
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Direct interferometric test of the nonlinear phase-shift gate
Peter L. Kaulfuss, Paul M. Alsing, Edwin E. Hach, III, A. Matthew Smith, and Michael L.

Fanto
Phys. Rev. A 103, 022405 — Published  3 February 2021

DOI: 10.1103/PhysRevA.103.022405

https://dx.doi.org/10.1103/PhysRevA.103.022405


A direct interferometric test of the nonlinear phase shift gate

Peter L. Kaulfuss,1 Paul M. Alsing,2, ∗ Edwin E. Hach III,1

A. Matthew Smith,2 and Michael L. Fanto2

1Rochester Institute of Technology, School of Physics and Astronomy,

85 Lomb Memorial Dr., Rochester, NY 14623

2Air Force Research Laboratory, Information Directorate, 525 Brooks Rd, Rome, NY, 13411

(Dated: January 6, 2021)

Abstract

Probabilistic quantum gates permeate nearly all aspects of modern linear optical quantum computing.

This is largely due to the measurement induced nonlinearities of which they are capable. The trade-off

between the cost of resources required to boost success probabilities to scalable levels and the realization ef-

fective photon-photon interactions required grows ever-more favorable to this paradigm with rapidly evolving

advancements in integrated nano-photonics. As quantum circuits generating cluster states become increas-

ingly complex, component analysis is critical. In this article, we propose and demonstrate the experimental

viability of testing a probabilistic gate. Specifically, as an illustrative example of the technique, we propose

a direct test of the Non-Linear Phase Shift Gate (NLPSG), an essential component of a Knill Laflamme Mil-

burn Controlled-NOT (KLM CNOT) gate. We develop our analysis for the both the case of the original, bulk

optical KLM NLPSG and for the scalable integrated nano-photonic NLPSG based on Micro-Ring Resonators

(MRRs) that we have proposed very recently. We consider the interference between the target photon mode

of the NLPSG along one arm of a Mach Zehnder Interferometer (MZI) and a mode subject to an adjustable

linear phase along the other arm. Analysis of triple-photon coincidences between the two modes at the

output of the MZI and the success ancillary mode of the NLPSG provides a signature of the conditionally

successful operation of the NLPSG. We examine the triple coincidence results for experimentally realistic

cases of click/no-click detection with sub-unity detection efficiencies. Further we compare the case for which

the MZI input modes are seeded with weak Coherent States (w-CS) and to that for which the input states

are those resulting from colinear Spontaneous Parametric Down Conversion (cl-SPDC). In particular, we

show that, though more difficult to prepare, cl-SPDC states offer clear advantages for performing the test,

especially in the case of relatively low photon detector efficiency. We develop the interferometric analysis

in terms of a general four mode unitary so that comparison and contrast of the signatures of the specific

NLPSG implementation (i.e. KLM and MRR) can be carried out easily by substituting in the appropriate

unitary matrix elements at the end of the calculation. The analysis is readily extendable to other several

mode, low photon number quantum circuits whose success operation is heralded by the measurement of

ancilla photons, under non-ideal detection conditions germane to laboratory experiments.
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I. INTRODUCTION

Probabilistic quantum gates play a central role in modern schemes for photonic quantum infor-

mation processing [1]. Relatively recent advancements in integrated nanophotonics, especially with

respect to the scalability, reproducibility, and packaging of systems, have made the attainment of

success probabilities and quantum state fidelities required for the practical deployment of quantum

information processing systems ever more feasible due to the accessibility of university and com-

mercial fabrication facilities [2]. It is well-known that direct photon-photon interactions occur only

at energy densities far above those achieved in any practical quantum circuit; this makes photons

very easy to route through a network using linear optical elements, which, in turn, makes them

very appealing as a conduit for quantum information, as evidenced by the very broad interest in

schemes involving photonic qubits [3].

The lack of direct, deterministic interaction between photonic qubits does, however, present

formidable challenges to the design and optimization of solely photon-based quantum information

processing architectures. Ideally, one desires complete optical control of photons in order to im-

plement deterministically multi-qubit quantum gates such as the Controlled-NOT (CNOT) or the

Controlled Phase [4]. In the absence of direct, deterministic interactions, one can, in principle, use

nonlinear interactions between the photons and an intermediate medium to implement gates. This

could be done in a deterministic fashion, if one could identify a material (natural or synthetic)

with a large enough nonlinear response. To date, no such material exists. A very recent proposal

by Heuck, Jacobs, and Englund seems to represent significant progress toward overcoming the

challenge of deterministic, two-qubit processing in the case of the Controlled-Phase Gate [5].

Another approach to the problem involves implementing measurement induced nonlinearities

whereby projective measurements on ancillary modes are used to generate an effective nonlinear

response in the target modes. This approach is probabilistic owing to the fact that it is a local

isometry (i.e. a normalized quantum state vector projection)[6] [7] on the target subsystem that is

used to emulate the effect of a nonlinear, deterministic unitary evolution of the same set of target

modes. Specifically, conditioned on the results of measurements performed on the ancilla, one

can decide whether the desired nonlinear effect in the target has occurred and one can infer the

probability with which it does. Perhaps the most famous example of this is the effective bunching

of two photons in the signature of the Hong-Ou-Mandel Effect when two photons are coincident on

a 50/50 beam-splitter [8, 9]. In the HOM case, measurement of either of the output modes heralds

the presence of either, neither, or both photons in the unmeasured mode an effect not attainable
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classically by any known interaction.

The resource overhead to support the ancillary modes to accommodate the state-reductive

transformation required for a probabilistic gate and to provide for the redundancy required to cor-

rect for non-unity success probabilities, renders bulk optical implementation of such gates vastly

impractical for any practical quantum information processing device. The situation is vastly dif-

ferent with state-of-the art integrated nanophotonic circuits. In fact, the Hong-Ou-Mandel Effect

is routinely implemented within the inner workings of a wide variety of quantum photonic circuits

[10–14].

Modern paradigms for probabilistic quantum information processing involve the integration of

more sophisticated gates, such as fusion gates, in order to reduce the overhead of ancilla required in

order to perform a conditional operation, such as CZ, CPHASE, or CNOT with sufficient success

probability to be a cost effective quantum resources [10]. The resources required for such systems

can be effectively counted in terms of the number of effective KLM CNOT gates required for a

given operation to succeed with a given threshold probability [12–14]. The work we present in this

paper naturally fits within such a scheme in two distinct ways. First, we present a viable method to

perform analysis and tests on basic components of an arbitrary network of the type used for state-

of-the-art probabilistic quantum computations. Second, as part of our analysis we keep track of

the evolution of both success and failure dynamics of the ancilla within the experimentally viable

context of “click/no-click” detection with sub-unity detection efficiencies. Typically, analysis of

probabilistic gates performed with state vectors inherently assume unit detection efficiencies and

represent the ideal “best-case” operational scenario. By employing non-unit detection efficiencies

and an isometry in our analysis we are able to identify and account for the source of “accidental”

counts arising from higher photon states that adversely project down into, and contaminates the

idealized unit-detection efficiency “signal” that would be observed in an experiment. These two

aspects of our work allow for direct feedback for optimizing device design prior to fabrication

of integrated photonic processors based on sophisticated architectures such as cluster states and

multiplexed fusion gates.

In this paper we propose a direct test that can be applied to the general category of conditional,

probabilistic photonic gates that involve a few (illustrated here, 2) ancilla. To demonstrate the

analysis, we apply it to the well-known Nonlinear Phase Shift Gate (NLPSG) which belongs within

the class of photonic Controlled-Phase gates. The NLPSG is important in its own right owing

to its role in the Knill-Laflamme-Milburn Controlled-NOT (KLM CNOT) gate [15, 16]. It is

well known that the KLM CNOT has been demonstrated in bulk optics [17]. We are further
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motivated here by our recent proposal for a scalable CNOT based upon silicon nanophotonic

microring resonators (MRR), which we call an MRR CNOT gate [18]. The direct interferometric

test we propose, which is the only one to the best of our knowledge for the NLPSG, relies upon

triple-photon coincidence counts in order to expose an effective convolution of the success statistics

for the NLPSG with two-photon interference effects in a Mach-Zehnder Interferometer (MZI) [19].

Further, we demonstrate that our direct test is significantly enhanced by the use of output from

colinear Spontaneous Parametric Down Conversion (cl-SPDC) in each arm of the MZI [20] . Such

a test of the success rate and fidelity of the illustrated gates will be used as design feedback for

the integration of scalable circuits such as CNOT [18]. The scalable implementation of any such

probabilistic quantum gate opens up the possibility of compact dense circuit integration satisfying

engineering redundancy and scaling requirements for practical probabilistic quantum computing

[1]. An essential step toward realizing cost effective high yield quantum device fabrication is to

develop an approach for component analysis, which we consider to be the essential feature of the

work we report in this paper. Strategies related to boosting the success probability of probabilistic-

based photonic gates [1] (such as the NLPSG illustrated here) are not addressed in this present

work, and will be considered in future works.

The outline of this paper is a follows. In Section II we review the operation of the KLM NLPSG

on three modes (one primary mode, and two ancilla modes), and describe our MZI setup for the

direct test of the KLM and MRR NLPSG. In Section III we derive the conditions for successful

operation of the NLPSG under the action of an arbitrary unitary transformation. Before we embark

on the calculation for the coincidence interference probability, we first derive in Section IV the

POVM for non-photon number resolving click/no-click detection with finite detection efficiencies

typical of many laboratory experiments. In Section V we begin our main calculation, and derive

the primary interference effect of the coincidence probability using an MZI setup with a NLPSG

in one leg and a phase shifter in the other leg. We derive the various interference and accidental

output states generated by the even and odd number photon states of weak coherent state (w-CS)

inputs, containing up to two photons, in each arm of the MZI. We examine effect of co-linear

spontaneous parametric down conversion (cl-SPDC) input states that do not contain the single

photon branch, and see that they generate the significant portion of the coincidence interference

effect generated by w-CS. Finally, in Section VI we conclude, and discuss the significance of this

work for photonic integrated waveguide devices. In the appendices we review the essentials of the

KLM and the MRR NLPSG and their maximum success probabilities. Additionally, we remind

the reader of the action of a BS on a product of photon Fock states at its inputs ports, which will
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be needed for the MZI calculation in Section V. Finally, in the last appendix we explicitly list the

coefficients of the four and five photon accidental states that are generated along with the primary

coincidence interference effect.

II. THE NLPSG

As a simple, prototypical quantum circuit relying on (2) ancilla to herald its success probabil-

ity, we chose the well-known Nonlinear Phase Shift gate (NLPSG) to demonstrate the viability of

interferometrically testing a probabilistic quantum gate. The NLSPG has enough simplicity (con-

taining only 4 photon modes) to illustrate the direct interferometric measurement of a non-trivial

gate under an isometry and non-unity detection efficiency, while still retaining enough complexity

to be of (historical and current) operational interest. The NLPSG was introduced by KLM (Knill,

Laflamme and Milburn) [15] in their original proposal for linear optical computing with measure-

ment induced “nonlinearities.” In a recent paper [18, 21] we have shown how the original beam

splitters (BS) used in the KLM NLPSG could be replaced with micro-ring resonators (which we

call the MRR NLPSG) with the net effect of expanding the original point solution space for the

optimal success probability to one- and two-dimensional solution manifolds, since the MRR effec-

tively replaces each original BS by two BS and an accumulated MRR phase. In the following, we

will first focus on the KLM NLPSG to demonstrate our analysis, but developed in the framework

of an arbitrary 4-mode unitary. Afterwards, this will allow us to simply substitute the specific

unitary encoding the MRR NLPSG. This analysis is readily adaptable to other moderate photon

number unitary gates/circuits. As discussed above, once one employs detectors with non-unit ef-

ficiencies, the ideal 3-photon NLPSG success state (resulting from unit detection efficiency) of the

NLPSG is insufficient to account for the parasitic accidentals from higher photon states that add

to and contaminate the observed signal (e.g. interference pattern). The analysis we develop will

then allow allow us to easily compare and contrast the interference signatures of KLM and MRR

NLPSG under non-unit detector efficiencies.

We turn our attention first to the KLM NLPSG as a prototypical low (3) photon number

quantum gate whose success is heralded by the measurement of (2) ancilla photons. As is widely

known, KLM NLPSG [15–18, 21, 22] imparts a phase shift of π on the two-photon branch of any

single-mode-1 (normalized) state that evolves through it,

|ψ(in)〉123 = (α0|0〉1 + α1 |1〉1 + α2|2〉1)⊗ |1, 0〉2,3,
NLPSG−−−−−→ |ψ(out)〉123 = (α0|0〉1 + α1 |1〉1 − α2|2〉1)⊗ |1, 0〉2,3, (1)
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with with |α0|2 + |α1|2 + |α1|2 = 1. Typically, this state will be generated as a weak coherent state

(w-CS) with mean number of photons n̄1 = α2 � 1, where αk = e−|α|
2/2 αk
√
k!

. While the input

state in mode-1 can be of a general form containing up to two photons, for simplicity we will refer

to it in this work as a w-CS. Currently, there is no known way to affect the transformation in

Eq.(1) deterministically and nondestructively via unitary evolution. Instead, the transformation

is realized probabilistically by using two auxiliary optical modes, here labeled 2 and 3, with one

input photon in ancilla mode 2. Projecting out the final state conditioned on a click on mode-2

and no-click on mode-3 produces the desired local isometry on mode-1 Eq.(1). It has been shown

[17, 22] that this action is successful with a maximum probability of 1/4 , and that the result of

the projective measurement faithfully indicates the success of the transformation. Consequently,

the optimal probability of success for the KLM or MRR CNOT gate is 1/16 [1,4], which employs

two NLPSG. This NLPSG-based CNOT gate effectively performs a HOM [8, 18] interference on

the two-photon branch |2〉1 of mode-1, in order to affect the CNOT operation on the remaining

branch of mode-1, α0|0〉1 + α1 |1〉1.

In this work we consider a direct interferometric coincidence detection of the success probability

for both the KLM and MRR implementations of the NLPSG through their insertion into one

(upper) leg (mode 1, with ancilla modes 2, 3) of a Mach Zehnder interferometer (MZI) and a PHASE

shift element in the other (lower) leg (mode 4), as shown in Fig.(1) [23]. We will consider the case

of finite detection efficiencies ξk < 1 in each mode 1, 2, 3, 4, which can also can be considered

as incorporating propagation and scattering losses. This will allow us to measure the success

probability of the NLPSG in the presence of accidentals, namely, those coincidence counts that

arise from states that are outside the isometry in Eq.(1). These accidentals add a noise floor to

the the primary interference effect upon output from the MZI due to the mixing action of the BS

and the use of detectors with finite detection efficiencies.

The initial state of the system entering the MZI is

|Ψ(0)〉 = (α0|0〉1 + α1 |1〉1 + α2|2〉1)⊗ |1, 0〉2,3 ⊗ (α′0|0〉4 + α′1|1〉4 + α′2|2〉4),

2∑
k=0

|αk|2 =

2∑
k=0

|α′k|2 = 1, (2)

with modes 1, 2, 3 associated with the NLPSG in the upper leg of the MZI and mode 4 in the lower

leg (see labeling scheme in Fig.(1)). We can intuitively understand why this state will produce an

interference pattern upon coincidence detection of modes 1 and 4 exiting the MZI. The lower leg of

the MZI contains a PHASE shift element eiϕa
†
4a4 which effectively sends α′k → α′k e

i k ϕ. Recall that a

lossless unitary BS preserves the total photon number entering its ports. Thus, as discussed in detail

in Appendix B, a state |n〉a|m〉b entering a BS will generate the n+m+ 1 states {|p〉a|n+m−p〉b}
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FIG. 1. (Color online) The MRR NLPSG, with the ordinary three beam splitters used in the KLM im-

plementation (see Fig.(4) in Appendix A) replaced by micro-ring resonators (MRRs) (black circles). The

input state |Ψ(0)〉 entering the upper and lower leg of the MZI are weak coherent states (w-CS) of the form

(α0|0〉1 +α1|1〉1 +α2|2〉1) and (α′0|0〉4 +α′1|1〉4 +α′2|2〉4), respectively, with the modes of the NLPSG in the

upper leg of the MZI labeled (top-down) as 1, 2, 3. Modes 2 and 3 are the ancilla modes to the NLPSG that

are initially in the state |1, 0〉2,3. The lower leg, mode 4, of the MZI contains a PHASE shift element eiϕa†
4a4

which effectively sends α′k → α′k e
i k ϕ. The action of NLPSG123 ⊗ PHASE4 produces the intermediate

state |Ψ(1)〉. The final element of the MZI is a BS of angle θ (such that θ = π/2 is a 50:50 BS), whose out-

put is |Ψ(2)〉. Coincidence detection, producing the un-normalized state |Ψ̃(2)〉 = Π1234|Ψ(2)〉, is performed

on the exiting modes 1 and 4, conditioned on the NLPSG ancilla modes 2 and 3, occurs with probability

〈Ψ̃(2)|Ψ̃(2)〉. The KLM NLPSG is obtained by replacing each black circle in the NLPSG sub-diagram by a

single beam splitter with reflectivities 0 ≤ ηi ≡ r2i ≤ 1, where and −1 ≤ ri ≤ 1 are reflection coefficients for

i ∈ {1, 2, 3}.

where p ∈ 0, 1, . . . , n+m with (Wigner) rotation coefficients amplitudes. Thus, upon exit from the

MZI, the input states |0〉1|2〉4 and |2〉1|0〉4 to the final BS will generate the output state |1〉1|1〉4

with phase factors proportional to ei 2ϕ and 1 respectively, and BS-dependent modified amplitudes.

Similarly, the input state |1〉1|1〉4 to the final BS will also generate the output state |1〉1|1〉4 with

phase factor ei ϕ and a BS-dependent modified amplitude. These two sets of terms, which we will

consider individually, contribute to the primary coincidence interference pattern when we condition

on the click/no click of the ancilla modes 2 and 3. Here a click detection means that, sans photon

number resolving detectors, typical laboratory photon counting experiments are performed with

bucket detectors (e.g. average efficiency APDs with ξk ' 40%, or high efficiency SNSPDs with

ξk ' 85%) with the probability to detect n photons scaling as ξn. Such higher order detections
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are called accidentals and contribute an additional noise floor (over that of detector dark counts,

which we assume for simplicity to be zero) to the coincidence measurements.

In this work, we will keep track of such accidental terms using the reasonable approximation

of detecting at most two photons in any single mode, 1, 2, 3, 4. We will see that upon output the

set of input states {|0〉1|2〉4, |2〉1|0〉4} will generate the output state |1, 1, 0, 1〉1234 = |1, 1〉14|1, 0〉23

upon which the primary interference will be observed, with the output ancilla modes remaining

in their ideal “success heralding” state |1, 0〉23. The output state will also contain (orthogonal)

5-photon states with the the output ancilla modes not necessarily remaining in |1, 0〉23, plus various

other photon Fock states in modes 1 and 4. Similarly, upon output, the input state |1, 1〉14 will

also generate the ideal success state |1, 1, 0, 1〉1234, as well as 4-photon accidental states. A little

forethought indicates that the amplitude of the output state |1, 1, 0, 1〉1234 will be of the form

(α0 α
′
2Ae

i 2ϕ + α2 α
′
0B + α1 α

′
1Ce

i ϕ) ≈ α ei ϕ (A(θ) ei ϕ +B(θ) e−i ϕ + C(θ)) leading to a primary

success probability (squared amplitude) varying as DC(θ) + 2A(θ)B(θ) cos(2ϕ) + 2C(θ)
(
A(θ) +

B(θ)
)

cos(ϕ). Here A(θ), B(θ), C(θ) (taken real for simplicity) will depend on the final BS angle

θ, and DC(θ) = A(θ)2 + B(θ)2 + C(θ)2 is the constant (independent of ϕ) contribution assuming

unit detection efficiencies. When finite detection efficiencies are taken into account, there will be a

prefactor scaling as ξ6 � 1 (assuming, for simplicity, equal detection efficiencies in all modes ) as

well as both an “AC(θ, φ)” accidental term (dependent on the phase angle ϕ, arising from 4-photon

output states generated from input states containing |1〉1, |1〉4, or both) and a DC(θ) accidental

term (arising from the 5-photon states generated by the |0, 2〉1,4 and |2, 0〉1,4 input states). Both

these accidental states will contribute to the measured coincidence counts. However, these terms

will be down in magnitude by factors of n̄ � 1 and n̄2 ≪ 1 respectively, from the primary

interference probability. The details supporting this intuition will be worked out explicitly in the

following sections.

III. THE NLPSG UNDER ARBITRARY UNITARY EVOLUTION

Before we begin the main coincidence measurement calculation, let us first demonstrate the

action of the unitary operator U representing the NLPSG on modes 1, 2, 3. Under an arbitrary

N ×N unitary evolution U on mode-j, the boson creation operators a†in are transformed linearly

via [22]

a†j,in → U a†j,in U
† =

N∑
k=1

STjk a
†
k,out =

N∑
k=1

a†k,out Skj , (3)
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where T is transpose, defining the corresponding unitary matrix of coefficients Skj that act as

transition coefficients for a photon initially in mode j to be routed to output mode k. Henceforth,

we will drop the in, out subscript labels. The action of U on the input state |ψ(in)〉123 = (α0|0〉1 +

α1 |1〉1 + α2|2〉1)⊗ |1, 0〉2,3 of Eq.(1) is then given by [18]

|ψ(in)〉123 = (α0|0〉1 + α1 |1〉1 + α2|2〉1)⊗ |1, 0〉2,3, (4a)

=

(
α0 + α1 a

†
1 + α2

a†21√
2

)
a†2 |0, 0, 0〉123,

S−→ |ψ(out)〉123 =

α0 + α1

3∑
j=1

Sj1a
†
j + α2

1√
2

 3∑
j=1

Sj1a
†
j

 (
3∑

k=1

Sk1a
†
k

) ( 3∑
`=1

S` 2a
†
`

)
|0, 0, 0〉123,

≡ |ψNLPSG(out) 〉123 + |ψ⊥(out)〉123, (4b)

where we have defined the 3-photon NLPSG state |ψNLPSG(out) 〉123 as

|ψNLPSG(out) 〉123 ≡
(
β0 α0 |0〉1 + β1 α1 |1〉1 − β2 α2 |2〉1

)
⊗ |1, 0〉2,3 (5)

with the βk coefficients defined as

Condition-0: β0 = S22, (6a)

Condition-1: β1 = S11 S22 + S21 S12, (6b)

Condition-2: β2 = −S11 (S11 S22 + 2S21 S12) , (6c)

and

|ψ⊥out〉123 ≡

α0

∑
6̀=2

S` 2a
†
` + α1

∑
j, 6̀={(1,2),(2,1)}

Sj1S` 2a
†
ja
†
` +

1√
2
α2

∑
j,k,` 6={perm(1,1,2)}

Sj1Sk1S` 2 a
†
ja
†
ka
†
`

 |0, 0, 0〉123, (7)

as the remaining “non-NLPSG” state orthogonal to |ψNLPSG(out) 〉123. Successful operation of the

NLPSG occurs when all three conditions Eq.(6a), Eq.(6b), and Eq.(6c) hold simultaneously, namely

β0 = β1 = β2 ≡ β, in which case |ψNLPSG(out) 〉123 → β (a0 |0〉1+a1 |1〉1−α2 |2〉1 with success probability

|β|2. The self consistency of all three conditions requires S11 = 1∓
√

2, with the physical solution

(|S11| ≤ 1) demanding the solution with the minus sign. The remaining two conditions then

demand that

PNLPSGsuccess = |β|2 = |S22|2 =
1

2
|S21|2 |S12|2, S11 = 1−

√
2. (8)

This is the operational scenario for the use of two NLPSG in the KLM-CNOT gate [17, 18, 21]. At

this stage, the unitary transformation S is arbitrary. In the case of the KLM NLPSG implementa-

tion, S is the product of three BS operators. For the MRR NLPSG implementation, as explored in
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[18] and discussed in Appendix A, S is the product of three MRR transfer matrix operators. Both

these cases will be explored below, but for now we can remain unitarily agnostic, with a general S

matrix.

Finally, we note that if one’s sole purpose is simply to test the successful sign flip on the state

|2〉1, (say as an alternative to testing of the validity of the NLPSG with w-CS inputs) then this

could also be accomplished by setting α1 ≡ 0, using a co-linear SPDC (cl-SPDC) input state

α0 |0〉1 +α2 |2〉1 and lastly, only requiring that Condition-0 Eq.(6a), and Condition-2 Eq.(6c) hold,

namely β0 = β2 ≡ β, with the value of β1 unconstrained. While it is easier to generate w-CS than

cl-SPDC states, the former which are also more operationally useful in optical quantum computing

scenarios, it is informative to also explore the details of the latter case. It will turn out that

both types of input states produce nearly identical coincidence interference patterns when the cl-

SPDC input state scenario employ detectors operating at 40% detection efficiencies, and the w-CS

input state scenario employ detectors with 85% detection efficiencies, both with NLPSG success

probabilities of |β|2 = 1/4. We will discuss the cl-SPDC scenario in Section V. For now we will

explore the case of the general w-CS input state Eq.(4a).

Before we begin the analysis of the MZI interferometer with a NLPSG in one leg and a PHASE

shifter in the other, we first examine the POVM operator that is needed to project out the final

state (from the MZI-transformed pure input state) that contributes to the coincidence counts.

IV. CLICK AND NO-CLICK DETECTION PROJECTION OPERATORS

Since the NLPSG is realized non-deterministically, we first review the concept of non-photon

number resolving detection (bucket or click/no-click detection) that is typical of many laboratory

experiments.

A. Single mode detection

Consider a detector with probability (detection efficiency) 0 ≤ ξ ≤ 1 to detect one photon in a

single mode |1〉, with the corresponding probability 1−ξ not to detect the single photon. Then the

projection operators ΠNC and ΠC for a no-click and a click detection, respectively (i.e. non-photon
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number resolving detection) are given by

ΠNC =

∞∑
n=0

(1− ξ)n |n〉〈n| → |0〉〈0| as ξ → 1, (9a)

ΠC = I −ΠNC =
∞∑
n=0

[1− (1− ξ)n] |n〉〈n| →
∞∑
n=1

|n〉〈n| = I − |0〉〈0| as ξ → 1, (9b)

and hence the pair

Single-mode detection POVM = {ΠC ,ΠNC ≡ I − PCC}, (10)

forms a dichotomous single mode detection POVM. Here, Eq.(9a) is intuitively understood as the

probability (1−ξ)n not to detect the state |n〉 of n photons, and for the no-click projector ΠNC we

then sum over all possible photon number states. In the limit of perfect (photon number resolving)

detection ξ → 1, we have that ΠNC is just the projection onto the vacuum state |0〉〈0|. The

opposite case of the detection one or more photons (a click) in the given mode is trivially given as

I −ΠNC , with the intuitive ξ → 1 limit of I − |0〉〈0| = |1〉〈1|+ |2〉〈2|+ · · · (i.e. the projector onto

the state containing one or more photons).

The unnormalized state |Ψ̃′〉 just after a click detection event is given by |Ψ̃′〉 = ΠC |Ψ〉 for

the pure state |Ψ〉 just before the measurement. (Note: throughout the paper, we used a tilde to

indicate an unnormalized state, whose norm yields a probability). The probability for the click

measurement is then just the norm of this state PC = |||Ψ̃′〉||2 = 〈Ψ|Π2
C |Ψ〉. (Note that while ΠC

is a measurement projection operator, it is not a von-Neumann projection operator in the sense

that Π2
C 6= ΠC . Along with ΠNC , it is an element of a POVM). This gives the expressions

PNC = Tr[ΠNC |Ψ〉〈Ψ|] =

∞∑
n=0

q2
n |〈n|Ψ〉|2, qn = (1− ξ)n, q0 = 1, q1 = 1− ξ, (11a)

PC = Tr[ΠC |Ψ〉〈Ψ|] =

∞∑
n=0

p2
n |〈n|Ψ〉|2 = 1− pNC , pn = 1− qn, p0 = 0, p1 = ξ. (11b)

B. Many mode detection

We can easily extend the concept of click and no-click detection to many modes. Consider first

two modes a and b. If one had perfect detection efficiency ξ → 1, the situation in which we do not

have a simultaneous coincidence click between modes a and b is given by

ΠNCC →
ξ→1
|0〉a〈0| ⊗ Ib + Ia ⊗ |0〉b〈0| − |0〉a〈0| ⊗ |0〉b〈0|, (12)
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where the first term is ”no-click” in detector A and anything in detector B, the second term is the

reverse situation, and the last term with the ”-” sign is needed to avoid the double counting of the

vacuum projection |0〉a〈0| ⊗ |0〉b〈0| that occurs in the first two terms.

To extend Eq.(12) to imperfect detection 0 ≤ ξa, ξb ≤ 1, we utilize Eq.(9b) to extend

Ia − |0〉a〈0| → Π
(a)
C =

∑∞
n=0 [1− (1− ξa)n] |n〉a〈n| ≡

∑∞
n=0 p

(a)
n |n〉a〈n| with p

(a)
n = [1− (1− ξa)n]

the probability to detect a “click” of n photons in mode-a Fock state |n〉a. Note that p
(a)
0 = 0 and

p
(a)
1 = ξa. Then, the probability to detect a click in both mode-a and in mode-b, i.e. a coincidence

count (CC), with finite detection efficiencies is just the product of the individual probabilities

for mode-a and mode-b, corresponding to the product of the projection operators for each mode,

namely

Π
(ab)
CC = Π

(a)
C ⊗Π

(b)
C =

∞∑
n=0

p(a)
n |n〉a〈n| ⊗

∞∑
m=0

p(b)
m |m〉b〈m|, (13a)

≡
∞∑
n=0

∞∑
m=0

p(ab)
nm |n,m〉ab〈n,m|, p(ab)

nm = [1− (1− ξa)n] [1− (1− ξb)m]. (13b)

We see that the above expression has the correct limits, namely p
(ab)
00 = p

(ab)
n0 = p

(ab)
0m = 0 appropriate

for not detecting a coincidence click, and p
(ab)
11 = ηa ηb. Lastly, the above expression reduces in the

limit of unit detection efficiencies to [Ia − |0〉a〈0|] ⊗ [Ib − |0〉b〈0|] such that in the same limit the

probability for no coincidence counts (NCC) ΠNCC = Ia⊗Ib−ΠCC reduces to the correct limiting

form given by Eq.(12). Thus, the dichotomous two-element POVM defining two-mode coincidence

click/no-click detection is given by

Two-mode detection POVMa,b = {Π(ab)
CC , Π

(ab)
NCC ≡ Ia ⊗ Ib −Π

(ab)
CC }. (14)

This is easily generalized to arbitrary simultaneous coincidence clicks on M modes ai∈{1,2,...,M} via

M -mode detection POVMa1,...,aM = {Π(a1,...,aM )
CC , P

(a1,...,aM )
NCC ≡ Ia1 ⊗ . . .⊗ IaM −Π

(a1,...,aM )
CC },(15a)

Π
(a1,...,aM )
CC =

M⊗
i=1

Π
(ai)
C , p(a1,...,aM )

n1... nM
=

M∏
i=1

p(ai)
ni

=

M∏
i=1

[1− (1− ξai)
ni ]. (15b)

The takeaway point of this section is as follows. Under perfect detection efficiency, ξi = 1

only the state |1, 1, 0, 1〉1234 will contribute to the probability interference pattern, as discussed

in Section II. However, under finite, imperfect detection efficiencies, ξi < 1, output states other

than |1, 1, 0, 1〉1234 will also contribute to the output detected signal with varying probabilities.

We will call such states accidentals, since they arise due to finite detection efficiencies. Note that

in order to contribute to the total output signal, such states must contain at least one photon in

each of modes 1, 2, and 4, and any number of photons in mode 3, i.e. |n1, n2, n3, n4〉1234 with

n1, n2, n4 ≥ 1, n3 ≥ 0.
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V. DIRECT MEASUREMENT OF THE NLPSG

In this section we analyze the MZI given in Fig.(1) containing the NLPSG in the upper leg

of the MZI, with primary mode 1 and ancilla modes 2 and 3, and the PHASE shift element in

the lower leg, mode 4. After the action of NLPSG1,2,3 ⊗ PHASE4, modes 1 and 4 interfere on a

BS14, and are subsequently coincidently detected upon exit from the MZI, while we simultaneously

ask for a click detection on mode 2 and a no-click detection on mode 3. Our unitary operator

is given by U = BS14 · (NLPSG123 ⊗ PHASE4) and our projection operator will be Π(1,2,3,4) ≡

Π
(1)
C ⊗Π

(2)
C ⊗Π

(3)
NC⊗Π

(4)
C . Note that we will explicitly implement (by hand) the phase shift element

PHASE4 = ei ϕ a
†
4 a4 on mode 4, which simply has the net effect to transforming α′k → α′k e

i k ϕ on

the w-CS4 input state.

A. Preliminaries

As before, we allow the KLM triple BS (or triple MRR) operator on modes 1, 2, 3 to be repre-

sented by Sij , and the BS transformation on modes 1, 4 to be represented by Bij . Extending these

operators to 4× 4 matrix representations, we define

B =


cos(θ/2) 0 0 sin(θ/2)

0 1 0 0

0 0 1 0

− sin(θ/2) 0 0 cos(θ/2)

 , S =


S11 S12 S13 0

S21 S22 S23 0

S31 S32 S32 0

0 0 0 1

 , (16)

where the rows and columns are labeled by the mode indices in the order {1, 2, 3, 4}. (Note, the

choice of the argument θ/2 in the BS is so that a 50:50 BS is given by θ = π/2). We define the

product of these matrices as the unitary U

U ≡ B S =


cos(θ/2)S11 cos(θ/2)S12 cos(θ/2)S13 sin(θ/2)

S21 S22 S23 0

S31 S32 S32 0

− sin(θ/2)S11 − sin(θ/2)S12 − sin(θ/2)S13 cos(θ/2)

 . (17)

The unitary transformation U affects the following transformations on the boson creation operators

a†i
S−→

4∑
j=1

a†j Sji
BS−−→

4∑
j=1

4∑
k=1

a†k Bkj Sji ≡
4∑

k=1

a†k Uki, with Uki =
4∑
j=1

Bkj Sji. (18)
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This allows us to transform the initial state |Ψ(0)〉1234
U−→ |Ψ(2)〉1234 (see Fig.(1)). Upon coincidence

detection of modes 1 and 4, with click/no-click detection on modes 2 and 3, we have the unnor-

malized post-measurement state |Ψ(1)〉1234
Π(1234)

−−−−→ |Ψ̃(2)〉1234 (indicated with a tilde) with detection

probability P1234 = |||Ψ̃(2)〉1234||2.

We begin by writing the initial state |Ψ(0)〉1234 , using
∑2

i=0 |αi|2 =
∑2

i=0 |α′i|2 = 1 as

|Ψ(0)〉1234 =
[
α0|0〉1 + a1|1〉1 + α2|2〉1

]
⊗ |1, 0〉2,3 ⊗

[
α′0|0〉4 + α′1|1〉4 + α′2|2〉4

]
, (19a)

=

[
α0 α

′
0 a
†
2 + α0

α′2√
2
a†2

(
a†4

)2
+
α2√

2
α′0

(
a†1

)2
a†2 +

α2√
2

α′2√
2

(
a†1

)2
a†2

(
a†4

)2
]
|0, 0, 0, 0〉1234 (19b)

+

[
α0 α

′
1 a
†
2 a
†
4 + α1 α

′
0 a
†
1 a
†
2 + α1 α

′
1 a
†
1 a
†
2 a
†
4 + α1

α′2√
2
a†1 a

†
2 (a†4)2

+
α2√

2
α′1 (a†1)2 a†2 a

†
4

]
|0, 0, 0, 0〉1234, (19c)

≡ |Ψ(0)
02′;2′0〉+ |Ψ(0)

1,1′〉, (19d)

where the input state |Ψ(0)〉1234 has been separated into two branches. Eq.(19b) separates out that

branch |Ψ(0)
02′;2′0〉 of the input state that contains only the states |0〉k and |2〉k in modes k = 1, 4.

Eq.(19c) |Ψ(0)
1,1′〉 separates out the remaining branch of the input state |Ψ(0)〉1234 that involve either

input states |1〉1 , |1〉4, or both.

In the following, we will first concentrate on transformation of the input state |Ψ(0)
02′;2′0〉 which

after the measurement involves the single 3-photon output state |1, 1, 0, 1〉1234, and only 5-photon

accidental states. Subsequently, we will analyze the transformation of the remaining input state

|Ψ(0)
1,1′〉, which after the measurement also involves the output state |1, 1, 0, 1〉1234, but now with

only 4-photon accidental states.
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B. Transformation of the input state |Ψ(0)
02′;2′0〉1234

After applying the 4×4 unitary U = BS14 ·(NLPSG123⊗PHASE4) on the mode operators, as

illustrated in Fig.(1), we have (note: under PHASE4 we have |n〉4 → ei nϕ |n〉4 for n ∈ {0, 1, 2}).

|Ψ(0)
0,2′;2,0′〉1234

NLPSG123⊗PHASE4−−−−−−−−−−−−→ |Ψ(1)
0,2′;2,0′〉1234

BS14−−−→ |Ψ(2)
0,2′;2,0′〉1234,

=

α0 α
′
0

4∑
j=1

a†j Uj2 + α0
α′2√

2
ei 2ϕ

 4∑
j=1

a†j Uj2

 (
cos(θ/2)a†4 + sin(θ/2) a†1

)2

+
α2√

2
α′0

 4∑
j=1

a†j Uj1

( 4∑
k=1

a†k Uk1

)(
4∑
`=1

a†` U`2

)

+
α2√

2

α′2√
2
ei 2ϕ

 4∑
j=1

a†j Uj1

( 4∑
k=1

a†k Uk1

)(
4∑
`=1

a†` U`2

) (
cos(θ/2)a†4 + sin(θ/2) a†1

)2

 , (20a)

Π(1234)

−−−−→ |T0,2′〉1234 + |T2,0′〉1234 + |T2,2′〉1234. (20b)

where in Eq.(20a) we have explicitly carried out the BS transformation on mode-4, a†4 →

cos(θ/2) a†4 + sin(θ/2) a†1, (but not on mode-1). Additionally, we have explicitly implemented the

the PHASE gate I123⊗ ei a
†
4 a4 ϕ on mode-4, which on states sends |0〉4 → |0〉4 and |2〉4 → ei 2ϕ |2〉4,

and which we have incorporated by hand, having the net effect of sending α′2 → α′2 e
i 2ϕ. Here

the states |Ti,j′〉1234 listed in Eq.(20b), arising from the transformation of the input state |i〉1 |j〉4,

are those three or more photon states that survive under measurement projection. Recall that

p
(k)
0 = 0 for for mode k, so that the states that remain after projection must contain three or more

photons, with at least one photon in each of modes k = {1, 2, 4}.

The individual states are given by

|T0,2′〉1234 = α0
α′2√

2
ei 2ϕ sin(θ)U22|1, 1, 0, 1〉1234,

= α0
α′2√

2
ei 2ϕ sin(θ)S22|1, 1, 0, 1〉1234, (21)

and

|T2,0′〉1234 =
α2√

2
α′0 [U11 U21 U42 + U11 U41 U22 + U21 U11 U42 + U21 U41 U12 + U41 U11 U22 + U41 U21 U12] |1, 1, 0, 1〉1234,

=
α2√

2
α′0 sin(θ) [−S11 (S11 S22 + S21 S12)] |1, 1, 01〉1234, (22)

where we recognize β0 from Eq.(6a) as the amplitude in Eq.(21), and β2 from Eq.(6c) as the

amplitude in Eq.(22). Thus, combining the above two results and upon imposing Condition-0
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Eq.(6a) and Condition-2 Eq.(6c) only, which ensures that β0 = β2 ≡ β, we already have our

primary interference contribution, namely

|T0,2′〉1234 + |T2,0′〉1234 =
1√
2

sin(θ)
[
−S11 (S11 S22 + S21 S12) α′0 α2 + α0 α

′
2 e

i 2ϕ S22

]
|1, 1, 0, 1〉1234, (23)

=
1√
2

sin(θ)β
[
α′0 α2 + α0 α

′
2 e

i 2ϕ
]
|1, 1, 0, 1〉1234, if impose Conditions 0 & 2, (24)

→
√

2 sin(θ)β |α0| |α2| ei ϕ cos(ϕ) |1, 1, 0, 1〉1234, for α′0 = α0 & α′2 = α2. (25)

This last term leads to a coincidence probability arising only from the 3-photon state |1, 1, 0, 1〉1234

contribution:

P
(3−photons)
1234 → 2 ξ2

1 ξ
2
2 ξ

2
4 sin2(θ) |β|2 |α0|2 |α2|2 cos2(ϕ), (26)

where we have also included the finite detection efficiency factors.

Lastly, the remaining 5-photon states |T2,2′〉1234 generated from U acting on |Ψ(0)
0,2′;2,0′〉, which

do not contribute to the above primary interference pattern are given by

|T2,2′〉1234 = α2 α
′
2 e

i 2ϕ
(

|1, 2, 0, 2〉1234

[
sin(θ)U (cs)

202 + sin2(θ/2)U (ss)
202

]
+ |1, 2, 1, 1〉1234

[
sin(θ)U (cs)

211

]
+ |1, 1, 1, 2〉1234

[
sin(θ)U (cs)

112 + sin2(θ/2)U (ss)
112

]
+ |1, 1, 2, 1〉1234

[
sin(θ)U (cs)

121

]
+ |2, 2, 0, 1〉1234

[
cos2(θ/2)U (cc)

201 + sin(θ)U (cs)
201

]
+ |2, 1, 1, 1〉1234

[
cos2(θ/2)U (cc)

111 + sin(θ)U (cs)
111

]
+ |2, 1, 0, 2〉1234

[
cos2(θ/2)U (cc)

102 + sin(θ)U (cs)
102 + sin2(θ/2)U (ss)

102

])
, (27)

where the various matrix elements {U (cs)
202 ,U

(ss)
202 , . . .} in terms of Uij are listed explicitly in the

Appendix Appendix C. (Note: {cc, cs, ss, } superscripts indicate that terms are multiplied by

{cos2(θ/2), 2 cos(θ/2) sin(θ/2), sin2(θ/2)} and {c, s} superscripts indicate terms are multiplied

by {cos(θ/2), sin(θ/2)}. The subscripts i, j, k indicate that the amplitudes multiply the state

|i, j, k〉2,3,4). The important point to note is that by containing 5-photon terms |T2,2′〉1234 is au-

tomatically orthogonal to the 3-photon state |1, 1, 0, 1〉1234 upon which the primary interference

effects occurs. Additionally, each term in Eq.(27) is multiplied by ei 2ϕ, and is also orthogonal to

every other term in |T2,2′〉1234. Hence, upon squaring these amplitudes for the probability, these

terms simply contribute to a (BS-angle dependent) dc accidental term DC(θ), independent of the

phase angle ϕ.
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C. Transformation of the input state |Ψ(0)
1;1′〉1234

Turning to the the transformation of the terms listed in Eq.(19c) containing |1〉1, |1〉4 or both,

we have

|Ψ(0)
1,1′〉1234

NLPSG123⊗PHASE4−−−−−−−−−−−−→ |Ψ(1)
1,1′〉1234

BS14−−−→ |Ψ(2)
1,1′〉1234,

=

α0 α
′
1

 4∑
j=1

a†j Uj1

 (
cos(θ/2) a†4 + sin(θ/2) a†1

)
+ α1 α

′
0

 4∑
j=1

a†j Uj1

 (
4∑

k=1

a†k Uk2

)

+α1 α
′
1 e

i ϕ

 4∑
j=1

a†j Uj1

 (
4∑

k=1

a†k Uk2

) (
cos(θ/2) a†4 + sin(θ/2) a†1

)
(28a)

+α1
α′2√

2
ei 2ϕ

 4∑
j=1

a†jUj1

 (
4∑

k=1

a†kUk2

) (
cos(θ/2) a†4 + sin(θ/2) a†1

)2

+
α2√

2
α′1 e

i ϕ

 4∑
j=1

a†jUj1

 (
4∑

k=1

a†kUk1

) (
4∑
`=1

a†`U`2

) (
cos(θ/2) a†4 + sin(θ/2) a†1

) |0, 0, 0, 0〉1234,(28b)

Π(1234)

−−−−→ |T1,1′〉1234 + |T1,2′〉1234 + |T2,1′〉1234. (28c)

Following the same procedure as above, the state that survives after measurement projection and

contributes to the primary coincidence interference effect is

|T1,1′〉1234 = α1 α
′
1 e

i ϕ |1, 1, 0, 1〉1234

[
cos(θ/2)U ′(c)101 + sin(θ/2)U ′(s)101

]
,

= α1 α
′
1 e

i ϕ |1, 1, 0, 1〉1234 β1 cos(θ), (29)

which arises from the transformation of the input state |1〉1 |1〉4. In the above we have defined

β1 ≡ S11 S22 + S21 S12 −→
β→βmax=1/2

βmax = 1/2, (β2
max = 1/4), (30)

where β1 → β = 1/2 if we were to impose Condition-1, Eq.(6b) in addition to the previously

imposed Condition-0, Eq.(6a) and Condition-2, Eq.(6c), which would then make β2 → β2
max = 1/4.

The remaining 4-photon orthogonal accidental states arising from the transformation of the

input states |1〉1 |2〉4 and |2〉1 |1〉4 are given by

|T1,2′〉1234 + |T2,1′〉1234 =(
ei ϕ |1, 2, 0, 1〉1234

[
α1 α

′
2 e

i ϕ sin(θ)U ′(cs)201 + α2 α
′
1

(
cos(θ/2)U ′(c)201 + sin(θ/2)U ′(s)201

)]
+ ei ϕ |1, 1, 1, 1〉1234

[
α1 α

′
2 e

i ϕ sin(θ)U ′(cs)111 + α2 α
′
1

(
cos(θ/2)U ′(c)111 + sin(θ/2)U ′(s)111

)]
+ ei ϕ |1, 1, 0, 2〉1234

[
α1 α

′
2 e

i ϕ
(

sin(θ)U ′(cs)102 + cos2(θ/2)U ′(cc)102

)
+ α2 α

′
1

(
cos(θ/2)U ′(c)102 + sin(θ/2)U ′(s)102

)]
+ ei ϕ |2, 1, 0, 1〉1234

[
α1 α

′
2 e

i ϕ
(

sin(θ)U ′(cs)101 + sin2(θ/2)U ′(ss)101

)
+ α2 α

′
1

(
cos(θ/2)U ′(c)101 + sin(θ/2)U ′(s)101

)])
, (31)
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Again, the various matrix elements {U ′(cs)202 ,U ′(ss)202 , . . .} in terms of Uij are listed explicitly in Ap-

pendix C. Note that squaring each of the above amplitudes will generate a cos(ϕ) higher-order

interferences in the accidentals.

D. Form of the unnormalized post measurement state

The complete output state upon transformation by U for a general w-CS input states on mode

1 and 4 is then

|Ψ(0)〉1234
U−→ |Ψ(2)〉1234 ≡ |T0,2′〉1234 + |T2,0′〉1234 + |T2,2′〉1234,

+ |T1,1′〉1234 + |T1,2′〉1234 + |T2,1′〉1234. (32)

where the top line comes from the transformation of |Ψ(0)
02′;20〉 and the bottom line arises from the

transformation of |Ψ(0)
1,1′〉. Recall that the state after projection is given by

|Ψ̃(2)〉1234 ≡ Π1234 |Ψ(2)〉1234 =

4 ′∑
n,m,r,s=0

p(1)
n p(2)

m

(
1− p(3)

r

)
p(4)
s |n,m, r, s〉1234〈n,m, r, s|Ψ(2)〉1234, (33)

where the prime on the summation indicates that we are in the approximation that each mode

contains at most two photons. Since p
(k)
0 = 0, only states with at least one photon in modes

k ∈ {1, 2, 4} survive the measurement projection, and therefore |Ψ̃(2)〉1234 contains the 3-photon

state |1, 1, 0, 1〉1234, plus 4- and 5-photon accidental states that also contribute to the coincidence

counts when detectors with finite detection efficiencies are employed.

The primary coincidence interference term arises from the |1, 1, 0, 1〉1234 portion of |Ψ̃(2)〉1234

which has the form

|Ψ̃(2)〉 = (prefactor)1/2 ×
[
β f3(θ, ϕ) |1, 1, 0, 1〉1234 + α |Ψ̃(2)

4 (θ, ϕ)〉1234 + α2 |Ψ̃(2)
5 (θ)〉1234

]
, (34)

where we have defined the prefactor as

(prefactor)1/2 =
ξ1 ξ2 ξ4 α

2 eiϕ

1 + α2 + α4/2
=

ξ1 ξ2 ξ4 n̄ e
iϕ

1 + n̄+ n̄2/2
, (35)

where n̄ ≈ α2 is the mean number of photons in the w-CS. Additionally, we define the interference

amplitude f3(θ, ϕ), after factoring out β, as

Interference Amplitude:

(i) f3(θ, ϕ) = sin(θ) cos(ϕ) + (β1/β) cos(θ), only assuming Condition-0 & Condition-2, i.e β0 = β2 ≡ β, (36)

(ii) f3(θ, ϕ)→ sin(θ) cos(ϕ) + cos(θ), additionally imposing Condition-1, i.e. β0 = β1 = β2 ≡ β. (37)
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Here |Ψ̃(2)
4 (θ, ϕ)〉1234 and |Ψ̃(2)

5 (θ)〉1234 are (unnormalized state) contributions from the 4-photon

and 5-photon states respectively, that contribute to the accidentals, and we have used α′k = αk =
αk√

1 + α2 + α4/2
in Eq.(35) for simplicity. θ is the BS angle (with θ = π/2 for a 50:50 BS), and

ϕ is the phase shift angle in mode-4. The final interference probability P1234, imposing all three

Conditions-0,1,2 then has the form

P1234 = || |Ψ̃(2)〉1234||2 =

[
ξ2

1 ξ
2
2 ξ

2
4 n̄

2

(1 + n̄+ n̄2/2)2

] [
β2 f2

3 (θ, ϕ) + n̄ AC(θ, ϕ) + n̄2DC(θ)
]
, (38a)

n̄ = α2, AC(θ, ϕ) = 1234〈Ψ̃(2)
4 |Ψ̃

(2)
4 〉1234 DC(θ) = 1234〈Ψ̃(2)

5 |Ψ̃
(2)
5 〉1234. (38b)

Note that the first and third terms in the right square brackets of Eq.(38a) arise from input states

on mode-1 and 4 that contain only 0 and 2 photons when a 50:50 BS (θ = π/2) is used (i.e.

cos(θ) → 0 wipes out the interference contributions arising from the addition of the |1〉1 and |1〉4

input states). This is of course, just the well known HOM BS-induced interference effect in the

context of our NLPSG MZI [8, 24]. Also note that the first (interference) term in Eq.(38a) is

of O(β2) ∼ O(1), while each additional (accidentals) term scales as O(n̄) � 1 and O(n̄2) ≪ 1,

respectively. Eq.(38a) with Eq.(38b) is one of the main results of this work, to which we will now

specialize to both the KLM and MRR implementation of the NLPSG.

In Fig.(2) we plot the scaled probability P
′(θ=π/2,ϕ)
1234 (i.e. defined from Eq.(38a) as P1234 ≡ prefactor×

P ′1234 ) for coincidences (left) KLM, (right) MRR using co-linear SPDC (cl-SPDC, dashed) and

weak coherent (w-CS, solid) input states with a 50:50 BS (θ = π/2), and |α2/α0|2 = 0.1 with

finite detection efficiencies (gray, black) ξ1 = ξ2 = ξ4 ≡ ξ = {0.40, 0.85}, at the optimal reflection

coefficients r∗21 = r∗23 , r
∗2
2 ⇒ |β|2 = 1/4. The (left) KLM and (right) MRR curves are identical.

FIG. 2. Plot of P ′1234 from Eq.(38a) for the (left) KLM, (right) MRR NLPSG for β2 = 1/4 for (dotted)

w-CS input states and (dot-dashed) cl-SPDC input states with detection efficiencies (gray) 40% and (black)

85%. The left and right graphs are identical.
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The reason these curves are identical, is that even though S(MRR) and S(KLM) are not strictly

identical, i.e. S(MRR) 6= S(KLM), they are effectively identical in the sense that the upper left 2×2

sub-matrix

(
S11 S21

S21 S22

)
, of each unitary matrix are identical at β2 = 1/4, which now enforces

Condition-1, along with Condition-0 and Condition-2 which were previously satisfied, while the

third row and third column of the each unitary matrix are different. This is how the MRR-NLPSG

encompasses the KLM-NLPSG (since the former solution was modeled after the latter’s). This is

not the case at other values of β2 6= 1/4.

The new feature using the MRR-NLPSG is the one-dimensional manifold relationship between

the phyisical transmission coefficients τi and ηi = ηi(τi) of the MRR NLPSG in terms of fictitious

KLM effective refection coefficients ri as described in Appendix A, and discussed more fully in

[18]. That is, by modeling the solutions of the MRR NLPSG as if it were composed of three KLM

BS, one finds the MRR solutions for the fictitious KLM r∗i that yield β2 = 1/4 define a 1-parameter

family (manifold) of physical MRR transmission coefficients ηi = ηi(τi; r
∗
i ) (this is true in general

regardless of the value of ri ⇒ β2 considered) given by

ηi(τi; r
∗
i ) =

r∗i + τi
1 + r∗i τi

, |τ∗i | ≤ 1⇒ |η∗i | ≤ 1, for fixed |r∗i | ≤ 1. (39)

as shown in Fig.(3). This affords a much greater freedom in the use of the physical transmission

FIG. 3. Plots of the physical MRR transmissivities (solid) η21=3 vs τ21=3, and (dashed) η22 vs τ22 for fixed

values of the fictitious KLM reflectivities r∗21 , r
∗2
2 yielding β2 = 1/4.

coefficients to realize the coincidence interference effect, over the single point-solution obtained

from the KLM-NLPSG.

All the graphs for a 50:50 BS (θ = π/2) have the same qualitative form P ′1234 = a0 +a1 cos(ϕ)+

β2 cos2(ϕ) (see Table I). We define the coincidence probability as P1234 = prefactor × P ′1234.
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Coincidence Detection Probability

P ′1234 = a0 + a1 cos(ϕ) + β2 cos2(ϕ)

(a0, a1) for β2 = 1/4

ξ \input state cl-SPDC w-CS

0.40 (0.065, 0.000) (0.188, 0.000)

0.85 (0.015, 0.006) (0.078, 0.003)

TABLE I. Form of the scaled coincidence interference probability P ′1234 = a0 +a1 cos(ϕ)+β2 cos2(ϕ) where

the full probability Eq.(38a) is given by P1234 = prefactor× P ′1234 (see Table II).

prefactor

P1234 = prefactor× P ′1234
ξ \ input state cl-SPDC w-CS

0.40 6.7× 10−4 4.1× 10−4

0.85 6.2× 10−2 3.8× 10−2

Visibilities

β2 = 1/4

ξ \input state cl-SPDC w-CS

0.40 65% 41%

0.85 89% 65%

TABLE II. (left) prefactor (overall strength of the coincidence interference probability: P1234 = prefactor×

P ′1234, (right) Visibilities of coincidence interference probability P ′1234 for input states cl-SPDC and w-CS

for β2 = 1/4.

Here, the prefactor (see Table II) scales as ξ6 n̄2 where n̄ = α2 = α2
1 =
√

2α2 is the mean number

of photons in the weak coherent state (w-CS). The upward displacement of the probability curve

indicates a larger value of the accidentals - essentially a DC noise offset. In general, the higher the

detection efficiency, the lower the noise floor, and the closer the curve nearly touches the abscissa,

and consequently, the higher the visibility, as shown in Table II. In both the (left) and (right)

figures of Fig.(2) we note that using the cl-SPDC input states at the lower detection efficiency of

40% produces nearly the identical curve as using w-CS input states at the much higher detection

efficiency of 85%.

Note, if we generate input states at a rate rstates states/sec and integrate for a time T , then the

number of counts is given by Ncounts = prefactor× rstates× T for each of the Nϕ discrete values of

ϕ sampled (at minimum 10). This implies that the total time to conduct the experiment will be

on the order of Texp ∼ NϕNcounts/(prefactor× rstates), highlighting the implication of the higher

detection efficiency increasing the value of the prefactor, thus reducing Texp. Note that prefactor

scales as ξ2
1 ξ

2
2 ξ

2
4 ∼ ξ6 so that a change in detection efficiency from 40% to 85% yields an increase

of (0.85/0.40)6 = 92 ∼ 100X in the strength of the effect, while also reducing the strength of the

accidentals by ∼ 4X. The use of more efficient detectors is clearly evident in Table II.
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VI. CONCLUSION

In this work we have presented a direct interferometric coincidence test of the KLM- and

MRR-based NLPSG for detectors with finite detection efficiencies. The NLPSG was chosen as a

prototypical quantum circuit relying on two ancilla to herald its success probability to illustrate the

analysis of the direct interferometric testing of low photon number gates expressed as an isometry

(i.e. a normalized quantum state vector projection), incorporating non-unit detection efficiencies.

In the past, the KLM NLPSG was tested indirectly through the use of two of them to form the

basis of a CNOT gate. Essentially, this was a HOM interference on the two-photon branch of the

input state (mode 1). Here we propose a straightforward HOM interference setup with a w-CS

input state in each arm of a MZI, one arm containing the KLM or MRR NLPSG and the other

arm containing a phase shifter. For a 50:50 BS, we show that the primary coincidence interference

effect that appears on the ideal NLPSG “success state” arises from the vacuum and two-photon

mixing on the final MZI BS, a manifestation of the HOM effect. To make this calculation more

experimentally relevant, we keep all terms in the MZI unitary transformation containing up to two

photons in each of the four possible modes (three for the NLPSG in one arm of the MZI and one

for the phase shifter in the other arm), so that we can include the accidentals that contribute to

the coincidence measurement when detectors with finite efficiencies are employed. By developing

our analysis in terms of a general 4-mode interaction unitary, we are able to simply substitute

the appropriate unitary matrix elements encoding the KLM and the MMR implementation of the

NLPSG to compare and contrast their interferometric signatures. With this illustrative quantum

circuit we show how the MRR NLPSG encompasses the KLM NLPSG and utilizes the latter’s

maximum success probability fixed point solution as a parameter in a one dimensional manifold

relationship between the physical transmissivities of the each MRR (that now replaces each KLM

BS). Lastly, we additionally show that if one instead uses cl-SPDC input states in each arm of the

MZI, where the single photon branch is absent, then one obtains qualitatively the same coincidence

interference probability, however now with accidentals suppressed by the square of the mean number

of photons in the input state, and with a moderately increased interference visibility. While the

generation of w-CS is much less resource intensive than that for the production of cl-SPDC states

(with corresponding a higher generation rate), both types of inputs states can be utilized to validate

the sign-flip by the measurement-induced NLPSG. Both of these approaches could be utilized in

current photonic integrated waveguide devices, and experimental verification of these approaches

are the focus of follow-on research. The analysis performed in this work, and illustrate with the
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KLM and MRR NLPSG is readily extendable to other several mode, low photon number quantum

circuits whose success operation is heralded by the measurement of ancilla photons, under non-ideal

detection conditions germane to laboratory experiments.
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Appendix A: The KLM and MRR implementation of the NLPSG

1. The KLM NLPSG

The KLM implementation of the NLPSG as shown in Fig.(4) utilized three individual BS of

the form

FIG. 4. The KLM NLSG using three ordinary beam splitters of reflectivities Ri = r2i , and optical path

delays of δi. Mode 1 is the primary input state in a weak coherent state (w-CS) containing up to two

photons. Mode 2 and 3 are ancilla modes, initially in the state |1, 0〉23. Success of NLPSG is heralded by

the detection of the output ancilla modes in their initial state.

M1 =

 r1 e
iφ1

√
1− r2

1√
1− r2

1 −r1 e
−iφ1

 , M2 =

 −r2 e
−iφ2

√
1− r2

2√
1− r2

2 r2 e
iφ2

 , M3 =

 r3 e
iφ3

√
1− r2

3√
1− r2

3 −r3 e
−iφ3

 ,

(A1)

with real BS reflection coefficients −1 ≤ ri ≤ 1 (reflectivities Ri = r2
i ) [25]. Note that we have

chosen a (non-standard) matrix representation of the 2 × 2 BS matrix that contains only real

coefficients [22] such that det(Mi) = −1 for i ∈ {1, 2, 3}.

Recall that a unitary transformation U = B3B2B1 affects the following transformations on the

boson creation operators [18, 21, 22]

a†i
B1−−→

4∑
j=1

a†j (B1)ji
B2−−→

4∑
j=1

4∑
k=1

a†k (B2)kj (B2)ji
B3−−→

4∑
j=1

4∑
`=1

a†` (B3)`k (B2)kj (B1)ji ≡
4∑

k=1

a†` U`i,

with U`i =

4∑
k=1

4∑
j=1

(B3)`k (B2)kj (B1)ji ≡ (B3B2B1)`i, (A2)

with B1 acting first, B2 acting second, and B3 acting third as we traverse the NLPSG in Fig.(4)

from left to right.
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Putting the above three blocks together, we have the full evolution from left to right in Fig.(4)
a†1,out

a†2,out

a†3,out


T

=


a†1,in

a†2,in

a†3,in


T

(B3B2B1) (A3a)

=


a†1,in

a†2,in

a†3,in


T 

ei δ3

0

0

0 0

M3


 M2

0 0

0

0

ei δ2



ei δ1

0

0

0 0

M1

 (A3b)

≡


a†1,in

a†2,in

a†2,in


T

S (A3c)

=


a†1,in

a†2,in

a†3,in


T 

S11 S12 S13

S21 S22 S23

S31 S32 S33

 , (A3d)

where the superscript T indicates the transpose (i.e. the matrix U = B3B2B1 acts on the row

vector (a†1,in, a
†
2,in, a

†
3,in) from the right, as in Eq.(A2)). The above product of BS defines the matrix

S representing the three mode (1,2,3) KLM NLPSG with components Sij (obtained by explicitly

multiplying out B3B2B1) routing a photon initially in mode j (second index) into the mode i

(first index). Here, the δi represent phase shifts due to the optical path length delays to and from

the BSs.

Without loss of generality, we will henceforth only consider the simple case when all phases

{φi, δi} are identically zero. This yields the S-matrix

S(KLM) =



−r2

√
1− r4

2√
1 + r2 + r2

2 − 3 r3
2

√
1− r2

2

√
r2 − 3 r3

2√
1 + r2 + r2

2 − 3 r3
2

√
1− r4

2√
1 + r2 + r2

2 − 3 r3
2

2 r2 (1 + r2)

1 + 2 r2 + 3 r3
2

−
√

1 + r2
2

√
r2 − 3 r3

2

1 + 2 r2 + 3 r3
2

√
1− r2

2

√
r2 − 3 r3

2√
1 + r2 + r2

2 − 3 r3
2

−
√

1 + r2
2

√
r2 − 3 r3

2

1 + 2 r2 + 3 r3
2

.
1 + r2 + r2

2 + 3 r3
2

1 + 2 r2 + 3 r3
2


(A4)

Here we have imposed only Condition-0 and Condition-2 so that β0 = β2 ≡ β so that

r1(r2) = r3(r2) =

√
1 + r2

2√
(1− r2) (1 + 2 r2 + 3 r2

2)
, (A5a)

β(r2) =
2 r2 (1 + r2)

1 + 2 r2 + 3 r3
2

= S22. (A5b)
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Maximizing β in Eq.(A5b) over r2 yields the optimal operating values [18, 21, 22]

r∗2 =
√

2− 1 = 0.424214, r∗22 = 0.171573, (A5c)

KLM: r∗1 = r∗3 =
1√

4− 2
√

2
= 0.92388, r∗21 = r∗23 = 0.853553, (A5d)

β =
1

2
, |β|2 =

1

4
, (A5e)

with maximum NLPSG success probability |β|2max = 1/4. Note that due to terms the linear in

r2 in Eq.(A5a) and Eq.(A5b) and r2
1(−r2) 6= r2

1(r2), we have similarly |β(−r2)|2 6= |β(−r2)|2. For

example, while |β(−r∗2)|2 = 1/2, we have r2
1(−r∗2) > 1, and hence this unphysical solution must be

rejected.

2. The MRR NLPSG

We now wish to extend the above considerations for the KLM version of the NLPSG to the

MRR version [18, 21] by replacing each KLM BS by a MRR. Each MRRi now has an upper and

lower transmission coefficient ηi, τi, phase angle θi, and waveguide bus delays δi for i ∈ {1, 2, 3}.

In [18, 21] the authors modeled the solutions of the MRR NLPSG by treating each MRR element

as if it had the form of a KLM BS with (now complex) fictitious reflection coefficients ri.

The simplest solution was found [18, 21] (mimicking a calculation by Skaar [22]) by considering

the case when all the θi = 0 (i.e. all MRRs on resonance) and all the bus phase delays were also

zero δi = 0, so that all the KLM effective reflection coefficients ri were now real. The S matrix for

the MRR NLPSG taking r3 = r1 is given by [18, 21]

S(MRR) =
1

1− (1− r2
1) r2


(1− r2

1)− r2 r1

√
1− r2

2 −r1

√
1− r2

1

√
1− r1

2

r1

√
1− r2

2 r2
1 r2

√
1− r2

1 (1− r2)

−r1

√
1− r2

1

√
1− r1

2

√
1− r2

1 (1− r2) r2
1

 .

(A6)

The form of S(MRR) now differs from that of the KLM case, only because in the MRR case, the

middle photon, mode-2 runs backwards (right to left), and so there is some involved mode-swap

algebra [18, 21] that takes place in forming S(MRR) from S(KLM). As such, it is more compact to

write S(MRR) as a function of both r1 and r2. Analogous to Eq.(A5a) and Eq.(A5b) we find by

imposing only Condition-0 and Condition-2 we have

r1(r2) = r3(r2) =

[
(1− r2)

r2 (1 + r2
2)

(
(1 + 2 r2 − r2

2)∓ (1 + r2)
√

(1− 3 r2
2)

)]1/2

, (A7a)
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giving rise to

β(r2) =

(
1

2±
√

1− 3 r2
2

) [
1 + 2 r2 − r2

2

1 + r2
±
√

1− 3 r2
2

]
, (A7b)

where in both Eq.(A7a) and Eq.(A7b) the top sign corresponds to the region −1/
√

3 ≤ r2 ≤ −1/2,

and the bottom sign to the region 0 ≤ r2 ≤ 1/
√

3, which are inequivalent solutions. By additionally

imposing Condition-1 and maximizing over r2 we find analogous to Eq.(A5c)

r∗2 =
1 + 2

√
2

7
= 0.546918, r∗22 = 0.299119, (A8a)

MRR: r∗1 = r∗3 =

√
2 (
√

2− 1) = 0.91018, r∗21 = r∗23 = 0.844778, (A8b)

β =
1

2
, |β|2 =

1

4
, (A8c)

with maximum NLPSG success probability |β|2max = 1/4.

The difference between the analysis in [18, 21] and in this present work is that here we also want

to consider the case of cl-SPDC input states (only containing the states |0〉k∈{1,4} and |2〉k∈{1,4}),

in addition to the full w-CS input states (also containing the states |1〉k∈{1,4}). In the case of cl-

SPDC input states, we will find that not imposing Condition-1, namely not letting β1 to be equal

necessarily to β (now defined by imposing only Condition-0 and Condition-2) gives qualitatively

the same coincidence interference curves. More importantly, the MRR solutions for the fictitious

KLM reflections coefficients r∗i define a 1-parameter family of physical transmission coefficients

ηi = ηi(τi; r
∗
i ) regardless of the value of |β|2 associated with the chosen value of r∗i

ηi(τi; r
∗
i ) =

r∗i + τi
1 + r∗i τi

, |τi| ≤ 1⇒ |ηi| ≤ 1, for fixed |r∗i | ≤ 1, (A9)

as illustrated in Fig.(5) for values of r∗21 and r∗22 yielding β2 = 1/4 for both the KLM-NLPSG

and MRR-NLPSG. The analysis for the case of MRR runs similarly for the KLM case by merely

replacing S(KLM) → S(MRR) in the unitary matrix U . The values of r∗i now differ from the KLM

case, only because in the MRR case, the middle photon, mode-2 runs backwards, and so there is

some mode-swap algebra that takes place in forming S(MRR) from S(KLM).

Appendix B: Action of the BS on |n,m〉ab

We need to know how an ideal, lossless BS acts on an arbitrary input state |n,m〉 presented at

its two input ports. Let us define the BS transformation (Hamiltonian) on two modes a and b as

BS = (θ/2) (a b† + a† b). Here R ≡ sin2(θ/2) is the reflectivity and T = (1−R) = cos2(θ/2) is the

transmissivity, such that R + T = 1, as shown in Fig.(6). (Note: we call the quantities sin(θ/2)
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FIG. 5. Plots of the physical MRR transmissivities (solid) η21=3 vs τ21=3, and (dashed) η22 vs τ22 for fixed

values of the fictitious KLM reflectivities r∗22 yielding β2 = 1/4. (Fig.(3) repeated here for clarity).

and cos(θ/2) reflection and transmission coefficients). The factor of 1/2 in the argument θ/2 is

introduced so that θ = π/2 represents a 50:50 BS.
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2 TMSV: Signals mixed on a BS
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FIG. 6. Two optical modes a and b mixing on a BS of reflectivity R. Note that in this (not always standard)

representation the ain mode is the top-left input, while the aout mode is defined via where ain transmits to,

i.e. as the lower right output. Similarly for bin and bout. Here, the bottom of the BS imparts a π phase

shift of −1 upon reflection.

The action of the BS on an arbitrary input of Fock states |n〉a|m〉b ≡
(a†)n√
n!

(b†)n√
m!
|0〉a|0〉b is

straightforwardly computed (see Chapter 5 of Agarwal Quantum Optics [26]) by applying the BS

transformation to the last expression, and expanding out terms using the binomial theorem (since

a† and b† commute). Note that if we write the BS transformation SBS of the out operators in terms

of the in operators as ~a†out = SBS ~a
†
in then to transform an input state such as |1〉a |0〉b = a†in|0〉a |0〉b,

we need to write the in operators in terms of the out operators using the transpose transformation
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STBS as ~a†in = STBS ~a
†
out via

~a†out =

 a†out
b†out

 =

 cos(θ/2) − sin(θ/2)

sin(θ/2) cos(θ/2)

  a†in
b†in

 ≡ SBS ~a†in ⇒ ~a†in = STBS ~a
†
out. (B1)

Thus, for example a†in|0〉a |0〉b →
(

cos(θ/2) a†out + sin(θ/2) b†out

)
|0〉a |0〉b = cos(θ/2) |1〉a |0〉b +

sin(θ/2)|0〉a |1〉b. We can drop all the in, out labels and just remember to use the transforma-

tion STBS in computing the BS transformation formula. The derivation is easily carried out (see

also Agarwal [26]) with the results given below using STBS to transform an input state |n〉a|m〉b to

an output state, yielding

|n〉a|m〉b →
n+m∑
p=0

f (n,m)
p |p〉a |n+m− p〉b, , (B2)

f (n,m)
p =

n∑
q=0

m∑
q′=0

δp,q+q′

(
n

q

)(
m

q′

)√
p! (n+m− p)!

n!m!
(−1)q

′
(cos(θ/2))m+q−q′ (sin(θ/2))n−q+q

′
.(B3)

Note that the delta function δp,q+q′ ensures that the BS mixes the original input state |n〉a|m〉b
only amongst the n+m+1 states of total photon number n+m of the form {|0〉a|n+m〉b, |1〉a|n+

m−1〉b, . . . |n〉a|m〉b, . . . , |n+m−1〉a|1〉b, |n+m〉a|0〉b}. The (real) BS coefficients f
(n,m)
p are easily

worked out by hand by considering states |n〉a|m〉b up to n + m = 2 at the input ports of BS,

namely:

p = 0 :

|0〉a|0〉b → |0〉a|0〉b ⇒ f
(0,0)
0 = 1, (B4a)

p = 1 :

|0〉a|1〉b → [cos(θ/2) b− sin(θ/2) a]|0〉a|0〉b,

= cos(θ/2)|0〉a|1〉b − sin(θ/2)|1〉a|0〉b,⇒

 f
(0,1)
0 = cos(θ/2)

f
(0,1)
1 = − sin(θ/2)

(B4b)

|1〉a|0〉b → [cos(θ/2) a+ sin(θ/2) b]|0〉a|0〉b,

= sin(θ/2)|0〉a|1〉b + cos(θ/2)|1〉a|0〉b,⇒

 f
(1,0)
0 = sin(θ/2),

f
(1,0)
1 = cos(θ/2),

(B4c)

(B4d)
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p = 2 :

|0〉a|2〉b =
1√
2
b2 |0〉a|0〉b →

1√
2

[cos(θ/2) b− sin(θ/2) a]2|0〉a|0〉b,

= cos2(θ/2)|0〉a|2〉b − sin(θ)|1〉a|1〉b + sin2(θ/2)|2〉a|0〉b,⇒


f

(0,2)
0 = cos2(θ/2),

f
(0,2)
1 = − 1√

2
sin(θ),

f
(0,2)
2 = sin2(θ/2),

(B4e)

|1〉a|1〉b = a b |0〉a|0〉b → [cos(θ/2) a+ sin(θ/2) b] [cos(θ/2) b− sin(θ/2) a]|0〉a|0〉b,

=
√

2 sin(θ/2) cos(θ/2)|0〉a|2〉b[cos2(θ/2)− sin2(θ/2)]|1〉a|1〉b,

−
√

2 sin(θ/2) cos(θ/2)|2〉a|0〉b,⇒


f

(1,1)
0 = 1√

2
sin(θ),

f
(1,1)
1 = cos(θ),

f
(1,1)
2 = − 1√

2
sin(θ),

(B4f)

|2〉a|0〉b =
1√
2
a2 |0〉a|0〉b →

1√
2

[cos(θ/2) a+ sin(θ/2) b]2|0〉a|0〉b,

= sin2(θ/2)|0〉a|2〉b + sin(θ)|1〉a|1〉b + cos2(θ/2)|2〉a|0〉b,⇒


f

(2,0)
0 = sin2(θ/2),

f
(2,0)
1 = 1√

2
sin(θ),

f
(2,0)
2 = cos2(θ/2),

(B4g)

Note: for each (n,m) we have
∑n+m

p=0 |f
(n,m)
p |2 = 1, which just indicates that the BS transformation

is unitary. Note that the f
(n,m)
p are just the Wigner rotation coefficients for the representation of

a system with spin J = (n+m)/2 in the angular momentum basis |J,M〉 with 2J + 1 = n+m+ 1

states M ∈ {−J,−J + 1, . . . , J} where M(p) = −J + p (2J)/(n+m) for p ∈ {0, . . . , n+m}.

Appendix C: U coefficients for the 4- and 5-photon accidental states

1. The 5-photon accidental states

The 5-photon state |T2,2′〉1234 in Eq.(20a) proportional to α2 α
′
2 e

i 2ϕ contributes accidentals

(noise terms) to the primary coincidence counts by transferring (rerouting) photons into states

that will be counted as coincidence counts under finite detection efficiencies. These states arise via

the BS interaction on mode 1 and 4. These accidentals states do not contribute to the primary

interference terms since they are all part of |ψ⊥out〉 and hence are orthogonal to |1, 1, 0, 1〉1234 upon

which the primary coincidence interference effect takes place. Further, since each orthogonal state is

multiplied by an overall phase factor ei 2ϕ, this phase factor squares to unity in the final probability

sum, and hence does not even interfere, in higher order, with other states in |ψ⊥out〉. Note also that

these accidentals involve states with a total photon number of 5, while the primary coincidence
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interfering terms contain a total of 3 photons. So our approximation would see a pure coincidence

interference pattern if we were to stop at the 3-photon level. However, since our initial input

state is already a 5-photon state, a reasonable self consistent, lowest order calculation would be to

consider states with up to 5 photons, as we do here.

The total number of 5-photon Fock states in |T2,2′〉 Eq.(20a) is 43×3 = 192 (4 creation operators

in each of 3 sums, and 3 terms from expanding the square of the BS operation on mode 4). To get

a handle on what terms to keep, it is useful to indicate the possible boson creation operator indices

a†j a
†
k a
†
` as (j)[k, `](1, 1), (j)[k, `](4, 4) and (j)[k, `](1, 4) where the last set of indices in parentheses

indicate the terms (a†1)2, (a†4)2 and a†1 a
†
4 from the expansion of the BS on mode-4. Consider the

first set of indices (1)[k, `](11). These can be completely eliminated since it contains three 1s

corresponding to a state |3, ·, ·, ·〉1234 which is outside our approximation which keeps terms with

at most two photons in any single mode.

For the next set of indices (2)[k, `](11) we observe that since there already exists two 1s and one

2, the indices [k, `] cannot contain a 1 (since that would give three photons in mode-1), nor can it

contain [k, `] = [2, 2] (since that would give a state with three photons in mode-2). Further, the con-

tributing indices must contain as a subset, the indices {1, 2, 4} since terms that don’t are multiplied

by p
(1,2,4)
0 = 0. Thus the 5 contributing index sets are given by (2){[2, 4], [3, 4], [4, 2], [4, 3], [4, 4]}(11)

corresponding to state {|2, 2, 0, 1〉1234, |2, 1, 1, 1〉1234, |2, 2, 0, 1〉1234, |2, 1, 1, 1〉1234, |2, 1, 0, 2〉1234, }, re-

spectively (e.g. (2)[2, 4](11) is read off as (11) two photons in mode-1, (22) two photons in mode-2,

and (4) one photon in mode-4).

Note that the next set of indices in line (3)[k, `](11) only contains two terms [k, `] = {[2, 4], [4, 2]}

since all dropped terms either do not contain {1, 2, 4}, or contains [k, `] = [3, 3] which yields three

photons in mode-3.

Similar to the prior case, the set of contributing indices for (4)[k, `](11) are (4){[2, 2], [2, 3], [2, 4], [3, 2], [4, 2]}(11)

corresponding to state {|2, 2, 0, 1〉1234, |2, 1, 1, 1〉1234, |2, 1, 0, 2〉1234, |2, 1, 1, 1〉1234, |2, 1, 0, 2〉1234, }, re-

spectively. We can proceed similarly with the (j)[k, `](44) and (j)[k, `](14), noting right off the bat

that we can eliminate the set of indices (4)[k, `](44) since it contains three photons in mode-4. The

process is an exercise in tedious bookkeeping, but the procedure is straightforward, and yields (note:
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{cc, cs, ss} superscripts indicate terms are multiplied by {cos2(θ/2), 2 cos(θ/2) sin(θ/2), sin2(θ/2)})

|T2,2′〉1234 = α2 α
′
2 e

i 2ϕ ×

|1, 2, 0, 2〉1234

[
sin(θ)U (cs)

202 + sin2(θ/2)U (ss)
202

]
,

+ |1, 2, 1, 1〉1234

[
sin(θ)U (cs)

211

]
,

+ |1, 1, 1, 2〉1234

[
sin(θ)U (cs)

112 + sin2(θ/2)U (ss)
112

]
,

+ |1, 1, 2, 1〉1234

[
sin(θ)U (cs)

121

]
,

+ |2, 2, 0, 1〉1234

[
cos2(θ/2)U (cc)

201 + sin(θ)U (cs)
201

]
,

+ |2, 1, 1, 1〉1234

[
cos2(θ/2)U (cc)

111 + sin(θ)U (cs)
111

]
,

+ |2, 1, 0, 2〉1234

[
cos2(θ/2)U (cc)

102 + sin(θ)U (cs)
102 + sin2(θ/2)U (ss)

102

]
, (C1)

where we have defined the coefficients of the |1〉1 ⊗ |·, ·, ·〉234 terms as

U (cs)
202 = (U21 U21 U42 + U21 U41 U22) , (C2a)

U (cs)
211 =

1√
2

(U21 U31 U22 + U31 U21 U22) , (C2b)

U (cs)
112 =

1√
2

(U21 U31 U42 + U21 U41 U32 + U31 U21 U42 + U31 U41 U22 + U41 U21 U32 + U41 U31 U22) ,(C2c)

U (cs)
121 =

1√
2

(U21 U31 U32 + U31 U21 U32 + U31 U31 U22) , (C2d)

U (ss)
112 = (U11 U21 U32 + U11 U31 U22 + U21 U11 U32 + U21 U31 U12) , (C2e)

U (ss)
202 = (U31 U21 U22 + U21 U11 U22 + U21 U21 U12) , (C2f)

with U defined from Eq.(17). (Note that the second indices of the triple products of Us are always in

the order {1, 1, 2}; the first set of indices {j, k, `} are associated with the state |j, k, `〉234) Similarly,

the coefficients of the |2〉1 ⊗ |·, ·, ·〉234 terms are given by

U (cc)
201 = (U21 U21 U24 + U21 U41 U22 + U41 U21 U22) , (C3a)

U (cc)
111 =

1√
2

(U21 U31 U42 + U21 U41 U32 + U41 U31 U22) , (C3b)

U (cc)
102 = (U21 U41 U42 + U41 U41 U22 + U41 U41 U22) , (C3c)

U (cs)
201 = (U11 U21 U22 + U21 U11 U22 + U21 U21 U12) , (C3d)

U (cs)
111 =

1√
2

(U11 U21 U32 + U11 U31 U22) + (U21 U11 U32 + U11 U21 U32 + U21 U31 U12) ,

+
1√
2

(U31 U11 U22 + U31 U21 U12) , (C3e)

U (cs)
102 = (U11 U21 U42 + U11 U41 U22 + U21 U11 U42 + U21 U41 U12 + U41 U11 U22 + U41 U21 U12) , (C3f)

U (ss)
102 = (U11 U11 U22 + U11 U21 U12 + U21 U11 U12) . (C3g)
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2. The 4-photon accidental states when |1〉1 and |1〉4 are included in the input states

Following the same procedure as in the previous section, the coincidence state after projection,

will be (note: {cc, cs, ss, } superscripts indicate terms are multiplied by {cos2(θ/2), 2 cos(θ/2) sin(θ/2), sin2(θ/2)}

and {c, s} superscripts indicate terms are multiplied by {cos(θ/2), 2 sin(θ/2)})

|T1,1′〉1234 + |T1,2′〉1234 + |T2,1′〉1234 =

α1 α
′
1 e

i ϕ |1, 1, 0, 1〉1234

[
cos(θ/2)U ′(c)101 + sin(θ/2)U ′(s)101

]
+ ei ϕ |1, 2, 0, 1〉1234

[
α1 α

′
2 e

i ϕ sin(θ)U ′(cs)201 + α2 α
′
1

(
cos(θ/2)U ′(c)201 + sin(θ/2)U ′(s)201

)]
,

+ ei ϕ |1, 1, 1, 1〉1234

[
α1 α

′
2 e

i ϕ sin(θ)U ′(cs)111 + α2 α
′
1

(
cos(θ/2)U ′(c)111 + sin(θ/2)U ′(s)111

)]
,

+ ei ϕ |1, 1, 0, 2〉1234

[
α1 α

′
2 e

i ϕ
(

sin(θ)U ′(cs)102 + cos2(θ/2)U ′(cc)102

)
+ α2 α

′
1

(
cos(θ/2)U ′(c)102 + sin(θ/2)U ′(s)102

)]
,

+ ei ϕ |2, 1, 0, 1〉1234

[
α1 α

′
2 e

i ϕ
(

sin(θ)U ′(cs)101 + sin2(θ/2)U ′(ss)101

)
+ α2 α

′
1

(
cos(θ/2)U ′(c)101 + sin(θ/2)U ′(s)101

)]
, (C4)

where (Note: all double products U U have the second indices in the order {1, 2}, while again all

triple products U U U have the second indices in the order {1, 1, 2})

U ′(c)101 = U11 U22 + U21 U12 = cos(θ/2) (S11 S22 + S21 S12) ≡ cos(θ/2)β1, (C5a)

U ′(s)101 = U21 U42 + U41 U22 = − sin(θ/2) (S21 S22 + S11 S22) ≡ − sin(θ/2)β1, (C5b)

U ′(cs)201 = U21 U22 (C5c)

U ′(cs)111 =
1√
2

(U21 U32 + U31 U22) , (C5d)

U ′(cs)102 = U21 U42 + U41 U22 = − sin(θ/2) (S21 S12 + S11 S22) ≡ − sin(θ/2)β1, (C5e)

U ′(cs)101 = U11 U22 + U21 U12 = cos(θ/2) (S11 S22 + S21 S12) ≡ cos(θ/2)β1, (C5f)

U ′(cc)102 = U11 U22 + U21 U12 = cos(θ/2) (S11 S22 + S21 S12) ≡ cos(θ/2)β1, (C5g)

U ′(ss)101 = U21 U42 + U41 U22 = − sin(θ/2) (S21 S12 + S11 S22) ≡ − sin(θ/2)β1, (C5h)

U ′(c)201 = U11 U21 U22 + U21 U11 U22 + U21 U21 U12, (C5i)

U ′(c)111 =
1√
2

(U11 U21 U32 + U11 U31 U22 + U21 U11 U32 + U21 U31 U12 + U31 U11 U22 + U31 U21 U12) , (C5j)

U ′(c)102 = U11 U21 U42 + U11 U41 U22 + U21 U11 U42 + U21 U41 U12 + U41 U11 U22 + U41 U21 U12 (C5k)

U ′(c)101 = U11 U11 U22 + U11 U21 U12 + U21 U11 U12, (C5l)

U ′(s)201 = U21 U21 U42 + U21 U41 U22 + U41 U21 U22, (C5m)

U ′(s)111 =
1√
2

(U21 U31 U42 + U21 U41 U32 + U31 U21 U42 + U31 U41 U22 + U41 U21 U32 + U41 U31 U22) ,(C5n)

U ′(s)102 = U21 U41 U42 + U41 U21 U42 + U41 U41 U22, (C5o)

U ′(s)101 = U11 U21 U42 + U11 U41 U22 + U21 U11 U42 + U21 U41 U12 + U41 U11 U22 + U41 U21 U12. (C5p)
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In the above we have defined as in Eq.(6b)

β1 ≡ S11 S22 + S21 S12 −→
β→βmax=1/2

βmax = 1/2, (β2
max = 1/4), (C6)

where β1 → β = 1/2 if we were to additionally impose Condition-1 Eq.(6b), which would then

make β2 → β2
max = 1/4 when all three Conditions-0,1,2 (Condition-0 Eq.(6a), and Condition-2

Eq.(6c)) are imposed .

35


