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We propose a high-rate generation method of optical Schrödinger’s cat states. Thus far, photon subtraction
from squeezed vacuum states has been a standard method in cat-state generation, but its constraints on experi-
mental parameters limit the generation rate. In this paper, we consider the state generation by photon number
measurement in one mode of two-mode Gaussian states, which is a generalization of conventional photon sub-
traction, and derive the conditions to generate high-fidelity and large-amplitude cat states. Our method relaxes
the constraints on experimental parameters, allowing us to optimize them and attain a high generation rate.
Supposing realistic experimental conditions, the generation rate of cat states with large amplitudes (|α| ≥ 2)
can exceed megacounts per second, about 103 to 106 times better than typical rates of conventional photon
subtraction. This rate would be improved further by the progress of related technologies. Ability to generate
non-Gaussian states at a high rate is important in quantum computing using optical continuous variables, where
scalability have been demonstrated but preparation of non-Gaussian states of light remains as a challenging task
for universality and fault-tolerance. Our proposal reduces the difficulty of the state preparation and opens a way
for practical applications in quantum optics.

I. INTRODUCTION

Quantum computers attract attention as high-performance
information processors, and implementations based on vari-
ous physical systems have been extensively studied. Among
these systems, an optical continuous-variable (CV) system
is a promising candidate, where scalable measurement-based
quantum computing can be performed on Gaussian entan-
gled states called cluster states [1–3]. Generation of large-
scale cluster states [4–6] and gate operation on them [7, 8]
have been reported. For practical quantum computing, non-
Gaussian states of light are essential resources because they
enable universal quantum computing on cluster states in a
fault-tolerant way [9–11]. Despite the importance of the non-
Gaussian states, their stable supply is challenging because
their high-purity generations are mainly based on heralding
scheme [12], which is probabilistic. With the current technol-
ogy, the computational speed of quantum computing would be
strongly limited by the generation rate of non-Gaussian states
not the processing platforms [7, 8]. Therefore, high-rate gen-
eration of non-Gaussian states is key for optical CV quantum
computing.

Schrödinger’s cat states are typical non-Gaussian states
of light, which are coherent-state superpositions given by
|α〉 ± |−α〉. Cat states with |α| ≥ 2 can be utilized as qubits
of CV quantum computing [13, 14] or resources for quantum
error correction coding [15–17]. However, even in the best ex-
periments, the generated optical cat states have the amplitudes
1.61 ≤ |α| ≤ 1.85 [18–23]. This is mainly because the gener-
ation rate of the large-amplitude cat states is too low in con-
ventional methods. A standard method of cat-state generation
is the photon subtraction method shown in Fig. 1(a) [22–27].
In this method, a squeezed vacuum is fed into a beam splitter
whose reflectance is set R � 1 for beam tapping. By detect-
ing photons in the tapping channel, we obtain cat-like states
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in the other output channel. To achieve |α| ≥ 2, the number of
detected photons should be n ≥ 4 [24]. Such events are quite
rare because the probability to detect n photons has order Rn.
Although other generation methods have also been actively
studied, it is difficult to simultaneously achieve a high genera-
tion rate and a high fidelity. Methods in Refs. [19–21, 28, 29]
are not suitable for high-rate generation due to either multi-
ple conditioning processes or use of ancillary non-Gaussian
states, which are generated probabilistically. Photon-number
measurement in one mode of two-mode Gaussian states is a
straightforward approach for a high-rate cat-state generation
because it involves only one probabilistic process. Thus far,
this approach has been studied in limited cases where input
states contain few photons [18] and where up to three pho-
tons are measured [30]. Relaxing such constraints would be
fruitful because more than a few photons should be detected
to achieve a large amplitude and such events occur frequently
when the input states contain many photons.

In this paper, we propose a general method of cat-state gen-
eration by photon-number measurement on two-mode Gaus-
sian states, which we call ”generalized photon subtraction
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FIG. 1. (a) Photon subtraction method. A weak beam is tapped by a
beam splitter (BS) from a squeezed vacuum. When a photon number
resolving detector (PNRD) detects photons in the tapping channel,
cat-like state are heralded. (b) Generalized photon subtraction (GPS).
Two squeezed vacuum states squeezed in orthogonal directions inter-
fere at a beam splitter. Photon number measurement heralds cat-like
states.
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(GPS)” shown in Fig. 1(b). In GPS, we suppose detection
of arbitrary number of photons in one mode of arbitrary two-
mode Gaussian pure states. Then, we analytically derive con-
ditions to generate high-fidelity and large-amplitude cat states.
Describing the state generation process of GPS by wavefunc-
tions, we probe that a wavefunction that approximates cat
states well [20] can be exactly generated in a setup shown in
Fig. 1(b). Such a wavufunction-based description is natural in
a CV system and is in contrast to a numerical optimization in
Fock basis truncated to a finite dimension, which is typically
seen in Refs. [28, 30].

Supposing realistic experimental conditions, the generation
rate of cat states with |α| ≥ 2 can exceed megacounts per sec-
ond (Mcps), about 103 to 106 times better than typical rates
of conventional photon subtraction. This rate is clearly suf-
ficient for state verification experiments, and, furthermore, is
as fast as the computational speed of recently demonstrated
CV quantum information processors [7, 8]. In spite of much
improvement of the generation rate, GPS utilizes only two
squeezed vacuum states, one beam splitter, and one photon
number resolving detector (PNRD). Thus, the implementation
of GPS is within reach of the current technology. Our proposal
would reduce the difficulty in the state preparation and open a
way for fault-tolerant CV quantum computing.

This paper is organized as follows; basics of optical cat
states are given in Sec. II A; we introduce GPS in Sec. II B,
and show the way of implementation in Sec. II C; section II D
is devoted to discuss the validity of the condition of cat-state
generation introduced in the previous sections; comparison of
the generation rate with other methods is shown in Sec. III;
finally, we summarize our proposal in Sec. IV.

II. GENERALIZED PHOTON SUBTRACTION

A. Optical Schrödinger’s cat states

Optical Schrödinger’s cat states are often defined as super-
position of coherent states with opposite phases. Coherent
states are given by

|α〉 = exp (αâ† − α∗â) |0〉 , (1)

where â and â† are annihilation and creation operators and |0〉
is a vacuum state. â and â† satisfy [â, â†] = 1. Without loss of
generality, we assume α ∈ R, α > 0 and define cat states as∣∣∣Catα,k

〉
≡

1
Nα,k

[
|α〉 + (−1)k |−α〉

]
, (2)

where Nα,k =
√

2(1 + (−1)k exp (−2α2)). Some previous
methods generate squeezed cat states Ŝ (r)

∣∣∣Catα,k
〉

not the
original cat states

∣∣∣Catα,k
〉

[18, 20, 30], where Ŝ (r) =

exp
[
r
(
â† 2 − â2

)
/2

]
(r ∈ R) is a squeezing operator. The

squeezing operation can reduce the average photon number of
cat states, and thus the squeezed cat states survive longer than
usual cat states in lossy environment [31]. If we want to use
the cat states that are not squeezed, we can unsqueeze them
deterministically [32].
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FIG. 2. Schematic of GPS. Firstly, a two-mode Gaussian state |G〉
is prepared. Detection of n photons in one mode of |G〉 heralds |ψn〉

in the other mode. By preparing proper |G〉, the outcome state |ψn〉

approximates cat states well (Sec. II B). Such |G〉 can be generated
from two squeezed vacuum states and a beam splitter (Sec. II C).

We express our state generation process by wavefunctions
about quadratures x̂ =

(
â + â†

)
/
√

2 and p̂ =
(
â − â†

)
/
√

2i.
The quadratures satisfy a commutation relation [x̂, p̂] = i. The
wavefunctions of squeezed cat states are given by〈

x
∣∣∣ Ŝ (r)

∣∣∣ Catα,k
〉
∝ e−

s2
2

(
x−
√

2α/s
)2

+ (−1)ke−
s2
2

(
x+
√

2α/s
)2

, (3)〈
p
∣∣∣ Ŝ (r)

∣∣∣ Catα,k
〉
∝

(
e−i
√

2αp/s + (−1)kei
√

2αp/s
)

e−
1

2s2 p2
, (4)

where |x〉 , |p〉 are the eigenstates of x̂, p̂ and s = er. The
squeezing operator gives Ŝ †(r)x̂Ŝ (r) = x̂e−r and Ŝ †(r) p̂Ŝ (r) =

p̂er, and thus x̂ is squeezed when r > 0. In Ref. [20], it
is shown that the function form of xne−κx2

(κ > 0) is a good
approximation of the x-wavefunction of cat states with ampli-
tude α =

√
n and parity k = n. More precisely, this approxi-

mation is given by〈
x
∣∣∣Ŝ (r)

∣∣∣ Cat√n,n

〉
≈

〈
x
∣∣∣ψapprox

〉
∝ xne−

s2
4 x2
. (5)

The fidelity between Ŝ (r)
∣∣∣Cat√n,n

〉
and

∣∣∣ψapprox

〉
is Fn ≈ 1 −

0.03/n [20]. In the following, we propose a method to gen-
erate states having wavefunctions xne−κx2

by detection of n
photons.

B. Generalized photon subtraction

In conventional photon subtraction, a squeezed vacuum is
fed into a beam splitter and photon number measurement is
performed in a tapping mode to herald cat states (Fig. 1(a)).
From a different perspective, the conventional photon subtrac-
tion consists of two parts: preparation of two-mode Gaussian
states and non-Gaussian measurement on them. Note that in
non-Gaussian state generation, either initial states or measure-
ment should be non-Gaussian. For high-rate state generation,
it is desirable that the initial states are Gaussian because we
can prepare them deterministically. The conventional photon
subtraction only utilizes a small subspace of arbitrary two-
mode Gaussian states due to its low degree of freedom, and
thus there is room to find a more efficient generation method
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of cat states in a generalized situation. In this section, we con-
sider the generation of cat states by detection of arbitrary num-
ber of photons on arbitrary two-mode Gaussian pure states,
which we call generalized photon subtraction (GPS). GPS also
generalizes other cat-state generation methods supposing in-
put states with few photons [18] or up to three-photon mea-
surement [30] in the same setup. Experimental feasibility of
GPS is discussed in Sec. II C.

Firstly, we overview the process of state generation shown
in Fig. 2. A two-mode Gaussian state |G〉 is expressed by a
complex Gaussian function G(x1, x2) as

|G〉 =

"
dx1dx2 G(x1, x2) |x1〉 |x2〉 . (6)

When n photons are measured in the mode 1, the state |G〉 is
affected as follows,

〈n1|G〉 =

"
dx1dx2 G(x1, x2) 〈n1|x1〉 |x2〉

=

∫
dx2

[∫
dx1 G(x1, x2)φn(x1)

]
|x2〉 , (7)

where φn(x) = 〈x|n〉. Therefore, the unnormalized wavefunc-
tion of the outcome state is

Ψn(x2) =

∫
dx1 G(x1, x2)φn(x1). (8)

Thus, the bivariate function G(x1, x2) linearly transforms
φn(x1) into Ψn(x2). The function Ψn(x2) is not normalized
because the conditioning process is probabilistic. The proba-
bility P(n) to detect n photons and normalized wavefunction
ψn(x2) are given by

P(n) =

∫
dx2 |Ψn(x2)|2 , (9)

ψn(x2) =
1
√

P(n)
Ψn(x2). (10)

Secondly, let us consider the conditions imposed to
G(x1, x2) in cat-state generation. G(x1, x2) is given by

G(x1, x2) =
|σ|

1
4

√
π

exp
[
−

1
2

(x − µ)Tσ(x − µ) − ixTν

]
, (11)

x =

(
x1
x2

)
, µ =

(
µ1
µ2

)
, ν =

(
ν1
ν2

)
, σ =

(
σ11 σ12
σ21 σ22

)
,

where |M| denotes determinant of a matrix M. σ satisfies
σ = σT and its elements are complex numbers in general. σ
becomes a real matrix when quadratures x1, x2 and p1, p2 are
uncorrelated. µ and ν denote the displacement of |G〉 about x
and p. The wavefunction of Fock state |n〉 is given by

φn(x) =
1

π1/4
√

2nn!
Hn(x) e−

1
2 x2
, (12)

where Hn(x) is a n-th order Hermite polynomial Hn(x) =

(−1)nex2 dn

dxn e−x2
. Our target states are the cat states with

α ∈ R, and thus Ψn(x2) should be an even or odd real func-
tion with non-Gaussian profile. From the symmetry φn(−x) =

(−1)nφn(x), it is sufficient to assume the case where µ = ν = 0

and σ is a real positive-definite matrix. From Eq. (5), we ex-
pect Ψn(x) ∝ xne−

s2
4 x2

. The key relation to obtain this function
is given by

(φ0 ∗ φn) (x) =
1
√

2nn!
xn e−

1
4 x2
, (13)

where ( f ∗ g) (x) denotes the convolution of f (x) and g(x).
This equation is derived from an integral formula,∫ ∞

−∞

dy Hn(y) e−(y−x)2
=
√
π(2x)n. (14)

We transform G(x1, x2) so that we can use Eq. (13) in the cal-
culation of Eq. (8),

G (x1, x2)

=
|σ|

1
4

√
π

exp
[
−
|σ|

2σ11
x2

2

]
exp

−1
2
σ11

(
x1 +

σ12

σ11
x2

)2
= |σ|

1
4 φ0

√ |σ|
σ11

x2

 φ0

(
−
√
σ11

(
x1 +

σ12

σ11
x2

))
. (15)

We can use Eq. (13) when the following relations are satisfied,

σ11 = 1 , σ12 , 0. (16)

The latter condition is obvious because σ12 = 0 means x1
and x2 are independent, hence photon number measurement
does not affect the state in the other mode. When Eq. (16) is
satisfied, we get

Ψn(x2) = |σ|
1
4 φ0

( √
|σ|x2

) ∫
dx1 φ0 (−x1 − σ12x2) φn(x1)

= |σ|
1
4 φ0

( √
|σ|x2

)
(φ0 ∗ φn) (−σ12x2)

=

(
|σ|

π

) 1
4 (−σ12)n

√
2nn!

xn
2 exp

(
−
|σ| + σ22

4
x2

2

)
. (17)

From Eq. (5), the outcome state satisfies

|ψn〉 ≈ Ŝ (rc)
∣∣∣Cat√n,n

〉
, e2rc = |σ| + σ22. (18)

Therefore, the detection of n photons heralds cat-like states
with the amplitude α =

√
n. As we mentioned in Sec. II A,

the fidelity of |ψn〉 and Ŝ (rc)
∣∣∣Cat√n,n

〉
is Fn ≈ 1− 0.03/n [20].

Summarizing the above, we introduced GPS as photon
number measurement on arbitrary two-mode Gaussian states.
In the conditions of σ11 = 1 and σ12 , 0, the outcome states
approximate cat states well as shown in Eq. (18). The depen-
dence of the outcome states on σ11 is discussed in Sec. II D.

C. Preparation of two-mode Gaussian states

We discuss preparation of the two-mode Gaussian state |G〉
and derive ones of the key results of this paper given by Eqs.
(22) and (23). |G〉 is generated from the interference of two
squeezed vacuum states at a beam splitter as shown in Fig. 2.
When the quadratures x1, x2 and p1, p2 are uncorrelated, the
matrix σ−1 is equal to a covariance matrix about x1 and x2.
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(a)

(b)

FIG. 3. (a) The plots of the functions φn(x1), φn(x1)G(x1, x2), and ψn(x2) in the case of r1 = −r2 = 0.576 (5 dB squeezing) and n = 10. From the
left, σ11 = 0.6 (R = 0.10), σ11 = 1 (R = 0.24), and σ11 = 1.4 (R = 0.38). The black broken lines show the wavefunction of Ŝ (rc)

∣∣∣Cat√10,10

〉
in

the case of σ11 = 1 (see Eq. (18)). When σ11 = 1, the fidelity of |ψn〉 and the target state is F10 ≈ 0.997. (b) Similar plots about p.

Thus, σ−1 of the initial squeezed vacuum states, which we put
Ŝ (r1) |0〉 ⊗ Ŝ (r2) |0〉, is given by

σ−1 =


〈
x̂2

1

〉
〈x̂1 x̂2〉

〈x̂2 x̂1〉
〈
x̂2

2

〉  =

(
e−2r1 0

0 e−2r2

)
. (19)

Generally, beam splitters transform (â1 â2)T by an arbitrary
unitary matrix MBS. In our case, we can assume MBS is
a real orthogonal matrix and x is transformed to MBSx be-
cause σ is a real matrix. Then, the matrix σ−1 is transformed
to MBSσ

−1MT
BS. When the beam splitter has the power re-

flectance (transmittance) R (T = 1 − R), σ−1 and σ are given
by

σ−1 =

( √
R
√

T
−
√

T
√

R

) (
e−2r1 0

0 e−2r2

) ( √
R −

√
T

√
T
√

R

)
=

 Re−2r1 + Te−2r2
√

RT
(
e−2r2 − e−2r1

)
√

RT
(
e−2r2 − e−2r1

)
Te−2r1 + Re−2r2

 , (20)

σ =

 Re2r1 + Te2r2
√

RT
(
e2r1 − e2r2

)
√

RT
(
e2r1 − e2r2

)
Te2r1 + Re2r2

 . (21)

Therefore, the conditions of GPS are given by

σ11 = Re2r1 + Te2r2 = 1, (22)

σ12 =
√

RT
(
e2r1 − e2r2

)
, 0. (23)

We can prepare desired |G〉 by selecting parameters r1, r2 ∈ R
and R (0 ≤ R ≤ 1) satisfying these conditions. If and only
if r1r2 < 0, there exists R that satisfies Eqs. (22) and (23).
Thus, the initial squeezed vacuum states should be squeezed
in orthogonal directions. When σ11 = 1, the squeezing factor
of the outcome states in Eq. (18) is

e2rc = e2(r1+r2) + e2r1 + e2r2 − 1. (24)

Supposing r1 = −r2 > 0 and e2r1 � 1, the generated cat states
are as squeezed as the inputs because e2rc ≈ e2r1 .
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(a) (b)

FIG. 4. (a),(b) Comparison of the success probability to generate a Schrödinger’s cat state with α =
√

n. The compared methods are GPS,
the homodyne conditioning method, and conventional photon subtraction. In each method, we suppose the squeezing parameters of inputs are
|r| = 0.576 (5 dB squeezing) in (a) and |r| = 1.15 (10 dB squeezing) in (b).

We briefly mention another implementation of GPS. Let
us apply identity operation Î = Ŝ (r2)Ŝ †(r2) to the both in-
put states. By moving operators Ŝ (r2) after the beam splitter,
the inputs become Ŝ (r1 − r2) |0〉 and |0〉. Although the inputs
are the same as conventional photon subtraction, the projec-
tive measurement is generalized to Ŝ (r2) |n〉 and R � 1 is not
assumed. These two implementation generates the same out-
come states up to a squeezing operation.

D. Dependence on σ11

In this section, we discuss how the parameter σ11 affects
the outcome states and show that σ11 = 1 is a reasonable con-
dition. Figure 3(a) shows the plots of the functions φn(x1),
φn(x1)G(x1, x2), and ψn(x2) to visualize Eq. (8). From the left,
each plot corresponds to σ11 < 1, σ11 = 1, and σ11 > 1.
We can see the tilted Gaussian structures of G(x1, x2) striped
by φn(x1). In Fig. 3(a), they get more tilted from x2 axis as
σ11 increases. When σ11 = 1, ψn(x2) has two peaks because
the integral about x1 averages out the stripe structure except
for the two peaks on the both ends. ψn(x2) and the target cat
state (black broken line) are almost identical. When σ11 < 1,
ψn(x2) has a cat-like waveform but its amplitude decreases.
When σ11 > 1, the interval of the highest peaks increases but
an unwanted oscillation appears. This is because the Gaussian
shape tilts too much for the stripe to cancel. Analytically, we
can derive Ψn(x2) from Eqs. (8) and (15) as follows,

Ψn(x2) = |σ|
1
4 φ0

√ |σ|
σ11

x2

 I(σ11)
n

(
−
σ12

σ11
x2

)
, (25)

I(σ11)
n (x) =

∫
dy φ0

(√
σ11(x − y)

)
φn(y). (26)

The waveform of ψn(x2) is mainly decided by the function
I(σ11)
n (x). When σ11 = 1, ψn(x2) is close to the wavefunction

of cat states due to the relation I(1)
n (x) = (φ0 ∗ φn) (x). When

0 < σ11 < 1, we can derive

I(σ11)
n (x) =

(
g ∗ I(1)

n

)
(x) , g(x) =

exp
(
−

σ11
2(1−σ11) x2

)
√

2(1 − σ11)π
. (27)

Thus, we have another Gaussian convolution on I(1)
n (x). In

this case, we still have a cat-like wavefunction, but its effec-
tive amplitude decreases due to the extra convolution. When
σ11 > 1, φn(x) is convolved by a Gaussian function narrower
than φ0(x). In this case, an unwanted oscillation remains in
ψn(x2) because the oscillation of φn(x) is not averaged out
completely.

Figure 3(b) shows the Fourier counterpart of the functions
in Fig. 3(a), that is, φ̃n(p1), φ̃n(p1)G̃(p1, p2), and ψ̃n(p2). The
functions φn(x1) and φ̃n(p1) have the same waveform because
|n〉 is phase insensitive. G̃(p1, p2) is characterized by a matrix
σ̃, which is equal to σ with the sign inversion of r1, r2. From
Eqs. (20) and (21), the covariance matrix of |G〉 about p1, p2
is given by

σ̃−1 =


〈
p̂2

1

〉
〈p̂1 p̂2〉

〈 p̂2 p̂1〉
〈
p̂2

2

〉  =

(
σ11 −σ12
−σ21 σ22

)
. (28)

From Eq. (4), ψ̃n(p2) should have cosine (or sine) oscilla-
tions with a Gaussian envelope. Wentzel-Kramers-Brillouin
approximation [33] shows φ̃n(p1) has cosine (or sine) oscilla-
tions when p1 is small. In GPS, these oscillations of φ̃n(p1)
are mapped to ψ̃n(p2) by a Gaussian function G̃(p1, p2). A
wider range of φ̃n(p1) structure appears in ψ̃n(p2) as the vari-
ance of |G〉 about p1 increases. Thus,

〈
p̂2

1

〉
= σ11 has a critical

effect on the waveform of ψ̃n(p2). When σ11 = 1, ψ̃n(p2) well
approximates the ideal line. When σ11 < 1, smaller number
of cosine oscillations appear in ψ̃n(p2). That means the am-
plitude of the generated cat state gets smaller. When σ11 > 1,
both ends of the φ̃n(p1) structure moves the generated state
away from ideal cat states.

Like the above, the two distinct areas of the wavefunc-
tion of |n〉, two peaks and cosinusoidal oscillations, appear
in ψn(x2) and ψ̃n(p2) through the Gaussian functions G(x1, x2)
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and G̃(p1, p2), respectively. Supposing σ11 = 1, we can en-
sure that high-fidelity and large-amplitude cat states are gen-
erated.

III. EVALUATION OF GENERATION RATE

GPS can generate cat states at a much better rate than con-
ventional methods. From Eqs. (9) and (17), the probability to
obtain |ψn〉 in the condition σ11 = 1 is

P(n) =

√
|σ|(2n)!(σ12)2n

8n(n!)2

(
|σ| + σ22

2

)−n− 1
2

. (29)

GPS contains some previous works as special cases due to
its generality. In these works, P(n) was quite low because
|σ12| =

√
RT

∣∣∣e2r1 − e2r2
∣∣∣ � 1 is assumed. For example, con-

ventional photon subtraction assumes R � 1 and r2 = 0. The
weak tapping condition R � 1 makes it difficult to detect
photons in the tapped mode. In another example [18], two
squeezed vacuum states are utilized but the low input power
condition r1 = −r2 � 1 is assumed. Now, we have a gener-
alized condition for cat-state generation σ11 = 1, so that we
can select parameters that avoid undesirable conditions like
R � 1 or |r1 − r2| � 1. In addition, GPS performs con-
ditioning only once, and thus it is better than methods that
perform conditioning more than once [20, 21, 28, 29]. Those
factors indicate the potential of GPS for improvement of the
state generation rate.

We compare the cat-state generation rate of GPS with the
homodyne conditioning method [20] and conventional photon
subtraction. In GPS, we assume r1 = −r2 > 0 and select R that
satisfies σ11 = 1. In the homodyne conditioning method, a
Fock state |n〉 is generated from a two-mode squeezed vacuum
state and n photon detection, followed by 50:50 beam split-
ting and homodyne conditioning in one mode. When we use
squeezed vacuums Ŝ (r) |0〉 as inputs and generate cat states
with fidelity about 0.99, the success probability of n photon
detection and homodyne conditioning are (1− tanh2 r) tanh2n r
and 1/(10n), respectively. In conventional photon subtraction,
we assume R = 0.05 and numerically calculate the success
probability in a subspace up to 50 photons by a Python library
for photonic quantum computing [34, 35].

Figures 4(a) and 4(b) are the success probability to gener-
ate the cat states

∣∣∣Cat√n,n

〉
with squeezing. We assume that the

squeezing parameters of inputs are |r| = 0.576 (5 dB squeez-
ing) in Fig. 4(a), and |r| = 1.15 (10 dB squeezing) in Fig. 4(b)
in each method. In the both cases, GPS has the highest suc-
cess probability, and the superiority increases as n increases.
Especially, the improvement over conventional photon sub-
traction is remarkable. The improvement of the success rate
easily reaches several orders as n increases. GPS is also better
than the homodyne conditioning method by multiple orders.
In this case, the difference of success rates mainly comes from
the number of conditioning. The success rate to generate a cat
state in GPS and the rate to generate a Fock state in the ho-
modyne conditioning method are comparable, but the need of
one more conditioning process in the latter method than the
former one lowers the total success rate.

FIG. 5. The probability to detect 5, 10, and 20 photons in GPS in the
case of r1 = −r2 and σ11 = 1.

We show a generation rate estimation of GPS. The cat states
with α ≥ 2 are desired in quantum computing [14]. Thus,
we are interested in the case of n ≥ 4. Figure 5 is the be-
haviors of P(5), P(10), and P(20) against the input squeezing
level on the assumption of r1 = −r2 and σ11 = 1. We see
they have each maximum value at some points. This is be-
cause the distribution of P(n) gradually becomes flat as the
squeezing level increases in the condition of

∑
P(n) = 1. Thus

far, r = 1.73 (15 dB squeezing) has been demonstrated [36].
Supposing r1 = −r2 = 1.73, we get P(10) = 0.023. The
generation rate of |ψ10〉 becomes 0.023 × frep by operating the
system at a rate frep. The performances of squeezed vacuum
sources and PNRDs decide the limit of frep. Recent works
argue that implementation of PNRDs by multiplexed on-off

detectors is demanding [37, 38], and thus other methods like
transition edge sensors or superconducting nanowire detectors
are desired [39–43]. Because the experimental results so far
[43, 44] indicate that frep = 100 MHz is possible, we have
enough chance to generate |ψ10〉 at Mcps order. Refining the
performances of squeezed vacuum sources and PNRDs leads
to the further improvement of this rate. Since current opti-
cal CV information processors work at MHz order [7], single
cat-state source of GPS might be enough to feed cat states
into the processor as inputs. This rate is 103 to 106 times
better than conventional photon subtraction where we assume
0.02 ≤ R ≤ 0.05 as a typical condition. Like the above, GPS
would lead to generation of the large-amplitude cat states at
the rate enough for implementation of quantum optical appli-
cations.

Finally, we briefly discuss the effect of photon loss, a main
source of experimental imperfections. Photon losses can inde-
pendently occur at input and output modes of the beam split-
ter. Supposing the input modes have the same degree of loss,
input loss can be put together with the output loss because in-
put loss commutes with the beam splitter. This situation is
recognized that mixed states are heralded by a PNRD with
a quantum efficiency η < 1 and the heralded states prop-
agate through a damping channel. Imperfection of PNRDs
and damping channel affect the generated states differently.
Such effects can be analyzed by methods proposed in Refs.
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[45–47]. These imperfections should be minimized to pro-
tect the non-classical features of non-Gaussian states. Thus
far, PNRDs with high quantum efficiency (η ≥ 0.95) have
been reported [39, 40]. The effect of damping channel is usu-
ally smaller for quantum states with fewer photons. Thus,
squeezed cat states, which are generated by GPS, is more ro-
bust to loss than the usual cat states [31].

IV. CONCLUSION

We have proposed GPS for a high-rate generation of optical
Schrödinger’s cat states. We started from a generalized situa-
tion of photon number measurement on a arbitrary two-mode
Gaussian pure state, and analytically derived the conditions of
cat-state generation given by Eqs. (22) and (23). Our method
relaxes the constraints on experimental parameters compared
to conventional methods, allowing us to select optimal param-
eters and improve the generation rate by multiple orders. Sup-
posing realistic experimental conditions, the generation rate
of the large-amplitude cat states (α ≥ 2) is expected to reach
Mcps order, which is as fast as the system clock of current CV
quantum information processors. Because the performance of
GPS is limited by light sources and PNRDs, the generation

rate would be much faster than Mcps order by the progress of
these factors. GPS is feasible in free space thanks to its simple
setup. Each component of GPS has been implemented on a
chip [48–51], and thus the integration of our cat-state sources
would be possible in the future. Recent breakthroughs have
opened a way for scalable quantum computing on CV clus-
ter states, but high-rate supply of non-Gaussian states remains
as a challenging task for universality and fault-tolerance. Our
method would reduce the difficulties in the state generation
system remarkably, and make a significant progress toward
optical CV quantum computing.
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