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Limits to Rydberg gate fidelity that arise from the entanglement of internal states of neutral
atoms with the motional degrees of freedom due to the momentum kick from photon absorption
and re-emission is quantified. This occurs when the atom is in a superposition of internal states but
only one of these states is manipulated by visible or UV photons. The Schrödinger equation that
describes this situation is presented and two cases are explored. In the first case, the entanglement
arises because the spatial wave function shifts due to the separation in time between excitation
and stimulated emission. For neutral atoms in a harmonic trap, the decoherence can be expressed
within a sudden approximation when the duration of the laser pulses are shorter than the harmonic
oscillator period. In this limit, the decoherence is given by simple analytic formulas that account for
the momentum of the photon, the temperature of the atoms, the harmonic oscillator frequency, and
atomic mass. In the second case, there is a reduction in gate fidelity because the photons causing
absorption and stimulated emission are in focused beam modes. This leads to a dependence of
the optically induced changes in the internal states on the center of mass atomic position. In the
limit where the time between pulses is short, the decoherence can be expressed as a simple analytic
formula involving the laser waist, temperature of the atoms, the trap frequency and the atomic
mass. These limits on gate fidelity are studied for the standard π− 2π− π Rydberg gate and a new
protocol based on a single adiabatic pulse with Gaussian envelope.

I. INTRODUCTION

Neutral atom qubits with Rydberg state mediated in-
teractions have emerged as a promising platform for
scalable quantum computation and simulation[1]. Trap
arrays suitable for individual control of 100 and more
atomic qubits have been prepared[2–7] and high fi-
delity one-qubit[8–10] and two-qubit[11–13] gates have
been demonstrated. Many protocols have been pro-
posed and analyzed for implementing two-qubit Ryd-
berg gates[12, 14–26]. Although detailed analyses ac-
counting for the multilevel atomic structure and finite
Rydberg lifetime have identified protocols with the po-
tential of reaching F > 0.9999 [20, 27], the studies to
date, with the notable exception of [19] which included a
detailed examination of motional errors, have either ig-
nored the limits set by photon recoil or treated it only
approximately[14, 28, 29].
Momentum kicks due to the absorption and emission

of photons during a Rydberg pulse, as well as Rydberg-
Rydberg interactions, lead to undesired entanglement be-
tween qubits encoded in hyperfine states and the atomic
center of mass motion. After tracing out the motional
state, the remaining entanglement in the qubit basis is
reduced, which sets a limit on the gate fidelity[30]. The
degree of infidelity depends on several parameters includ-
ing the magnitude of the photon momentum, the tempo-
ral extent of the Rydberg pulse sequence, the initial mo-
tional state of the atoms, the characteristic vibrational
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frequencies of the trap holding the atom, and whether or
not the trap is turned off or left on during the Rydberg
gate.

In this paper we present a rigorous analysis of the fi-
delity limits set by these effects for two representative CZ

gate protocols: the standard π−2π−π pulse sequence[14]
and a new, simple implementation of a CZ gate that uses
only a single Gaussian shaped adiabatic pulse applied si-
multaneously to both atoms. In both cases the gate infi-
delity scales with the change in atomic position x during
the gate, relative to the size of the initial center of mass
wavefunction δx. For an atom that is prepared in the
motional ground state of the trap, δx ∼ 1/ν1/2 with ν
the trap frequency so the infidelity grows proportional
to ν. The scaling of the infidelity follows from the ob-
servation that the change in atomic position during the
Rydberg gate is fractionally more significant for a well
localized spatial wavefunciton, than for a less confined
wavefunction. This counterintuitive result shows that,
in contrast to many atomic implementations of quantum
protocols, it is not always advantageous to work deep in
the Lamb-Dicke limit of tight confinement.

While the analysis that follows is primarily concerned
with the infidelity of Rydberg gates we note that sin-
gle qubit gates between internal states are susceptible to
errors analogous to those analyzed here. A prime ex-
ample of this is given by qubits encoded in ground and
metastable, electronically excited states in alkaline earth
atoms[31] or trapped ions[32].

The rest of the paper is structured as follows. In Sec. II
we describe the unwanted entanglement that arises be-
tween internal and external degrees of freedom due to
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photon kicks or Rydberg forces. This is followed in Sec.
III with a description of the two gate protocols to be an-
alyzed in detail and a brief recap of the definition of Bell
fidelity which we will use to characterize the gate per-
formance. Section IV presents analytical approximations
for the infidelity using a Schrödinger equation treatment.
Section V presents numerical infidelity results for realis-
tic experimental parameters. The numerical results are
based on a full density matrix treatment and are com-
pared with the analytical approximations. The main re-
sults are then summarized in a concluding Sec. VI. Ad-
ditional analysis including different cases of keeping the
trapping potential on or off during the gate is provided
in appendices.

II. QUBIT DECOHERENCE FROM MOTIONAL
STATE ENTANGLEMENT

The quantum state of a trapped atom is described
by its motional degrees of freedom as well as quan-
tum numbers characterizing the nuclear and electronic
states. Qubits are typically encoded in the electronic de-
grees of freedom. The most commonly used approach
is encoding in hyperfine states of the ground electronic
configuration[33], although also metastable electronically
excited states may be used. The total state, including all
degrees of freedom, can be written as |Ψ〉 = |ψ〉ext⊗|ψ〉int
where |ψ〉int is the internal state of the atom which is used
to encode a qubit and |ψ〉ext is the motional state.
Momentum transfer due to photon recoil from absorp-

tion and emission induced by the laser pulses that im-
plement gate operations, as well as forces between Ry-
dberg excited atoms, may change the motional state.
When changes in the motion are correlated with the in-
ternal state the internal and external degrees of freedom
can become entangled which, in the context of Rydberg
gates, leads to decoherence of the qubit state[33, 34]. It
is perhaps worth mentioning that in other settings, no-
tably trapped ion quantum computing, controlled entan-
glement between internal and external degrees of freedom
is in fact crucial for gate operation[35].
To see this explicitly consider an initial product of the

center of mass motional state and the qubit

|Ψi〉 = |ψext〉 ⊗ (c0|0〉+ c1|1〉) (1)

where |c0|2 + |c1|2 = 1. After a gate operation this
changes to

|Ψf〉 = c0 |ψext,0〉 ⊗ |0〉+ c1 |ψext,1〉 ⊗ |1〉 . (2)

The reduced density operator for the qubit after the gate
is

ρ =

(

|c0|2 c0c
∗
1χ

∗

c∗0c1χ |c1|2
)

where χ = 〈ψext,0|ψext,1〉. Changes in the motional state
that are correlated with the qubit state reduce the mag-
nitude of the coherence |c0c∗1χ|. When |χ| = 1 but there

is a phase shift it is possible to apply a correcting rotation
on the qubit. When |χ| < 1 the error generally cannot
be repaired. In the following sections we will explicitly
calculate χ for several possible gate protocols and estab-
lish realistic experimental limits on coherence and gate
fidelity.

A. Momentum kick for 1 atom

This section discusses how momentum kicks to atoms
during gate pulses affect the fidelity of the gate. The
most basic example of this situation is a 3-state atom
in a one dimensional harmonic trap with the absorbed
and emitted photons parallel to the allowed motion. In
a typical implementation a laser may cause a transition
from the qubit state |1〉 but leave state |0〉 untouched.
We will limit the treatment to the case where the atom is
excited from state |1〉 to Rydberg state |R〉 and then de-
excited as part of the gate. For simplicity, the discussion
below is in the wave function picture but all of the results
in Sec. V are obtained using density matrices.
A reduction in gate fidelity occurs because the laser

pulses create entanglement between the internal states
of the atom and its center of mass degrees of freedom,
which has been pointed out in several previous works[14,
19, 28, 36]. Consider the case where the atom starts
in a separable wave function of the form of Eq. (1). A
short laser pulse of duration δt excites state |1〉 to state
|R〉 and in the process gives the atom a momentum kick
~K. After a delay τ much shorter than the vibrational
period of the atom trap, a second laser pulse in the same
direction de-excites state |R〉 to state |1〉 giving the atom
a momentum kick −~K from the stimulated emission.
Although the second momentum kick undoes the change
in momentum from the first, the spatial wave function
for state |1〉 will not be the same as that for the state |0〉
because there will be a change in position, δx = ~Kτ/M ,
and an extra phase accumulation due to the change in
kinetic energy during τ . The final wave function can be
written as

|Ψf〉 = ψf,0(x)c0|0〉+ c1[ψf,1(x)|1〉+ ψf,R(x)|R〉] (3)

where the cj are as before, the ψf,0 is normalized to one,
and the integral of the sum |ψf,1|2+ |ψf,R|2 is normalized
to one. Typically, the norm in state |1〉 is much larger
than that in state |R〉.
The entanglement between the spatial and internal de-

grees of freedom results in decoherence in the internal
states. A measure of the decoherence is

ε = 1− |χ| (4)

where

χ =

∫ ∞

−∞
ψ∗
f,0(x)ψf,1(x)dx (5)

which has a magnitude 0 ≤ |χ| ≤ 1. When |χ| = 1, no
entanglement occurred between the spatial and internal
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states and there is only an overall phase difference be-
tween ψf,0(x) and ψf,1(x). This is the desired outcome
of the gate pulses. There is decoherence for the case
|χ| < 1 which can occur even when the norm of ψf,1 is
unity because the laser kicks can cause this part of the
wave function to evolve into a different region of Hilbert
space. From the process described in the previous para-
graph, there will be both a magnitude less than one and
a complex phase for χ. See the appendices, Sec. A for
a derivation of χ for four different excitation styles. We
give both the magnitude and phase for χ, but the pro-
jection having a norm less than one is more problematic
because the change in phase can be compensated for.

B. Momentum transfer for 2 atoms

Although not due to photon kicks from absorption or
emission, there is a source of decoherence due to transient
population with double Rydberg character[19]. This en-
tanglement between the internal states of the atom and
the atom motion arises because the Rydberg-Rydberg in-
teraction depends on the separation of the atoms leading
to an impulse along the line connecting the atoms, but
only when the atoms start in the |11〉 state. We will only
consider the case where the duration of the gate pulses
is much smaller than the trap period and the atom dis-
placements are small compared to nearest neighbor sep-
arations. In this limit, the Rydberg-Rydberg interaction
leads to an impulse due to the force between the atoms
when they are both excited. This term only enters the
ψf,11 part of the wave function and consists of a phase
accumulation φ = −VRRτRR/~ where

τRR =

∫ ∞

−∞
PRR(t)dt (6)

is effectively the time spent in the double Rydberg state
and PRR is the probability both atoms are in the Rydberg
state when starting in the |11〉 state.
Defining the y-direction as pointing from atom 1 to 2,

the spatial dependence of the extra phase accumulation
can be approximated as φ = 6B(y2 − y1)τRR/r12 where
the yj are displacements from the respective trap centers,
with r12 the distance between the center of the traps,
and ~B = VRR(r12); this assumes a 1/r612 dependence on
the Rydberg-Rydberg interaction and the displacements
are small compared to the trap separation. Outside of an
overall, irrelevant phase factor, the projection of the |00〉,
|01〉, or |10〉 components on that of |11〉 are the same and
is

〈ψf,00|ψf,11〉 = 〈ψf,00|eiφ|ψf,00〉 ≃ 〈1 + iφ− 1

2
φ2〉

= 1− 36B2kBTeffτ
2
RR

Mω2
⊥r

2
12

(7)

where ψf,ii′ are the spatial components of the wave func-
tion Eq. (21), ω⊥ is the trap frequency in the y-direction,

and Teff is defined in Eq. (C7). We used the identity
〈Mω2

⊥y
2〉 = kBTeff to generalize Eq. (7) to a thermal

distribution. For a resonant dipole-dipole interaction
VRR(r12) ∝ 1/r312, in which case the 6 in the expres-
sion for φ changes to 3 and the 36 in Eq. (7) changes to
9.

III. FIDELITY ANALYSIS OF RYDBERG
GATES

Our main objective is to understand the effect of pho-
ton momentum kicks on the fidelity of Rydberg gate op-
erations. The magnitude of the effect depends on the
gate protocol used as well as atomic and laser parame-
ters. By elucidating the role of photon momentum kicks
for prototypical examples the trends for other cases may
be apparent.
A diagonal phase gate has the general form, apart from

an irrelevant global phase, of

Cφ = diag(1, eıφ01 , eıφ10 , eıφ11) (8)

The requirement which Cφ must satisfy for preparation
of fully entangled states is

φ01 + φ10 + φ11 = nπ (9)

with n an odd integer. The choice φ01 = φ10 = φ11 = π
gives a CZ gate in the standard form of [37]

CZ = diag(1,−1,−1,−1). (10)

Gate protocols that satisfy (9) can be converted into stan-
dard form by applying single qubit rotations. We will
assume that these can be done perfectly so that any pro-
tocol which satisifies (9) will be considered a perfect gate
implementation.

A. Rydberg gate protocols

The atomic level structure is shown in Fig. 1. Atoms,
each with stable ground states |0〉 , |1〉, are individually
trapped in harmonic potentials. State |1〉 is optically cou-
pled to Rydberg state |R〉 while off-resonant excitation
of |0〉 is assumed negligible. The small contribution to
gate infidelity from this off-resonant coupling has been
considered in [15, 20]. Rydberg excitation is typically
implemented as a one- or two-photon process. In the
latter case the photons can be sufficiently detuned from
an intermediate level that the additional photon scat-
tering is negligible. The two-photon excitation has the
advantage that using a counterpropagating geometry the
momentum transfer is substantially smaller than for a
one-photon implementation.
The two protocols we analyze in detail are shown in

Fig. 2. The first is the π−2π−π protocol, the fidelity of
which using constant amplitude pulses has been analyzed
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Figure 1. (color online) Energy level structure of neutral atom
qubits with ground states |0〉 , |1〉. Rydberg states |R〉 inter-
act with strength B. Rydberg states are excited with Rabi
frequency Ω(t) at detuning ∆(t). Level |d〉 is an uncoupled
state that accumulates spontaneous emission from |R〉 which
has lifetime τR = 1/γR.

in detail in [15]. Neglecting the motional effects consid-
ered here, the gate fidelity is limited by atomic structure
parameters to less than F ∼ 0.998. Higher fidelity reach-
ing F > 0.9999 can be achieved using shaped pulses[20].
The gap between the control atom π pulses plays a dom-
inant role in the sensitivity of this protocol to motional
decoherence[29].
The second protocol we consider consists of a single

adiabatic pulse applied simultaneously to both atoms
with a Gaussian amplitude profile and constant detun-
ing as shown in Fig. 2b. This gate is similar in concept
to the Rydberg dressing gate[19], and other adiabatic
gate protocols[25, 26], but has a simplified implementa-
tion requiring only a single pulse with a constant laser
detuning.
The entanglement mechanism of a single adiabatic

pulse can be understood from analysis of the coherent
part of the atomic dynamics depicted in Fig. 1. Con-
sider first the simplified one-atom problem described by

Ĥ1 = ~

(

0 Ω∗/2
Ω/2 −∆

)

in the basis (|1〉 , |R〉). Here we have ignored the far de-

tuned coupling of |0〉 to the Rydberg state. Ĥ1 has eigen-

values ~λ1,2 = ~(−∆±
√

∆2 + |Ω|2)/2 and eigenvectors
u1,2. At the beginning of the Gaussian pulse Ω(0) = 0

and the state is |ψ〉 = |1〉 =

(

1
0

)

= u1. As long as the

evolution is adiabatic |ψ(t)〉 = u1 at all times so the atom
returns to the ground state independent of the length of
the pulse. This imparts robustness with respect to the
amplitude of Ω(t).
The adiabatic condition is |dθdt | ≪ |λ2 − λ1| =

√

∆2 + |Ω|2 with θ the mixing angle. The dynamical
phase acquired by the state during an adiabatic pulse of

duration T is φ01 = φ10 =
∫ T

0 dt λ1(t) =
∫ T

0 dt (∆(t) +
√

∆2(t) + |Ω(t)|2)/2. Setting ∆ constant and Ω(t) =

Ωmax

(

e−(t−T/2)2/σ2 − e−T 2/4σ2

)

/
(

1− e−T 2/4σ2

)

the
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Figure 2. (color online) Rydberg gate protocols. a) π−2π−π
gate[14] with the pulses marked c(t) applied to the control
(target) qubits. b) Adiabatic gate with the same pulse applied
to both qubits simultaneously with constant detuning.

phase can be found numerically as a function of ∆,Ωmax,
and σ.
When the qubits are symmetrically excited the

Hamiltonian in the two-atom symmetric basis

(|11〉 , |1R〉+|R1〉√
2

, |RR〉) is

Ĥ2 = ~





0 Ω∗/
√
2 0

Ω/
√
2 −∆ Ω∗/

√
2

0 Ω/
√
2 −2∆+ B



 .

Here Ω is the one atom Rabi frequency coupling states |1〉
and |R〉. Diagonalizing Ĥ2 we obtain eigenvalues ~λ1,2,3
and eigenvectors u1,2,3. Explicit expressions for the eigen-
values are given in [1]. As for the case of a single Rydberg
coupled atom the dynamical phase φ11 is found from in-
tegrating the relevant eigenvalue over the duration of the
pulse. The result depends on ∆,Ωmax, σ, and B. For any
value of B, which is fixed by the choice of Rydberg states
and the interatomic spacing r12, we have two free param-
eters ∆/Ωmax and σ which can be chosen to satisfy the
condition on the phases for an entangling CZ gate.
Examples of valid gate parameters for different interac-

tion strengths are given in Sec. VB. As we will show the
adiabatic gate can achieve high fidelity for a wide range of
interaction strengths including the limit of strong block-
ade when |B| ≫ Ωmax as well as the opposite limit of
|B| ≪ Ωmax. In the latter case the doubly excited state
|RR〉 is populated which leads to additional motional er-
rors from Rydberg - Rydberg forces.

B. Bell state fidelity

We will quantify the fidelity of the CZ gate by calcu-
lating the fidelity of the Bell state |B〉 = (|00〉+ |11〉)/

√
2

which can be prepared by a perfect gate operation. The
sequence starts with the separable state |11〉. Applying
the Hadamard gate to both qubits gives

|in〉 ≡ H1H2|11〉 =
1

2
(|00〉 − |01〉 − |10〉+ |11〉). (11)

Applying the Rydberg CZ gate (defined to be diag(CZ) =
[1,−1,−1,−1]) followed by a Hadamard gate on qubit 2
gives the Bell state, |B〉 under perfect operation. In what
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follows, we will evaluate the implementation of the CZ

gate by starting in a separable density matrix

ρ̂i = |in〉〈in|ρs(r1, r2; r′1, r′2) (12)

where the ρs contains the spatial information about the
two atom system and could be an eigenstate or a thermal
state of the two atoms. We will then solve the density
matrix equation for the CZ gate

dρ̂(t)

dt
=

1

i~
[Ĥ(t), ρ̂(t)] + L̂(ρ̂) (13)

where Ĥ(t) is the time-dependent Hamiltonian which will
include the kick from photon absorption or emission. In
the calculations, we will simulate the case where the qubit
|1〉 can be excited to a Rydberg state |R〉. For the two-

atom Hamiltonian we use Ĥ = Ĥ1 ⊗ Î + Î ⊗ Ĥ1 + Ĥ2

where Ĥ1 is a one-atom operator and Ĥ2 describes the
Rydberg interaction.
As a basic example, plane wave light propagating in

the x-direction will give a one atom Hamiltonian

Ĥ1 = HC − ~∆|R〉〈R|

+
~Ω

2

(

eiKx|R〉〈1|+ e−iKx|1〉〈R|
)

(14)

whereHC represents the kinetic energy and confining po-
tential for each atom, ∆ is the detuning of the laser con-
necting states |1〉 and |R〉, K is the photon wave number,
and Ω is the Rabi frequency. In addition to the one atom
Hamiltonian, there is a Rydberg-Rydberg interaction

Ĥ2 = ~B|RR〉〈RR| (15)

where ~B is the energy shift of the pair Rydberg state.
The Rydberg state can decay by spontaneous photon
emission or by absorption or emission of black-body pho-
tons. If the Rydberg state decays, the time to return to
the ground state manifold can be large compared to the
gate duration and there are many more hyperfine ground
states than the qubit pair. Thus, we will use the pes-
simistic approximation that all of the radiative loss goes
to states outside of the qubit pair or the Rydberg state.
This population can be assigned to the single dark state
|d〉 giving

L̂(ρ̂) = Γ

2
∑

j=1

(

|d〉〈Rj |ρ̂|Rj〉〈d| −
1

2
|Rj〉〈Rj |ρ̂−

1

2
ρ̂|Rj〉〈Rj |

)

(16)
where j labels the two atoms.
Various gate protocols have different time dependence

in the coupling Ω(t), and the detuning ∆(t). In some
cases, the confining potential HC,j can depend on time
and on the internal state of the atom.
In practice, we solve the density matrix equations us-

ing a basis set of harmonic oscillator states at angular
frequency ω for the center of mass motion; in cases where
more than 1D motion is important, we will distinguish

between angular frequencies of the center of mass motion
parallel, ω‖, or perpendicular, ω⊥, to the beam propaga-
tion direction. This gives

ρ̂ =
∑

|i1i2〉〈i′1i′2|ψv1(r1)ψv2 (r2)ψ
∗
v′
1

(r′1)ψ
∗
v′
2

(r′2)

×ρi1v1i2v2i′1v′
1
i′
2
v′
2

(17)

where |i〉 are the internal states |0〉, |1〉, |R〉, or |d〉 and
the v indicate the vibrational quantum numbers where
each vj could be 1, 2, or 3 indices depending on the
spatial dimension of the simulation. The number of vi-
brational states needed for convergence depends on the
temperature in the simulation (more states are needed as
kBT/(~ω) increases) and the photon momentum (more
states are needed as K increases).
The reduced density matrix is defined as

ρi1i2i′1i′2 =
∑

v1v2

ρi1v1i2v2i′1v1i′2v2 (18)

where we will not use a special symbol for the reduced
density matrix since it has 4 indices instead of the 8 for
the full density matrix. The reduced density matrix is
used in the calculation of the gate fidelity.
After solving the time dependent density matrix equa-

tion, Eq. (13), for the CZ gate, we add a phase to state |1〉
and then apply a Hadamard gate to qubit 2. The phase
is chosen to maximize the Bell state fidelity. High fidelity
single qubit gate operations have been demonstrated on
atomic qubits[8, 10] and it is possible to use magic trap-
ping techniques so the center of mass vibrational frequen-
cies are identical for both qubit states[38, 39]. We there-
fore assume the phase on state |1〉 and the Hadamard
gate can be perfectly implemented irrespective of the vi-
brational state. The Bell state fidelity is defined as [40]

F =
ρ0000 + ρ1111

2
+ |ρ0011| ≤ 1. (19)

The CZ gate protocol is designed to make F as large as
possible. The requirement for scalable quantum compu-
tation depends on the error correction scheme[41], but
F > 0.99 is generally considered a minimum fidelity be-
low which very large numbers of qubits are required.
To simplify many of the derivations, we will use a wave

function picture to track the effects from a gate although
all of the results are ultimately derived from the density
matrix in Eq. (19). The initial state can be written as

|Ψi〉 = |in〉ψi(r1, r2) (20)

where |in〉 is defined in Eq. (12). A gate will cause a
manipulation of the spatial part of the wave function de-
pending on the internal state. Ignoring the part of the
wave function left in the states outside of the qubit pair,
the wave function after the gate has the form

|Ψf 〉 =
1

2
(|00〉ψf,00 + |01〉ψf,01 + |10〉ψf,10 − |11〉ψf,11)

(21)
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where the ψf,ii′ have the effects of different interactions
between the atoms and have norm ∼ 1.
Applying the Hadamard gate to qubit 2 gives the final

state

|Ψ〉 = 1√
2
(|00〉ψf,00 + ψf,01

2
+ |11〉ψf,11 + ψf,10

2

+ |01〉ψf,00 − ψf,11

2
+ |10〉−ψf,11 + ψf,10

2
). (22)

From this, taking |Ψ〉〈Ψ| and integrating over the spatial
coordinates gives the components of the reduced density
matrix

ρ0000 =
1

8
(〈ψf,00|+ 〈ψf,01|) (|ψf,00〉+ |ψf,01〉)

ρ1111 =
1

8
(〈ψf,11|+ 〈ψf,10|) (|ψf,11〉+ |ψf,10〉)

ρ0011 =
1

8
(〈ψf,00|+ 〈ψf,01|) (|ψf,11〉+ |ψf,10〉) (23)

IV. ANALYTICAL ESTIMATES OF MOTIONAL
GATE INFIDELITY

This section provides an analytical treatment of two
different gate protocols to give an idea of the parameters
that determine the contribution of photon momentum to
the gate infidelity, 1 − F . This derivation often will be
based on the Schrödinger equation since the other effects
are small. We will then average over possible spatial
states to account for cases where the atom is not in a
motional eigenstate. These analytical results are used for
interpretation; for the example results below, we always
solve the density matrix equations, Eq. (13).

A. Bell fidelity for π − 2π − π CZ gate

To see how entanglement between the internal qubit
state and the atomic center of mass motion affects the
Bell fidelity, the π − 2π − π Rydberg blockade gate is
instructive. In this case, a first pulse excites qubit 1 to
the Rydberg state if it is in state |1〉, a second pulse
excites qubit 2 from state |1〉 to the Rydberg state and
back to state |1〉 if qubit 1 is not in the Rydberg state,
and a last pulse de-excites qubit 1 from the Rydberg
state back to |1〉. We will consider three contributions
to infidelity: axial momentum kicks, laser focusing, and
radiative losses.

1. Contribution from axial momentum

To derive the effect from axial momentum, the effects
on the ψf,ii′ from the different kicks must be determined.
The ψf,00 has no kick from momentum absorption, the
ψf,10 has a kick on qubit 1 and no kick on qubit 2, the
ψf,01 has a kick on qubit 2 and no kick on qubit 1, and

ψf,11 has the same kick on qubit 1 as for ψf,10. All of the
far off resonant qubit transitions get a small kick from
off resonant Stark shifts (for example, qubit 1 in ψf,00

and qubit 2 in ψf,11). The effect of the kick on qubit 1
can be approximated using the results in Sec. D 2 while
that on qubit 2 for ψf,01 can be approximated using the
results in Sec. D 1. The kicks from off resonant shifts
can be calculated using the results in Sec. D 3. Even
when the excitation to the Rydberg state is through a
nearly resonant 2 photon transition, the population out
of the ground state is small and each pulse length is small
compared to the duration of the gate. This means the
kicks from off resonant shifts can be ignored compared
to the momentum kicks.
We will write the unkicked wave function as ψ0 and

the kicked wave function as ψk,1 for the kick on atom
1 and ψk,2 for the kick on atom 2. From the previous
paragraph, the different wave functions can be written
as

ψf,00 = ψ0(r1)ψ0(r2)

ψf,01 = ψ0(r1)ψk,2(r2)

ψf,10 = ψk,1(r1)ψ0(r2)

ψf,11 = ψk,1(r1)ψ0(r2) (24)

The projections needed to determine the fidelity are

1− |〈ψk,i|ψ0〉| = ε(i) (25)

with ε(1) from Sec. D 2, Eq. (D11), while ε(2) is derived
in Sec. D 1, Eq. (D5).
We use these terms in the wavefunction in Eq. (23) to

find

ρ0000 =
1

4
(2− ε(2))

ρ1111 =
1

2

ρ0011 =
1

4
(1− ε(1))(2 + ε(2)). (26)

These expressions do not include phase corrections from
the momentum kicks and far off resonant Stark shifts
mentioned above. These phases can be corrected by sin-
gle qubit Z rotations in order to recover an ideal CZ gate,
and are therefore not retained in the analysis. Putting in
the analytic forms for the ε and dropping terms of order
ε2, the Bell infidelity is

1−F =
ε(1)

2
+

3ε(2)

8
=
K2kBTeff

2M

(

τ21
2

+
3τ22
8

)

(27)

where Teff is from Eq. (C7), τ1 is the time between the
two π pulses, and τ2 = δt/2 with δt the duration of the
2π pulse. The time between π pulses is several times
larger than the duration of the 2π pulse which suggests
ε(1) ≫ ε(2). When the temperature is much larger than
the quantized energy spacings of the atom trap, Teff ≃ T
and Eq. (27) is identical to the “Doppler dephasing” term
in Ref. [11] Supplementary Materials which differs by a
factor of 2 from that in Ref. [29].
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B. Contribution from laser focusing

The finite spatial extent of an atom’s position com-
bined with spatial variation of the laser intensity due to
focusing leads to infidelity in the gate. In this section,
we will only treat this effect. There are several trends to
consider. As the laser waist decreases, the spatial vari-
ation of the intensity increases across the spatial extent
of the atom position leading to decreased fidelity. The
fidelity decreases with increasing temperature due to the
increasing spatial extent. The fidelity increases as the
trap frequency increases due to the decreasing spatial
extent.

To obtain the infidelity due to laser focusing, the pro-
jection derived in Sec. F will be used. The decreased
norm in each term can be found by noting that in ψf,00

neither atom is excited, ψf,10 atom 1 is excited, ψf,01

atom 2 is excited, and ψf,11 has no effect since the 2π
pulse changes the sign of the ψ11 term not excited to ψR1

in the first π pulse. Unlike the previous section, the main
effect is the change in the norm of the state associated
with the transition to the Rydberg state and back. In
this case, the different wave functions can be written as

ψf,00 = ψi,00

ψf,01 = (1 − ε(G))ψi,00

ψf,10 = (1 − ε(G))ψi,00

ψf,11 = ψi,00 (28)

Substituting the projections into Eq. (26), gives

ρ0000 = ρ1111 = |ρ0011| =
1

2
− ε(G)

2
+

(ε(G))2

8
(29)

where ε(G) is defined in Eq. (F5). Dropping all terms
involving ε2 the Bell state fidelity, Eq. (19), gives

1−F = ε(G). (30)

If the excitation is due to two photon absorption, the
1/w2

0 is the sum of the squares of the inverse waists and
the 1/x2R is the sum of the squares of the inverse Rayleigh
ranges.

C. Contribution from radiative losses

The contribution to the infidelity due to radiative
losses can be computed from the form of Eq. (23) by
considering the decrease in magnitude in each part of
the wave function. We will take the most pessimistic
interpretation that radiative losses due to spontaneous
emission or blackbody radiation lead to transitions out-
side of the qubit states on the time scale relevant to the
gate. Assuming the Rydberg lifetime is much shorter

than the gate duration, the change in norm leads to

ψf,00 = ψi,00

ψf,01 =

(

1− Γτ2
2

)

ψi,00

ψf,10 =

(

1− Γτ1
2

)

ψi,00

ψf,11 =

(

1− Γτ1
2

)

ψi,00 (31)

Using Eqs. (23) and (19) and dropping terms quadratic
in τ leads to the infidelity

1−F = Γ
(τ1
2

+
τ2
4

)

(32)

where Γ is the inverse of the Rydberg lifetime due to
radiative losses, τ1 is the time between the two π pulses,
and τ2 = δt/2 with δt the duration of the 2π pulse.

D. Bell fidelity for adiabatic CZ gate

Another possible gate protocol involves exciting both
qubits simultaneously with the same laser pulse. We will
let Ω(t) have a Gaussian envelope with fixed detuning
∆. This will give a CZ if the detuning, duration, and
Rydberg-Rydberg interaction, ~B, are chosen appropri-
ately. The one atom Hamiltonian is Eq. (14) with

Ω(t) = Ω0e
−t2/δt2 (33)

the only time dependent part.
As in the previous section, the final wave function has

the form of Eq. (21) where the ψf,ii′ have the effects of
different kicks. The ψf,00 has no kick from the photon
momentum, the ψf,10 has a kick on qubit 1 and no kick
on qubit 2, the ψf,01 has the same kick on qubit 2 and no
kick on qubit 1, and the ψf,11 has a kick on both qubits.
There are small kicks from far detuned transitions which
will be ignored. The results from Sec. D 3 can be used
to compute the effect on ψf,10 and ψf,01. The effect on
ψf,11 is more difficult to obtain because it involves both
qubits.
Because there are 4 electronic states involved and two

different atomic momenta, we were not able to derive an
expression for the projections involving ψf,11. However,
we have found a formula using qualitative arguments that
gives good agreement with all of the calculations we have
performed with the full density matrix. The idea is to
treat the adiabatic pulse on the ψf,11 state as giving the
same kick to each atom. In analogy to Eq. (D16), we
define the duration of the kick on an individual atom as
half of the Rydberg population integrated over the pulse:

τR =
1

2

∫ ∞

−∞
PR1(t) + P1R(t) + 2PRR(t)dt (34)

where PR1(t) is the probability for atom 1 to be in the
Rydberg state and atom 2 is in state |1〉, P1R(t) is the
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reverse identification, and PRR(t) is the probability that
both atoms are in the Rydberg state. For the symmetric
excitation of this gate, PR1(t) = P1R(t). This calcu-
lation requires hardly any computer time compared to
solving the full density matrix equations including the
vibrational states. This leads to the identification

ψf,00 = ψ0(r1)ψ0(r2)

ψf,01 = ψ0(r1)ψk,1(r2)

ψf,10 = ψk,1(r1)ψ0(r2)

ψf,11 = ψk,2(r1)ψk,2(r2) (35)

with the projections from Eq. (D17)

1− |〈ψ0|ψk,1〉| = ε(ad)(τa)

1− |〈ψ0|ψk,2〉| = ε(ad)(τR)

1− |〈ψk,1|ψk,2〉| = ε(ad)(τR − τa) (36)

where τa is from Eq. (D16) and τR is from Eq. (34).
Ignoring all terms quadratic in the ε, the projections

in Eq. (23) give:

ρ0000 =
1

2
− K2kBTeff

2M

τ2a
4

ρ1111 =
1

2
− K2kBTeff

2M

τ2R + (τR − τa)
2

4

|ρ0011| =
1

2
− K2kBTeff

2M

3τ2R + 3τ2a + (τR − τa)
2

8
(37)

where τa is from Eq. (D16) and τR is from Eq. (34). Both
of these times are computed using only the internal states
of the atoms. Combining these factors, the the Bell state
infidelity due to the photon momentum kicks is

1−F =
K2kBTeff

2M

(

τ2a
2

+
τ2R
2

+
(τR − τa)

2

4

)

(38)

which can be compared to the same expression for the
π − 2π − π gate of the previous section, Eq. (27). Al-
though the details are different, the gates have the same
scaling with photon kick ~K, atom massM , and effective
temperature Teff . An advantage of the adiabatic gate is
that the time spent in the Rydberg state, as measured by
τa and τR, can be substantially shorter than the spacing
of the π-pulses τ1 in the π−2π−π gate for the same exci-
tation Rabi frequency. This gate also has the advantage
that it can reach high fidelity for both large and small
B, the latter case being useful for gates acting on qubits
with large spatial separations.
In addition to the axial momentum kick, the Rydberg

lifetime and the laser focus will contribute to infidelity. It
is not obvious how to analytically account for these effects
for this adiabatic gate. However, they can be accounted
for by solving the small set of density matrix equations
that do not include the effect from axial recoil.

V. RESULTS

In this section, we present the results of calculations
that test the accuracy of the approximations discussed

above and in the appendix and explore the behavior of
the decoherence as a function of atomic parameters. We
compare the approximations to the results from solving
the full density matrix equations which automatically in-
clude all of the effects from photon absorption and ree-
mission including changes in vibrational level, Doppler
shifts, spatial changes, and momentum changes. Pa-
rameters will be chosen to correspond to transitions in
Cs. All calculations in this section will use M = 132.91
atomic mass units. The excitation to the Rydberg state
occurs from counter-propagating lasers of wavelength
459 and 1038 nm which gives an effective wavelength,
λeff ≃ 822.9 nm, for the photon kick, K = 2π/λeff . For
the effects from focusing, we will use a waist (1/e2 in-
tensity radius) of w0 = 2 µm for each beam. This leads
to Rayleigh ranges of 27.4 and 12.1 µm and an effec-
tive waist w0 =

√
2 µm and effective Rayleigh range of

11.1 µm in Eq. (30).
We will use two example Rydberg states in the calcu-

lation, 66S and 106S. The lifetime of these states, 130
and 366 µs respectively, include stimulated absorption
and emission due to blackbody radiation[42, 43].

A. π − 2π − π CZ gate

The first tests will involve parameters for the π−2π−π
gate of Ref. [11]. To model the pulses, we use

Ω1(t) = Ω1,max

(

e−(t+τ1/2)
6/δt6

1 + e−(t−τ1/2)
6/δt6

1

)

(39)

Ω2(t) = Ω2,maxe
−t6/δt6

2 (40)

where the Ωj,max give the appropriate π pulses for atom
1 and 2π pulse for atom 2, τ1 = 1.0044 µs is the time
between pulses for atom 1, δt1 = 0.14 µs is the duration
of each of the atom 1 pulses, and δt2 = 0.22 µs is the
duration of the atom 2 pulse. Because of the order of
magnitude difference between τ1 and τ2 = δt2/2, the Bell
state infidelity is 1−F ≃ ε(1)/2.
Figure 3 shows the infidelity, 1−F in Eq. (27), for these

parameters as a function of the trapping frequency when
the atoms start in the motional ground state. For this
case, we assume a scenario where the trapping potential
is magic so that the potential is the same for all states.
The finite lifetime of the Rydberg state is not included in
this calculation, but the horizontal lines show the contri-
bution to the infidelity due to the Rydberg finite lifetime
for 66S (solid) and 106S (dotted) states. The solid red
line is from numerically solving the density matrix cal-
culation; the approximation, Eq. (E4), that includes the
trapping potential is the green dotted line that overlays
the exact result. This shows that the small width of
the individual π-pulses has a negligible contribution to
ε(1). The blue dashed line is the exact result when the
trapping potential is turned off during the calculation,
Eq. (D5). Because this calculation has ∼ 1 µs between
π-pulses, it is not surprising that Eq. (D5) becomes no-
ticeably different from calculations with the trap on when



9

 0

 2

 4

 6

 8

 10

0.0 0.2 0.4 0.6 0.8 1.0

1
0

3
 ε

(1
)

τ1 (µs)

Figure 3. (color online) The infidelity, 1−F in Eq. (27), due
to axial momentum kick for the atom in the ground state of
a harmonic trap as a function of the trap frequency f , using
T = 0 and not including radiative decay of the Rydberg state.
The trap potential is on for the full sequence, Eq. (39), for the
parameters in the text. This calculation assumes the trapping
potential is magic so that the potential is the same for all in-
ternal states. The solid red line is the full density matrix cal-
culation, the long dashed blue line is from the approximation,
Eq. (D5), and the green dotted line is the approximation that
includes the trapping potential, Eq. (E4). The full density
matrix calculation and Eq. (E4) are indistinguishable. The
horizontal solid black line (66S) and dotted black line (106S)
are the contribution to infidelity due to the finite lifetime (130
and 366 µs respectively) of these Rydberg states.

f ∼ 100 kHz. For these calculations, convergence to bet-
ter than 0.01% was achieved using a maximum vibra-
tional quantum number of 10.
It is, perhaps, a surprise that there is more, not less,

decoherence as the trapping frequency increases. Intu-
ition suggests that higher frequencies lead to less effects
from atom recoil due to the larger energy spacing. How-
ever, because the durations are short, the size of the en-
ergy spacings are not relevant. The main effect is from
the spatial size of the initial state and how far the atom
moves during the sequence of laser pulses. The spatially
smaller states at higher frequency have less overlap with
the unkicked states. At the higher frequencies, the in-
fidelity due to the axial photon kick can be larger than
that from radiative losses even when the atom is in the
motional ground state.
For the laser parameters of the previous paragraph, we

now compare the approximation, Eq. (D11), to the full
calculation with the trapping potential for a thermal dis-
tribution. Results from calculations with three different
trap frequencies are shown in Fig. 4. These calculations
include the trapping potential during the laser manipu-
lations. The results from the approximation, Eq. (D11),
are indistinguishable from the full solution on the scale
shown indicating the trapping potential has little effect
for these cases. As in Fig. 3, the horizontal lines are the
infidelity due to finite Rydberg lifetime of the 66S (solid)
and 106S (dotted) states. The fidelity is F > 0.995 for
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Figure 4. The infidelity, 1−F , due to axial momentum kicks
for the π−2π−π gate with the atom in a thermal distribution
of a harmonic trap as a function of the temperature, T . The
calculation does not include radiative decay of the Rydberg
state. The different plots are for different trap frequencies:
10 kHz (red solid), 20 kHz (blue dashed), and 50 kHz (green
dotted). The purple short dashed line is the high temperature
approximation, Eq. (43), with the second term in the square
brackets dropped. The approximation, Eqs. (41,D11), are
indistinguishable from the full calculation on this scale. The
horizontal lines are the same as Fig. 3.

the temperatures plotted. The best value for the 50 kHz
trapping potential is F ≃ 0.999. The maximum number
of vibrational states was used for the 20 kHz calculation
at 5 µK because the 10 kHz calculation was only per-
formed to 1.5 µK; the maximum number of vibrational
states for this case was ∼ 100.
Figure 4 shows that the decoherence increases linearly

with the temperature once kBT is larger than ∼ ~ω‖.
Also, the decoherence is nearly independent of the fre-
quency of the trapping potential when this condition is
satisfied because the smallest relevant length scale is the
thermal de Broglie wavelength. Since the approximation,
Eq. (D11), is accurate, we can use it to derive an expres-
sion for the decoherence when ε(1) is small:

ε(1) ≃ K2τ21 kBTeff
2M

=
K2τ2~ω‖

4M
coth

(

~ω‖
2kBT

)

(41)

where coth(x) = (ex + e−x)/(ex − e−x). The limits are

ε(1) → K2τ21 ~ω‖
4M

[

1 + 2e−~ω‖/kBT
]

for kBT ≪ ~ω‖(42)

→ K2τ21 kBT

2M

[

1 +
1

12

(

~ω‖
kBT

)2
]

for kBT ≫ ~ω‖(43)

which shows the linear dependence on the tempera-
ture when the atoms are hot compared to the quan-
tum energies. It also shows that the decoherence does
not depend on the trap frequency at high tempera-
tures. Another point of comparison is to remember
that the average number of vibrational quanta is 〈n〉 =
1/{exp[~ω‖/(kBT )]− 1}. When kBT = ~ω‖, the average
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Figure 5. The projection error, ε(1), due to axial momentum
kick for atoms in a thermal distribution of a harmonic trap as
a function of the time between π-pulses. All calculations are
for a trap frequency of 10 kHz using Eq. (41). The different
plots are for different atom temperatures: 2 µK (red solid),
5 µK (blue dashed), and 10 µK (green dotted). The solid
(66S) and the dotted (106S) black lines are Γτ1.

vibrational quanta is 〈n〉 ≃ 0.58 and the fractional error
in the high temperature form of the decoherence is 8%.
When kBT = 2~ω‖ then 〈n〉 ≃ 1.54 and the fractional er-
ror is 2%. This illustrates how quickly the trap frequency
becomes irrelevant to the decoherence.

As a physical example, we consider the case from
Ref. [13] where Sr is excited from the 3P0 metastable
state to 3S1 Rydberg states using a single 317 nm photon.
The time scale for a 2π pulse was of order 100 ns. Us-
ing their estimated temperature of 2.5/

√
10 µK= 0.8 µK

gives ε(1) ≃ 1.5× 10−4. However, if the gate is composed
of more than one pulse, the duration can be longer. The
decoherence increases to ε(1) ≃ 1.3× 10−3 if τ1 = 300 ns.

The scale of the projection error can be compared to
the decoherence from decay of the Rydberg state. Fig-
ure 5 shows the ε(1) for calculations in a 10 kHz trap
for three different temperatures (2, 5, and 10 µK) as a
function of the time, τ1, between the π-pulses. Compar-
ing this time scale and trap frequency to that in Fig. 3,
whether the trap is on or off during these operations has
no visual effect on the results. This emphasizes that the
infidelity from Rydberg state decay scales linearly with
τ1 while that from recoil is proportional to the square
of the time. For short times between pulses, the main
error will be due to the decay of the Rydberg state. For
pulses with τ1 ∼ 1 µs, the atoms need to be cold for the
projection error to be smaller than the decay probability.

The infidelity due to laser focusing, Eq. (30), does not
depend on the duration of the gate as long as the dura-
tion is much less than the trap period. The results with
the trap on were visually indistinguishable from those
with the trap off for Figs. 6 and 7. This infidelity has
the strongest dependence on the effective temperature of
the mechanisms examined in this paper. Figure 6 shows
the infidelity, Eq. (30), for 3 different transverse trap fre-
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Figure 6. (color online) The infidelity, 1 − F , due to laser
focus, Eq. (30), for the π − 2π − π gate with the atom in a
thermal distribution of a harmonic trap as a function of the
temperature, T . The calculation does not include radiative
decay of the Rydberg state. The different plots are for dif-
ferent transverse trap frequencies: 10 kHz (red solid), 20 kHz
(blue dashed), and 50 kHz (green dotted). This calculation
does not include the axial decoherence since it is much smaller
than that for the transverse degrees of freedom. The horizon-
tal lines are the same as Fig. 3. A transverse misalignment of
y0 = 100 nm is assumed.

quencies: 10 kHz (solid red), 20 kHz (blue dashed), and
50 kHz (green dotted). For this calculation and that of
Fig. 7, we assumed the terms with xR are less than 10% of
the transverse decoherence and have been dropped. The
effective waist is

√
2 µm and there is assumed misalign-

ment of y0 = 100 nm. This figure illustrates how sensitive
the infidelity is to the transverse trap frequency: at high
temperature, the infidelity is proportional to 1/f4

⊥. This
figure also shows how high temperature exacts a high
penalty because the infidelity scales like T 2 in this limit.

Figure 7 shows how the axial displacement, y0, can
quickly degrade the fidelity of the π − 2π − π gate. This
graph uses the same parameters as Fig. 6 except the tem-
peratures and frequencies are fixed: the curves use 10, 20,
or 50 kHz and 1 or 5 µK. As with Fig. 6, it is clear that
larger temperatures dramatically degrade the fidelity as
do lower trap frequencies. Figure 7 demonstrates the
importance of alignment for the gate fidelity since the
infidelity, Eq. (30), has a quartic dependence on y0. It
is interesting that the infidelity from displacement of the
focused beam is greater than that due to finite Rydberg
lifetime for displacements larger than ∼ 200 nm even for
the 66S state; this value is ∼ 1/10 the waist of the indi-
vidual beams.

Because the infidelity is proportional to the atom tem-
perature for kBT > ~ω, the change in vibrational char-
acter due to gate pulses should be examined. This effect
can be estimated using the heating of the atom’s cen-
ter of mass motion due to the time delay between the
pulses. The kick shifts the position which leads to heat-
ing. For reasonable gate parameters, this effect will be
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Figure 7. (color online) The infidelity, 1 − F , due to laser
focus, Eq. (30), for the π − 2π − π gate with the atom in a
thermal distribution of a harmonic trap as a function of the
displacement, Y0. The calculation does not include radiative
decay of the Rydberg state. The different plots are for differ-
ent transverse trap frequencies and temperatures: 10 kHz, 1
µK (red solid), 20 kHz, 1 µK (blue dashed), and 50 kHz, 1
µK (green dotted), 10 kHz, 5 µK (orange short dash), 20 kHz,
5 µK (purple dash-dot), and 50 kHz, 5 µK (brown dash-dot-
dot). The 10 kHz, 5 µK infidelity is divided by 5 to fit on
the same graph. This calculation does not include the axial
decoherence since it is much smaller than that for the trans-
verse degrees of freedom. The horizontal lines are the same
as Fig. 3.

negligible except for high frequency traps at the lowest
temperatures. The center of mass energy will change by
the amount

∆E =
1

2
Mω2δx2 =

~
2K2

2M
(ωτ1)

2 (44)

which is the recoil energy times (ωτ1)
2. Since ωτ1 will be

much less than one, this shows the energy will increase
by a small fraction of the recoil energy per gate. To give
an idea of the size of the two effects, for τ1 = 1.00 µs and
λeff = 822.9 nm, the change in energy from Eq. (44) is
0.42 nK per kick for a 10 kHz trap, 1.7 nK per kick for
20 kHz, and 11 nK per kick for 50 kHz.
As a comparison, the change in energy that occurs

when the trap is turned off for a time τ ≃ τ1 +
4δt1 ≃ 1.56 µs and then turned back on is ∆E =
(kBTeff/2)(ωτ)

2. For this effect, the size of the energy
change increases with each time the trap is turned off and
back on. Taking < E >= kBTeff , The temperature after
N gates is TN = Teff exp[N(ωτ1)

2/2]. For 100 gates, T =
Teffe

0.48 = 1.62Teff for a 10 kHz trap, e1.92Teff = 6.83Teff
for a 20 kHz trap, and e12Teff = 1.6×105Teff for a 50 kHz
trap. Clearly, several approximations break down for the
50 kHz trap before this limit is reached. Nevertheless this
result indicates that turning on and off a 50 kHz trap is
not a good idea. Fortunately it is possible to design traps
that present the same trapping potential for ground and
Rydberg atoms so it is feasible to leave the trap potential
on continuously[44].

Table I. Parameters for the adiabatic gate. All have Ω0 =
2π × 17 MHz. Parameters τ1, τR are defined in Eqs. (D16),
(34). The infidelity 1−F is that due to the pulse shapes, finite
blockade, and includes finite Rydberg lifetime, but does not

include momentum kicks, i.e. the atoms are fixed in space for
the determination of the gate parameters. The left infidelity
is for 66S and the right is for 106S. See Fig. 8 for an example
that includes momentum kicks.
Gate ∆/Ω0 δt (µs) B (106s−1) τ1, τr (ns) 1− F (10−4)
1 -0.5000 0.2 2π 600 90, 63 6.3, 2.4
2 -0.8635 0.2165 2π 60 56, 42 3.8, 1.3
3 -0.3000 0.5 2π 4 357, 416 30, 11

B. Adiabatic CZ gate

This section contains results for the adiabatic gate dis-
cussed in Sec. IVD. Examples of parameters that lead
to an effective CZ gate are in Table I. The values for
τ1, Eq. (D16), result from one atom calculations and τR,
Eq. (34), result from two atom calculations that do not
include atomic recoil. The values for 1− F in this table
result from calculations that do not include the atomic
recoil but do include the radiative loss from the Rydberg
state. In Table I, the infidelity is almost completely due
to the radiative loss; the number of photons absorbed
or emitted is equal to the infidelity to the digits given.
If the radiative loss is not included, the infidelity solely
arises from non-adiabaticity and from non-ideal choice of
gate parameters to generate a CZ gate; ignoring radia-
tive loss, the infidelity would be 1.8 × 10−5, 9.9 × 10−8,
and 1.3× 10−5 for the three cases shown.

Compared to the gate in the previous section, the re-
sulting duration in the Rydberg state, τ1,R, is over an
order of magnitude shorter for Gates 1 and 2 and a fac-
tor of ∼ 3 smaller for Gate 3. This should translate
to a factor of ∼ 100 (Gates 1 and 2) or ∼ 10 (Gate 3)
improvement in fidelity due to momentum kicks with a
factor of ∼ 10 and ∼ 3 improvement of radiative decay
of the Rydberg state.

Figure 8 shows the infidelity including the effect from
momentum kicks, 1 − F , versus the atom temperature
for gate 3 which is the worst gate in the table because it
assumes the weakest Rydberg interaction and therefore
requires a relatively long interaction time leading to more
spontaneous emission. The calculation is performed for
a trapping frequency of 50 kHz to reduce the size of the
density matrix calculation. Higher temperature or lower
frequency requires more states for convergence. The trap
is on for the duration of the gate but there is no visual
difference if the trap is off due to the short duration of
the gate compared to the trap period. The two atom
kick calculations have up to 40 vibrational states for each
atom for the 5 µK calculation and goes to 10th order in
the expansion of the exponential eıKx.

As expected, the infidelity is a factor of ∼ 10 smaller
than the gates of the previous section. The full results
were compared to the simple expression Eq. (38), with
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the intrinsic gate error of Table I added to it. As seen
in the figure, there is good agreement between the full
calculation and the simple analytic results. In this tem-
perature range, the main infidelity for this gate is due
to radiative losses in the Rydberg state. The infidelity
from the momentum kicks becomes larger than that from
radiative losses at temperatures a bit above 10 µK.
In this gate, population does transiently occupy the

double Rydberg state which means there can be addi-
tional entanglement between the internal states and the
motional character due to Rydberg - Rydberg forces as
discussed in Sec. II B. Examining the projections in
Eq. (23), the definition of Bell state fidelity in Eq. (19),
and the overlap factor in Eq. (7), a van der Waals inter-
action contributes a decrease to the fidelity of

1−F =
3

8
[1− 〈ψf,00|ψf,11〉] =

27B2kBTeffτ
2
RR

2Mω2
⊥r

2
12

(45)

where the parameters are defined below Eq. (7) and the
thermal average was taken in the expectation value of
Eq. (7). For 1/r312 interactions, this expression should
be divided by 4. Unlike the momentum kick from the
photon, the trap frequency explicitly appears in the in-
fidelity. As the trap frequency increases, the infidelity
decreases as expected.
This expression was checked by solving the full den-

sity matrix equations for Gates 2 and 3 for several tem-
peratures and found to be accurate at the couple per-
cent level. Calculations gave τRR of 31.6 ps, 8.60 ns,
and 157 ns for Gates 1, 2, and 3. For Gate 1, the
separations r12 are 2.6 µm and 5.3 µm for the 66S
and 106S states while for Gate 2 the separations are
4.2 µm and 10.5 µm and for Gate 3 are 8.0 µm and
20.0 µm. The crossover distance[45] between a reso-
nant dipole-dipole interaction scaling as 1/r312 and a van
der Waals interaction scaling as 1/r612 increases with the
principal quantum number and we find it to be approx-
imately 2 µm for the 66S state and 8 µm for the 106S
state. Therefore Gate 1 has 1/r312 interaction strength
while Gates 2 and 3 have 1/r612. For Teff = 5 µK
and 50 kHz trap frequency, the infidelities are (Gate 1:
2.2× 10−5, 5.4× 10−6), (Gate 2: 2.5× 10−2, 4.1× 10−3),
and (Gate 3: 1.0× 10−2, 1.7× 10−3).

VI. CONCLUSIONS

We have derived the equations needed to analyze the
decoherence that arises from the entanglement of internal
states of neutral atoms with the motional degrees of free-
dom. The entanglement occurs when the internal states
of the atom are manipulated by laser pulses. Although
entangled atomic states can be prepared using collisional
interactions without resorting to laser excitation, Ryd-
berg gates have the advantage that they are fast, oper-
ate at long range, and can reach high fidelity without
preparation of atoms in the motional ground state.
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Figure 8. The Bell state infidelity for Gate 3, see Table I, as
a function of atom temperature. The trap has a frequency
of 50 kHz. The solid red line is from the full density matrix
calculation and the dashed blue line is from Eq. (38) added
to the intrinsic 1−F from Table I for 66S. The orange short
dash and green dotted are the same for 106S.

Different levels of approximation were considered
above and it was shown that a sudden approximation
well describes the decoherence in this system. This ap-
proximation gives a simple formula for the decoherence,
Eq. (D4), in terms of the shift in position due to the pho-
ton absorption and re-emission, δx, and an initial state
length scale, ∆x. We also derived the infidelity that oc-
curs when the lasers that excite the atom are focused.

The trends in the decoherence are important for fu-
ture experiments, especially in the limit of small deco-
herence ε≪ 1. The decoherence is quadratic in the shift
in position due to the absorption and re-emission of the
photons which means the decoherence is quadratic in the
separation of laser pulses, τ , and in the momentum kick
from the photon, ~K. It is also inversely quadratic in the
initial state length scale ∆x; larger ∆x leads to less deco-
herence and vice versa. For cold atoms, the initial state
length scale is that for a harmonic oscillator which is in-
versely proportional to the trap frequency. This leads to
the decoherence being proportional to the trap frequency
at low temperatures. At high temperatures, this length
scale is the thermal de Broglie wave length which is in-
versely proportional to the temperature. This leads to
the decoherence being proportional to the temperature
at high temperatures. Finally the combination that δx
is inversely proportional to the mass and ∆x is inversely
proportional to the square root of the mass leads to the
decoherence being inversely proportional to the mass.

The direction of the trends are as might be expected
with the possible exception that the decoherence is less
for small trap frequencies (i.e. it is not necessary to get
into the motional ground state, but it is necessary to be
cold). The particular power law of the dependence might
not be expected and shows where it is important to do
better. For example, if the momentum kick is decreased
by a factor of 2 by using a pair of counter-propagating
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photons, the decoherence will decrease by a factor of 4.
The trends discussed above and the simple expression
for the decoherence will be a useful guide for quantum
computation applications.
For focused lasers the π − 2π − π gate infidelity in-

creases with the deviation of the atomic position from
the focal position of the excitation beam. Inspection of
Eq. (F5) shows that there is a temperature independent
error associated with misalignment of the trapping po-
tential and the excitation laser, followed by contributions
that scale as temperature and temperature squared. The
temperature dependent errors are inversely proportional
to the trap frequency to the second and fourth powers.
We have not analyzed the focusing error for the adiabatic
gate, but anticipate that it will be significantly smaller
due to the insensitivity of the adiabatic pulse area to the
laser amplitude[26].
The trend for the focusing error is that it is less for

larger transverse trap frequencies. This is opposite to
the motional infidelity which favors lower axial trap fre-
quencies. This the case for the π − 2π − π gate and
the adiabatic gate analyzed here. Similar trends are ex-
pected for other gate protocols. The expressions derived
for the dependence of gate infidelity on trap parameters,
atomic temperature, and pulse parameters will be use-
ful for reaching high fidelity regimes needed for quantum
information applications.

ACKNOWLEDGMENTS

F.R. was supported by the National Science Foun-
dation under Grant No. 1804026-PHY. The work
at UWM was supported by NSF PHY-1720220, NSF
award 2016136, ARL-CDQI Cooperative Agreement No.
W911NF-15-2-0061, DOE award DE-SC0019465, and
DARPA Contract No. HR001120C0068.

Appendix A: Analytic results for 1 atom

1. Basic equations

The derivation in this section will be based on the
Schrödinger equation to simplify the interpretation. All
of the calculated results, Sec. V, were found by numer-
ically solving the full density matrix equation, Eq. (13),
except for those presented in Figs. 6 and 7.
To solve for the decoherence measured by χ, Eq. (5),

the full Schrödinger equation needs to be tracked through
the different excitation and de-excitation steps. By solv-
ing the full Schrödinger equation, we automatically in-
clude all of the effects like changes in vibrational level,
Doppler shifts, spatial changes, and momentum changes.
For a 3 state atom, the three state wave function will be
written as

|Ψ(t)〉 =
∑

ψj(x, t)|j〉e−iEj t/~ (A1)

where Ej is the energy of internal state |j〉 and we have
incorporated the Cj ’s into the spatial function to make
the notation simpler. The spatial functions are solutions
of the equations

i~
∂ψ0

∂t
= HC,0ψ0

i~
∂ψ1

∂t
= HC,1ψ1 + V1Re

−iωR1tψR

i~
∂ψR

∂t
= HC,RψR + V1Re

iωR1tψ1 (A2)

where the HC,j is the kinetic energy operator plus
the trapping potential for state |j〉, V1R(x, t) =
~Ω(t) cos(ω̄t−Kx) is the coupling between internal states
|1〉 and |R〉 due to the laser, K is the wave number of the
photon, and ωR1 = (ER − E1)/~. The Ω(t) is the Rabi
frequency for the 1-R transition. The frequency of the
laser, ω̄, might also have time dependence if the laser is
chirped.

The rotating wave approximation should work very
well for this system since the transition frequency is large
and the laser is weak. This leads to the approximation

i~
∂ψ1(x, t)

∂t
= H1ψ1(x, t) +

~Ω(t)

2
e−iKXψR(x, t)

i~
∂ψR(x, t)

∂t
= HrψR(x, t) +

~Ω(t)

2
eiKXψ1(x, t) (A3)

where the e±ıKx leads to the momentum kicks during the
absorption and stimulated emission steps. These equa-
tions can be solved numerically using many different tech-
niques, leap-frog, Crank-Nicolson, etc. In cases where we
numerically solved the Schrödinger equation, we used the
leapfrog algorithm for the time propagation.

The situation described above has the initial ψ1(x, t) =
C1ψin(x) and ψR(x, t) = 0. After the pair of laser
pulses, the ψR(x, t) ≃ 0. There is some population left
in state |R〉 due to Doppler shifts of the wave function
but the population is small for the cases discussed in this
manuscript. The full calculations automatically includes
the population left in the Rydberg state as well as the
phase changes due to atomic motion. The approxima-
tions described below ignore the population left in the
Rydberg state but give analytic expressions for the phase
changes correct to lowest nonzero order in v/c within the
limits given for each approximation.

The amplitude Ω(t) is chosen to give approximately
100% transition from 1-to-R and from R-to-1. This con-
dition can be accomplished in a variety of ways: a sin-
gle 2π-pulse, two π-pulses, etc. For example a simple
form that satisfies these requirements and models exci-
tation to the Rydberg state with a time delay τ before
de-excitation is

Ω(t) =

√
π

δt

(

e−t2/δt2 + e−(t−τ)2/δt2
)

. (A4)
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Appendix B: No trapping potential, Vtr = 0:

In many experiments, the trapping potential for the
atom will be dropped during the laser excitation and de-
excitation steps. In this situation, the HC,0 = HC,1 =
HC,R = P 2/(2M). This may seem a special case, but in
most experiments it is expected that the total duration of
all laser pulses will be much shorter than the oscillation
period of the trapping potential. We found that using the
approximation Vtr = 0 in this case also led to accurate
results for the momentum kicks.
Equations (A3) can be recast using the Fourier trans-

form

φj(k, t) =
1√
2π

∫ ∞

−∞
e−ikxψj(x, t)dx (B1)

by multiplying from the left by exp(−ikx)/
√
2π and in-

tegrating over x. This gives the Schrödinger equation for
the Fourier transforms

i~
∂φ1(k, t)

∂t
= E(k)φ1(k, t) +

~Ω(t)

2
φR(k +K, t)

i~
∂φR(k, t)

∂t
= E(k)φR(k, t) +

~Ω(t)

2
φ1(k −K, t)(B2)

where E(k) = ~
2k2/(2M) is the kinetic energy. This

may appear to be just as complicated to solve as the
Schrödinger equation in x, Eqs. (A3), but it is actually
much simpler. By writing the second equation at k+K,
every k corresponds to a simple 2-state system. The k-
space equations, Eq. (B2), reduce to Nk pairs of equa-
tions whereNk are the number of k-points in φj(k, t). We
label the functions on a grid in k using equally spaced
points ki = k0 + i · δk where i = 0, 1, ...Nk − 1 as
φ1,i(t) = φ1(ki, t) and φR,i(t) = φR(ki +K, t). Note the
φR,i are at shifted momenta compared to the φ1,i This
results in the set of equations

i~
∂φ1,i(t)

∂t
= E(ki)φ1,i(t) +

~Ω(t)

2
φR,i(t)

i~
∂φR,i(t)

∂t
= E(ki +K)φR,i(t) +

~Ω(t)

2
φ1,i(t) (B3)

where the energy is shifted in the second equation to
account for the shift in the φR,i[19].
Because these equations do not couple the φ at differ-

ent i, a massive simplification in the calculation of the
decoherence occurs. The final φ can be written in terms
of the initial φ and a unitary rotation that depends on,
i:

φj,i(tf ) =
∑

j′

Ujj′ (i; tf , t0)φj′,i(t0) (B4)

where t0 is the initial time and tf is the final time The
simplification arises because the decoherence projection
χ only depends on the U11(i; tf , t0) projected on the ini-
tial state. Since the overlaps do not depend on the rep-

resentation

χ =

∫ ∞

−∞
φ∗f,0(k)φf,1(k)dk

≃ δk
∑

i

|φin,i|2eiE(ki)(tf−t0)/~U11(i; tf , t0) (B5)

where the initial function is φin,i = φin(ki) and we
used the fact that the φ0,i(t) = exp(−iE(ki)t/~)φin,i(0).
Thus, within the rotating wave approximation and the
discretization of the k-space wave functions, the deco-
herence overlap is given by

χ =
∑

i

δk|φin,i|2K11(i) (B6)

where K11(i) = exp(iE(ki)(tf − t0)/~)U11(i; tf , t0) is the
kernel for the momentum ki to start in state |1〉 at time
t0, propagate forward in time to tf with the laser pulses,
and then propagate backward in time to t0 with no laser
pulses.

Appendix C: Thermal distribution: Vtr = 0

Using the theoretical development of the previous sec-
tion, the decoherence overlap for a thermal distribution
is derived in this section. The initial system is an inco-
herent sum over eigenstates, φα(k), with the probabil-
ity of each state being Pα = exp(−Eα/[kBT ])/Z with
Z =

∑

α exp(−Eα/[kBT ]). One way to treat this is to
say that the initial state is

φin,i =
∑

α

√

Pαe
iθαφα(ki) (C1)

where the phases, θα are random. This leads to the de-
coherence overlap being

χ =
∑

i

δkK11(i)
∑

αα′

√

PαPα′φα(ki)φα′ (ki)e
i(θα−θα′)

=
∑

i

δkK11(i)ρ(ki, ki) (C2)

where the k-space density matrix is

ρ(ki, ki) =
∑

α

Pαφ
2
α(ki) (C3)

arises because all of the cross terms in α, α′ average to
0. Thus, for the cases where the trapping potential can
be neglected during the laser manipulations, the decoher-
ence for a thermal distribution is just as easy to obtain
as for a particular state.
The density matrix in Eq. (C2) depends on the tem-

perature and the potential the atoms were trapped in
just before the laser manipulations occur. Typically, this
is a nearly harmonic potential.
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The density matrix for a thermal distribution in a har-
monic oscillator can be exactly obtained for any temper-
ature. The Wigner function for a thermal distribution
is

W (x, k) = C exp(−[∆kx]2 − [∆xk]2) (C4)

where ∆k2 = Mω2/(2kBTeff), ∆x2 = ~
2/(2MkBTeff),

and the Teff is defined in Eq. (C7). The M is the atomic
mass, kB is Boltzmann’s constant, and Teff is an effective
temperature given below. The density matrix can be
obtained by Fourier transform

ρ

(

k +
k̄

2
, k − k̄

2

)

=

∫

e−ik̄xW (x, k)dx

=
∆x√
π
exp

(

−[∆xk]2 − k̄2

4∆k2

)

(C5)

and a similar expression can be obtained for the spatial
density matrix by Fourier transforming on k. Although
tedious, one can show that this is the exact density ma-
trix by using ρT = Cρ2Tρ2T .

The diagonal density matrix is obtained by setting k̄ =
0:

ρ(k, k) =
~√

2πMkBTeff
exp(−~

2k2/[2MkBTeff ]) (C6)

where we have substituted for ∆x. The Teff can be fixed
by forcing the average energy from the classical form,
Ē = kBTeff , to equal the average energy from the quan-
tum thermal distribution,

kBTeff = ~ω

(

1

2
+

1

e~ω/(kBT ) − 1

)

. (C7)

which gives the limit kBTeff → ~ω/2 at low temperatures
and kBTeff → kBT at high temperatures.

Thus, the decoherence overlap for a thermal distribu-
tion is obtained by using the result of Eqs. (C6,C7) in
Eq. (C2).

Appendix D: Overlaps for Vtr = 0

This section derives approximate expressions for the
decoherence overlap for different excitation/de-excitation
procedures. All cases assume the center of mass coordi-
nate is in a thermal distribution and that the trapping
potential is off during the gate. The latter condition is
a good approximation if the gate duration is short com-
pared to the trapping period. We note that having the
atom in the motional ground state is a thermal distribu-
tion with T → 0 which gives kBTeff → ~ω/2. We account
for the atom recoil during the stimulated absorption and
emission process in all of the cases.

1. Short, 2π pulse, on resonance

This section derives the χ when there is a single, short
pulse that takes 100% of the atom population from state
|1〉 to the Rydberg state and back to state |1〉. If the atom
is treated as stationary, this leads to a π phase shift for
state |1〉. We assume that the duration of the laser pulse
is short enough that the band width of the laser is much
larger than the Doppler width and the spacing of the
energy levels. In this limit, the shape of the pulse is not
important and we choose for it to be a flat top function:

Ω(t) =
2π

δt
0 ≤ t ≤ δt Ω(t) = 0 otherwise. (D1)

For this Ω(t), Eqs. (B3) can be solved exactly. Defining
the parameters

δEi = E(ki +K)− E(ki)

Ēi =
E(ki +K) + E(ki)

2
(D2)

the final population in the state |1〉 is 1 minus a term of
order (δEδt/~)4 so it is only the phase dependence that
contributes to χ. We find

K(2)
11 (i) ≃ −e−iδEiτ2/~ (D3)

where we have defined τ2 = δt/2 is the time spent in the
Rydberg state.
We can use this approximation with the thermal den-

sity matrix, Eq. (C6), to obtain an analytic expression
for the decoherence overlap. The energy difference is
δEi = Erec + ~

2kiK/M where Erec = ~
2K2/(2M) is the

recoil energy of the atom. Thus, the overlap is reduced
to the Fourier transform of a Gaussian giving:

χ(2) = −e−iErecτ2/~e−(δx/[2∆x])2 (D4)

where δx = ~Kτ2/M is the distance an atom shifts due
to the absorption and re-emission of photons separated
in time by τ2 and ∆x = ~/

√
2kBTeffM is proportional to

the de Broglie wave length at the effective temperature,
Teff , in Eq. (C7).
This form leads to a nice interpretation of the deco-

herence. The phase has a −1 from the pulse and has an
accumulation that arises from the average change in ki-
netic energy of the atom due to the photon absorption,
Erec, for photons separated by τ2. The decrease in nor-
malization arises because the atoms shift position due to
their changed velocity over the duration τ2. At low tem-
peratures, the shift is compared to the spatial width of
the ground state wave packet because kBTeff ≃ ~ω/2. At
higher temperatures, the shift is compared to the coher-
ence length of the atomic packet which is proportional to
the thermal de Broglie wave length.
If the phase is corrected, this gives a value

ε(2) ≃
(

δx

2∆x

)2

=
K2τ22 kBTeff

2M
(D5)
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where the Taylor series expansion of the Gaussian in
Eq. (D4) was used because the duration is short. This
result shows that ε for this case is proportional to: the
square of the duration of the pulse, the effective temper-
ature, Teff in Eq. (C7), the square of the photon momen-
tum, and the inverse of the atom mass. This suggests
which parameters can be used to suppress decoherence
due to momentum kick. For example, a one photon ex-
citation with 319 nm photons is approximately 6.6 times
worse than excitation with counter propagating 459 and
1038 nm photons.

2. Two short, π pulses, on resonance

This section derives the effect from a case like in
Eq. (A4). We will assume τ is much less than the pe-
riod of center of mass motion.
As a first approximation, we treat the case where the

δt≪ τ1 which allows a very simplified derivation. In this
case, we treat the excitation and de-excitation steps as
being instantaneous and can be thought of as a sudden
approximation. The final wave function is obtained from
the concatenation of three steps. The first step is the
excitation from state |1〉 to |R〉 with the momentum kick:

φR(k +K) = −iφin,1(k) (D6)

where the −i results from the π-pulse. The second step
is the free evolution of state |R〉 for a time τ1:

φR(k +K) = −iφin,1(k)e−iE(k+K)τ1/~ (D7)

where the phase accumulation is at the shifted momen-
tum. The third step is the de-excitation giving:

φf,1(k) = (−i)2φin,1(k)e−iE(k+K)τ1/~ (D8)

where the −i again results from the π-pulse. This gives
the sudden approximation of the kernel:

K(1)
11 = −e−i[E(k+K)−E(k)]τ1/~. (D9)

This is the same form as Eq. (D3) which means the χ
also has the same form:

χ(1) = −e−iErecτ1/~e−(δx/[2∆x])2 (D10)

with the parameters as defined below Eq. (D4). The
interpretation is the same as below Eq. (D4) and has the
same type of scaling. As in the previous section, if the
phase is corrected this gives a value

ε(1) =

(

δx

2∆x

)2

=
K2τ21 kBTeff

2M
(D11)

where τ1 is the time between π pulses. This expression
has the same form as in the previous section and, thus,
has the same scaling. In most applications, the separa-
tion of the pulses is at least a few times longer than the

duration of the pulses. Since the ε(1) is proportional to
τ21 , this suggests that gates based on excitation followed
by a delay and then de-excitation will have larger deco-
herence due to photon kick.
To extend the applicability to δt < τ , the derivation

from Sec. D 1 can be repeated but with two pulses with
strength π/δt centered at t = 0 and t = τ1. Ignoring the
terms of order (δEδt/~)4 as in the previous section, a
full derivation gives exactly the same value as Eq. (D9).
This can be seen because the two pulses give a phase
accumulation of −δEi(2δt)/2 and the time between the
pulses gives a phase accumulation of −δEi(τ1−δt). Thus,
the result in Eq. (D11) does not depend on the sudden
approximation and is more accurate than might be ex-
pected.

3. One adiabatic pulse

Instead of exciting the Rydberg state, some gates have
a laser pulse that is detuned so that the population adia-
batically evolves, ∼ 100% of the population is in state |1〉
at the end of the pulse. This is apparently quite differ-
ent from the previous two cases, because the admixture
of Rydberg state can be small and “virtual” when the
detuning is large. However, the derivation below shows
that the same form for ε results.
For this case, there is a detuning, ∆ of the laser from

~ωR1 so the Eq. (B3) is modified to

i~
∂φ1,i(t)

∂t
=

(

Ēi +
~∆− δE

2

)

φ1,i(t) +
~Ω(t)

2
φR,i(t)

i~
∂φR,i(t)

∂t
=

(

Ēi −
~∆− δE

2

)

φR,i(t) +
~Ω(t)

2
φ1,i(t)

(D12)

Because the gate is adiabatic, the final probability in |1〉
is ≃ 1 so only the difference in the phase accumulated in
φ1,i compared to φ0,i is important. This will lead to

K11 = K11(δE = 0)e−iα. (D13)

If α can be written in the form α = δEτa/~, then this
example will have the same form and interpretation as
the previous two sections. To calculate α, we integrate
the time dependent difference between the adiabatic en-
ergy and that with δE = 0 and the phase accumulated
in φ0,i:

α =
1

~

∫∞
−∞[

sgn(∆)

2

√

(~∆− δE)2 + ~2Ω2 + Ē −
~sgn(∆)

2

√

∆2 +Ω2 − (Ē − δE

2
)]dt(D14)

where sgn(∆) means take the sign of ∆. The first line is
the adiabatic energy of φ1,i, the first term on the second
line is the adiabatic energy when δE = 0, and the term
in parenthesis on the second line is E(ki). Taylor series
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expanding Eq. (D14) to first order in δE gives

α =
δE

~

(

1

2

∫ ∞

−∞
− |∆|
√

∆2 + ~2Ω2(t)
+ 1dt

)

≡ δE τa
~

(D15)
where the term in parenthesis can be identified as the
time τa. By finding the time dependent eigenstates, the
term in parenthesis is the integral of the probability to
be in the Rydberg state for δE = 0:

τa =

∫ ∞

−∞

〈φR,i(t)|φR,i(t)〉|δE=0

〈φ1,i(−∞)|φ1,i(−∞)〉dt. (D16)

This leads to a K(ad)
11 with the same form as Eq. (D3)

which implies the χ also has the same form with the pa-
rameters as defined below Eq. (D4). The interpretation
is the same as below Eq. (D4) and has the same type
of scaling. As in the previous sections, if the phase is
corrected this gives a value

ε(ad)(τa) =

(

δx

2∆x

)2

=
K2τ2akBTeff

2M
(D17)

where τa is defined in Eq. (D16).

For the gate parameters in Table I, we numerically
found that Eq. (D17) accurately reproduced the results
of the full one atom simulations that included vibrational
states.

4. STIRAP pulses

Another method for exciting the Rydberg state is
to use stimulated Raman adiabatic passage (STIRAP).
This involves two photon excitation with an intermediate
state. The two laser pulses only partially overlap and the
ordering of the pulses is typically counterintuitive with
the laser coupling the intermediate state to the Rydberg
state coming before the laser coupling the intermediate
state to |1〉. In this case, it is not obvious how the timing
of the pulses will affect the momentum kick to the atom.

To understand this case, we will introduce another
state |p〉 to represent the intermediate state. The
Eq. (B3) is modified to

i~
∂φ1,i(t)

∂t
= [E(ki) + ~∆1]φ1,i(t) +

~Ω1(t)

2
φp,i(t)

i~
∂φp,i(t)

∂t
= E(ki +K1)φp,i(t) +

~Ω1(t)

2
φ1,i(t) +

~ΩR(t)

2
φR,i(t)

i~
∂φR,i(t)

∂t
= [E(ki +K1 −KR)− ~∆R]φR,i(t) +

~ΩR(t)

2
φp,i(t) (D18)

where Kj is the wave number of the photon, ∆j is the
detuning, and Ωj is the laser coupling of the intermediate
state to the states |j〉 = |1〉 or |R〉. Note the − sign for
∆R is because the Rydberg state is at higher energy than
the intermediate state.
In typical STIRAP, the detunings ∆ are chosen so that

states |1〉 and |R〉 are degenerate. If the net recoil is
zero K1 = KR, then this leads to the same equations as
when recoil is not taken into account. This is because
the dark state only involves φ1 and φR. Thus, there is no
decoherence due to recoil when equal frequency photons
are used in STIRAP.
If STIRAP is used to excite the Rydberg state and

then de-excite it, then this leads to a K(S)
11 with the same

form as Eq. (D3), which means the χ also has the same
form with the parameters as defined below Eq. (D4). The
interpretation is the same as below Eq. (D4) and has the
same type of scaling. As in the previous sections, if the
phase is corrected this gives a value

ε(S) =

(

δx

2∆x

)2

(D19)

with the same scaling as previously discussed. The τ
is still defined as in Eq. (D16) but the δx = ~(K1 −

KR)τ/M .

Appendix E: Harmonic trapping, Vtr 6= 0

The case where the trapping potential is on during the
gate manipulations can not be solved in the general case.
However, the case discussed in Sec. D 2 can be solved for
analytically when the atom starts in the motional ground
state and can be done analytically for small ε when the
atom is in a thermal distribution. We will only present
the derivation for the thermal distribution but will give
the exact result for the ground state at the end of this
section.
Because the duration of each photon pulse is assumed

to be much smaller than the oscillation period, the pro-
jection is given by

χ(HO) =

∞
∑

n=0

Pn〈ψn|
(

e−iHτ/~
)†
e−iKxe−iHτ/~eiKx|ψn〉

(E1)
where Pn = exp(−~ωn/[kBT ])/Z and

∑

n Pn = 1 defines
Z. Going from right to left, the operators inside the ex-
pectation value come from the photon kick, propagating
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the result for time τ , the photon kick in the opposite
direction, and the time propagation of the 〈ψn|. If ε is
small, then the terms with K can be Taylor series ex-
panded to give

〈ψn|...|ψn〉 = 1−K2〈ψn|x2 − eiEnτ/~xe−iHτ/~x|ψn〉

= 1− ~K2

Mω
[(1− cosωτ)(n+

1

2
) +

i

2
sinωτ ]

(E2)

where the terms linear in x give 0 and we used raising
and lowering operators to obtain the second line. The
sum over n can be done analytically and gives

χ(HO) = 1− i
~K2

2Mω
sinωτ − K2kBTeff

Mω2
(1− cosωτ) (E3)

where Teff is given in Eq. (C7). When evaluating the |χ|,
the imaginary term is proportional to K4 and should be
dropped because we are only keeping to order K2. This
gives

ε(HO) =
K2kBTeff
Mω2

(1− cosωτ) (E4)

where τ is the time between the pulses. By Taylor series
expanding the cosine, Eq. (D11) is obtained. More im-
portantly, it shows that the fractional error in Eq. (D11)
is (ωτ)2/12 and gives numerical meaning to whether the
gate is fast compared to the trapping period. Note that
having τ equal to a period of the trap frequency gives
ε(HO) = 0.
For the case where there are two very short kicks sep-

arated in time by τ , the ground state projection for a
harmonic oscillator of angular frequency ω can be found
analytically:

|χ|(HO,v=0) = exp

[

− ~
2K2

2M~ω
(1 − cosωτ)

]

. (E5)

This result matches that in Eq. (E3) by Taylor series ex-
panding the exponential and noting that kBTeff = ~ω/2
for T = 0.

Appendix F: Laser focusing

This section contains effects that arise from the phase
and intensity variation for a Gaussian beam. As pointed
out in Ref. [46], the intensity dependence of a focused
laser can lead to gate infidelity. In addition, there is also
phase variation that will be shown to be negligible. To be
consistent with the discussion in the other sections, the
light propagates in the x direction and the focused beam
intensity varies in y and z. In this section, we will also
consider the possibility that the focus is not at the origin
but at x = x0, y = y0, z where x0 is an axial misalignment
and y0 is a transverse misalignment. We will assume that
both the misalignments and spatial extent of the atomic

density distribution are small compared to the waist. If
this limit is not satisfied, then the infidelity will be large.
The phase variation has a linear term from the Gouy

phase that decreases the momentum kick along the beam
axis K → K − 1/xR where xR = πw2

0/λ is the Rayleigh
range with w0 the waist. Typically, KxR ≫ 10 so the
relative change in the axial momentum can be ignored.
In each counter propagating Gaussian beam, there is also
a spatially cubic term in the phase

∆Φ = ±
(

x3

3x3R
+
x[(y − y0)

2 + z2]

xRw2
0

)

(F1)

where the ± is + for right propagating and − for left
propagating, w0 is the waist, the first term is from the
Gouy phase, and the second term is from the curvature of
phase fronts. If the excitation is by 2 photons, the effect
from the phase will partially cancel due to the change in
sign of the two beams. To estimate the size of the effect
from phase variation, we will use a 2 µm waist and note
that the spatial extent for 5 µK Cs in a 20 kHz trap is
140 nm. To obtain an idea of the importance, we com-
pare to the phase accumulated by a plane wave Kx. The
term from the Gouy phase has a relative contribution of
∼ 10−6 (for 459 nm) and ∼ 10−7 (for 1038 nm). The
term from the phase front curvature has a relative con-
tribution of ∼ 3× 10−5 for each. Thus, this effect might
be worth revisiting if infidelities less than 10−4 become
important. Since the extent of the atom density distribu-
tion scales like the square root of the temperature, if the
temperature were 15 µK, the relative contribution would
be 3× larger.
The focusing leads to a spatial dependence to the elec-

tric field strength

E(x, y, z) = E0[1− η(x, y, z)]

η≡ (x − x0)
2

2x2R
+

(y − y0)
2 + z2

w2
0

(F2)

where xR is the Rayleigh range and w0 is the waist for sin-
gle photon excitation. For two photon excitation, 1/x2R
is the sum of the squares of the inverse Rayleigh ranges
and 1/w2

0 is the sum of the squares of the inverse waists.
As discussed in Ref. [46] and the supplemental material
of [11], this spatial dependence leads to infidelity.
We will briefly repeat the derivation leading to infi-

delity for the π − 2π − π gate. We will assume that the
individual pulses are fast enough to ignore the spatial
evolution during a pulse. After a net 2π-pulse with frac-
tional error 1 − η, the spatial wave function for the |1〉
state is

ψf,1 = cos[π(1 − η)]ψin,1 ≃ −
(

1− π2η2

2

)

ψin,1 (F3)

which leads to

ε(G) =
π2

2
〈η2〉. (F4)
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For typical parameters w0 ≪ xR but the trapping poten-
tial is often substantially weaker in the axial direction so
we will keep all the terms. We will assume the temper-
ature is the same along the x, y, z coordinates and that
the trap frequency is the same in the y, z directions. For
this case

ε(G) =
π2

2

[

3〈x2〉2 + 6〈x2〉x20 + x40
4x4R

+
(〈x2〉+ x20)(2〈y2〉+ y20)

x2Rw
2
0

+
8〈y2〉2 + 8〈y2〉y20 + y40

w4
0

]

(F5)

where we have used 〈y2〉 = 〈z2〉 = kBTeff,⊥/(Mω2
⊥),

〈y4〉 = 〈z4〉 = 3〈y2〉2, and 〈x2〉 = kBTeff,‖/(Mω2
‖) where

the symbols are meant to indicate that the Teff and ω are
different for x and y, z.
This is a complicated expression so it is worthwhile

to note that in many cases the effect on the axial mo-
tion from focusing (first two lines) will be substantially
smaller than that from the transverse focusing (last line).
In this case, the expression

ε(G) ≃ π2

2

(

y0
w0

)4

+ 4π2

(

y0
w0

)2

D + 4π2D2 (F6)

with D = kBTeff,⊥/(Mω2
⊥w

2
0) gives a good approxima-

tion of the effect from focusing and makes clearer the
dependence on parameters.
There is one tricky aspect that arises for the π−2π−π

gate. The state |11〉 has nontrivial time evolution. The
first π-pulse puts this state into a superposition of |R1〉
and |11〉 with most of the population in |R1〉. The 2π-
pulse mainly changes the sign of the |11〉 state. This
means the last π-pulse rotates almost perfectly opposite
the initial π-pulse so that the final superposition has |11〉
to order η4. Thus, to the order in this section, |11〉 has
no decoherence. Only the states |01〉 and |10〉 will suffer
decoherence from focusing.
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