ferromagnetic p-spin model, and show how a suitable
choice of the diagonal catalyst can eliminate the first-
order phase transition associated with this model. In
Sec. III, we study the large p limit, corresponding to the
problem of unstructured search and show how the diago-
nal catalyst fails to eliminate the first-order phase transi-
tion in this model unless the catalyst becomes infinitely
strong. In Sec. IV, we study the Weak-Strong Cluster
problem [29], which is another example where the first-
order phase transition can be eliminated by a suitably
chosen diagonal catalyst. In Sec. V, we present a failure
mechanism of the protocol and show how the diagonal
catalyst can exacerbate or introduce new bottlenecks to
the standard protocol. In Sec. VI, we provide a discus-
sion and concluding remarks about our protocol and its
relationship to adiabatic reverse annealing.

II. FULLY-CONNECTED FERROMAGNETIC
p-SPIN MODEL

We begin our analysis of the performance of our DC
interpolation (Eq. (2)) by studying the fully-connected

ferromagnetic p-spin model

HP = −n

(
1

n

∑
i

σzi

)p
. (3)

The ground state of this problem Hamiltonian is the all-
zero state, |0〉⊗n, corresponding to a magnetization den-
sity of 1. In the standard interpolation (Eq. (1)), the
minimum gap along the interpolation closes exponen-
tially with system size [28], and in the thermodynamic
limit the closing of the gap is associated with a first-order
phase transition.

A. Mean-field analysis

We first perform a mean-field analysis of our DC
Hamiltonian in Eq. (2). The mean field analysis and the
resulting free energy density in terms of the mean-field
magnetization density provides a simple characterization
of the energy landscape during the interpolation. Dis-
continuous jumps in the identity of the global minimum
of the free energy are associated with a first-order phase
transition, since the magnetization changes discontinu-
ously when following the global minimum. Following the
derivation of Ref. [21], the mean-field free energy in the
zero-temperature limit can be written as

f(m) = s(p− 1)mp

−c
√
s2 (pmp−1 + λ(1− s))2 + (1− s)2

−(1− c)
√
s2 (pmp−1 − λ(1− s))2 + (1− s)2 , (4)

where m denotes the mean-field magnetization density.
For λ = 0, corresponding to the absence of the DC, the
free energy density reverts to that of the standard in-
terpolation. We identify the location of the first-order
phase transition along the interpolation by solving for the
global minimum of the free energy f(m) and identifying
the value of the interpolation parameter s = s∗ where a
discontinuous jump in the global minimum occurs.

In the absence of a catalyst, f(m) exhibits a degen-
erate double-well at some point along the interpolation.
When the catalyst is turned on, the separation of the de-
generate minima is reduced. Above a critical value c and
when the catalyst is sufficiently strong, the two minima
merge and the double well vanishes, and only a single
minimum is realized during the entire anneal. This be-
havior is qualitatively similar to that observed for the
ARA protocol [21]. Here, the role of the catalyst is to
energetically bias the landscape towards m = 1, pushing
the first minimum towards the second minimum until
only one minimum remains. Further details are provided
in Appendix A.

However, as the catalyst strength is further increased,
the first-order phase transition reemerges because the
catalyst biases the wrong configuration and hinders the
system from reaching the fully-ferromagnetic ground
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FIG. 1. Phase diagram from mean field theory showing first-
order phase transition line for different p. Shown here are
values of c where there is a range of λ values where the first-
order phase transition is absent.

state (for c < 1, there is always a subset of qubits that
are biased in the ‘wrong’ direction). Therefore, for suf-
ficiently high c, whose value depends on p, there is a
range of λ for which the first-order phase transition can
be avoided. We show snapshots of the phase diagram in
Fig. 1.

B. Energy gap behavior

We supplement our mean-field analysis by calculat-
ing the minimum gap ∆min(λ) = mins∈[0,1] ∆λ(s) of
the Hamiltonian (Eq. (2)) along the interpolation in
the thermodynamic limit using the method developed in
Ref. [30]. The method calculates the energy gap in the
thermodynamic limit by considering fluctuations around
the single global minimum of the semi-classical (large-
spin) Hamiltonian density:

H(s) = −(1− s) ((1− c)mx
2 + cmx

1)

−λs(1− s) (cmz
1 − (1− c)mz

2)

−s (cmz
1 + (1− c)mz

2)
p
, (5)

where mα
1 ,m

α
2 ∈ [−1, 1] correspond to the magnetization

density in the α = x, z direction of the two clusters of
spins. The method is suited to identify the position of the
minimum gap in the parameter regime of (c, λ) where the
first-order phase transition is absent. We show that the
method accurately predicts the thermodynamic limit be-
havior in Appendix B. Our calculations of the minimum
gap corroborate the conclusions from the mean-field anal-
ysis, in that we find that the minimum gap approaches a
constant and does not close exponentially for sufficiently
large c and λ values within the appropriate range.

However, we also observe a feature that can be ex-
pected from our mean-field analysis : the minimum gap
exhibits a maximum value as a function of λ within
the allowed range. The presence of a maximum can
be expected because of the competing effects of increas-
ing λ: while it biases the energy landscape towards the
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FIG. 2. Behavior of the catalyst strength λ∗, which maximizes
the minimum gap, as a function of c for fixed p values. Inset:
Behavior of the minimum gap evaluated at λ∗, ∆∗

min, as a
function of c for the same p values.

ferromangetic ground state, it ultimately does energet-
ically favor different spin configurations. We define λ∗

to be the value of λ that maximizes the minimum gap,
λ∗ = arg maxλ ∆min(λ), and the maximum minimum gap
is then given by ∆∗min = ∆min(λ∗) = maxλ ∆min(λ).

While ∆∗min grows monotonically as c approaches 1, the
behavior of λ∗ is not monotonic with c (see Fig. 2): it
increases, decreases, and increases again (this last region
becomes smaller as p increases). We provide an explana-
tion for this behavior in Appendix C.

III. LARGE p LIMIT: UNSTRUCTURED
SEARCH

So far, we have considered the case of fixed p while
take the thermodynamic limit. We have so far observed
that increasing p in this limit requires increasing c and
λ to avoid the first-order transition (and exponentially
closing gap). We therefore expect that as p→∞, c→ 1
and λ→∞.

In order to confirm this expectation, we write our p-
spin Hamiltonian as:

HP = −n

(
11− 1

n

n∑
i=1

(11− σzi )

)p
= −n

(
11− 2HW

n

)p
= −n|0〉〈0|+ n(−1)p|2n − 1〉〈2n − 1|

−n
n−1∑
k=1

(
1− 2k

n

)p ∑
x:|x|=k

|x〉〈x| , (6)

where |x〉 denotes the computational basis state with a
bit-configuration representing the integer x, and HW =
1
2

∑n
i=1 (11− σzi ) is the Hamming weight operator. If we

now take the p� 1, we have that our p-spin Hamiltonian
is approximately given by

HP ≈ −n|0〉〈0| − n(−1)p|2n − 1〉〈2n − 1| . (7)
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This Hamiltonian is effectively the oracle Hamiltonian
of unstructured search [10, 28], except for the factor of
n and the additional penalty on the conjugate of the
marked state. (Here |0〉 is the marked state, and |2n−1〉
is its conjugate.) The factor of n arises because we had
made our p-spin Hamiltonian extensive (see Eq. (3)), and
it leads to a gap between the ground state and the (de-
generate) first excited state that grows with n.

We focus on the case of p odd. Even for c = 1, when
the bias is entirely on the final ground state, for a fixed
λ there is always a system size above which the gap scal-
ing is exponential (see Fig. 3). Thus for fixed λ, our
bias Hamiltonian is not able to eliminate the first-order
phase transition typically associated with unstructured
search. Above this size, the minimum gap scales as
∆min ∼ exp(n/(2λ)), so it follows that in order to en-
sure a constant gap as the system size scales, λ must
scale linearly with the system size. This finding is then
consistent with our expectation from our fixed p analysis
of the previous section. A similar result was also found
in Ref. [31].
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FIG. 3. Behavior of the minimum gap ∆min at c = 1 for the
p � 1 problem Hamiltonian in Eq. (7). Inset: The fit of the
exponential scaling parameter of the minimum gap, ∆min ∼
exp(b(λ)n), with b(λ) approaching 1/(2λ) as λ becomes large,
as indicated by the red line.

IV. WEAK-STRONG CLUSTER PROBLEM

Our next example is the prototypical large-spin tun-
neling problem studied in Ref. [27, 29, 30]. The problem
is characterized by two fully-connected clusters of spins,
one with a ‘strong’ local field in one direction, and the
other with a ‘weak’ local field pointing in the opposite di-
rection, depicted in Fig. 4. We will denote the former as
the strong cluster and the latter as the weak cluster. In
the standard QA protocol, the interpolation exhibits an
exponentially closing gap, associated with the global min-
imum changing from the weak cluster being anti-aligned
with the strong cluster to being aligned with the strong
cluster. This event is then associated with the tunneling
of O(n/2) spins.

FIG. 4. Weak-Strong Cluster problem. Blue (left) and red
(right) circles correspond to the two clusters of spins, one
with a strong local field and the other with a weak local field
in the opposite direction. Solid edges correspond to intra-
cluster ferromagnetic couplings, and dashed edges correspond
to inter-cluster ferromagnetic couplings.

The role of the diagonal catalyst can be readily under-
stood in this case. We consider the following interpolat-
ing Hamiltonian:

H(s) = −2(1− s) (Sx1 + Sx2 )− s (2h1S
z
1 − 2h2S

z
2

+
4

n

(
(Sz1 )2 + (Sz2 )2 + Sz1S

z
2

))
− λs(1− s)

n∑
i=1

εiσ
z
i ,(8)

where Sα1 = 1
2

∑n/2
i=1 σ

α
i , Sα2 = 1

2

∑n
i=n/2+1 σ

α
i . For sim-

plicity, we restrict to the case where n is even. We take
h1 = 1 and h2 = 0.49, such that the ground state at
s = 1 has eigenvalues (+1,+1) under 2

nS
z
1 and 2

nS
z
2 re-

spectively. The terms associated with the local fields on
the weak cluster (the terms proportional to h2) are vio-
lated by the ground state at s = 1, but the instantaneous
ground during the interpolation initially aligns with these
local fields, which leads to the exponentially closing gap.
A diagonal catalyst that reduces the alignment with the
weak cluster local field during the interpolation can thus
be expected to eliminate the exponentially closing gap.
This intuitive argument already suggests that if we con-
sider a catalyst of the form:

HB = −
n/2∑
i=1

σzi −
n
2 (1+c)∑
i=n/2+1

σzi +

n∑
i=n

2 (1+c)+1

σzi , (9)

where we correctly bias the strong cluster and n
2 c qubits

of the weak cluster and incorrectly bias n
2 (1 − c) qubits

of the weak cluster, then we should be able to eliminate
the exponentially closing gap for c > 1/2.

In order to validate this intuition, we first consider
the free energy density in the zero-temperature limit as



5

0 0.2 0.4 0.6 0.8 1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

FIG. 5. Magnetization at the global minimum of the semi-
classical Hamiltonian for the Weak-Strong Cluster problem
(Eq. (11)) for the case of c = 0.6 and λ = 1 for which the
first-order phase transition is avoided.

before:

f(m1,m2) =
s

4

(
m2

1 +m2
2 +m1m2

)
−1

2

√
s2
(
m1 +

m2

2
+ h1 + λ(1− s)

)2
+ (1− s)2

− c
2

√
s2
(
m2 +

m1

2
− h2 + λ(1− s)

)2
+ (1− s)2

−1− c
2

√
s2
(
m2 +

m1

2
− h2 − λ(1− s)

)2
+ (1− s)2 .

(10)

For a sufficiently large c above 1/2, we find we can avoid
any discontinuous jump in the free energy for a suffi-
ciently large λ. The mean field analysis can be corrobo-
rated by calculating the gap in the thermodynamic limit.
The semi-classical Hamiltonian density is given by:

H(s) = −1

2
(1− s) (mx

1 + cmx
2 + (1− c)mx

3)

−λ
2
s(1− s) (mz

1 + cmz
2 − (1− c)mz

3)

−s
[
h1
2
mz

1 −
h2
2

(cmz
2 + (1− c)mz

3)

+
1

4
(mz

1)2 +
1

4
(cmz

2 + (1− c)mz
3)

2

+
1

4
mz

1 (cmz
2 + (1− c)mz

3)

]
, (11)

where mα
1 , α = x, y, z, is the magnetization of the strong

cluster, m2 is the magnetization of the c-fraction of spins
in the weak cluster with the correct bias, and m3 is the
magnetization of the (1− c)-fraction of spins in the weak
cluster with the incorrect bias. We show in Fig. 5 how
these three magnetizations behave in the absence of a
closing gap, and the behavior is consistent with our mean
field analysis.

V. BOTTLENECKS INTRODUCED BY
DIAGONAL CATALYSTS

Our study of the p-spin and the Weak-Strong Clus-
ter problems has revealed under what conditions we can
expect a diagonal catalyst to enhance the performance
of the adiabatic algorithm. Crucial to this success has
been applying an energetic bias on states that are close
in Hamming distance to the desired ground state. How-
ever, this implicitly assumes that we have a good reason
(without knowing the ground state) to apply a bias on
these states as opposed to other states. In the case of
the p-spin model, states with low Hamming distance are
also states with low energy, so biasing these states is a
reasonable procedure.

However, it is easy to construct instances where this is
not the case, meaning the low energy states are actually
very far in Hamming distance from the true ground state.
In this case, biasing towards low energy states can have
a severely detrimental effect on the performance of the
algorithm. We demonstrate this next with some strik-
ing cases. Our constructions are based on ‘perturbative
crossings’ [32], a known bottleneck of QAO.

A. Perturbative Crossings

We first consider a one-dimensional Ising Hamiltonian
on n = 2k spins given by:

HP =
1

R

(
(R− 1)σz0 −Rσzk −

n−1∑
i=0

Ji,i+1σ
z
i σ

z
i+1

)
(12)

with R ≥ 4, σzn ≡ σz0 (periodic boundary conditions),
and

Ji,i+1 =

{
R/2 if i = k − 1, k
R otherwise

(13)

This system, depicted in Fig. 6, has anti-aligned lo-
cal fields on opposite ends of the periodic chain with
magnitudes 1 and (1 − 1/R) respectively and Ising
couplings that are uniform everywhere except at one
end of the chain. The ground state is given by the
all-zero bit string (|φ〉 ≡ |0n−10n−2 . . . 00〉), where
the subscripts denote the qubit index as labeled in
Fig. 6, with energy E0, and the first excited state
is double degenerate with states corresponding to the
all-one state (|ψ〉 ≡ |1n−11n−2 . . . 10〉) and the same
state except with a 0 on the k-indexed qubit (|η〉 ≡
|1n−11n−2 . . . 1k+10k1k−1 . . . 10〉) with energy E1.

Let us now consider the annealing protocol with a diag-
onal catalyst, Eq. (2). We perform a perturbative anal-
ysis away from the point s = 1, with the perturbation
parameter being Γ = 1− s. The Hamiltonian up to first
order is given by:

H(1)(Γ) = HP + ΓV1 = HP + Γ (HD +HI −HP) . (14)
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FIG. 6. Illustration of the Ising instance described by
Eq. (12). The numbers inside the circles denote the labeling
of the qubits. The links between circles denote ferromagnetic
couplings (note the thickness denotes the strength of the cou-
pling). The red circle (left-most) and blue circle (right most)
denote qubits with non-zero Ising local fields in opposite di-
rections.

At this order in perturbation theory, the first excited
states |ψ〉, |η〉 and the ground state |φ〉 are not coupled,
i.e. 〈ψ|V1|φ〉 = 〈η|V1|φ〉 = 0. Thus, in order to determine
how the first excited state degeneracy is broken, we can
restrict ourselves to the degenerate subspace of |ψ〉, |η〉
at this order. In this subspace, we can represent V1 as:

V1 →
(
−E1 + ε1 − λεk 1

1 −E1 + ε1 + λεk

)
|ψ〉,|η〉

,

(15)
where ε1 = λ

∑
i 6=k εi. Specifically, the degeneracy is

not only broken by the transverse field but also by the
diagonal catalyst. Thus at first order in perturbation
theory, the (non-degenerate) instantaneous first excited

state energy is given by E1−Γ(E1− ε1 +
√

1 + λ2). The
instantaneous ground state energy is given by E0−Γ(E0+
ε0), where ε0 = λ

∑
i εi. Therefore, the instantaneous

gap at first order in perturbation theory is given by:

∆ = ∆0 − Γ
(

∆0 +
√

1 + λ2 − ε1 − ε0)
)
, (16)

where ∆0 = E1 − E0. Note that ε1 + ε0 = 2λ
∑
i 6=k εi +

λεk. The perturbative crossing is then expected to occur
when this gap becomes zero, which occurs at a value of
Γ∗DC = ∆0/

(
∆0 +

√
1 + λ2 − ε1 − ε0)

)
.

If we are to use a diagonal catalyst that energeti-
cally favors the first excited state |ψ〉, we would have
−ε1 − ε0 = (2n − 1)λ, which means that the perturba-
tive crossing approaches s = 1 as the problem size grows,
Γ∗DC ∼ 1/n. Since the gap at the perturbative crossing
scales as Γn∗ , our results suggests a factorial scaling for
the gap, ∆min ∼ n−n.

This is to be contrasted with the standard protocol,
where the instantaneous gap at first order would be given
by:

∆S = ∆0 − Γ (∆0 + 1) , (17)

and the perturbative crossing occurs at Γ∗S = ∆0/(∆0 +
1), which is independent of problem size. Thus we only
expect an exponential scaling for the gap in this case,
∆min ∼ c−n.
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FIG. 7. Energy gap ∆(s) for n = 6 and R = 4 for the
problem Hamiltonian in Eq. (12) using the standard pro-
tocol HS(s) and the one with a diagonal catalyst HDC(s)
with HI =

∑n−1
i=0 σ

z
i and λ = 1. This amounts to taking

ε1 = −λ(n−1) , ε0 = −λn. For HDC, first order perturbation
theory predicts a level crossing at s∗DC = 1−Γ∗

DC ≈ 0.961283,
whereas the true avoided crossing calculated numerically oc-
curs at smin ≈ 0.959768. For HS, first order perturba-
tion theory predicts a level crossing at s∗S = 2/3, whereas
the true avoided crossing calculated numerically occurs at
smin ≈ 0.707325.

To illustrate how this can affect performance, we show
the energy gap of HS(s) and HDC(s) with HB =

∑n−1
i=0 σ

z
i

in Fig. 7, where we have chosen to bias towards the
state |ψ〉. The minimum gap using the diagonal cata-
lyst Hamiltonian is almost 5 orders of magnitude smaller
than the standard Hamiltonian even for a 6 qubit prob-
lem.

B. Inducing a Perturbative Crossing

In the previous example, both HS(s) and HDC(s) ex-
hibit a perturbative crossing. We now consider an exam-
ple where only HDC(s) exhibits a perturbative crossing.
We consider a modification of our previous Hamiltonian
such that it now takes the form

HP =
1

R

(
Rσz0 − (R− 1)σzk −

n−1∑
i=0

Ji,i+1σ
z
i σ

z
i+1

)
.

(18)
For this Hamiltonian, the ground state is the all-one state
(|ψ〉), and the doubly degenerate first excited is now given
by the all-zero state (|φ〉) and the state |η〉).

In the standard annealing protocol, this problem does
not exhibit a perturbative crossing. However, in the pres-
ence of a diagonal catalyst, a perturbative crossing can
be induced. For example, if we take HI = −

∑
i σ

z
i , such

that the catalyst biases the state |φ〉, then in the first
excited state subspace, the first order correction to the
Hamiltonian in the perturbative parameter Γ is given by

V1 →
(
−E1 − n 0

0 −E1 + n− 1

)
|φ〉,|η〉

. (19)



7

The instantaneous energy gap at first order in perturba-
tion theory is then given by:

∆
(1)
DC = ∆0 − Γ(∆0 + 2n) , (20)

and the perturbative crossing is expected to occur at
Γ∗DQ = ∆0/ (∆0 + 2n)). We thus can expect the mini-
mum gap to scale factorially in the system size.

We provide another example of such an induced per-
turbative crossing in Appendix D.

VI. DISCUSSION AND CONCLUSIONS

We have illustrated how introducing a catalyst Hamil-
tonian that is diagonal in the computational basis to the
standard interpolating Hamiltonian of QAO can exhibit
an exponential improvement in the efficiency of the algo-
rithm for solving the ferromagnetic p-spin model and the
weak-strong cluster problem. Our results are analogous
to the exponential improvement observed for ARA [21],
and the diagonal catalyst approach highlights the mech-
anism for this improvement: the Hamiltonian HB biases
the energy landscape towards the solution, and if the bias
is sufficiently strong it can eliminate discontinuous jumps
in the global minimum of the landscape, which are the
bottleneck of the algorithm.

Our work also highlights the danger of over-selling this
approach in the broader context of solving for the ground
state of hard optimization problems using QAO. In the
ferromagnetic p-spin models, the energy landscape is sim-
ple: the Hamming distance of a state from the ground
state is directly correlated with its energy, so a bias
Hamiltonian that progressively favors lower Hamming
weight states will naturally help the algorithm reach the
target ground state. However, in general, we expect there
to be no correlation between a state’s Hamming distance
and its closeness in energy to the ground state, and in
this more general case there is no evident prescription of
how to pick the bias Hamiltonian. We highlighted this
using examples where biasing low energy but high Ham-
ming distance states impedes the algorithm, something
that was already observed in the results of Ref. [23].

The operators appearing in the DC and ARA Hamil-
tonian are the same, and the only difference is how each
term is turned on and off during the interpolation. Be-

cause the spectral gap is purely a property of the instan-
taneous Hamiltonian and not of the interpolation used to
reach that Hamiltonian, we can expect both approaches
to achieve the same minimum gap, assuming that both
approaches are able to enact sufficiently rich interpo-
lations. This suggests that the two approaches should
achieve the same adiabatic algorithm efficiency. From
this point of view, there does not appear to be a strong
reason to prefer one approach over the other. However,
there is one advantage of using a catalyst over ARA that
we can identify. In ARA, the Hamiltonian HB needs to
energetically bias a single bit-string in order to ensure
there is a unique initial ground state. This bit-string will
have a subset of bits that disagree with the ground state
of HP. However, in the case of the catalyst, we need not
place a bias on all qubits since the initial state of the
algorithm is still the ground state of the driver Hamilto-
nian HD. Thus with a catalyst, we can in principle avoid
or mitigate biasing qubits incorrectly by not having HB

act on all qubits. While this may favor the catalyst ap-
proach, we believe that it is more important to identify
which approach is more robust to experimental imper-
fections and noise. We hope to address this question in
future work.
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in the separation between the two minima. Above a crit-
ical value c and when the catalyst is sufficiently strong,
the two minima merge and the double well vanishes, and
only a single minimum is realized during the entire an-
neal. We depict this behavior in Fig. 8.

0 0.2 0.4 0.6 0.8 1

0

0.005

0.01

0.015

0.02

0.025

FIG. 8. The mean-field free energy (Eq. (4)) for the p-spin
model with p = 3 and c = 0.8 and different λ values. The
constant fmin is the value of the free energy at the minimum,
and it is subtracted off so that all minima occur at zero. For
λ = 0, and 0.5, the values of s is chosen to correspond to the
point along the interpolation where the free energy exhibits
doubly-degenerate minima. For λ = 0.97, there is only a
single minimum along the entire interpolation.

Appendix B: Gap in the thermodynamic limit

We show how the the method of Ref. [21] accurately
predicts the minimum gap in the thermodynamic limit
for the models considered in Sec. II. We use the fact that
the interpolating Hamiltonians are permutation symmet-
ric for two subsets of the qubits. Since the initial ground
state obeys these symmetries as well, we can focus on
the symmetric subspace to which the ground state be-
longs. For the case of the ferromagnetic p-spin prob-
lem Hamiltonian, this subspace is spanned by the tensor
product of Dicke states [33], {|j1,m1〉 ⊗ |j2,m2〉}, with
j1 = cn/2, j2 = (1 − c)n/2 and m1 = −j1, . . . , j1,m2 =
−j2, . . . , j2. This subspace is only (2j1 + 1) × (2j2 + 1)
dimensional. In Fig. 9, we show how the minimum gap
asymptotes to the thermodynamic limit value.

Appendix C: Non-monotonicity in λ∗

In order to understand the non-monotonic behavior of
λ∗ with c observed, it is useful to consider how the gap
behaves during the interpolation. We show in Fig. 10
the gap behavior at p = 3 for representative c values.
For c . 0.93, corresponding to the region where λ∗ in-
creases with c, the gap exhibits a single minimum along
the interpolation, and the minimum grows in value and

0 500 1000 1500 2000
0.6

0.8

1

1.2

1.4

FIG. 9. Convergence of the finite n minimum gap values (data
points) to the thermodynamic value (shown as dashed lines)
for p = 3.

its location smoothly moves to larger s values as λ ap-
proaches λ∗.

For c & 0.93, corresponding to the region where λ∗ de-
creases and then increases with c, the gap exhibits two
minima along the interpolation near λ∗. The first mini-
mum (at the smaller s value) is initially lower in value but
grows and passes the second minimum as λ approaches
λ∗ (the second minimum does not change significantly as
λ approaches λ∗). Thus, this region of parameter space is
characterized by the global minimum along the interpo-
lation discontinuously jumping in s as λ approaches λ∗.
The second minimum (and not the first) then determines
the value of λ∗.

The second minimum occurs along the steepest por-
tion of the rise of mz

2 from its negative to positive value
(Fig. 11), so we can qualitatively associate the second
minimum with the flipping of spins associated with the
second cluster. Therefore, at sufficiently high c values,
the optimum λ is associated with optimizing the hard-
ness associated with flipping the misaligned small cluster.

Appendix D: Another example of inducing a
perturbative crossing

We consider a problem Hamiltonian HP of the form:

HP =
1

R

(
n−1∑
i=0

hiσ
z
i −

n−1∑
i=0

Ji,i+1σ
z
i σ

z
i+1

)
, (D1)

with σzn ≡ σz0 (periodic boundary conditions). We re-
strict ourselves to even length chains, but we distinguish
between two types of chains. For n = 4k, k = 2, 3, . . . ,
we choose:

Ji,i+1 =

{
R
2 − 1 , if i = n

2 , n− 1
R , otherwise

(D2a)

hi =

{
−1 , if i = n

2 + 1, n2 + 2, . . . , n− 1
1 , otherwise

, (D2b)
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FIG. 10. Behavior of the gap ∆(s) for the p = 3 ferromagnetic
p-spin model in the range of the interpolation where the the
minimum gap occurs.

0.15 0.2 0.25 0.3 0.35 0.4
1.4

1.45

1.5

1.55

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(a) p = 3

0.15 0.2 0.25 0.3 0.35
1.4

1.5

1.6

1.7

1.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

(b) p = 5

0.15 0.2 0.25 0.3
1.4

1.5

1.6

1.7

1.8

1.9

2

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

(c) p = 7

FIG. 11. Behavior of the gap ∆(s) and mz
2 for c = 0.99 at the

optimal λ = λ∗ for the ferromagnetic p-spin model. Vertical
dotted line corresponds to position of the minimum gap.

while for n = 4k + 2, k = 1, 2, . . . , we choose:

Ji,i+1 =

{
R−1
2 , if i = n

2 − 1, n− 1
R , otherwise

(D3a)

hi =

{
−1 , if i = n

2 ,
n
2 + 1, . . . , n− 1

1 , otherwise
. (D3b)

We take R = n/2, which for our system sizes is always a
positive integer.

The ground state of this Ising system is the state
|φ〉 ≡ |0n−10n−2 . . . 02k+112k12k−1 . . . 10〉, where the sub-
script denotes the qubit index, with energy E0. The dou-
bly degenerate first excited states are the all-zero and
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all-one bit strings (|η〉 = |0n−1 . . . 00〉, |ξ〉 = |1n−1 . . . 10〉
with energy E1. For this problem Hamiltonian, the
ground state is at least Hamming distance n/2− 1 from
the nearest first excited state, while the first excited
states themselves are Hamming distance n apart. The
Ising energy gap is given by ∆0 = E1 −E0 = 2/R = 4/n

Let us now consider the spectrum of the diagonal cat-
alyst Hamiltonian near s = 1. The Hamiltonian at first
order in the perturbative parameter Γ = 1 − s is given
by Eq. (14). At this order in perturbation theory, the
ground state energy is modified to

E
(1)
0 (Γ) = E0 − Γ (E0 + εn) , (D4)

where εn = 0 if n = 4k + 2 and εn = 2 if n = 4k. In the
first excited state subspace, the first order perturbation
is given by

V1 = (HD +HB −HP)→
(
−E1 + n 0

0 −E1 − n

)
|η〉,|ξ〉

,

(D5)
where the state |ξ〉 is lowered in energy by HB while
the state |η〉 is raised in energy by HB. Therefore the

instantaneous first excited state energy is given by:

E
(1)
1 (Γ) = E1 − Γ (E1 + n) . (D6)

The instantaneous energy gap at first order in the per-
turbation Γ is then given by:

∆
(1)
DC(Γ) = ∆0 − Γ(∆0 + n− εn) . (D7)

Because the rate of decline of the instantaneous first
excited state is faster than the instantaneous ground
state, we predict a perturbative crossing to occur at

∆
(1)
DC(Γ∗DC) = 0:

Γ∗DC = ∆0/ (∆0 + n− εn) . (D8)

This crossing gets closer and closer to Γ = 0 as n gets
larger. Because the ground state and the first excited
states are at least n/2 − 1 Hamming distance apart, we
can expect the avoided level gap at this perturbative
crossing to scale as (Γ∗DC)n/2 ∼ n−n/2. This is in con-
trast to the standard forward anneal protocol, where the
spectrum does not exhibit a perturbative crossing at first
order in perturbation theory near Γ = 0.


	Diagonal Catalysts in Quantum Adiabatic Optimization
	Abstract
	Introduction
	Fully-connected ferromagnetic p-spin model
	Mean-field analysis
	Energy gap behavior

	Large p limit: Unstructured Search
	Weak-strong cluster problem
	Bottlenecks introduced by diagonal catalysts
	Perturbative Crossings
	Inducing a Perturbative Crossing

	Discussion and Conclusions
	Acknowledgments
	References
	Deformation of the mean field free energy landscape in the presence of the catalyst
	Gap in the thermodynamic limit
	Non-monotonicity in 
	Another example of inducing a perturbative crossing


