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We analyze the consequences of dissipative heating in driven Kerr mi-
croresonators theoretically and numerically, using a thermal Lugiato-Lefever
model. We show that thermal sensitivity modifies the stability range of con-
tinuous wave in a way that blocks direct access to broadband frequency-comb
forming waveforms, and we propose a deterministic access path that bypasses
the thermal instability barrier. We describe a novel thermal instability that
leads to thermooptical oscillations via a Hopf bifurcation.

1 Introduction

The great progress in the generation of frequency combs in driven Kerr microresonators
[1-6] has motivated a flurry of theoretical effort to identify and calculate waveforms in
microresonator models [7-21]. A thorough mapping of the steady states of microres-
onator models and their stability plays an important role in the experimental search for
deterministically accessible waveforms with good comb properties.

The steady state and stability properties of continuous waves, cnoidal waves (also
known as perfect soliton crystals, Turing rolls and periodic patterns [1§]), and solitons
in the basic Lugiato-Lefever model of microresonators are quite well-understood [8}/17-



19,22], and significant progress has been made in the study of multisoliton waveforms
[15,23], and of solitons with high-order dispersion and Raman scattering [12,20].

However, this theoretical progress has for the most part neglected the role of dissipative
heating on the resonator waveforms and their stability, although the thermal response
plays a crucial part in the experimental generation of cavity solitons. The cooling of the
resonator when the power circulating in the cavity drops abruptly after a chaotic wave-
form evolves into a bunch of solitons creates a pump-cavity detuning drift, potentially
destabilizing the solitons. The cooling instability is an obstacle to soliton formation
that can be mitigated with thermal control [24], or by operating at cryogenic temper-
atures [25]. On the other hand, the temperature dependence of the cavity resonance
separates the overlapping stability regions of soliton and multisoliton waveforms [26],
facilitating the synthesis of a single-soliton waveforms by backward detuning [27], and
can serve as a means to control the dynamics of cavity solitons |28].

Dissipative heating plays an important role in applications of Kerr microresonators
other than frequency comb formation, and this effect was studied in numerous experi-
ments, where it often leads to temporal oscillations of a spatially uniform field; see [29)
for a review of experiments and potential applications. While this phenomenon has been
studied extensively in experiments and simulations, a basic theoretical understanding of
the onset of oscillations and its dependence on parameters is presently lacking.

In this paper we apply the dynamical computation approach [30] to the problem
of thermooptical dynamics of Kerr resonators. This method, which combines efficient
computational tools with ideas from dynamical systems theory, allows for a compre-
hensive mapping of stable solutions of nonlinear evolution equations for large sets of
parameter values. In previous works we applied this method to models of mode-locked
lasers [17,30-33] and pumped Kerr resonators [18|/19], where we studied the existence and
stability of dissipative cnoidal waves. Cnoidal waves are spatially periodic waveforms
that can arise as Turing patterns by modulational instability of continuous-wave light
for blue- and moderately red-detuned pumping, but become a periodic train of well-
separated pulses in the highly red-detuned pump regime, where stable cnoidal waves
coexist with stable single cavity solitons. This regime also supports stationary nonperi-
odic arrays of solitons, such as soliton crystals with defects [34], and accordingly highly
red-detuned cnoidal waves are also known as perfect soliton crystals [6,135]. Here the
term cnoidal waves will refer to any periodic waveform, of which perfect soliton crystals
is the highly red-detuned subset.

In applications of Kerr microresonators to frequency comb formation the goal is to
generate strong coherent wide band combs [1-6]. The current standard practice for this
purpose is to use single soliton waveforms as a source. However, single solitons are not
directly accessible from continuous-wave light, and are instead generated by sweeping the
pump frequency through chaotic regions, a process which yields cavity solitons only with
some probability. Single soliton waveforms can only be generated deterministically by
injecting an external signal or modifying the pump. Another limitation of single solitons
as comb sources is that they use the pump inefficiently and yield weak combs, especially
for relatively large resonators that have radio-frequency soliton repetition rates [36].

Cnoidal waves on the other hand are deterministically accessible and can have band-



widths comparable with solitons. Of these, the red-detuned perfect soliton crystals
exhibit the best comb shape and utilize the pump power most efficiently. Compared
to single solitons in the same resonator, n-period perfect soliton crystals have n times
larger comb spacing, but each comb line is n? times stronger. These waveforms can be
accessed by paths in parameter space that were identified using dynamical computa-
tional methods in [18,[19]. It should be emphasized that the waveform evolution along
paths of this type, which moves through stable steady states, is completely deterministic
in nature, depending neither on the rate of path traversal, as long as it slow enough that
the evolution is adiabatic, nor on initial conditions, in contrast with stochastic control
paths that reach soliton crystals with some probability from chaotic waveforms [6].

Here we compute the existence and stability properties of continuous waves including
thermal effects, and we explain the similarities and differences from the well-studied case
in which thermal effects are ignored [10,/11]. We identify three basic consequences of
dissipative heating: First, as the thermal sensitivity increases, the coexistence wedge in
parameter space, where there are three continuous wave solutions for each set of pump
parameters, moves down in pump power; as a result, thermal instabilities block access
paths which start with a moderately or highly red-detuned pump frequency. We show
in Fig. 1] examples of the coexistence wedge and an access path; the significance of the
parameters is explained below. The thermal shift of the nonlinear fold of the resonance
curve and of the bistability region was identified and studied in detail in [37].

Second, the threshold curve of modulational instability, where cnoidal waves bifurcate
from continuous waves, moves to larger detuning. Therefore, a deterministic path to
wide-band perfect soliton crystals must bypass the tip of the coexistence wedge, before
crossing the lower end of the modulational instability curve.

The two thermal effects described so far depend only on the strength of the ther-
mal response and are insensitive to the thermal time scale. For this reason they have
close analogues in Fabry-Perot Kerr resonators, where interactions between counter-
propagating pulses gives rise to a detuning proportional to the total power like the one
caused by changing temperature, albeit on a completely different time scale [38}|39].

The third consequence of dissipative heating is that continuous waves become sus-
ceptible to instabilities that lead to the aforementioned oscillations of spatially uniform
waveforms. We show that oscillatory instabilities arise only when the heating rate is
larger than a minimal threshold value. Then continuous waves become unstable either
for sufficiently large pump powers for any detuning, or only for a range of pump pow-
ers above a minimal detuning, depending on the thermal response parameters in a way
which is explicitly derived.

It has been argued that the competition between processes, such as temperature de-
pendence of the index of refraction versus thermal expansion, is the common mechanism
in the several physical underpinnings of thermal oscillations [29]. An interesting exam-
ple is the thermal relaxation oscillations that occur because of competition of thermal
detuning and thermal expansion [40,41], where theoretical modeling has to track the
temperatures of the mode volume and the bulk of the microresonator separately. In
other cases [42,43] the thermal oscillations arise through thermal detuning alone, which
depends only on the mode volume temperature, which is included in standard models



of thermal response of comb-forming microresonators (e.g. [27]), and this approach will
be adopted here.

After presenting the equations of motion governing the cavity waveform and thermal
detuning in section [2], we derive the basic properties and stability equations of stationary
solutions in section[3] In section [ we calculate the continuous wave solutions and present
their three modes of instability. Modulational instabilities can lead to the formation of
steady cnoidal waves that are studied in section [5 and the thermal oscillations that
can arise from uniform instabilities are investigated in section [0 Section [7] presents our
conclusions.

2 Thermooptical equations of motion

We model the evolution of the slowly varying envelope v(z,t) of the optical waveform
in a pumped resonator with second order dispersion coefficient 8 and Kerr coefficient ~
by the Lugiato-Lefever equation with periodic boundary conditions
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where 0 < z < L is the position along the propagation direction in the resonator, L is
the resonant mode diameter, [ is the loss coefficient, w and F' are the pump frequency
and amplitude (respectively), and w, is the temperature-dependent cavity resonance
frequency [44].

The dynamics of the temperature T of the resonator is governed by absorptive heating
proportional to the light intensity, and diffusive cooling. The cooling rate is such that
the typical time scale of temperature dynamics is always much longer than the cavity

roundtrip time; therefore T' is independent of z, and dissipative heating is proportional

to the mean power i
L
dx
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The heat balance equation therefore becomes

@ \powr-T), (3)
dt
where the energy conversion factor A and the cooling rate x are constant parameters
that depend on material properties and the geometry of the resonator, and Ty is the
temperature of the environment. The dependence of the refractive index on temperature
is weak so that we can express the thermal detuning as

0 = w(T) — wo(Tp) = W.(To)(T - Tp) . (4)

Assuming anomalous dispersion 8 < 0, and choosing units of time, space, and power



such that [ = |5| = v = 1 brings the equations of motion to dimensionless form
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and the dimensionless parameters are
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« and F' have the usual significance of pump detuning and amplitude, L is the resonant
mode length measured in units determined by the dispersion and loss, while A is the
heat-detuning conversion coefficient and B is the thermal relaxation coefficient of the
resonator. In microcomb experiments A is positive because w, is a decreasing function
of temperature, and B is positive by fundamental principles. As a consequence the
thermal detuning © is always negative in the steady state and for resonators initially
at ambient temperature. The parameters A and B are typically small, of O(107!) or
less |26], but the thermal sensitivity ratio C' = A/B is of order one or larger, which
means that thermal effects are moderate or strong, as we show below.

3 Stationary solutions and their stability

If the cavity waveform ts(x) with mean power P; is independent of time, then the
thermal detuning is

@5 == _C—Ps ) (10)
where the thermal sensitivity parameter C' = A/B as defined above. It follows that
1s() obeys the integrodifferential equation
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A simple but important conclusion is that the entire set of stationary waveforms for
all detunings is independent of C'. That is, if ¥(«, F, C; x) is a solution of Eq. with
pump parameters «, F', and thermal sensitivity ratio C', then the same waveform is a
solution of this equation without thermal response, lower detuning ag = o — C'Py, and
the same F"

+ilhs P + F =0 . (11)

Ys(a, F,Ci ) = s(a, F,0;2) , a=ag+ CP; . (12)



Regions of existence of stationary waves are accordingly shifted to larger detunings in the
a-F plane as C' increases. Note however that although the correspondence between
stationary waveforms with different thermal coefficients is one-to-one, there are usually
several solutions of Eq. for each choice of the parameters «, F', C, with different
mean powers, and these correspond via Eq. to C' = 0 solutions with different values
of ay, and vice versa. For example, the mean power of red-detuned cnoidal waves is much
larger than that of single solitons with the same pump parameters, so that their thermal
detuning is correspondingly larger. As shown in [38,39], Eq. with an appropriate
choice of C' serves as an effective model for stationary waveforms in a Fabry-Perot Kerr
resonator and therefore the mapping also relates stationary waveform in ring and
Fabry-Perot resonators.

Note also that Eq. does not imply that the waveform has the same stability
properties for different thermal parameters. Stability of ¢, is determined in the standard
manner by setting v = ¢, + ¢; and © = —CP,; + 04, with ¢, ©; small, in f@,

giving
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In particular, the stability properties depend on the individual values of A and B, and
not only on their ratio C.

4 |nstabilities of continuous waves

Stationary continuous waves are uniform solutions ¥(x) = . of Eq. ; the mean
power in this case is simply ||, so that the thermal nonlinearity can be combined with
the Kerr nonlinearity, giving

— (1 +ia)the +i(1+ O)|epe|* e + F =0 (16)

The thermal nonlinearity combines with the Kerr nonlinearity in Eq. because for
continuous waves, in contrast with other waveforms, the disparity of the time scales of the
two nonlinearities does not matter. It follows that for continuous waves there is a second
mapping between thermal and nonthermal waveforms: If ¢.(«, F, C) is a solution of Eq.
with pump parameters «, F' and thermal sensitivity C, then /1 + C¢.(a, F,C) is
a solution for the same o, Fy = v1+ CF, and C = 0,

Ye(a, F,C) = V14 C(av, Fp, 0) Fy=+V1+CF . (17)

The mapping relates different waveforms at the same pump frequency and different
pump powers, whereas the mapping relates the same waveform at the same pump
power but at a different frequency.
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Table 1: Analytical expressions and physical significance of the boundaries of the regions of existence
and stability for continuous waves in Kerr resonators taking into account thermal effects (see main text
for detailed description.) The boundaries and thresholds are shown in Figs. [1| and

It can be shown (see e.g. Ref. [11]) that Eq. implies that the continuous wave
power |1.]? obeys a cubic equation. The real roots of the equation are always positive,
and each such root corresponds to a unique complex solution of Eq. . It follows that
for a fixed choice of parameters, there are either one or three continuous wave solutions.
When C = 0 the region of coexistence of three continuous wave solutions is a wedge in
parameter space, whose small-detuning tip is at o = /3 (see Fig. . The mapping
implies that as C' is increased, the coexistence region in the a-F' plane,

a>V3,

scales down in F as 1/4/1 + C . Thus, the coexistence regions are wedge-shaped domains
for any C, that are shown in Fig. [1| with blue boundaries. The expressions for F... are
collected, along with definitions for additional quantities defined below, in Table [I}

It is useful to study the behavior of continuous waves as a function of o and P, because
unlike the a-F' parametrization, each choice of & and P corresponds to a unique solution.
The coexistence wedge in the a-F' plane unfolds onto a smooth lobe P... < P < Py
in the a-P plane (see Table 1)) bounded by the full blue curve in Fig. Since each

Feeo(a) < F < Feey (@) (18)



point in the a-P plane corresponds to a single continuous wave, the three continuous
wave branches appear as separate regions in the lobe bounded by P..1; the boundaries
between these regions are the curves P4 («) (see Table [I) that are marked by the
blue dashed curves in Fig. [2] so that the continuous wave solutions in the regions below,
between, and above the blue dashed lines belong to the lower, middle, and upper branches
(respectively). The mapping implies that the lobe of coexistence scales down in P
as 1/(1 + C) when C is increased.

4.1 Modulational instability

We next study the instability modes of continuous waves in microresonators, taking into
account thermal effects. Due to translational invariance, Eq. has solutions of the
form 1 (z,t) = py (t)e*® + p_(t)e **, k real, for uniform 1), = 9.. The thermal
effects are nonlocal, so that it is necessary to consider the cases of zero and nonzero k
separately. In this subsection we focus on the k£ # 0 case.

In the case k # 0 we find that P, = 0, and Eq. then implies that ©; = 0. Eq.
becomes a two-variable linear system in the variables ¢, , ¥y,

% (iz*) = (—1+4iM>) (5:*) (19)
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M= | w2y ot 5K = @ O)l? 20)

The eigenvalues of i My are
+\/det My, det My = P>~ [K*+a—(2+C)P]”, (21)

so that the solution is modulationally unstable if max; det My > 1.

We now distinguish between two cases. When a < (2 4+ C')P, we find that det Ms
attains its maximum, P?, at a finite wave number k,,; therefore, finite-wavelength in-
stability occurs in the wedge P > max(a/(2+ C), 1) of the a-P plane (shown in yellow
in Fig. ). The image Fy(c) of the line P = 1 in the a-F plane (see Table[l) is the
square root of a parabola with a minimum of F =1 at & = 1 + C (shown in yellow in
Fig. [l)). However, when the modulational instability boundary lies inside the coexistence
wedge, it is necessary to check the stability properties in the a-P plane to determine
which of the continuous wave branches it affects. One can verify using the expressions
in Table 1] that for any C' > 0 and for all @ > 2+ C, B, (a) < a/(2+ C) < Py ()
so that the sloping part of the of the finite-wavelength instability boundary consists of
middle-branch points. It follows that for o > 2 4+ C' the modulational instability affects
only the upper branch in the coexistence region, considering that the middle branch is
inaccessible because it is unstable with respect to uniform perturbations (as discussed
Sec. .

For a < 2 + C, the modulational instability can affect both the lower and upper
branches. Nevertheless, the lower branch can become modulationally unstable only if
the modulational instability boundary curve intersects the coexistence region below its



tip. This is the behavior for C' = 0 (see Fig. , top left), but as previously explained, the
coexistence region shifts to lower powers as C' increases, and in this way the tip of the
coexistence region, where the continuous wave branches meet, crosses the modulation
instability boundary when C' = C, = 2/v/3 — 1 ~ 0.15. For C' > C,, therefore, the
modulational instability affects only the upper branch.

This observation, combined with the small magnitude of ), has an important im-
plication for the deterministic generation of perfect soliton crystals, which utilizes the
modulational instability at relatively large red detunings [18,[19]. Namely, since red de-
tuned pumps allow for multiple continuous wave branches, and having observed that for
typical thermal conditions the lower branch is not susceptible to the modulational insta-
bility, the deterministic access path must begin at a relatively small detuning in order to
bypass the tip of the coexistence region, before the pump detuning is increased toward
the modulational instability boundary. The maximal detuning that can be achieved in
this way, a; (expression given in Table[l)), is where the modulational stability threshold
curve crosses the boundary between the upper and middle branches in the a-P plane;
this point, which corresponds to the tangency between modulational instability curve
and the lower boundary of the coexistence wedge in the a-F plane, is circled in both
Figs. 2] and [ The deterministic path to access perfect soliton crystals is discussed
further in Sec. [l

The second case of the modulational instability occurs when a > (2 4+ ¢)P. The
maximum of det M, is then at k£ = 0, so that the fastest growing mode of this insta-
bility has the smallest admissible positive wave number, kyi, = 27/L. In applications,
the resonant mode length L is typically larger than 10 in system units |18], so that
max det My =~ det My(k = 0). It follows that the long-wave instability affects continu-
ous waves with det My(k = 0) > 1 and o > (2 + C')P. The solution of the quadratic
inequality det My(k =0) > 1is Py— < P < Piy+, (see Table |1| for definitions).

It follows from (21]) that P > 1 is a necessary condition for instability, and therefore
a > 2+ (' is a necessary condition for the long-wave instability. On the other hand,
it can be checked using the expressions in Table [1] that P, < /(2 4+ C) < By, for
a > 2+ C, so that the region in «, P parameter space for long-wave instability is
bounded from above by a/(2+ C) and from below Pj,_ (defined in Table [I]); the lower
boundary curve is marked in red in Fig. [2] It also follows from the expressions in Table
that P, < Pw_ and B, < B,y for any C' > 0, so that the long-wave instability
only affects the physically inaccessible middle branch.
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Figure 1: Stability of continuous wave solutions of the Lugiato-Lefever equation including
thermal effects, Eqs. f@, as a function of pump detuning o and amplitude F' for the four
sets of thermal parameters shown Fig. Each point in the a-F plane corresponds to three
continuous wave solutions, of which at most two are stable, inside the blue wedge, and to a
unique solution (stable or unstable) outside the wedge. The yellow curve marks lower boundary
of the region of the finite-wavelength modulational instability, which affects only the upper
branch of continuous waves for parameter values in the coexistence wedge in the three panels
with C' > 0. The green curve, where relevant, marks the instability threshold of the uniform
mode with complex growth eigenvalues, which affects only the upper branch where it overlaps
with the coexistence wedge. The dark circles mark the points on the modulational instability
boundaries where the fastest growing mode has the largest wavelength. The red dashed line
in the upper-right panel shows a deterministic path to access perfect soliton crystals.
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Figure 2: Stability of continuous wave solutions of the Lugiato-Lefever equation including
thermal effects, Egs. —@, as a function of pump detuning o and mean cavity power P
for four sets of thermal parameters. Each point in the a-P plane corresponds to a unique
continuous wave solution. The solid blue curve is the boundary of the region where three
branches exist for the same pump power, and the dashed blue curve marks the boundary
between the branches. The solutions in the shaded regions of the graphs are unstable, with
shading color indicating the instability modes as follows. Blue: uniform instability with a real
growth eigenvalue; red: long-wave modulational instability; yellow: finite-wavelength modula-
tional instability; green: uniform instability with complex growth eigenvalues. The significance
of the dark circle is the same as in Fig.
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4.2 Uniform instabilities

We now consider the case where 1);(t) is spatially uniform. In this case ©; is nonzero,
while the dispersion term in Eq. drops, and we obtain the three-variable system

d 1#1 %
) = wr (22)
CH CH
—1+i(—a+ 2+ Oy 2 —ith
M; = —i(y:)? —l—i(—a+ 2+ O W) i (23)
—AY; — Ay -B

The eigenvalues of Mj are the roots of a cubic polynomial, so that there are two cases:
Mj3 has either three real eigenvalues, or one real eigenvalue and a complex conjugate pair.
In the former case stable solutions are characterized by three negative eigenvalues, and
in the latter case by one negative eigenvalue, and a pair of complex conjugate eigenvalues
with negative real parts, so that det M35 < 0 for all stable solutions.

A real-eigenvalue instability occurs when the largest of the real eigenvalues, and there-
fore det M3, changes sign. A direct calculation starting from shows that det M3 > 0
whenever P, < P < B,,_, that is, precisely for the middle branch, which corresponds
to the interior of the dashed-blue lobe in Fig. 2] The entire middle branch is therefore
unstable; this instability, which generalizes an analogous instability in nonthermal res-
onators |11], is typical for the middle branch in bistable systems [45]. The middle-branch
solutions are not close to any stable solutions except where the branch connects to the
lower and upper branches in a standard saddle-node bifurcation [45].

A complex-eigenvalue instability occurs when the real part of the complex conjugate
pair of eigenvalues changes sign. It is a finite-frequency instability with an oscillatory
growth mode that is created in a Hopf bifurcation. We show below in Sec. [0] that the
finite-frequency instability growth saturates nonlinearly, yielding stable periodic tempo-
ral oscillations of spatially uniform waves.

For finite-frequency unstable solutions, the matrix M3 has two complex conjugate
eigenvalues with positive real parts and one negative eigenvalue. Such a combination
of eigenvalues can only occur when A > 2, and then there are two cases, depending
on whether A is smaller or larger than 3 + C. In the former case, a finite-frequency
instability occurs for detunings o > ay,, and powers in the interval P, < P < Ppy;
ap, and Py, are defined in Table [ We show an example in the bottom-right panels of
Figs. [1 2l In the latter case the instability can occur for any a for P > P,_; we show
an example in the bottom-left panels of Figs. [1] 2|

5 Cnoidal waves

The growth of finite-wavelength perturbations in modulationally unstable continuous
waves can saturate to yield stable stationary spatially periodic waves, also known as
cnoidal waves, Turning rolls, and perfect soliton crystals. In practice, cnoidal waves can
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Figure 3: Left: Full lines show deterministic access paths in the pump parameter space
leading from the lower tip of the modulational instability curve to soliton crystals for several
choices of the thermal parameters A = C' = 0, 2, 4, 6, 8, 10 from left to right. The access
paths are related by the exact mapping , so that cnoidal waveforms with the same F' are
identical. Stability properties, however, depend on the thermal parameters, and the cnoidal
waves on the access paths for C = 8 and C' = 10 become unstable before reaching F' = 2. The
horizontal dashed lines show the values of F' for which the intensity profiles are shown in the
right panel. Dashed curves show a small part of the modulational instability threshold for the
respective values of C. Right: The intensity profile |¢s(z)|? for stable cnoidal waves at several
points on the access paths shown in the left panel, located at F' = 1.01, 1.2, 1.5, 2.0 (where
applicable).

be accessed by fixing the pump detuning « and raising its amplitude F' to the point
where continuous waves become modulationally unstable.

When thermal effects are negligible (C' = 0) there are two cases: If a < a.(0) =
41/30, the bifurcation is supercritical, which means that when F' is slightly above the
instability threshold Fl,;, the growth saturates to a cnoidal wave that is a quasiharmonic
perturbation of the continuous wave solution,

Ys(x) = e + g cos(kpmx + @) | (24)

where k,, is the wave number of the fastest growing mode, ¢ is an arbitrary phase, and

the amplitude [15]
%OC \/F_Fmi- (25)

When o > a., there are no stationary stable waveforms that closely approximate con-
tinuous waves. Nevertheless instability growth can saturate in cnoidal waves whose
amplitude variations are not small [19].

Like all stationary waveforms, a cnoidal wave with C' > 0 can be mapped via ((12))
to a non-thermal cnoidal wave with a smaller detuning oy = o — C'Ps, so the set of
possible cnoidal waves (but not their stability) is independent of C'. In general, since P;
depends in a complicated manner on a and F', the mapping cannot easily be used to
relate the stationary cnoidal wave for different thermal parameters. Nevertheless, weakly
nonlinear cnoidal waves near the supercritical part of the modulational instability curve
have mean power P, ~ P, ~ 1 as discussed after Eq. , and the threshold curves

13



(yellow lines in Fig. [1) are shifted to larger o as C' increases. It now follows from ((12))
that this rule remains true also in a small region above the threshold. That is, if a
cnoidal wave is a stationary solution for some ay and F' close to F,; at C = 0,
then it is also a stationary solution for the same F and a = ag + C for any C' > 0. In
particular it follows that the bifurcation is supercritical for a given C' when

a<aC(C):4—1+C. (26)
30

This simple result has a significant implication: As explained above, broadband fre-
quency combs with soliton-like envelopes can be produced from highly red-detuned per-
fect soliton crystals, and can be deterministically accessed from long-wave modulational
instabilities [18,]19]. When C' = 0 the largest wavelength that can be accessed in this
way is produced by crossing the instability curve at o = «a,.. However, as C' increases
the detuning «; at the tangency point between the modulational instability curve and
the cw coexistence wedge (circled in Fig. [1} see Sec. above and Table 1)) increases
more slowly than a., so that «a. overtakes oy when C = Cs = 361/660 ~ 0.55. For
C > Oy therefore, the modulational instability curve consists entirely of supercritical
bifurcation points, and the optimal deterministic path in the a-F parameter space for
accessing soliton-like cnoidal waves is via continuous wave solutions with detuning .

Since Cs > C,, (see Sec. , the modulational instability for C' > C affects the upper
branch of continuous wave solutions. It follows that for the deterministic generation of
wideband frequency combs in any microresonator with an appreciable thermal response,
the pump power has to be raised at a fixed frequency with a < v/3, in order to bypass
the wedge of coexistence in the pump parameter space. Then the pump frequency has
to be sharply detuned to the red at fixed power, to reach the optimal access point with
a=a; =1+ C. We show an example in the top-right panel of Fig. [1]

After crossing the modulational instability threshold and the consequent formation of
a quasiharmonic cnoidal wave, soliton crystals can be obtained by further increasing the
power and detuning of the pump [18,|19]. Figure |3| (left) shows several access paths for
different values of C', chosen to give identical waveforms that are connected by the exact
mapping for equal pump amplitudes. The right panel of Fig. [3| shows cnoidal wave
solutions at several points along the access paths.

6 Thermal oscillations

In Sec. we found that when A > 2, there is a region in the pump-parameter plane
where continuous waves are unstable with a complex conjugate pair of eigenvalues with
positive real parts. The boundary of the region of instability in the a-F' parameter space
is a line of Hopf bifurcations that occur when a pair of stability eigenvalues +iwy, cross
the imaginary axis. It follows from the Hopf bifurcation theorem [45] that a periodic
solution of the equations of motion with frequency wy, is created at the bifurcation points.

There are two types of Hopf bifurcations: When the bifurcation is supercritical, a
stable periodic orbit is created on the unstable side, while at a subcritical bifurcation an
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Figure 4: Steady state thermal oscillations of a spatially uniform wave envelope field in a
Kerr resonator. The deviations A of the field envelope 1) — 1), (real part in red, imaginary part
in blue) and of the thermal detuning © — O, (green) from the constant values are shown as a
function of time ¢. The left column shows oscillation with thermal parameters B =2, C' =5
and detuning o = 8, and the right column shows oscillation with B = 0.6, C' = 10 and
a = 15. The pump amplitude is F' = Fj, + Fa, where Fj, is the instability threshold, and
Fa = 0.0005, 0.1, and 2.0 in the top, middle, and bottom rows, respectively. The quasi-
harmonic oscillations of the top row are well-described by weakly nonlinear analysis. (Note
different vertical axes scales.)
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unstable periodic orbit is created on the stable side. The oscillatory instability occurs
when the cw power P, becomes larger than the lower threshold P, . Close to the
bifurcation the oscillations are quasiharmonic with amplitude proportional to \/|Pal,
where PA = PC — Ph_.

The quasiharmonic oscillations are well-approximated by the linear modes of the sta-
bility matrix M;, with an amplitude that is determined by the balance of the linear and
nonlinear terms. Since the amplitude is small, the nonlinearity is weak, and therefore
the solution can be calculated in weakly nonlinear perturbation theory [45]. The result
of this calculation is that close to the bifurcation

w(t) e | .
b | = wr |+ VEPA(Kuye® 4 Ko e®t) (27)
@(t) —CWJQ

where 1), is the continuous wave amplitude, K is a constant, w = wy, +O(Pa), and v are
the +iwy, normalized eigenvectors of the matrix Mj (see Eq. with phase chosen to
make their © component real. The sign under the square root is positive (resp. negative)
for supercritical (resp. subcritical) bifurcations, | K| is fixed by the nonlinear terms, while
the phase of K is determined by the initial conditions.

In Fig. |4f we show examples of stable oscillatory solutions to the dynamical equations
(B)—(6). The panels of the first row show quasi-harmonic oscillations for pump ampli-
tudes slightly above threshold. When the pump power increases further, the oscillations
quickly become strongly nonlinear, as seen in the second and third rows of Fig. In
Fig. [5| we show the nonlinear response coefficient | K| of quasiharmonic oscillations as a
function of the pump detuning « and cooling coefficient B for two values of C'.

The weakly nonlinear analysis reveals that there are parameter values where the Hopf
bifurcation is subcritical, for example in the white regions in the right side of both
panels of Fig. 5l For these parameter values there are no small-amplitude stable thermal
oscillations near the threshold. Nevertheless, in a number of these cases where we studied
numerically the growth of instability following a subcritical bifurcation, we always found
the it saturates at strongly nonlinear stable oscillations. These thermal oscillations are
qualitatively similar to the oscillations shown in the second and third rows of Fig. [4l

7 Conclusions

Dissipative heating plays a significant role in the evolution of optical waveforms in Kerr
microresonators. For theoretical modeling of this effect, the Lugiato-Lefever equation
must be coupled to an equation for the mean temperature of the optical mode volume.
The temperature evolution then depends on two response coefficients, describing the
rate of heating due to absorption of light, and the rate of cooling due to diffusion. The
ratio of these coefficients is the dimensionless thermal sensitivity parameter C'. When C
is of order one or larger, as it is for most Kerr microresonators in which frequency combs
have been observed, the existence and stability properties of cavity waveforms depend
strongly on the thermal parameters.
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Figure 5: The nonlinear response parameter |K| of the uniform instability Hopf bifurcation
as a function of the pump detuning « and cooling rate B for thermal sensitivity ratio C =5
(left) and C' = 10 (right). The plots are colored in parameter regions where the bifurcation is
supercritical. Uncolored regions correspond either to points where the bifurcation is subcritical
(large « regions) or parameter values where the Hopf bifurcation does not occur at all (small
« regions. )

Here we focused on continuous waves and cnoidal waves, where for pump parameters
a and F' of order one, the mean power P is also of order one. Single soliton waveforms
on the other hand have mean power P = 1/L, so that the strength of the thermal effects
for single solitons is determined by C'/ L which is typically small. It means however, that
thermal effects for single soliton waveforms can become significant when L decreases,
which can happen either when the cavity is smaller, or when the dispersion is larger.

An important simplifying feature of the thermooptics of microresonators is that steady-
state waveforms experience an effective detuning that is shifted from the nominal de-
tuning by C' times the mean power, so that there is an exact mapping between the set
of thermal and non-thermal steady-state waveforms. However, the stability properties
of the waveforms depend on the details of the thermal response, and cannot in general
be deduced from those of the nonthermal system.

We showed that dissipative heating has three important consequences for the stability
of continuous waves and the evolution of the cavity waveform following the onset of
instability. First, as the thermal sensitivity parameter increases, the coexistence wedge,
where there are three possible solutions, moves to lower powers in the pump parameter
plane, blocking the constant-frequency path to red-detuned comb-producing waveforms.
At the same time, the modulational instability threshold curve, where comb-forming
cnoidal waves bifurcate from continuous waves, moves to higher detuning. Together,
these two effects imply that soliton crystals can be produced deterministically by adia-
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batically following a path of pump parameters that bypasses the coexistence wedge by
first increasing pump power at constant frequency and then tuning the frequency to the
red at constant power. This protocol has not yet been implemented experimentally.

The third consequence of the thermal response is the emergence of an instability
mode of the continuous waves that produces temporally periodic oscillations of spatially
uniform waveforms. Thermal oscillations in Kerr resonators have been often observed
experimentally, and our analysis shows how to describe them with a simple three-degrees
of freedom dynamical system. We showed that oscillations can only occur when the
heating rate is larger than a threshold value which is universal in dimensionless units.
It is likely that the mechanism that drives the thermal instabilities and oscillations in
continuous waves can cause similar instabilities and oscillations of cnoidal waves, and
perhaps soliton waveforms as well, but this question is beyond the present scope.

In experiments, an effective heating rate large enough to produce thermal oscillations
has been achieved by lowering the response coefficient dw./dT which appears in its de-
nominator (see Eq. [J), either by a cancellation between competing effects as in [41]
or by operating near the temperature where the response coefficient changes sign [43].
Thermal oscillations in experiments that have been reported so far were strongly non-
linear. The analysis presented here shows that for a wide range of parameters the Hopf
bifurcation that gives rise to the oscillations is supercritical, so that weakly nonlinear
quasiharmonic oscillations are expected as well; however, the parameter band where the
oscillations are quasiharmonic is narrow so that a careful and slow tuning of the pump
parameters through the bifurcation will be needed to observe them experimentally.
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