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A compelling way to quantify the separation between classical and quantum computing is to
determine how many T gate magic states, t, a classical computer must simulate to calculate the
probability of a universal quantum circuit’s output. Unfortunately, efforts to determine the minimum
number of stabilizer state inner products necessary to decompose T gate magic states (χt) have
proven intractable past t = 7. By using a phase space formalism based on Wootters’ discrete Weyl
operator basis over a finite field, we develop a new algebraic approach to determining χt for single-
Pauli measurements. This allows us to extend the bounds on χt to t = 14 for qutrits, effectively
increasing the space searched by > 1010

4

. Our results show that by using such phase space methods
it is possible to validate NISQ circuits of larger size than previously thought possible.

Strong quantum simulation is the task of calculat-
ing probabilities of arbitrary output strings of universal
quantum circuits. This task is #P -hard [1] and therefore
any classical algorithm that improves on prior attempts
can likely only lower the exponential coefficient in the
cost of strong quantum simulation. However, such im-
provements are important for (i) simulating small-scale
(NISQ [2]) quantum devices, and (ii) understanding the
limits of classical simulation of quantum computers and
the practical onset of quantum advantage [3].

One of the most compelling ways to determine when
NISQ devices exhibit an advantage over current classical
computers is to determine how many T gate magic states
a classical computer much simulate to calculate the prob-
ability of the device’s outcomes. Universal quantum com-
putations can be written in terms of k-tensored T gate
magic states |T 〉⊗k with (n − k) computational states,
that are then acted on by Clifford gates ÛC and partially
traced over to obtain a marginal over any qudit [4]:

Pk = Tr
[
Π̂ρ̂
]
, (1)

where ρ̂ = |Ψ〉 〈Ψ| for |Ψ〉 = ÛC |T 〉⊗k |0〉⊗(n−k) and Π̂ is
a projector onto a single-qudit Pauli operator eigenstate.
In this equation, the T gate magic state, which for qubits
is |T 〉⊗k = 1√

2
(|0〉+ eπi/4 |1〉)⊗k, is a resource state that

extends the Clifford classical subtheory to quantum uni-
versality in the limit of k → ∞ [4]. We expect the cost
of computing Pk to grow exponentially with k since this
parameter dictates the degree of non-classicality of the
circuit.

Stabilizer states |φi〉 are eigenvalue +1 eigenstates of
an Abelian subgroup of the Pauli group and they form
an over-complete basis in Hilbert space. Since Cliffords
simply permute stabilizer states, Eq. 1 can be rewritten
in terms of only stabilizer states by simply expanding
the T gate magic states in terms of their stabilizer de-
composition: |Ψ〉 =

∑mk
i=1 ci |φi〉 for some ci ∈ C (since

|0〉 is a stabilizer state). Since Pauli projections take sta-
bilizer states to stabilizer states, this expansion means
Eq. 1 can be expressed as a linear combination of inner
products of stabilizer states, Pk =

∑mk
i,j=1 cic

∗
j 〈φj |φ′i〉,

where |φ′i〉 = Π̂ |φi〉. The inner product of two n-qudit

stabilizer states, 〈φi|φj〉, is governed by Gaussian elimi-
nation and therefore scales as O(n3). Thus, calculating
Pk scales as O(m2

kk
3). This scaling can be improved to

O(mkk
3) by instead using an estimation technique that

computes inner products between |φi〉 and random stabi-
lizer states from a uniform distribution [5], at the expense
of adding dependence on relative error and probability of
error. There has also been related work on the “approxi-
mate” stabilizer rank that exhibit similar scaling except
in terms of a less demanding additive error [6–9].

Let χk be the stabilizer rank of the T gate magic state
|T 〉⊗k—the minimal number of states required in a stabi-
lizer state decomposition of |T 〉⊗k. Therefore, the small-
est that mk can be is χk and determining its scaling with
k is crucial for understanding the optimal O(χkk

3) cost
of classically computing Pk. Although the T gate magic
state is not only resource state possible, we focus on it
in this study because it is postulated that its stabilizer
rank χk grows slowest with k [10].

The property that the tensor product of two stabilizer
states is a stabilizer state implies a trivial tensor bound on
the stabilizer rank for all integer powers of a state: χt ≤
(χk)t/k where t is a multiple of k. However, it is possible
that the actual stabilizer rank χt is strictly less than this
trivial bound. If so, this implies that |Ψ〉⊗t

′
has a more

efficient stabilizer decomposition, for t′ any multiple of
t. Therefore, it is important to identify such reductions
in rank over the trivial bound, a problem we tackle in
this paper, as such reductions imply better asymptotic
bounds.

Prior searches for these improved tensor bounds for
the qubit T gate magic state have relied on numerical
Monte Carlo search [10]. The results can be summarized
in terms of four values: χ1 = 2, χ2 = 2, χ3 = 3, and χ6 ≤
7. From these four data points and their tensor upper
bounds, one can surmise that χ4 ≤ (χ2)2 = 4, χ5 ≤
χ3χ2 = 6, and χ7 ≤ (χ2)2χ3 = 12. All these bounds are
conjectured to be tight and numerical searches support
this claim [7]. The tensor bound implies the following
upper bounds on the T gate stabilizer rank: χt ≤ (χ1)t =
2t for arbitrary t, χt ≤ (χ2)t/2 = 20.5t for even t, χt ≤
(χ3)t/3 = 2∼0.53t for t a multiple of 3, and χt ≤ (χ6)t/6 =
2∼0.47t for t a multiple of 6. These applications of the
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trivial tensor bound tell us about the asymptotic scaling
of the strong simulation cost of Pk and it is clear that
the last bound provides the most favorable such scaling.

To find a better asymptotic scaling requires reaching
larger t. Unfortunately, the number of stabilizer states
grows as 2(1/2+o(1))t2 [11] and the stabilizer rank grows
at least linearly with t, therefore any numerical search
must contend with a prohibitive search space of size
> 2(1/2+o(1))t3 . Monte Carlo stops converging apprecia-
bly on current hardware at t > 7. Therefore, a non-
numerical method is especially desirable.

In this direction, we previously showed that odd-prime-
d dimensional qudit T gate magic states have the same
stabilizer rank for t = 1 and t = 2 as has been found
for qubits up to the exponential base factor—2αt ↔ dαt,
i.e. (χ1)t = dt and (χ2)t = d0.5t [12]. In fact, we proved
that stabilizer decompositions that achieve these stabi-
lizer ranks for t = 1 and t = 2 have a one-to-one corre-
spondence with the quadratic Gauss sums that decom-
pose the T gate magic state’s discrete Wigner function.
Quadratic Gauss sums are the discrete analogue of Gaus-
sian integrals:

∑
x∈(Z/dZ)n exp[ 2πi

d (xTAx+β ·x)], where
A ∈ Zn×n and β ∈ Zn. Finding the minimum number of
quadratic Gauss sums can be accomplished with an alge-
braic approach and so can be extended to higher numbers
of qudits. Here we push this analysis further.

In the following, we will first introduce the Wigner-
Weyl-Moyal (WWM) formalism that forms the basis of
our approach in Section I and explain why its quadratic
Gauss sums are operationally equivalent to stabilizer
state inner products. We then sketch how to use the
WWM formalism to algebraically determine the bound
on the minimal number of necessary quadratic Gauss
sums. This is followed by our main results for t = 3,
t = 6 and t = 12 in Section II. We then disucss the
significance of the reduction we find in Section III and
conclude in Section IV.

I. THE WWM FORMALISM

Instead of considering the magic state in terms of vec-
tors in Hilbert space, we consider a kernel (or quasi-
probability) representation; given a complete set of
Hilbert-Schmidt orthogonal operators R̂(x), indexed by
x ≡ (xp,xq) ∈ ((Z/dZ)n)2, any operator Â ∈ B((Cd)n)
can be represented as

Â = d−1
∑
x∈

(Z/dZ)2n

Tr(R̂(x)Â)R̂(x) ≡
∑
x

A(x)R̂(x).

In particular, we consider the odd-prime d-dimensional
Weyl operators introduced by Wootters [13–15],

R̂(x) = d−n
∑

yp,yq∈
(Z/dZ)n

e
2πi
d (yp·xq−yqxp− 1

2yp·yq)ẐypX̂yq ,

where X̂ and Ẑ are d-dimensional generalized Pauli
operators [16]. R̂(x) are Hermitian, self-inverse and
unitary and so the coefficients ρ(x) are real-valued.
This representation is particularly simple for the Clif-
ford subtheory: the Wigner function of states A(x) =
ρ(x) are non-negative if and only if they are stabilizer
states [17, 18] and the representation of Clifford gates
UC(x) are symplectic positive maps that can be described
as affine transformations: [17, 19]: x′ ≡

(
x′p,x

′
q

)T
=

MC (xp,xq)
T

+ vC .
In the WWM formalism, Eq. 1 becomes

Pk =
∑
x∈D

 k∏
i=1

ρT (xi)

n∏
j=k+1

δ(xqj )

 , (2)

for

D =

{
x

∣∣∣∣ (M−1
C x+ v

)
n+1

mod dh = 0

}
(3)

for some h ∈ Z+ and (x)i is the ith element of x. The
Clifford sequence ÛC changes the restriction of the do-
main of the sum from xn+1 ≡ xq1 = 0 to D.

We showed previously [12] that

ρT⊗k(x) =

k∏
i=1

ρT (xi) =
∑

yq∈(Z/dZ)k

e
2πi

dh
P (yq,x), (4)

for P a polynomial in yq and x over Z, for p-odd-prime
qudits. We refer to yq as intermediate variables in order
to distinguish them from x ≡ (xp,xq), which are the
final variables at which the Wigner function is evaluated.

For instance, we found that the Wigner function of the
two-qutrit tensored T gate magic state [20, 21], |T 〉⊗2

=

(|0〉 + e
2πi
9 |1〉 + e−

2πi
9 |2〉)⊗2, can be transformed from

initial to final variables of ρT⊗2 with C2
1,2 to obtain [12],

1

32

∑
yq1∈Z/3Z

exp

{
2πi

32

[
8x3

q1 + 7y3
q1

]}
A2(yq1 ,x). (5)

where

A2(yq1 ,x) =
∑

yq2∈Z/3Z

e
2πi
3 P (yq1 ,yq2 ,x),

for P (yq1 , yq2 ,x) a polynomial over Z that is quadratic
in yq2 , where

A2(yq1 ,x) (6)

=
∑

yq2∈Z/3Z

e
2πi
32

[3x2
q1
xq2+6xq1x

2
q2

+6x2
q1
yq1+6xq1xq2yq1 ]

×e
2πi
32

[6x2
q2
yq1+6xq1y

2
q1

+3xq2y
2
q1

+3x2
q1
yq2+3xq1xq2yq2 ]

×e
2πi
32

[6xq1yq1yq2+3xq2yq1yq2+6y2q1
yq2+6xq1y

2
q2

+3yq1y
2
q2

]

×e
2πi
32

[xp1 (6yq1+3xq1 )+xp2 (6yq2+3xq2 )].

Eq. 5 is a Wigner function that is a linear combina-
tion of three terms indexed by yq1 , each of which is a
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k 1 2 3 4 5 6 7 8 9 10 11 12 13 14

qubit:
χk 2 2 3 4 6 7 12 inaccessible to Monte Carlo
χ
t/k
k 2t 20.5t 2∼0.528t 2∼0.468t

qutrit:
χk 3 3 ≤ 8 inaccessible to Monte Carlo
ξk 3 3 8 9 24 24 ≤ 72 72 ≤ 216 216 ≤ 486 486 ≤ 1458 1458

ξ
t/k
k 3t 30.5t 3∼0.631t 3∼0.482t 3∼0.512t 3∼0.469t

TABLE I. Upper bound of qubit and qutrit T gate magic state stabilizer ranks χk are tabulated and compared to qutrit
quadratic Gauss sum ranks ξk along with their tensor upper bounds (χt/k

k and ξt/kk respectively). The reductions in the qubit
scaling for k = 1, k = 2, k = 3 and k = 6 are observed for qutrits as well. Moreover, a further reduction is observed for qutrits
for k = 12, a result beyond the reach of Monte Carlo numerical search. (χk)

t/k is only listed at the k values at which there is
a reduction over the trivial tensor bound.

quadratic Gauss sum over yq2 . Quadratic Gauss sums re-
quire O(k3) computations to evaluate for k qudits; their
value depends on the determinant of their covariance
matrix and so they are governed by the cost of Gaus-
sian elimination of a matrix of size k × k with entries in
Z/dZ [12]. Importantly, stabilizer state inner products
require Gaussian elimination of a matrix with the same
properties [11]. WWM quadratic Gauss sums are thus
operationally equivalent to Hilbert space stabilizer state
inner products.

As a result, we proceed to determine the cost of eval-
uating Eq. 2 in terms of the number of quadratic Gauss
sums in its sum. We previously showed that to find this
number it is sufficient to just determine the number of
quadratic Gauss sums necessary to evaluate ρT⊗k(x) for
fixed x [12][22]. We define the minimum of this num-
ber ξk, and call it the quadratic Gauss sum rank. More
precisely, the overall cost of evaluating Eq. 2 scales as
O(ξk) for k ≤ 2 [12], and empirically continues to do so
for k > 2. Since the product of two Wigner functions on
separate qudits is also a Wigner function, ξk satisfies the
same trivial tensor bound property as χk: ξt ≤ (ξk)t/k

for t a multiple of k. Therefore, calculating Eq. 2 using
the WWM formalism scales as O(ξkk

3), similarly to how
using stabilizer state inner products scales as O(χkk

3).
As described in [12], the prime-d exponential sum, for

arguments in Z, is invariant under some linear transfor-
mation M: ∑

yq∈
(Z/dZ)m

exp
2πi

d
P (Myq,xp,xq) (7)

=
∑

M−1yq∈
(Z/dZ)m

exp
2πi

d
P (yq,xp,xq)

=
∑
yq∈

(Z/dZ)m

exp
2πi

d
P (yq,xp,xq).

This is because a linear transformation over the domain
of a field merely permutes the order of the sum.

It further follows that, given a marginal trace over
a single degree of freedom, a linear transformation M

merely changes the degree of freedom that is traced over:∑
yq∈

(Z/dZ)m

∑
x∈

(Z/dZ)2m

xm+1=0

e
2πi
d P (yq,Mx) (8)

=
∑
yq∈

(Z/dZ)m

∑
M−1x∈
(Z/dZ)2m

(M−1x)m+1=0

e
2πi
d P (yq,x).

=
∑
yq∈

(Z/dZ)m

∑
x∈

(Z/dZ)2m

e
2πi
d P (yq,(xp,xq))δ((M−1x)m+1),

where again, the final simplification results from recog-
nizing that the linear transformation only permutes the
order of the sum.

These identities generalize to displaced linear transfor-
mations (affine transformations) [12]. The latter capture
Clifford transformations, which form a symplectic sub-
group.

Eq. 2 is of the form of Eq. 8. We investigate the mini-
mal number of terms in its sum after any Clifford trans-
formation ÛC in Eq. 2. Therefore, due to Eq. 7 and
Eq. 8, it follows that we are free to additionally transform
Eq. 2’s yq and x variables by a linear tranformation cor-
responding to Clifford transformations without affecting
the worst-case analysis of the minimum number of sums.

Here, we find that products of the Clifford controlled-
not gate are sufficient for our purposes.

The choice of a sequence of controlled-not transforma-
tions is not unique and only serves to make any reduc-
tion in the number of quadratic Gauss sums to be more
easily recognized in an algebraic analysis. Generally, we
choose a transformation so that half of the qudit degrees
of freedom are “cubic” variables and the other half are
“quadratic” variables—for fixed cubic variables, the re-
maining variables form a quadratic Gauss sum. This al-
lows the “cubic” variables to function as indices that label
the quadratic Gauss sums and determine their covariance
and linear coefficients.

Further controlled-not transformations are made to re-
duce the number of quadratic Gauss sums by transform-
ing the coefficients of some cubic indexing variables so
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that they only depend on other cubic indexing variables.
This allows for repetitions or simplifications to become
apparent without relying on quadratic Gauss sum iden-
tities. This allows only the indexing variables to be in
the arguments of any additional Kronecker delta func-
tions that reduce the number of quadratic Gauss sums
that must be included in the full sum.

We employ this approach to operationally define the
cost of evaluating Pk in Eq. 2. In particular, this paper
examines the odd-prime d-dimensional qudit ξk for k > 2.
We focus on the smallest such qudit: the qutrit (d = 3).

II. RESULTS

In much the same way that stabilizer decompositions
of a state are generally non-unique, decompositions of
a Wigner function in terms of quadratic Gauss sums
are also generally non-unique. This freedom is due to
the invariance of the discrete sum in Eq. 4 under lin-
ear transformations of its variables yq as these lie on
a finite odd-prime field Z/pZ. As we showed in the
previous section, this is true for both the intermediate
variables yq and the final phase space variables x when
the full trace is taken in Eq. 2, despite the additional
restriction in the domain. We use this freedom to al-
gebraically lower the number of quadratic Gauss sums
that are obtained from the trivial tensor bound for the
Wigner function of higher tensor powers of the T gate
magic state. We find that products of linear transfor-
mations corresponding to the Clifford controlled-not Ci,j
gate between qudit i and j, MCi,j : (xpi , xpj , xqi , xqj )→
(xpi , xpj −xpi mod d, xqi +xqj mod d, xqj ), are sufficient
for this purpose.

The trivial tensor bound indicates that ξ3 ≤ 9. Af-
ter transformation by a C2

1,2, C2
1,3 and C2,3 (the overall

transformation we call C3), we find that the three-qutrit
T gate magic state can be written as:

ρT⊗3(MC3x) (9)

=
∑

yq1 ,yq2
∈Z/32Z

exp

[
2πi

9

(
7y3
q1 + 8x3

q1

)]
A3(yq1 , yq2 ,x)

× [δ(¬(yq1 − xq1)) + δ(yq1 − xq1)δ(∆)] ,

where δ(¬α) = δ((αp−1−1)p−1) is logical negation. Log-
ical negation of an argument α for prime p is simply
αp−1 mod p: if x 6= 0 then xp−1 mod p = 0 and if x = 0
then (x − 1)p−1 mod p = 1. A3 is a quadratic Gauss
sum and ∆ is a the linear coefficient of this sum (see
Appendix A for their explicit form).

Eq. 9 is a linear combination of nine quadratic Gauss
sums indexed by yq1 and yq2 . However, the additional
Kronecker delta functions explicitly express the contra-
positive of the condition that these quadratic Gauss sums
are zero at yq1 = xq1 and ∆ ∈ {1, 2}. Moreover, the delta
function terms are disjoint; given any (xp,xq) and yq,
only one term can be non-zero. However, given x, all the

terms are zero for at least one value of yq in the sum,
thereby reducing the number of quadratic Gauss sums.

Hence, the Wigner function of three tensored qutrit
magic states can be expressed in terms of only ξ3 = 8
non-zero quadratic Gauss sums. Extrapolating to higher
t using the tensor bound, this result shows that (ξ3)t/3 =

3
log 8
3 log 3 t = 3∼0.63t quadratic Gauss sums can represent t

magic states, for t a multiple of 3.
We also find numerical evidence that χ3 = 8 from run-

ning the same Monte Carlo search algorithm as [10] but
adapted for qutrits; we perform a random walk on the set
of χ stabilizer states and try to maximize the projection
between the linear subspace they span and the k-tensored
T gate magic state φ: F = ||Πφ||, where Π is the pro-
jector onto the linear subspace spanned by the stabilizer
states. At each step, one of the stabilizer states φi is ran-
domly selected and a random Pauli operator is applied
to it: φi → (I −P )(I −ωP )φi, for ω = exp 2πi

3 . The new
(renormalized) stabilizer state is accepted if it increases
F ’s value. It is rejected if (I − P )(I − ωP )φi = 0. Oth-
erwise, it is accepted with probability exp [−β(F − F ′)],
where F and F ′ are the values of the projection before
and after the step, respectively. The walk is stopped
when F = 1, its maximum. We begin with a small β and
“anneal” to a large final value.

This approach produces results that are possibly not
converged for the 3-tensored qutrit T gate magic state
at lower numbers of stabilizer states, since the search
space is very large (comparable to t = 7 for qubits). The
results are illustrated in Figure 1 and show a stabilizer
decomposition upper bound of 8. This further establishes
evidence that χk = ξk for k = 1, 2, and 3.
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FIG. 1. Three qutrit Monte Carlo stabilizer rank search.

The six-qutrit case undergoes a further reduction due
to two sets of quadratic Gauss sums evaluating to the
same value (see Appendix B). These sets are indexed by
the cubic intermediate variable yq3 , for yq1 fixed. In the
worst case over Clifford gates ÛC in Eq. 1, only this last
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reduction occurs and so the Wigner function consists of
ξ6 = 24(= 33 − 3) quadratic Gauss sums. This leads to
a trivial tensor bound of ξt ≤ (ξ6)t/6 = 3∼0.482t for t a
multiple of 6.

Lastly, the twelve-qutrit case possesses two sets of
quadratic Gauss sums that evaluate to the same value, in
the worst case over Clifford gates ÛC , and are indexed by
two values of the intermediate cubic variable yq6 . How-
ever, compared to the six-qutrit case, this condition holds
for more indexing variables than would be proportionally
expected: yq1 , . . ., yq4 . Therefore, in the worst-case this
Wigner function consists of ξ12 = 34× 6 = 486 quadratic
Gauss sums. This leads to a trivial tensor bound of
ξt ≤ (ξ12)t/12 = 3∼0.469t, for t a multiple of 12.

Results up to t = 14, including the bounds discussed
above, are tabulated in Table I.

The trivial tensor bounds set the cost of classical strong
simulation of Pk, and we can compare this cost to that
of existing simulation methods. In Figure 2, we com-
pare these bounds to the cost of a Monte Carlo numer-
ical method [23] based on qutrit Wigner function sam-
pling [24]. Note that the direct evaluation of Pk using
the WWM formalism is an explicit algorithm (see Table
1 in [12]) that provably saturates the bounds shown in
Figure 2 for k ≤ 2, and empirically for k > 2. We find
that the new bounds provide an exponential improve-
ment over existing methods.
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Pashayan
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(3~0.8t)
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t/12=3~0.469t
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FIG. 2. Logarithm (base 10) of the worst-case number of
terms required to evaluate Pk for qutrits in Eq. 2 for a Monte
Carlo method based on Wigner negativity [23] (dashed curve)
compared to the qutrit trivial tensor bound from (ξ1)

t, (ξ2)t/2,
(ξ6)

t/6 and (ξ12)
t/12 (solid curves).

III. DISCUSSION

We have found that reductions in ξt over the trivial
tensor bound also exist for t = 3 and t = 6 as they do in
χt for qubits. Unlike the numerical approach, we are able
to push far past t = 7 and extend our search to t = 14.
We found that the upper bound cannot be improved over
the trivial tensor bound until t = 12 where the new rank
produces an improved scaling bound of < 3∼0.469t for
qutrits (for t a multiple of 12).

Using the same argument as in [11], and the fact that
the n-qutrit stabilizer group has size 3n [25], the number
of pure stabilizer states on n qutrits is

3n
n−1∏
k=0

(7n/2n − 2k)/

n−1∏
k=0

(3n − 2k) = 3(1/2+o(1))n2

.

Despite the fact that this space grows faster than the
2(1/2+o(1))n2

n-qubit stabilizer subspace [11], with the al-
gebraic approach presented here we are able to bound
well past t = 7 to t = 14, an increase in the stabilizer
subspace of > 10104

if the newly discovered upper bound
ξ14 ≤ 1458 is tight.

Examining the results in Table I, a deviation from the
relationship 2αt ↔ 3αt can be observed for the tensor
upper bounds (χk)t/k and (ξk)t/k for k > 2. A similar
deviation was found for the approximate stabilizer rank
of qutrits [26]. This is due to the conversion issue that
occurs from the exponential factor α being a real number
while χk and ξk are constrained to be integers.

Finally, the techniques used in this work can be ex-
tended to d = 2 despite the fact that the WWM formal-
ism is not real-valued for qubits. This was accomplished
in recent work [27] and produced bounds on the classical
simulation cost of qubit circuits that similarly further
lowered the stabilizer rank for the qubit T gate magic
state from tensor products for k > 7.

IV. CONCLUSION

In this study we found that the cost of classical strong
simulation of universal quantum circuits with qutrit T
gate magic states using the WWM formalism, which
produces a linear combination of terms that are cost-
equivalent to stabilizer decompositions, exhibits novel re-
ductions for t = 1, 2, 3 and 6 qutrits, in agreement with
the qubit case. Moreover, as this is an algebraic method
that is more tractable than numerical search for stabilizer
rank by Monte Carlo methods, we are able to derive sim-
ulation cost bounds up to t = 14 qutrit magic states and
find an improvement to the trivial tensor bound from the
12-qutrit T gate magic state. Numerical implementation
of this method may allow for increasing this search to
even larger t values.
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Appendix A: Three Qutrit Magic State

We act on the initial state with C2
1,2, C2

1,3, and C2,3 (the overall transformation we call C3), which transforms
yq1 → yq1 − yq2 , yq1 → yq1 − yq3 , and yq2 → yq2 + yq3 , respectively. We also act on the final phase space variables with
the same operators.This produces:

ρ(MC3x) =
∑

yq1 ,yq2
∈Z/32Z

exp

[
2πi

9

(
7y3
q1 + 8x3

q1

)]
A3(yq1 , yq2 , yq3 ,x)
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A3(yq1 , yq2 , yq3 , xp1 , xp2 , xp3 , xq1 , xq2 , xq3) (A1)

=
∑
yq3
∈Z/32Z

exp

{
2πi

3

[
− y2

q1yq2 + yq1y
2
q2 − yq2xp2 − y

2
q1xq1 − yq1yq2xq1 − y

2
q2xq1 + xp1xq1

+y2
q3(yq1 − xq1) + y2

q1xq2 + yq1yq2xq2 + xp2xq2 + x2
q1xq2 − xq1x

2
q2 + yq2xq1(xq1 + xq2)

−yq1(xp1 + x2
q1 + xq1xq2 + x2

q2)− y2
q1xq3 − yq1yq2xq3 + y2

q2xq3 + xp3xq3 − x2
q1xq3

−xq1xq2xq3 + x2
q2xq3 − yq2(xq1 + xq2)xq3 + yq1(xq1 − xq2)xq3 − yq1x2

q3 − xq1x
2
q3 − xq3 + ∆yq3

]}

and

∆ = y2
q1 + yq1yq2 − y2

q2 − xp3 − x
2
q1 − xq1xq2 + x2

q2 (A2)
−yq2(xq1 + xq2) + xq1xq3 + yq1(xq1 − xq2 + xq3) + 1.

Appendix B: Six Qutrit Magic State

After transforming the intermediate and final phase space variables by C2
1,2, C2

3,4, C2
5,6, C2

3,5, C2
1,3, C2

4,3, C2
6,5, C2

3,5,
C2

6,3, C2
5,2, C2

2,4, C2
6,3, C4,5, C2

4,3, C2
3,2, C6,2, C2

5,3, C2
6,3, C2,1, C1,5, C3,5, C2

5,3, C3,5, and C1,3 (the overall transformation
we call C6), we find:

ρ(MC6(xp1 , xp2 , xp3 , xp4 , xp5 , xp6 , xq1 , xq2 , xq3 , xq4 , xq5 , xq6))

=
∑

yq1 ,yq3 ,yq4
∈Z/32Z

exp

[
2πi

9

(
4y3
q1 + 2x3

q1

)]
exp

[
2πi

3
Γ6(yq1 , yq3 , yq4 ,xp,xq)

]
A6(yq,xp,xq) (B1)

where

Γ6(yq1 , yq3 , yq4 ,xp,xq) (B2)
≡ Γ6(yq1 , yq3 , yq4 , xp1 , xp2 , xp3 , xp4 , xp5 , xp6 , xq1 , xq2 , xq3 , xq4 , xq5 , xq6)

= 2y2
q3yq4 + y3

q4 + 2yq3xp3 + 2yq4xp4 + 2y2
q4xq1 + xp1xq1 + 2yq4x

2
q1 + 2yq3yq4xq3 + xp3xq3 + yq4x

2
q3

+(xp4 + xq1(yq4 + 2xq1) + (yq3 + xq3)2)xq4 + 2xq1x
2
q4 + 2x3

q4 + y2
q1(yq4 + 2(xq1 + xq4))

+yq1(y2
q4 + 2(xp1 + x2

q1) + xq1xq4 + 2x2
q4 + yq4(xq1 + xq4)),

A6(yq,xp,xq)

=
∑

yq2 ,yq5 ,yq6
∈Z/32Z

exp

{
2πi

3

[
xp2xq2 + x2

q2(2yq1 + 2yq4 + 2xq1 + 2xq4) + Σyq5 y
2
q5

+Σyq6 y
2
q6 + Σyq2 y

2
q2 + ∆yq2

yq2 + (yq3 + 2yq4 + xq3 + 2xq4)x2
q5 + ∆2q5yq5 (B3)

+xp5xq5 + xp6xq6 + 2(yq3 + yq4 + xq3 + xq4)x2
q6 + Σyq6 yq6

]}
,

for

Σyq2 = yq1 + yq4 + 2(xq1 + xq4), (B4)
Σyq5 = 2yq3 + yq4 + xq3 + 2xq4 , (B5)
Σyq6 = yq3 + yq4 + 2xq3 + 2xq4 , (B6)
∆yq2

= 2xp2 + xq2(yq1 + yq4 + xq1 + xq4), (B7)
∆yq5

= 2xp5 + (2yq3 + yq4 + 2xq3 + xq4)xq5 , (B8)



8

and

∆yq6
= 2xp6 + (yq3 + yq4 + xq3 + xq4)xq6 . (B9)

In Eq. B1, the intermediate variables yq2 , yq5 , and yq6 are quadratic while yq1 , yq3 , and yq4 are cubic. yq1 is the only
intermediate variable that lies in the full 9-cycle and with respect to the intermediate variables it only has cross-terms
with the cubic ones. Hence, yq1 indexes the quadratic sums over the intermediate quadratic variables in terms of
3-cocycles {0, 3, 6}, {1, 4, 7}, and {2, 5, 8}. The three cubic variables each take three non-periodic values which leads
to 33 = 9× 3 quadratic Gauss sums (that are 3−dimensional). However, we can reduce this number by noticing some
properties.

If the linear coefficient of yq5 or yq6 is non-zero anywhere, it is non-zero for at least three values of (yq3 , yq4)
independent of yq1 . If the linear coefficient of yq2 is non-zero anywhere, it is non-zero for at least three values of (yq1 ,
yq4) independent of yq3 . Otherwise, yq1 = xq1 , yq3 6= xq3 gives you a set of quadratic Gauss sums (indexed by yq4 and
yq3) that must add up to a real number because yq3 ’s quadratic coefficient is w.r.t. xq3 and so is equal for yq3−xq3 6= 0
and so only its linear coefficient differs (linearly) meaning that any imaginary parts must cancel out when running
through all values of its quadratic coefficient: (yq4 − xq4). Hence, yq3 6= xq3 index two sets of quadratic Gauss sums
indexed by yq4 that each sum up to the same total. Thus, it is sufficient to sum up one set and multiply by two. This
takes six quadratic Gauss sums and replaces them with three.

This can be summarized by the following equation:

ρT⊗6(MC6
x) (B10)

=
∑

yq1 ,yq3 ,yq4
∈Z/32Z

e
2πi
9 (4y3q1

+2x3
q1

)e
2πi
3 Γ6(yq1 ,yq3 ,yq4 ,xp,xq)

×A6(yq,xp,xq)

×

[
δ((Σyq2 ∧∆yq2

) ∨ (Σyq5 ∧∆yq5
) ∨ (Σyq6 ∧∆yq6

))

+[δ(yq3 − xq3) + 2δ(yq3 − xq3 + 1)]

×δ(¬(Σyq2 ∨ Σyq5 ∨ Σyq6 ))δ(yq1 − xq1)

+δ(¬(Σyq2 ∨ Σyq5 ∨ Σyq6 ))δ(¬(yq1 − xq1))

]
,

where

δ(α ∨ β) = δ(α)δ(¬β) + δ(¬α)δ(β) (B11)
+δ(α)δ(β), (logical inclusive disjunction)

and

δ(α ∧ β) = δ(α)δ(β), (logical conjunction) (B12)

and the arguments for the delta functions are taken mod p odd-prime.
In Eq. B10, the first term includes all cases where the quadratic coefficients of yq2 , yq5 , and yq6 are zero along

with their respective linear coefficients, as these produce plane waves that do not evaluate to zero. The second term
includes all cases where all these quadratic coefficients are non-zero and yq1 = xq1 when the two sets of quadratic
Gauss sums indexed by yq3 6= xq3 sum up to the same value. The third term includes the remaining terms when the
quadratic coefficients of yq2 , yq5 , and yq6 are non-zero and yq1 6= xq1 .

As before for three-qutrit T gate magic state, these three terms are disjoint–only one term is non-zero given (xp,xq)
and yq. However, from the discussion earlier, there are fewer terms here than for the unfettered sum over yq; the
number of quadatic Gauss sums is reduced by three.

The same sort of analysis can be found for the corresponding final phase space variables.

Appendix C: Twelve Qutrit Magic State

After transforming the intermediate and final phase space variables by C2
12,11, C2

10,9, C2
8,7, C2

6,5, C2
4,3, C2

2,1, C2
10,12

C2
8,10, C2

6,8, C2
4,6, C2

2,4, C2
12,9, C9,12, C2

9,6, C6,9, C2
10,7, C7,10, C2

3,5, C2
7,5, C5,7, C2

3,1, C1,3, C2
5,3, C3,5, C2

8,5, C5,8, C9,7,
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C2
1,3, C5,3, C4,5, C6,3, C2

5,3, C3,5, C5,6, C2
6,1, C11,6, C2

6,1, C11,1, C11,2, C11,3, C2
11,4, C7,11, C7,5, C2

11,7, and C7,11, (the
overall transformation we call C12), we find:

ρ(MC12(xp1 , . . . , xp12 , xq1 , . . . , xq12))

=
∑

yq1 ,...,yq6
∈Z/32Z

exp

[
2πi

9

(
7y3
q2 + 8x3

q2

)]
exp

[
2πi

3
Γ12(yq1 , . . . , yq6 ,xp,xq)

]
A12(yq,xp,xq), (C1)

where

Γ12(yq1 , . . . , yq6 ,xp,xq) = (C2)
2y3
q3 + 2y2

q3yq4 + yq3y
2
q4 + 2y2

q3yq5 + 2yq3yq4yq5 + 2yq3y
2
q5 + 2y2

q3yq6 + 2yq3yq4yq6
+yq3xp11 + yq5xp11 + yq6xp11 + yq5xp3 + yq6xp3 + yq3xp4 + 2yq4xp4 + yq5xp4 + yq6xp4 + 2yq3xp5
+yq5xp5 + 2yq6xp5 + 2yq6xp6 + 2yq3yq4xq1 + 2yq3yq5xq1 + 2yq5yq6xq1 + xp1xq1 + 2xp11xq1

+2xp3xq1 + 2xp4xq1 + xp5xq1 + y2
q3xq2 + yq3yq4xq2 + 2y2

q4xq2 + 2yq3yq5xq2 + 2yq4yq6xq2 + 2y2
q6xq2

+xp2xq2 + yq3xq1xq2 + yq3x
2
q2 + yq4x

2
q2 + 2yq6x

2
q2 + 2yq3yq4xq3 + 2y2

q4xq3 + 2yq3yq5xq3 + yq4yq5xq3

+y2
q5xq3 + 2yq3yq6xq3 + yq4yq6xq3 + 2xp11xq3 + 2xp4xq3 + xp5xq3 + 2yq4xq1xq3 + 2yq5xq1xq3

+2yq3xq2xq3 + yq4xq2xq3 + 2yq5xq2xq3 + xq1xq2xq3 + x2
q2xq3 + yq4x

2
q3 + yq5x

2
q3 + yq6x

2
q3 + xq2x

2
q3 + x3

q3

+y2
q3xq4 + yq3yq4xq4 + yq3yq5xq4 + yq3yq6xq4 + xp4xq4 + 2yq3xq1xq4 + yq3xq2xq4 + yq4xq2xq4 + 2yq6xq2xq4

+x2
q2xq4 + 2yq3xq3xq4 + yq4xq3xq4 + yq5xq3xq4 + yq6xq3xq4 + 2xq1xq3xq4 + xq2xq3xq4 + x2

q3xq4 + 2yq3x
2
q4 + 2xq2x

2
q4

+2xq3x
2
q4 + y2

q3xq5 + 2yq3yq4xq5 + y2
q4xq5 + 2yq4yq5xq5 + 2y2

q5xq5 + yq3yq6xq5 + 2yq4yq6xq5 + 2xp3xq5
+xp5xq5 + 2yq3xq1xq5 + yq4xq1xq5 + yq5xq1xq5 + 2yq6xq1xq5 + 2yq4xq2xq5 + yq5xq2xq5 + 2xq1xq2xq5

+2x2
q2xq5 + 2yq3xq3xq5 + 2yq4xq3xq5 + yq6xq3xq5 + 2xq1xq3xq5 + x2

q3xq5 + 2yq3xq4xq5 + 2yq4xq4xq5

+2yq5xq4xq5 + 2yq6xq4xq5 + xq1xq4xq5 + 2xq2xq4xq5 + 2xq3xq4xq5 + x2
q4xq5 + 2yq3x

2
q5 + 2yq5x

2
q5

+yq6x
2
q5 + xq1x

2
q5 + 2xq2x

2
q5 + 2xq3x

2
q5 + 2x3

q5 + (y2
q3 + 2xp11 + 2xp3 + 2xp4 + xp5 + xp6 + 2yq5xq1

+xq2(yq6 + 2xq2) + x2
q3 + (2xq2 + xq3)xq4 + yq3(yq4 + 2xq3 + xq4 + xq5) + xq5(2xq1 + xq3 + 2xq4 + xq5)

+yq4(2xq2 + xq3 + 2xq5))xq6 + 2xq2x
2
q6 + yq1(yq5yq6 + 2xp1 + xp11 + xp3 + xp4 + 2xp5 + 2yq4xq3 + 2yq5xq3 + xq2xq3

+2xq3xq4 + yq4xq5 + yq5xq5 + 2yq6xq5 + 2xq2xq5 + 2xq3xq5 + xq4xq5 + x2
q5 + yq2(2yq3 + xq3 + 2xq5)

+yq3(yq4 + yq5 + xq2 + 2(xq4 + xq5)) + 2(yq5 + xq5)xq6) + y2
q2(2yq3 + 2yq4 + yq6 + 2xq2 + xq3 + xq4 + 2(xq5 + xq6))

+yq2(2y2
q3 + y2

q4 + y2
q6 + 2xp2 + yq6xq2 + 2x2

q2 + 2yq5xq3 + xq1xq3 + 2xq2xq3 + x2
q3 + 2yq6xq4 + 2xq2xq4

+xq3xq4 + 2x2
q4 + yq3(2yq4 + yq5 + xq1 + 2(xq2 + xq3) + xq4) + yq5xq5 + 2xq1xq5 + xq2xq5 + 2xq4xq5 + 2x2

q5 +

(yq6 + xq2 + 2xq4)xq6 + 2x2
q6 + yq4(yq6 + 2xq2 + xq3 + xq4 + 2(xq5 + xq6)))
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A12(yq,xp,xq) (C3)

=
∑

yq7 ,...,yq12
∈Z/32Z

exp

{
2πi

3

[
Σyq12 y

2
q12 + x2

q12(2yq3 + 2yq5 + 2xq3) + Σyq10 y
2
q10 + x2

q10(2yq3 + 2xq3 + xq5) + Σyq8 y
2
q8

+Σyq9 y
2
q9 + Σyq7 (yq6)y2

q7 + Σyq11 (yq6)y2
q11 + x2

q11(2yq3 + 2yq5 + 2yq6 + 2xq3 + 2xq6)

+xq12(yq1yq3 + yq1yq5 + yq3yq6 + yq5yq6 + xp12 + yq3xq1 + yq5xq1 + yq1xq3
+yq6xq3 + xq1xq3 + yq3xq6 + yq5xq6 + xq3xq6) + ∆yq12

yq12

+xq11(2yq1yq3 + 2yq1yq5 + yq3yq5 + y2
q5 + 2yq1yq6 + yq5yq6 + xp11 + 2yq3xq1

+2yq5xq1 + 2yq6xq1 + 2yq1xq3 + yq5xq3 + 2xq1xq3 + yq3xq5 + yq5xq5 + yq6xq5 + xq3xq5

+2yq1xq6 + yq5xq6 + 2xq1xq6 + xq5xq6) + xq10(yq1yq3 + 2y2
q3 + yq3yq5 + yq3yq6

+xp10 + yq3xq1 + yq1xq3 + yq3xq3 + yq5xq3 + yq6xq3 + xq1xq3 + 2x2
q3 + 2yq1xq5 + 2yq5xq5

+2yq6xq5 + 2xq1xq5 + x2
q5 + yq3xq6 + xq3xq6 + 2xq5xq6) + ∆yq10

yq10 + ∆yq11
yq11

+(2y2
q1 + yq1yq2 + 2yq2yq3 + y2

q3 + 2yq1yq4 + yq3yq4 + 2yq1yq5 + 2yq2yq5

+yq4yq5 + 2y2
q5 + 2yq1yq6 + yq2yq6 + 2yq3yq6 + 2yq4yq6 + yq5yq6 + xp7 + yq1xq1

+yq2xq1 + 2yq4xq1 + 2yq5xq1 + 2yq6xq1 + 2x2
q1 + yq1xq2 + 2yq3xq2 + 2yq5xq2 + yq6xq2

+xq1xq2 + 2yq2xq3 + 2yq3xq3 + yq4xq3 + 2yq6xq3 + 2xq2xq3 + x2
q3 + 2yq1xq4 + yq3xq4

+yq5xq4 + 2yq6xq4 + 2xq1xq4 + xq3xq4 + 2yq1xq5 + yq3xq5 + yq5xq5 + 2yq6xq5 + 2xq1xq5
+xq3xq5 + 2yq1xq6 + yq2xq6 + 2yq3xq6 + 2yq4xq6 + yq5xq6 + 2xq1xq6 + xq2xq6 + 2xq3xq6

+2xq4xq6 + 2xq5xq6)xq7 + (yq1 + 2yq3 + 2yq5 + yq6 + xq1 + 2xq3 + xq6)x2
q7 + ∆yq7

yq7

+(2yq1yq2 + y2
q2 + 2yq1yq3 + 2yq2yq3 + y2

q3 + yq1yq4 + yq2yq4 + yq3yq4

+y2
q4 + yq2yq5 + yq3yq5 + 2yq4yq5 + yq2yq6 + yq3yq6 + 2yq4yq6 + xp8 + 2yq2xq1

+2yq3xq1 + yq4xq1 + 2yq1xq2 + 2yq2xq2 + 2yq3xq2 + yq4xq2 + yq5xq2 + yq6xq2 + 2xq1xq2

+x2
q2 + 2yq1xq3 + 2yq2xq3 + 2yq3xq3 + yq4xq3 + yq5xq3 + yq6xq3 + 2xq1xq3 + 2xq2xq3

+x2
q3 + yq1xq4 + yq2xq4 + yq3xq4 + 2yq4xq4 + 2yq5xq4 + 2yq6xq4 + xq1xq4 + xq2xq4

+xq3xq4 + x2
q4 + yq1xq5 + 2yq2xq5 + 2yq3xq5 + yq4xq5 + 2yq5xq5 + 2yq6xq5 + xq1xq5

+2xq2xq5 + 2xq3xq5 + xq4xq5 + yq2xq6 + yq3xq6 + 2yq4xq6 + xq2xq6 + xq3xq6 + 2xq4xq6

+2xq5xq6)xq8 + (2yq2 + 2yq3 + yq4 + 2xq2 + 2xq3 + xq4 + xq5)x2
q8 + ∆yq8

yq8 + (2y2
q1

+2yq1yq3 + yq3yq4 + y2
q4 + yq1yq6 + yq3yq6 + yq4yq6 + xp9 + yq1xq1 + 2yq3xq1

+yq6xq1 + 2x2
q1 + 2yq1xq3 + yq4xq3 + yq6xq3 + 2xq1xq3 + yq3xq4 + 2yq4xq4 + yq6xq4

+xq3xq4 + x2
q4 + yq1xq5 + 2yq4xq5 + 2yq6xq5 + xq1xq5 + 2xq4xq5 + yq1xq6 + yq3xq6

+yq4xq6 + xq1xq6 + xq3xq6 + xq4xq6 + 2xq5xq6)xq9 + (2yq1 + 2yq3 + 2yq4 + 2xq1 + 2xq3

+2xq4 + xq5)x2
q9 + ∆yq9

yq9

]}
.
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where

Σyq7 (yq6) = (2yq1 + yq3 + yq5 + 2yq6 + xq1 + 2xq3 + xq6) (C4)
Σyq8 = (yq2 + yq3 + 2yq4 + 2xq2 + 2xq3 + xq4 + xq5) (C5)
Σyq9 = (yq1 + yq3 + yq4 + 2xq1 + 2xq3 + 2xq4 + xq5) (C6)

Σyq10 = (yq3 + 2xq3 + xq5) (C7)
Σyq11 (yq6) = (yq3 + yq5 + yq6 + 2xq3 + 2xq6) (C8)

Σyq12 = (yq3 + yq5 + 2xq3) (C9)

∆yq7
= (y2

q1 + 2yq1yq2 + yq2yq3 + 2y2
q3 + yq1yq4 + 2yq3yq4 + yq1yq5 + yq2yq5 + 2yq4yq5 + y2

q5 (C10)
+yq1yq6 + 2yq2yq6 + yq3yq6 + yq4yq6 + 2yq5yq6 + 2xp7 + yq1xq1 + yq2xq1 + 2yq4xq1 + 2yq5xq1

+2yq6xq1 + 2x2
q1 + yq1xq2 + 2yq3xq2 + 2yq5xq2 + yq6xq2 + xq1xq2 + 2yq2xq3 + 2yq3xq3 + yq4xq3

+2yq6xq3 + 2xq2xq3 + x2
q3 + 2yq1xq4 + yq3xq4 + yq5xq4 + 2yq6xq4 + 2xq1xq4 + xq3xq4 + 2yq1xq5

+yq3xq5 + yq5xq5 + 2yq6xq5 + 2xq1xq5 + xq3xq5 + 2yq1xq6 + yq2xq6 + 2yq3xq6 + 2yq4xq6 + yq5xq6
+2xq1xq6 + xq2xq6 + 2xq3xq6 + 2xq4xq6 + 2xq5xq6 + (2yq1 + yq3 + yq5 + 2yq6 + 2xq1 + xq3 + 2xq6)xq7)

∆yq8
= (yq1yq2 + 2y2

q2 + yq1yq3 + yq2yq3 + 2y2
q3 + 2yq1yq4 + 2yq2yq4 + 2yq3yq4 + 2y2

q4 (C11)
+2yq2yq5 + 2yq3yq5 + yq4yq5 + 2yq2yq6 + 2yq3yq6 + yq4yq6 + 2xp8 + 2yq2xq1 + 2yq3xq1

+yq4xq1 + 2yq1xq2 + 2yq2xq2 + 2yq3xq2 + yq4xq2 + yq5xq2 + yq6xq2 + 2xq1xq2 + x2
q2 + 2yq1xq3

+2yq2xq3 + 2yq3xq3 + yq4xq3 + yq5xq3 + yq6xq3 + 2xq1xq3 + 2xq2xq3 + x2
q3 + yq1xq4 + yq2xq4 + yq3xq4

+2yq4xq4 + 2yq5xq4 + 2yq6xq4 + xq1xq4 + xq2xq4 + xq3xq4 + x2
q4 + yq1xq5 + 2yq2xq5 + 2yq3xq5 + yq4xq5

+2yq5xq5 + 2yq6xq5 + xq1xq5 + 2xq2xq5 + 2xq3xq5 + xq4xq5 + yq2xq6 + yq3xq6 + 2yq4xq6 + xq2xq6 + xq3xq6
+2xq4xq6 + 2xq5xq6 + (yq2 + yq3 + 2yq4 + xq2 + xq3 + 2xq4 + 2xq5)xq8)

∆yq9
= (y2

q1 + yq1yq3 + 2yq3yq4 + 2y2
q4 + 2yq1yq6 + 2yq3yq6 + 2yq4yq6 + 2xp9 + yq1xq1 + 2yq3xq1 (C12)

+yq6xq1 + 2x2
q1 + 2yq1xq3 + yq4xq3 + yq6xq3 + 2xq1xq3 + yq3xq4 + 2yq4xq4 + yq6xq4 + xq3xq4 + x2

q4

+yq1xq5 + 2yq4xq5 + 2yq6xq5 + xq1xq5 + 2xq4xq5 + yq1xq6 + yq3xq6 + yq4xq6 + xq1xq6 + xq3xq6 + xq4xq6
+2xq5xq6 + (yq1 + yq3 + yq4 + xq1 + xq3 + xq4 + 2xq5)xq9)

∆yq10
= (2yq1yq3 + y2

q3 + 2yq3yq5 + 2yq3yq6 + 2xp10 + yq3xq1 + yq1xq3 + yq3xq3 + yq5xq3 + yq6xq3 (C13)

+xq1xq3 + 2x2
q3 + 2yq1xq5 + 2yq5xq5 + 2yq6xq5 + 2xq1xq5 + x2

q5 + xq10(yq3 + xq3 + 2xq5) + yq3xq6
+xq3xq6 + 2xq5xq6)

∆yq11
= (yq1yq3 + yq1yq5 + 2yq3yq5 + 2y2

q5 + yq1yq6 + 2yq5yq6 + 2xp11 + 2yq3xq1 + 2yq5xq1 + 2yq6xq1 (C14)
+2yq1xq3 + yq5xq3 + 2xq1xq3 + yq3xq5 + yq5xq5 + yq6xq5 + xq3xq5 + 2yq1xq6 + yq5xq6 + 2xq1xq6 + xq5xq6
+xq11(yq3 + yq5 + yq6 + xq3 + xq6))

and

∆yq12
= (2yq1yq3 + 2yq1yq5 + 2yq3yq6 + 2yq5yq6 + 2xp12 + yq3xq1 + yq5xq1 + yq1xq3 + yq6xq3 + xq1xq3

+xq12(yq3 + yq5 + xq3) + yq3xq6 + yq5xq6 + xq3xq6). (C15)

In Eq. C1, the intermediate variables yq7 , . . ., yq12 are quadratic while yq1 , . . ., yq6 are cubic. yq2 is the only
intermediate coordinate that lies in the full 9-cycle and with respect to the intermediate variables it only has cross-
terms with the cubic ones. Hence, yq2 indexes the quadratic sums over the intermediate quadratic variables in terms
of 3-cocycles {0, 3, 6}, {1, 4, 7}, and {2, 5, 8}. The three cubic variables each take three non-periodic values which
leads to 36 quadratic Gauss sums (that are 36−dimensional). However, we can reduce this number by noticing some
properties.

Given yq1 , yq2 , yq3 and yq4 , if the quadratic coefficients of the quadratic variables is zero, then the number of
quadratic Gauss sums reduces from 32 (indexed by yq5 and yq6) to at most 3. This reduces the sum to 35 quadratic
Gauss sums.

Otherwise, if the quadratic coefficients of the quadratic variables are not zero, then the Wigner function exhibits
another property. The coefficient of the y2

q6 term is only dependent on yq2 of the cubic indexing intermediate variables.
The coefficients of the yq6 term is dependent on the y2

q7 and y2
q11 quadratic variables. Given a fixed yq1 , yq2 , yq3 , and

yq4 that does not set any of the quadratic coefficients of the quadratic variables to zero, it follows that for two values
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of yq6 (and say yq5 = 0), the quadratic coefficients of y2
q7 and y2

q11 are switched. Since these are separable quadratic
coefficients, it follows that the Gauss sum at these two values of yq6 has the same magnitude for all yq5 .

The Wigner function is real so the imaginary parts of these quadratic Gauss sums of equal magnitude must cancel
out. Their complex conjugates lie across yq1 , yq2 , yq3 or yq4 , but not yq6 . There are only three options for the phase
for every yq2 (corresponding to the three co-cycles) for the pairs of equal magnitude quadratic Gauss sums indexed
by yq6 . For yq2 = 0, one of the options is for no imaginary part and so it follows that the quadratic Gauss sums
in that sector that have equal magnitude must be real, or have the same imaginary part. For the two other sectors
(yq2 6= 0), the same behavior holds since the only term that displaces a phase from being real is the sole y3

q2 term,
which is independent of yq5 and yq6 .

This latter case produces 34 × 6 = 486 quadratic Gauss sums, which is the worst case.
This can be summarized by the following equation:

ρ(MC12
(xp1 , . . . , xp12 , xq1 , . . . , xq12))

=
∑

yq1 , ..., yq6
∈Z/32Z

exp

[
2πi

9

(
7y3
q2 + 8x3

q2

)]
exp

[
2πi

3
Γ12(yq1 , . . . , yq6 ,xp,xq)

]
A12(yq,xp,xq) (C16)

×

{
δ(∨12

i=7(Σyqi ∧∆yqi
)) + δ(¬(∨12

i=7(Σyqi ∧∆yqi
)))

[
δ(Σyq7 (0)− Σyq11 (1))

[
2δ(yq6) + δ(yq6 − 2)

]
+δ(Σyq7 (1)− Σyq11 (2))

[
2δ(yq6 − 1) + δ(yq6)

]
+ δ(Σyq7 (0)− Σyq11 (2))

[
2δ(yq6) + δ(yq6 − 1)

]]}
The first term includes all cases where the quadratic coefficients of yq7 , . . ., yq12 are zero along with their respective

linear coefficients, as these produce plane waves that do not evaluate to zero. The second term includes all cases
where all these quadratic coefficients are non-zero and yq5 indexes the same quadratic Gauss sums for two values of
yq6 for some values of the the cubic variables.

The same simplification can be made for the final phase space variables (xp,xq). In the worst-case, this produces
ξ12 = 34 × 6 = 486 quadratic Gauss sums, which produces a tensor upper bound of ξt/12

12 = 3∼0.469t.
Numerical examination of this Wigner function seems to indicate that this number can be lowered even further.


