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The principal use of photonic crystals is to engineer the photonic density of states, which con-
trols light-matter coupling. We theoretically show that strained 2D photonic crystals can generate
artificial electric and magnetic fields that act on light and we show that particular strain patterns
give rise to highly degenerate Landau levels. Since photonic crystals are not in general described
by tight-binding models, we employ a multiscale expansion of the full continuum wave equation.
Using numerical simulations, we observe dispersive Landau levels which we show can be flattened by
engineering a pseudoelectric field. Artificial fields yield a design principle for aperiodic nanophotonic
systems.

In the presence of strain, graphene exhibits a remark-
able effect: an inhomogeneous deformation of the lattice
induces a strong pseudomagnetic field governing the low
energy theory [1–6]. If the strain is designed to produce a
uniform pseudomagnetic field, highly degenerate Landau
levels form at energies near the Dirac points. In pho-
tonic systems, methods for generating pseudomagnetic
fields [7–10] are of significant interest since photons are
fundamentally uncharged and therefore do not directly
respond to real magnetic fields. If Landau levels could
be realized in the nanophotonic domain using strained
photonic crystals, the associated large density of states
could used to enhance light-matter interactions (e.g., the
Purcell effect [11] or nonlinear phenomena [12]).

Strain-induced pseudomagnetic fields have been
demonstrated experimentally in photonic systems of cou-
pled waveguide arrays [13], exciton-polariton condensates
based on coupled cavities [14, 15], and microwave sys-
tems of coupled resonators [16]. Photonic Landau levels
have also been discussed in the context of lasing models
[17] and strain and related ideas have been explored as
a means for producing pseudomagnetism in acoustic sys-
tems [18–20]. In the waveguide arrays studied in [13],
however, time is mapped to a spatial dimension, and
thus energy eigenvalues do not correspond to mode fre-
quencies but to propagation constants. Hence, the Lan-
dau levels will not directly alter the photonic density of
states. Demonstrations based on coupled resonators can
be treated with the standard tight-binding framework of-
ten used to study strained graphene. Photonic crystals,
however, are governed by the continuum Maxwell equa-
tions to which tight-binding models do not generally ap-
ply [21].

In this Letter, we address the question: Since Dirac
points generically emerge in the presence of certain sym-
metries, [22–24] and therefore occur also in photonic crys-
tals, can strain be used to generate pseudomagnetic fields
for light in the nanophotonic domain? To answer this
question, we use a two-scale expansion of solutions to the
full continuum wave equation to show that pseudomag-

netic and pseudoelectric fields are present in a class of
deformed 2D photonic crystals. Our results, which apply
to wave equations in non-dissipative media, require only
that the strain be slowly varying and that the unstrained
periodic structure exhibit Dirac points associated with a
certain set of symmetries. The effective equations con-
tain no free parameters. We make no assumptions about
the magnitude of the material (index) contrast and our
results do not require an effective tight-binding model.

We assess the validity of our effective theory by per-
forming full-wave numerical simulations in an experimen-
tally realistic strained photonic crystal of air holes em-
bedded in silicon. These simulations demonstrate high
density of states at energies corresponding to the Lan-
dau levels of the effective theory. However, the Landau
levels are weakly dispersive and we find that producing
nearly flat (non-dispersive) Landau levels in such a pho-
tonic crystal can be achieved using a new ingredient: a
strain that, on the level of the effective equations, gen-
erates a pseudoelectric field (in addition to the pseudo-
magnetic field), and on the level of the full wave equation,
acts to flatten the bands.

We begin by considering light propagating in the plane
of a two-dimensional photonic crystal: a medium con-
sisting of a real, spatially varying scalar dielectric ε(x)
that is uniform in the x3 direction, so that we may take
x = [x1, x2]. The solutions can be classified as having ei-
ther TE or TM polarization. For time-harmonic solutions
with electric and magnetic fields E(x, t) = E(x)e−iωt and
H(x, t) = H(x)e−iωt, the modes are governed by the
scalar Helmholtz equation

−∇ ·
(
ξ(x)∇

)
ψ(x) = (ω/c)2ρ(x)ψ(x), (1)

where c denotes the vacuum speed of light. For TE polar-
ization, ξ(x) = 1/ε(x), ρ(x) = 1, and the scalar function
ψ(x) gives the magnetic field H(x) = ψ(x)ẑ. For TM
polarization, ξ(x) = 1, ρ(x) = ε(x), and ψ(x) gives the
electric field E(x) = ψ(x)ẑ.

To obtain a structure possessing Dirac points, we re-
quire that ε(x) is inversion symmetric, C3 rotation in-
variant, and translation invariant with respect to the
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triangular lattice ZR1 ⊕ ZR2, where R1 = a[1, 0] and

R2 = a[1/2,
√

3/2] and a denotes the lattice constant.
It was proved in [22–24] for continuum media that these
conditions imply the existence of Dirac points at the Bril-
louin zone vertices K = (G1 −G2)/3, K′ = −K, where
G1 and G2 are the reciprocal lattice vectors. For a Dirac
point occurring at quasimomentum kD and energy ED,
two consecutive bands E±(k) of the operator defined in
Eq. (1) (with E = ω2/c2) exhibit a conical intersection

E±(k) = ED ± vD |k− kD| (1 +O(|k− kD|) (2)

for k near kD.
Since ω2 = c2E there are positive and negative

branches of frequencies, ω, obtained from (2). We focus
on the positive branch, yielding

ω±(k) = ωD± (vDc
2/(2ωD)) |k−kD| (1 +O(|k− kD|) .

(3)
We now focus on the Dirac point at kD = K; the case

kD = K′ = −K can be treated similarly (with a pseudo-
magnetic field that points in the opposite direction; see
the Appendix). We denote the two energy-degenerate
states at the Dirac point by Φ1(x),Φ2(x). These can be

taken to satisfy Φ2(x) = Φ1(−x), R[Φ1] = e2πi/3Φ1, and
R[Φ2] = e−2πi/3Φ2, where R[f ](x) = f(R†x) and R is a
2 × 2 matrix of rotation by 2π/3. We use a normaliza-
tion 〈Φi|Φj〉ρ = δij . See the Appendix for more details
and definitions of the two inner products 〈f |g〉 and 〈f |g〉ρ
used in the text.

There are two parameters in the effective theory, which
are computed from the eigenmodes, Φi(x), of the un-
strained system, and which determine the behavior of
the strained system:

vD =
〈
Φ1

∣∣{p̂1, ξ̂
}∣∣Φ2

〉
(4)

b? =
〈
Φ1

∣∣p̂1ξ̂ p̂1

∣∣Φ2

〉
. (5)

The Dirac velocity, vD, is associated with the slope of
the dispersion relation at the Dirac point of the periodic
structure [after including the factor of c2/(2ωD)—see Eq.
(3)] and b? emerges in connection with the induced pseu-
domagnetic field: the ratio b?/vD determines how strong
the pseudomagnetic field will be for a given amount of
strain; see Eqs. (7) and (8) below. The derivation that
leads to these parameters is contained in the Appendix.

Here, p̂1 = −i∂x1 ,
{
p̂1, ξ̂

}
= p̂1ξ̂ + ξ̂ p̂1, and ξ̂ is the op-

erator that acts in position space via multiplication by
ξ(x). In the Appendix, we show that both vD and b? can
be made to be real and positive by an appropriate choice
of a coordinate system and a phase convention for the
eigenstates. We assume these choices have been made.

We will now consider a class of dielectric functions ob-
tained by straining the dielectric ε(x). We note that,
while we will use the terminology of ‘strain’ through-
out this work, we do not intend for this to be under-
stood in the sense of a physical mechanical strain ap-
plied to a dielectric, but rather as a mathematical pre-
scription for how one constructs the dielectric function
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FIG. 1. (a) Illustration of a strain that produces a Landau
gauge vector potential for a uniform pseudomagnetic field.
(b) Schematic illustration of the effect of the strain on the
spectrum. In a neighborhood of ωD, the Dirac cone is trans-
formed into a sequence of discrete Landau levels.

ε′(x). Once this function has been specified, the dielec-
tric ε′(x) can be directly realized without the applica-
tion of a mechanical strain (e.g., by directly etching the
strained pattern into silicon, for example). A strained di-
electric ε′(x) is obtained by displacing each point x of the
original dielectric to a new location T (x) = x+u(x) giv-
ing ε′(x + u(x)) = ε(x), where u(x) = (u1(x), u2(x)).
The corresponding strain matrix is denoted U(x) =
1
2

(
Dxu + (Dxu)

>
)

with entries Uij = 1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
(here [Dxu]ij = ∂ui/∂xj). We assume that u(x) is de-
formed on a scale which is large compared with the lat-
tice constant in the sense that u(x) = f(κx), where κ is a
small parameter, with units length−1, that measures the
length scale over which the deformation varies. Hence,
U(x) ∼ O(κ) and one can think of κ as measuring the
strain strength.

Using a general systematic perturbation theory in the
small parameter κ (see the Appendix), we show that the
strained dielectric ε′(x) has modes with a two-scale spa-
tial structure in which a pair of slowly varying amplitude
functions αi, with i = 1 or 2, modulate the Dirac point
eigenmodes:

ψ(x) =

2∑
i=1

αi
(
T−1(x)

)
Φi(T

−1(x)) +O(κ). (6)

[As before, slowly varying is understood to mean αi(x) =
gi(κx)]. These modes have associated perturbed frequen-

cies ω = ωD + c2

2ωD
E1 + O(κ2). The amplitude func-

tions αi(x) and frequency perturbation E1 (of order κ)
are determined by an eigenvalue problem Heffα

′(x) =
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FIG. 2. (a) Full-wave band structure for TE polarized modes, showing the Dirac point of the unstrained honeycomb structure.
(b) Band structure in the presence of strain, showing the emergence of Landau levels. The dashed curve corresponds a spurious
mode supported at the computational boundary. (c) Level spacing as a function of the pseudomagnetic field strength. Solid
curves show the prediction of Eq. (7). Red points show the spacings obtained numerically from the (full-wave) band structures
at k2 = 0. (d) The strained dielectric used to generate panel (b), with air holes shown in white, silicon shown in blue, and the
unit cell highlighted in yellow. The strained structure is periodic under translation by a distance of a′ =

√
3a along the x2

direction.

E1α
′(x), where α′(x) = [α2(x), α1(x)]T and Heff is a

2D Dirac Hamiltonian:

Heff = vD[−i∇x −Aeff(x)] · σ +Weff(x) σ0 , (7)

where σ = (σ1, σ2) with σj denoting the Pauli matri-
ces. The effective magnetic vector potential Aeff(x) and
electric potential Weff(x) are given by

Aeff(x) =

(
2b?
vD

)[
+tr
(
U(x)σ3

)
−tr
(
U(x)σ1

)] (8)

Weff(x) = −
(ωD
c

)2

tr
(
U(x)σ0

)
= −

(ωD
c

)2

∇ · u(x).

(9)

We emphasize that Heff , Aeff and Weff emerge from a
first principles derivation and depend on vD and b? which
are completely determined by the degenerate Dirac point
eigenmodes of the unstrained structure; see (4)–(5). In
the Appendix, we show that the above quantities trans-
form as expected under rotations.

We now focus on the case in which the strain pro-
duces a constant pseudomagnetic field perpendicular to
the plane of the structure. As a concrete example, we
consider a honeycomb lattice of air holes (ε = 1) embed-
ded in silicon (ε = 12.11) operating in TE polarization.
We take the air holes to have a triangular shape as in
[25] to ensure that the frequency ωD is not crossed by the
same or other bands, i.e. the structure is semi-metallic
at energy (ωD/c)

2; see [26, 27]. To improve numerical
convergence, we take the corners of the triangles to be
rounded. We take the triangle radius (center to corner)
to be r = 0.27a with a rounded corner radius of rc = 0.1a.

We numerically compute the modes of this structure
using a plane wave eigensolver (MPB) [28]. The system
has a Dirac point at ωD = 1.533ca−1, where the first
and second TE bands touch. The quantities in Eqs. (4)
and (5) are given by vD = 0.684a−1and b? = 0.502a−2.
We apply a strain generated by u(x) = a[0, (κx1)2],
where κ determines the strength of the strain. This
deformation is illustrated schematically in Fig. 1(a).
Note that while the strain breaks translation symme-
try in the x1 direction, the structure remains symmet-
ric under translation by a distance a′ =

√
3a along the

x2 direction. From Eq. (8), the vector potential is
Aeff(x) = −(4aκb?/vD)[0, κx1], which is a Landau gauge
vector potential for a constant effective magnetic field
Beff = ∇ × Aeff = −κ2 B0ẑ with B0 = 4ab?/vD.
Since ∇ · u = 0, the strain-induced pseudoelectric poten-
tial vanishes: Weff(x) = 0.

For a constant pseudomagnetic field and zero pseudo-
electric potential, the eigenvalues of the Hamiltonian (7)
are well-known to form a series of Landau levels con-
sisting of discrete eigenvalues, E1, of infinite multiplicity
implying eigenvalues, ω, of the Helmholtz equation (1):

ω = ωD±
vDc

2

√
2ωD

√
n|Beff(κ)|+ O(κ2), n = 0, 1, 2, . . . ,

(10)
where |Beff(κ)| = B0 κ

2; see the Appendix.
We compare this prediction to full numerical simula-

tions by directly solving Eq. (1) for the eigenmodes of the
strained structure, again using a numerical plane wave
eigensolver. We impose Bloch boundary conditions in the
x2 direction and effectively apply exponentially decaying
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FIG. 3. Numerically computed 0-th Landau level eigenstates
for the band structure of Fig. 2(b). Eigenstates correspond
to the values of k2 (I, II, and III) shown in the zoomed inset.
The modes come in two-fold degenerate pairs and are localized
along the x1 direction, with centers that shift horizontally (left
and right) as k2 is varied. For large enough k2, the states
collide with the boundary and become edge states (see III).

boundary conditions in the non-periodic x1 direction by
padding the boundaries with a structure that exhibits a
TE band gap for ω ≈ ωD. Since the strain preserves
translation symmetry along x2, the Bloch momentum k2

remains a good momentum. Since the supercell used for
this strain pattern is invariant under translations by

√
3a

(as opposed to a) along x2, both Dirac points (from K
and K′) reside at k2 = 0. The system size along the
non-periodic direction is L = 39a [see Fig. 2(d)].

The numerically computed band structures are shown
in Fig. 2. Upon applying the strain, the Dirac point
of Fig. 2(a) splits into a sequence of discrete Landau
levels shown in Fig. 2(b), which was obtained using
κ = 0.0548a−1. In Fig. 2(c), we compare, as a func-
tion of strain strength, the level spacings predicted by
Eq. (10) to the numerically computed level spacings ob-
tained from the band structures at k2 = 0, with the re-
sults showing good agreement. Our multiscale analysis,
which approximates states by spectral components near
the Dirac point, is valid for |k2| ≤ Cκ, for some con-
stant C and all κa � 1. As the strain is reduced, the
Landau level eigenstates become progressively more de-
localized along the x1 direction and eventually reach the
boundary of the computational domain. Hence, the se-
ries of simulation points in Fig. 2(c) is terminated at
weak strain.

In Fig. 3, we show representative numerically obtained
eigenstates. The Landau level eigenstates are localized in
the x1 direction, and are centered on a value of x1 that
varies with k2. The eigenstates that arise from the two
unique Dirac points of the unstrained structure are dis-
placed in opposite directions as a function of k2 (See Fig.
3 and Supplementary Materials for more information).

ω
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FIG. 4. Band structure obtained by beginning with the
strained structure associated with Fig. 2(b) and applying an
additional strain along the x1 direction to flatten the Landau
levels. Inset schematically illustrates the additional strain.

We note that, in general, at large x1, the strain pattern
used to generate a uniform pseudomagnetic field can be-
come strong enough to cause the effective theory to break
down in those regions. The use of a finite-width system
allows one to avoid these regions. Our asymptotic analy-
sis and full-wave numerical simulations indicate that our
effective theory is valid for modes which arise from Lan-
dau levels of the effective model which are well-localized
within the finite structure.

As shown in Fig. 3, at large enough k2, the Landau
level mode collides with the system boundary, causing it
to become localized on the edge and rise up in frequency,
giving it a non-zero group velocity. This is analogous to
the way chiral edge states result from Landau levels for a
system with a true magnetic field. However, in this case,
the system is time-reversal symmetric (exhibiting pseu-
domagnetic fields that point in opposite directions at the
K and K′ valleys), so that both forward and backward
propagating edge states exist on each edge and can scat-
ter into one another.

Although the effective theory predicts flat Landau lev-
els, the levels in Fig. 2(b) are weakly dispersive. This
dispersion arises from contributions of order κ2 which
are neglected from the effective theory. In the Ap-
pendix, we motivate the use of a deformation of the
form u(x) = a[β(κx1)3, (κx1)2] for mitigating this dis-

persion. On the level of the effective equations, this
yields B(x) = −(4aκ2b?/vD)ẑ as before, but now with a
quadratic potential Weff(x) = 3aβκ(ωD/c)

2(κx1)2, cor-
responding to a pseudoelectric (as opposed to pseudo-
magnetic) field, which can be used as a tool to compen-
sate for the dispersion. Note that this is not required in
the graphene picture of pseudomagnetism [2]. It is re-
quired in the continuum photonic crystal setting because
of a lack of an accurate nearest-neighbor tight-binding
model. The numerically computed band structures that
result from taking κ = 0.0548a−1 and β = 0.0380 are
shown in Fig. 4, where we see a clear flattening of the
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Landau levels.

In conclusion, we have shown that, for a class of 2D
photonic crystals possessing Dirac points, strain produces
pseudoelectric and pseudomagnetic fields for photons.
Explicit expressions for all parameters of the effective
Hamiltonian are given in terms of the Bloch eigenmodes
at the Dirac point of the unstrained structure. There
are no free parameters. The modes of the strained struc-
ture are constructed as slow modulations of deformed
Dirac point eigenmodes. The modulations are governed
by a Dirac equation with effective magnetic and elec-
tric potentials. Using a specific strain pattern, we have
demonstrated the emergence of Landau levels in a pho-
tonic crystal that could be realized using standard fabri-
cation techniques in silicon photonics. We found that a
conventional strain (as in graphene) gives rise to disper-
sive Landau levels, but that dispersion can be corrected
for (i.e., the bands can be flattened) using a strain that
induces an additional pseudoelectric field that does not
alter the original pseudomagnetic field. As with other
flat band systems, an important challenge relevant to the
experimental realization of our structure will be the is-
sue of increased sensitivity to disorder, an issue that is
well-known to occur for slow-light and flat band systems
[29].

Multiscale analysis enables treatment of dielectric
structures that cannot be treated with band theory. This
technique could be applied to general aperiodic media
that arise as slowly varying deformations of periodic me-
dia, including media not amenable to tight-binding meth-
ods. This approach provides an analytical handle on and
physical intuition for such systems that, in many set-
tings, require prohibitive numerical simulations. We en-
vision that strain-induced pseudomagnetic and pseudo-
electric fields will be useful for applications, particularly
in the nanophotonic domain, such as chip-scale nonlin-
ear optics and coupling to quantum emitters, where the
high density-of-states associated with flat bands implies
strong enhancement of light-matter interaction.
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Appendix A: Media with Dirac points

1. Overview and the relevant wave equations

In the following appendices, we give a detailed deriva-
tion of the results presented in the main text. Start-
ing with a general class of continuum partial differential
equations, which includes the single particle Schrödinger
equation and the Maxwell equations for 2D photonic
crystals (we treat both TE and TM polarization), we
apply a multiple scale perturbation analysis to non-
uniformly deformed honeycomb structures to derive the
effective equations governing wave packets that are con-
structed from states with energies near ED (the energy
of the Dirac point in the undeformed structure). The
resulting effective Hamiltonian is a Dirac Hamiltonian
with an effective magnetic potential and an effective elec-
tric potential, both generated by the prescribed defor-
mation. We derive expressions for all parameters of the
effective theory in terms of the bulk modes of the un-
strained structure. The theory contains no free param-
eters. Our arguments work for arbitrary finite contrast
and no tight-binding regime is required. The analysis
can be adapted to other wave equations, e.g. acoustics,
elasticity. We also provide details relating to the partic-
ular deformations discussed in the main text, which are
designed to generate a flat Landau level spectrum.

We consider wave equations which arise in quantum
and classical physics:

The Schrödinger equation

i∂tΨ = HΨ = (−∆ + V (x)) Ψ (A1)

and the classical wave equation

c−2 ρ(x) ∂2
t Ψ −∇x · ξ(x)∇xΨ = 0. (A2)

In the above equations, V (x) is real-valued, ρ(x) is real-
valued and strictly positive, and ξ(x) is a symmetric 2×2
matrix whose eigenvalues are bounded away from zero,
uniformly in x. For simplicity, ξ(x) , ρ(x) and V (x) are
taken to be smooth in x.

Time-harmonic solutions, Ψ(x, t) = e−iωtψ(x), are de-
termined by the solutions of the Helmholtz / Schrödinger
spectral problem:

( −∇x · ξ(x)∇x + V (x) )ψ = E ρ(x)ψ (A3)

where we have combined the Schrödinger and classical
cases to facilitate a unified treatment of Eqs. (A1) and
(A2). In particular, the time-independent equation (A3)
incorporates several cases of interest:

(1) Schrödinger: ξ(x) = I2×2, ρ(x) ≡ 1, V (x) = po-
tential

(2) Maxwell TM: ξ(x) = I2×2, ρ(x) = ε(x), V (x) = 0,

E = (ω/c)
2
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(3) Maxwell TE: ξ(x) = [ε(x)]−1, ρ(x) = 1, V (x) = 0,

E = (ω/c)
2
.

We may write (A3) as

Lξ,ρ ψ = E ψ

Lξ,ρ =
1

ρ(x)

(
−∇x · ξ(x)∇x + V (x)

)
. (A4)

Consider the case where ξ(x), ρ(x) and V (x) are pe-
riodic with respect to a lattice, Λ = Zv1 ⊕ Zv2 ⊂ R2

x,
where vi are the lattice vectors. We denote a choice of
unit cell by Ω, the dual lattice by Λ∗, and a dual unit
cell in R2

k by B (Brillouin zone). Lξ,ρ is self-adjoint with
respect to the inner product1

〈f, g〉ρ =

∫
Ω

f(x)g(x) ρ(x) dx.

and has a (Bloch) band spectrum. We denote its bands
by:

E1(k) ≤ E2(k) ≤ · · · ≤ Eb(k) ≤ . . . , k = (k1, k2) ∈ B.

Remark A.1 For Maxwell’s equations (V = 0), Lξ,ρ is
a non-negative self-adjoint operator and hence Eb(k) ≥ 0
for all b ≥ 1. Since (ω/c)2 = E, there are two families of

bands given by: ωb,±(k) = ±c
√
Eb(k). For simplicity,

we focus on the positive branch.

2. Bulk honeycomb media

Assume now that Λ denotes the equilateral triangular
lattice in R2. For each v ∈ Λ let Tv[f ](x) = f(x+v). We
say that Lξ,ρ, defined in (A4), models a bulk honeycomb
medium if:

[Tv,Lξ,ρ] = 0, for all v ∈ Λ

[C,Lξ,ρ] = 0, [P,Lξ,ρ] = 0, [R,Lξ,ρ] = 0.

Here, C[f ](x) = f(x), P[f ](x) = f(−x) and R[f ](x) =
f(R∗x), where R is a 2 × 2 matrix of rotation by 2π/3.
That is, the coefficients of Lξ,ρ are Λ− periodic, real-
valued and, with respect to some origin of coordinates
(taken to be x0 = 0) inversion-symmetric and 2π/3−
rotationally invariant. With regard to ξ(x), we focus on
the isotropic case:

ξ = ξ(x) I2×2, where R[ξ](x) = ξ(R∗x) = ξ(x). (A5)

Note that the above definition of bulk honeycomb media
includes structures that are more general than just an or-
dinary honeycomb lattice of discrete sites. Any structure
that satisfies the symmetries (e.g. a triangular lattice of
pillars) is included in the definition.

1 Note that, in the main text, we use Dirac notation for inner
products 〈f |g〉 = 〈f, g〉. Throughout the appendices, we will use
the latter notation.

3. Dirac points

A Dirac point is an energy / quasi-momentum pair,
(ED,K?), at which there is a conical intersection of con-
secutive dispersion surfaces E−(k) ≤ E+(k):

E±(k)− ED = ±vD |k−K?| ( 1 + O (|k−K?|) )

as |k − K?| → 0 (vD > 0). In Fig. 5, we show the
honeycomb photonic crystal discussed in the main text
along with its band structure, which exhibits a Dirac
point between the first and second TE bands.

Theorem A.2 Generic bulk honeycomb operators of the
type Lξ,ρ (see (A4)) have Dirac points at the vertices of
the Brillouin zone.

See [30, 31] for the Schrödinger case and [32] for the
Maxwell case. In the following discussion, we shall follow
the mathematical formulations of these references.

4. Characterization of Dirac points

Let

L2
k =

{
f : f(x+v) = eik·vf(x),

∫
Ω

|f(x)|2 ρ(x) dx <∞
}

(A6)
where Ω = unit cell. The inner product on L2

k is given
by:

〈f, g〉ρ =

∫
Ω

f(x)g(x) ρ(x) dx. (A7)

It will also be useful to introduce the standard L2 inner
product on a unit cell, which we denote by:

〈f, g〉 =

∫
Ω

f(x)g(x) dx. (A8)

Introduce the subspaces L2
K?,σ

for σ = 1, τ, τ̄ given by

L2
K?,σ =

{
f : f ∈ L2

K?
, R[f ] = σf

}
. (A9)

These are the three subspaces associated with the three
distinct eigenvalues of 2π/3 rotations. Then, we have an
orthogonal decomposition of L2

K?
:

L2
K?

= L2
K?,1 ⊕ L

2
K?,τ ⊕ L

2
K?,τ

For any vertex K? of the Brillouin zone, [R, Lξ,ρ] acts in
L2
K?

and vanishes. Hence, we may study the bulk honey-
comb operator, LB , on each summand subspace (i.e., its
eigenstates may be chosen to reside within the subspaces
introduced above). We have the following characteriza-
tion of Dirac points.
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ε = 12.11
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FIG. 5. Illustration of the unstrained honeycomb photonic crystal discussed in the main text. (a) A portion of the periodic
structure consisting of triangular air holes embedded in silicon. Shown also are the lattice vectors R1 = a[1, 0] and R2 =
a[1/2,

√
3/2]. (b) Enlarged view of a single triangular air hole highlighting the values of the dielectric as well as the parameters

r and rc discussed in the main text. (c) TE bands of the structure, showing the Dirac point occurring between the first and
second bands. Inset shows the Brillouin zone.

Proposition A.3 Let Lξ,ρ be as defined in (A4). Let
K? = K or K′, the two independent high-symmetry ver-
tex quasi-momenta of B. The energy / quasi-momentum
pair (ED,K?) is a Dirac point (conical point) of Lξ,ρ if:

• ED is a simple L2
K?,τ

eigenvalue of Lξ,ρ with cor-

responding eigenstate Φ1(x) satisfying: Lξ,ρΦ1 =
EDΦ1, R[Φ1] = τ Φ1.

• ED is a simple L2
K?,τ

eigenvalue of Lξ,ρ with cor-

responding eigenstate Φ2(x) satisfying: Lξ,ρΦ2 =
EDΦ2, R[Φ2] = τ Φ2.

• Φ1 and Φ2 are related by:

Φ2(x) = (PC) [Φ1](x) = Φ1(−x) and 〈Φj ,Φl〉ρ = δjl.

(A10)

• ED is not a L2
K?,1

eigenvalue of Lξ,ρ.

Furthermore, when the above conditions hold, we have
the following: Let ΦK?

j , j = 1, 2 denote the pair of eigen-

solutions for K? = K or K′. Then, for some constant,
vD, we have 〈

ΦK
1 ,AΦK

2

〉
= vD

(
1
i

)
, (A11)

where A is given by:

A =
1

i
∇y (ξ(y)·) + ξ(y)

1

i
∇y . (A12)

See Theorem 4.1 of [30], Theorem 2 of [32] and Section
3.1 of [27].

Remark A.4 Note that if Φ1 and Φ2 are a choice of
Bloch modes for the Dirac point (ED,K?) satisfying all
conditions of Proposition A.3, then so are eiφΦ1 and
e−iφΦ2 for any φ ∈ R. We shall take advantage of this
degree of freedom in the proof of Proposition A.5, where
we choose a phase convention and coordinate system in
which our effective equations take on a simplified form.

Proposition A.5 There is a coordinate system and a
phase convention for the states Φ1 and Φ2 such that:

vD = 〈Φ1,A1Φ2〉 ≥ 0 (A13)

b? ≡ 〈∂x1
Φ1, ξ ∂x1

Φ2〉 ≥ 0. (A14)

The proof of Proposition A.5 is given in Appendix F.
It is dependent on Proposition C.3 in Section C, where
the expression b? arises in the derivation of the effective
Hamiltonian. Henceforth, we shall assume throughout
that vD > 0 and b? > 0.

We note that, for the structure studied numerically
in the main text, the choice of coordinate system illus-
trated in Fig. 5(a) (paired with an appropriate choice of
phase convention) was found from numerical simulations
to produce a real-valued vD and b?. We also note that in
[30, 32] it is shown that vD is generically non-zero. We
believe that the same techniques can be used to show
that both vD and b? are generically non-zero.

Appendix B: The deformed bulk honeycomb
medium

We start with a bulk honeycomb (unstrained) medium,
whose modes are solutions to the eigenvalue problem:

( −∇x · ξ(x)∇x + V (x) )ψ = Eρ(x)ψ (B1)

We subject the medium to a strain which is non-uniform
on a length scale which is large compared with the lattice
constant of the structure, denoted a:

x 7→ T (x) ≡ x + u(κx), κa� 1,

where u(X) = (u1(X), u2(X)) and X = (X1, X2) 2.
The Jacobian of T is given by DxT (x) = I2×2 +

2 Here we take the deformation to be of the form u(κx) instead of
u(x) (compare with the main text). In doing so we are explicitly
introducing the small parameter measuring the size of the defor-
mation in order to facilitate our systematic perturbation theory.
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κDXu(X)
∣∣∣
X=κx

, where:

[
DXu(X)

]
jl
≡
(∂uj(X1, X2)

∂Xl

)
j,l=1,2

≡ (uj,l)j,l=1,2

(B2)
is the 2 × 2 Jacobian matrix. If ‖DXu(X)‖ is bounded,
then T is invertible for κ small.

We note that the deformation that we choose later
on (corresponding to a constant pseudo-magnetic field)
arises from a strain that grows linearly:

∣∣(DXu(X)
)
jl

∣∣ ∼
a|X|. In this case, our asymptotic analysis is, strictly
speaking, no longer valid at large distances: |X| �
(κa)−1. However, near the center of the band at kya

′ = 0
(see Fig. 2(b) of the main text), the Landau level wave-
functions are localized near X = 0, and thus are sup-
ported only where the strain is weak. We therefore ex-
pect the O(κ) asymptotic analysis to be accurate up to
O(κ2) corrections in this regime (i.e. for X ≈ 0 and kya

′

close to 0) 3.
The deformed medium is defined by primed material

relations:

ξ′(T (x)) = ξ(x)

V ′(T (x)) = V (x)

ρ′(T (x)) = ρ(x).

Assuming that T is invertible, we have

ξ′(x) = ξ(T−1(x))

V ′(x) = V (T−1(x))

ρ′(x) = ρ(T−1(x)).

The spectral problem governing modes of the deformed
medium is then:

( −∇x · ξ′(x)∇x + V ′(x) )ψ = Eρ′(x)ψ. (B3)

Introducing the change of variables and definitions

y = T−1(x) (B4)

J(y) ≡ DxT
−1(x)

∣∣∣
x=T (y)

= [∂yT (y)]
−1

(B5)

|J(y)| ≡ det J(y) (B6)

we obtain an equivalent equation to (B3) in terms of the
undeformed material functions:

−
[
|J(y)|∇y ·

J(y)ξ(y)J>(y)

|J(y)|
∇y

]
ψ + V (y) ψ

= Eρ(y)ψ. (B7)

3 We conjecture that a physical regularization of the structure (one
in which the structure is undeformed for |x1| sufficiently large),
will yield high density of states near the degenerate Landau levels
of the present asymptotic theory. A mathematically rigorous
treatment is work in progress.

For the undeformed problem, κ = 0, (B7) reduces to
(B1).

We next expand the equation (B7) in the small param-
eter κ and drop terms of order κ2 and higher order. For
simplicity we consider the isotropic case:

ξ = ξ(x)I2×2. (B8)

Since T (y) = y + u(κy), we have DyT (y) = I2×2 +

κDYu(Y)
∣∣∣
Y=κy

. Therefore,

J(y) = I2×2 − κDYu(Y)
∣∣∣
Y=κy

+ O(κ2)

=

(
1− κu1,1 −κu1,2

−κu2,1 1− κu2,2

) ∣∣∣
Y=κy

+ O(κ2) (B9)

and

|J(y)| = 1 − κ ∇Y · u(Y)
∣∣∣
Y=κy

+ O(κ2) (B10)

We next expand (B7) using

|J |∇y ·
JξJ>

|J |
∇y = ∇y · JξJ> ∇y + |J |

(
∇y|J |−1

)
·
(
JξJ> ∇y

)
= ∇y · JξJ> ∇y + O(κ2) (B11)

and

JξJ> = ( I2×2 − κDYu ) ξ
(
I2×2 − κ(DYu)>

)
+O(κ2)

= ξ − 2 κ ξ U + O(κ2), (B12)

where U = (Uij), the strain matrix, with entries 4

Uij(Y) =
1

2

( ∂ui
∂Yj

+
∂uj
∂Yi

)
=

1

2

(
DYu(Y) + DYu(Y)>

)
ij

(B13)

Using (B11), (B12) and (B13) in (B7) yields:

( −∇y · ξ(y) ∇y + V (y) )ψ

+ 2 κ ∇y · ξ(y) U(κy) ∇y ψ

= E ρ(y) ψ + O(κ2) (B14)

4 Since, in these appendices, we have explicitly introduced the
small parameter κ, the κ dependence of the strain matrix has
been made explicit and is factored out of U as defined above.
The strain matrix defined in the main text thus differs from that
defined here by a factor of κ and is given by κU .
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Appendix C: Effective equations via multiscale
analysis

1. Multiscale solutions

The form of the expanded Helmholtz / Schrödinger
operator on the left-hand side of (B14) reflects the as-
sumptions on our slowly deformed bulk structure; it de-
pends on the two spatial scales: y (fast) and Y =
κy (slow). To capture the κ−1 length scale effect of the
non-uniform deformation, we seek solutions which explic-
itly incorporate both of these scales:

ψκ(y) = Ψκ (y,Y)|Y=κy , (C1)

where y and Y are to be treated as independent vari-
ables. Reflecting this, the solutions of (B14) that we
shall construct are approximate wavepackets consisting
of bulk Bloch mode components with energies nearby the
Dirac point |E − ED| <∼ Cκ. The expansion procedure
we present has been made mathematically rigorous in
many settings; in the context of perturbed honeycomb
structures, see for example, [26, 27, 32].

First, we re-express (B14) in terms of this extended set
of variables: (y,Y). Thus we replace ∇y by ∇y + κ∇Y

in (B14). Keeping terms of order κ0 and κ1, we find that
(B14) becomes:

( L0 + κL1 ) Ψκ(y,Y) = E ρ Ψκ(y,Y) + O(κ2)

where

L0 = −∇y · ξ(y) ∇y + V (y) (C2)

L1 = − ( ∇y · ξ(y)∇Y + ∇Y · ξ(y)∇y)

+ 2 ∇y · ξ(y) U(Y) ∇y (C3)

For each fixed Y ∈ R2, the operators L0 and L1 are
self-adjoint operators in L2

K.
We study the (O(κ) approximate) eigenvalue problem5

(L0 + κL1) Ψκ = E ρ Ψκ, (C4)

Ψκ(y + v,Y) = eiK·v Ψκ(y,Y), (C5)

(with specified boundary conditions for

Ψκ(y,Y) with respect to Y). (C6)

Seek a solution of (C4)–(C6) as an expansion:

Ψκ(y,Y) = ψ0(y,Y) + κψ1(y,Y) + . . . (C7)

Eκ = E0 + κE1 + . . . (C8)

5 At this stage we do not specify boundary conditions with respect
to Y = (Y1, Y2). These are specified below and depend on our
choice of deformation. Specifically, for deformations giving rise to
a Landau-gauge vector potential with constant effective magnetic
field we shall choose: ψ to be pseudo-periodic with respect to Y2
and decaying as |Y1| → ∞. See Section D.

where each ψj(y,Y) satisfies the boundary conditions
(C5)–(C6). Substitution and equating like powers of κ
yields a hierarchy of equations. The first two of these
are:

O(κ0) : ( −∇y · ξ(y) ∇y + V (y)− E0 ρ(y) )ψ0

= 0 (C9)

O(κ1) : ( −∇y · ξ(y) ∇y + V (y)− E0 ρ(y) )ψ1

= −L1ψ0 + E1 ρ(y) ψ0 (C10)

The general solution, ψ0, of (C9) with boundary condi-
tions (C5)–(C6) is:

ψ0(y,Y) =

2∑
j=1

αj(Y)Φj(y), E0 = ED (C11)

where

(a) Φj(y), j = 1, 2 span the two-dimensional
K−pseudoperiodic eigenspace of 1

ρ(y)L0 with eigen-

value E0 = ED (see Theorem A.2); and

(b) αj(Y) are functions to be determined, which vary
on the slow scale, Y, and are chosen to satisfy the
condition (C6) in Y.

Using (C11), we have that (C10) becomes the non-
homogeneous equation:

(−∇y · ξ(y) ∇y + V (y)− ED ρ(y) )ψ1

=

2∑
j=1

(−L1) ( αj(Y)Φj(y) )

+ E1

2∑
j=1

αj(Y) ρ(y)Φj(y) (C12)

where ψ1 satisfies the boundary conditions (C5)–(C6).
Next, introduce the self-adjoint first order vector-
operator

A =
1

i
∇y (ξ(y)·) + ξ(y)

1

i
∇y, or

A = (A1,A2) , where Al ≡
1

i
∂yl (ξ(y)·) + ξ(y)

1

i
∂yl

(C13)

Then, the equation for ψ1 may be rewritten as:

(−∇y · ξ(y) ∇y + V (y)− ED ρ(y) )ψ1

= i

2∑
j=1

AΦj(y) · ∇Yαj(Y)

− 2

2∑
j=1

∇y · ξ(y) U(Y) ∇yΦj(y) αj(Y)

+ E1 ρ(y)

2∑
j=1

Φj(y)αj(Y) .

(C14)
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The non-homogeneous equation (C14) is viewed as an
equation for y 7→ ψ1(y,Y) satisfying the pseudoperi-
odic boundary condition (C5). A necessary and suf-
ficient condition for solvability is that the right hand
side of (C14) be L2 orthogonal to the Dirac subspace
of L0 = −∇y · ξ(y) ∇y + V (y) at energy ED, which is
spanned by { Φ1,Φ2 }. Thus we have,

Proposition C.1 Equation (C14) for ψ1(y,Y) with
boundary conditions (C5)–(C6) has a solution if and only
if α(Y) = (α1(Y), α2(Y))> satisfy the following eigen-
value problem for (α(Y), E1) subject to the boundary con-
dition imposed in (C6).

− i
2∑
j=1

〈Φl,AΦj〉 · ∇Yαj(Y)

+ 2

2∑
j=1

〈Φl,∇y · ξ U(Y) ∇yΦj〉 αj(Y)

= E1 αl(Y), for l = 1, 2, (C15)

where we have used the normalization 〈Φl, ρ Φj〉 = δlj;
see (A10).

We next write out explicitly the second term in (C15):

2 〈Φl,∇y · ξ U(Y) ∇yΦj〉
= −2 〈∇yΦl, ξ U(Y) ∇yΦj〉

= −2
∑
m

〈
∂ymΦl , ξ

∑
n

Umn(Y) ∂ynΦj

〉
= −2

∑
m,n

Umn(Y) 〈 ∂ymΦl , ξ ∂ynΦj 〉 (C16)

2. Simplification of the system (C15) via
application of symmetries

Honeycomb symmetry enables simplification of the
eigenvalue problem (C15) for the pair (α,E1). The coef-
ficients in (C15) are inner products of the form:

〈Φl, ζ · AΦj〉 and

Aljαβ =
〈
∂yαΦl, ξ ∂yβΦj

〉
, j, l, α, β = 1, 2. (C17)

We next discuss their simplification using symmetry ar-
guments. These results are then applied in Section D to
obtain our effective equations.

The first type of inner product in (C17) is evaluated
using:

Proposition C.2 For ζ = (ζ(1), ζ(2)) ∈ C2, we have

1. 〈Φ1, ζ · AΦ1〉 = 〈Φ2, ζ · AΦ2〉 = 0.

2. 〈Φ1, ζ · AΦ2〉 = 〈Φ2, ζ · AΦ1〉 = vD (ζ(1) + iζ(2)),
where vD = 1

2 〈Φ1,AΦ2〉 · (1,−i); see (A11).

Proposition C.2 follows from Proposition A.3; see also
[27, 30, 32]. The second type of inner product in (C17) is
evaluated using the following proposition which is proved
in Section E:

Proposition C.3 Let Alj, with entries Aljαβ, be as de-

fined in (C17):

Aljαβ =
〈
∂yαΦl, ξ ∂yβΦj

〉
, j, l, α, β = 1, 2.

Then,

1. For l = j:

Ajj = a? I2×2 + ãjj
(

0 1
−1 0

)
= a? σ0 + i ãjj σ2, (C18)

where ãjj are constants and a? ≥ 0 and is given by

a? = 〈∂y1Φ1, ξ ∂y1Φ1〉
= 〈∂y2Φ1, ξ ∂y2Φ1〉 , and (C19)

a? = 〈∂y1Φ2, ξ ∂y1Φ2〉
= 〈∂y2Φ2, ξ ∂y2Φ2〉 . (C20)

Moreover,

a? =
1

2
ED −

1

2

∫
Ω

V (y)|Φj(y)|2 dy

with j = 1 or 2. (C21)

2. For l 6= j:

A12 = b?

(
1 −i
−i −1

)
= b? ( σ3 − i σ1 )

where b? = 〈∂y1Φ1, ξ ∂y1Φ2〉 (C22)

A21 = A12 = b?

(
1 i
i −1

)
= b? ( σ3 + i σ1 ) . (C23)

Recall that by Proposition A.5, a coordinate system and
eigenstate phase convention can always be chosen for
which: vD ≥ 0 and b? ≥ 0. The proof of Proposition
C.3 is given in Appendix E.

Appendix D: Pseudo-magnetic field and the effective
equations

1. The general effective equations

Using Proposition C.2 and Proposition C.3 we may
greatly simplify the left hand side of (C15). The
detailed calculations are presented in Section D 5; see, in
particular, (D21), (D22), (D27) and (D28). This gives
our main result:
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Theorem D.1

1. The eigenvalue problem (C15) for (α,E1) reduces
to the eigenvalue problem, Hα = E1α, where H
is a Dirac Hamiltonian with effective magnetic and
electric potentials:

H = vD

[
( −i∂Y1 − A1 )σ1 − ( −i∂Y2 − A2 )σ2

]
+ Weff σ0. (D1)

The effective electric potential, Weff , and effective
magnetic potential, Aeff = (A1, A2), are given by:

Weff(Y) = −2a? tr (U(Y)σ0)

= −2a? (∂Y1u1 + ∂Y2u2) (D2)

A1(Y) = +
2b?
vD

tr (U(Y)σ3)

= +
2b?
vD

(∂Y1
u1 − ∂Y2

u2) (D3)

A2(Y) = −2b?
vD

tr (U(Y)σ1)

= −2b?
vD

(∂Y1
u2 + ∂Y2

u1) (D4)

where, vD > 0, a? ≥ 0 and b? > 0 are constants
given in terms of Bloch modes Φ1, Φ2:

vD = 〈Φ1,A1Φ2〉 > 0.

a? =
1

2
ED −

1

2

∫
Ω

V (y) |Φj(y)|2 dy

= 〈∂y1Φj , ξ ∂y1Φj〉 ≥ 0, j = 1 or 2

b? = 〈∂y1Φ1, ξ ∂y1Φ2〉 > 0.

2. Equivalently, the eigenvalue problem (D1) may be
expressed in terms of α′ ≡ σ1α = (α2, α1)> and
Heff ≡ σ1Hσ−1

1 as Heffα
′ = E1α

′, where

Heff = vD (−i∇Y −Aeff) · σ + Weff σ0. (D5)

Remark D.2 Note that for 2D electromagnetics
(V (x) ≡ 0) we have

a? =
1

2
ED =

1

2

(ωD
c

)2

.

Remark D.3 Part (2) of Theorem D.1 follows from part
(1) and the observation that σ1σ2σ

−1
1 = −σ2, which im-

plies that:

Heff = σ1

(
vD

[
(−i∂Y1

−A1)σ1 − (−i∂Y2
−A2)σ2

]
+Weffσ0

)
σ−1

1

= vD

[
(−i∂Y1

−A1)σ1 + (−i∂Y2
−A2)σ2

]
+Weffσ0

= vD (−i∇Y −Aeff) · σ +Weffσ0

This is equivalent to a relabeling of the pair of eigenmodes
at the Dirac point: Φ1 7→ Φ2 and Φ2 7→ Φ1.

2. Divergence-free deformations and Landau level
spectrum

Suppose that we constrain the deformation u(Y) by:
tr (σ0U) = ∇Y · u = 0. Hence, Weff(Y) = 0 and Heff

takes the simpler form:

Heff = vD

[
( −i∂Y1 − A1 )σ1 + ( −i∂Y2 − A2 )σ2

]
.

(D6)
Defining p̂ = (p̂1, p̂2) = (−i∂Y1 ,−i∂Y2), we observe that
H2

eff is a diagonal operator. Indeed,

H2
eff = v2

D

[
(p̂1 −A1)σ1 + (p̂2 −A2)σ2

]2
= v2

D

[
(p̂1 −A1)2 + (p̂2 −A2)2

+ (p̂1 −A1)(p̂2 −A2)σ1σ2

+ (p2 −A2)(p1 −A1)σ2σ1

]
= v2

D

[
(p̂−Aeff)

2
σ0 + ( ∂Y2

A1 − ∂Y1
A2 ) σ3

]
.

Hence,

H2
eff = v2

D

[
(p̂−Aeff)

2
σ0 + Veff σ3

]
, where (D7)

Veff = − [∇Y ×Aeff ] · ẑ = ∂Y2A1 − ∂Y1A2. (D8)

Now take Aeff to be a Landau gauge vector potential for
a constant magnetic field: Aeff = −B0 (0, Y1). Then,
∇×Aeff = −B0ẑ. By (D3)–(D4), we must have:

A1 = +
2b?
vD

(u1,1 − u2,2) = 0

A2 = −2b?
vD

(u1,2 + u2,1) = −B0 Y1. (D9)

We solve equations (D9) by taking:

u(Y) = (u1(Y), u2(Y)) =
vD B0

4b?

(
0, Y 2

1

)
. (D10)

From the above results, we have

H2
eff = v2

D

[
p2

1σ0 + (p2 +B0Y1)2σ0 +B0σ3

]
. (D11)

This yields two decoupled copies of the Landau gauge
Hamiltonian for a particle in a magnetic field, with the
copies respectively shifted in energy by ±B0. The spec-
trum of H2

eff thus follows from the spectrum of a par-
ticle in a magnetic field [33] which, in Landau gauge,
consists of a series of discretely spaced Landau levels
en(k2), where the eigenvalues en(k2) are independent of
k2 (k2 being the momentum associated with translation
symmetry along Y2) and are thus infinitely degenerate.
At a fixed value of k2, the spectrum of H2

eff therefore
consists of a collection of discretely spaced eigenvalues
v2
D [2B0(n+ 1/2)±B0] with n = 0, 1, 2, . . . , and corre-

sponding eigenstates with centering ∝ k2. This is equiv-
alent to a spectrum (at a fixed k2) consisting of eigenval-
ues 2v2

DB0n, with n = 0, 1, 2, . . . , where each eigenvalue
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other than the n = 0 eigenvalue is two-fold degenerate
(n = 0 having no degeneracy). Upon taking the square
root, the two-fold degenerate pairs split into distinct pos-
itive and negative eigenvalues, yielding for the spectrum
of Heff :

(E1)n = ±
√

2v2
DB0n with n ∈ {0, 1, 2, . . . }. (D12)

For the photonic crystal case, we can map the eigen-
value corrections (E1)n to mode frequencies ωn using:
(ω/c)2 = E = ED + κE1 + O(κ2), and ED = (ωD/c)

2.
This yields

ωn = ωD ±
c2vD√

2ωD

√
n |Beff(κ)|+O(κ2) (D13)

with n ∈ {0, 1, 2, . . . } and where |Beff(κ)| = B0 κ
2; see

also the main text.

3. Relation between modes at K and K′

For K? = K,K′, denote by HK?

eff the effective Hamilto-
nian (see (D6) for HK

eff) arising from the mode expansion
applied to the Dirac point at K?. Our analysis shows that
a deformation (D10) induces an effective vector potential,
AK

eff = (AK
1 , A

K
2 ), for which HK

eff has Landau levels E1

with corresponding modes (αK
2 , α

K
1 ) determined by:

vK
D

[ (
−i∂Y1

−AK
1

)
σ1 +

(
−i∂Y2

−AK
2

)
σ2

](
αK

2

αK
1

)
= E1

(
αK

2

αK
1

)
. (D14)

A Landau level obtained by solving (D14) seeds the ex-
pansion of a mode: ψK ≈ αK

1 ΦK
1 + αK

2 ΦK
2 + O(κ) with

eigenvalue E = ED +κE1 +O(κ2). This mode is formed
from the degenerate pair of states associated with the
the Dirac point (K, ED). In addition to this mode,
there is a corresponding mode associated with the Dirac
point (K′, ED), and this mode similarly has an expan-

sion: ψK′ ≈ αK′
1 ΦK′

1 + αK′
2 ΦK′

2 + O(κ). Note that the

modes ΦK
i are related to the modes ΦK′

i by complex con-

jugation: (ΦK′
1 ,ΦK′

2 ) = (ΦK
2 ,Φ

K
1 ). (The subscripts are

interchanged because the τ and τ̄ subspaces are inter-
changed upon complex conjugation. The index 1 is as-
sociated with τ and the index 2 with τ̄ .) The modes ψK

and ψK′
are in fact related by time-reversal symmetry

and hence we can get one from the other by via complex
conjugation. Taking the complex conjugate of ψK gives

ψK ≈ αK
1 ΦK

1 + αK
2 ΦK

2

= αK
1 ΦK′

2 + αK
2 ΦK′

1

= αK′
2 ΦK′

2 + αK′
1 ΦK′

1 . (D15)

Comparing the last two lines, we have that (αK′
1 , αK′

2 ) =

(αK
2 , α

K
1 ). Hence, to obtain the effective Hamiltonian

governing the modes (αK′
1 , αK′

2 ), we can simply take the
complex conjugate of (D14), yielding (after using σ2 =
−σ2)

vK
D

[
−
(
−i∂Y1

+AK
1

)
σ1 +

(
−i∂Y2

+AK
2

)
σ2

](
αK′

1

αK′
2

)
= E1

(
αK′

1

αK′
2

)
. (D16)

One can either leave this equation in the form shown in
(D16) (i.e., with an extra sign multiplying the σ1 term),
or one can further simplify the equation to a form anal-
ogous to (D14). In particular, multiplying both sides of
(D16) by σ1 allows us to rewrite the equation as an eigen-

value problem for σ1(αK′
1 , αK′

2 )T = (αK′
2 , αK′

1 )T , yielding
(after using σ1σ2 = −σ2σ1)

−vK
D

[ (
−i∂Y1 +AK

1

)
σ1 +

(
−i∂Y2 +AK

2

)
σ2

](
αK′

2

αK′
1

)
= E1

(
αK′

2

αK′
1

)
. (D17)

Using vK′
D = −vK

D , we then have

vK′
D

[ (
−i∂Y1

+AK
1

)
σ1 +

(
−i∂Y2

+AK
2

)
σ2

](
αK′

2

αK′
1

)
= E1

(
αK′

2

αK′
1

)
(D18)

which is in a form analogous to (D14). Thus, we have
the eigenvalue problem

HK′
eff

(
αK′

2

αK′
1

)
= E1

(
αK′

2

αK′
1

)
(D19)

where the effective Hamiltonian is given by

HK′
eff = vK′

D ( −i∇Y − AK′
eff ) · σ (D20)

and the effective vector potential AK′
eff ≡ (AK′

1 , AK′
2 ) is

given by AK′
eff = −AK

eff . Since the effective vector poten-
tial in the K′ valley is opposite in sign to that in the K
valley, the associated pseudomagnetic field likewise dif-
fers by a sign:

∇×AK′
eff = +B0ẑ = −∇×AK

eff .

Note that, for the Landau gauge used in (D10), the
Gaussian-decaying modes are centered at x̃K? ∼ B−1

0 k2.
Since the effective magnetic fields for the K and K′

modes are of opposite sign, we have

x̃K
′

= −x̃K.

4. Flattening weakly dispersive Landau levels using
a modified strain

The effective theory predicts perfectly flat Landau lev-
els. However, the Landau levels in Fig. 2 of the main
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text have dispersion arising from terms that are higher
order in κ. To mitigate this dispersion, we note that the
effective theory indicates that adding a quadratic strain-
induced potential will tend to give the Landau levels cur-
vature. Heuristically, this can be seen by recalling, for
the standard Landau gauge Hamiltonian for a particle in
a uniform magnetic field, that the eigenstate at a given
k2 in a given Landau level is localized in the x1 direc-
tion and centered on x̃, where x̃ ∝ k2 . Based on the
k2−dependent centering of these eigenstates, one would
expect that introducing an x1-dependent onsite effective
electric potential would add a k2-dependent shift to the
band frequencies since an eigenstate at k2 should only
be sensitive to the value of the potential over the finite
region within which the state is localized.

Can the introduction of such an additional strain can
be used to counter the curvature arising from higher
order terms? Answering this question requires going
beyond our effective equations. We therefore use full
numerical simulations to compute the effect of adding
the heuristically motivated strain and find that the un-
wanted dispersion can indeed be mitigated. As dis-
cussed in the main text, we modify the displacement
to be u(κx) = a[β(κx1)3, (κx1)2], yielding a pseudo-

magnetic field B(x) = −(4aκ2b?/vD)ẑ as well as a
quadratic potential Weff(x) = 3aβκ(ωD/c)

2(κx1)2. Tak-
ing κ = 0.0548a−1 and β = 0.0380 yields the band struc-
tures shown in Fig. 4 of the main text, where we see a
clear flattening of the Landau levels.

5. Proof of Theorem D.1 by simplification of (C15)

We next evaluate the terms in (C15), one at a time,
using Proposition C.2 and Proposition C.3.

Term 1 of (C15), l = 1:

−i
2∑
j=1

〈Φ1,AΦj〉 · ∇Yαj = −i 〈Φ1,AΦ2〉 · ∇Yα2

= vD (−i∂Y1
+ ∂Y2

) α2

(D21)

Term 1 of (C15), l = 2:

−i
2∑
j=1

〈Φ2,AΦj〉 · ∇Yαj = −i 〈Φ2,AΦ1〉 · ∇Yα1

= vD (−i∂Y1
− ∂Y2

) α1

(D22)

Term 2 of (C15), l = 1:

−2 〈Φ1,∇y · ξ U(Y) ∇yΦj〉

= 2
∑
m,n

Umn(Y) 〈 ∂ymΦ1 , ξ ∂ynΦj 〉 (D23)

= 2
∑
m,n

Umn(Y) A1j
mn (D24)

where we have used (C16) and the definition of Aljmn in
(C17). Therefore,

2
∑
j

〈Φ1,∇y · ξ U(Y) ∇yΦj〉 αj(Y)

= −2
∑
m,n

Umn(Y)
∑
j

A1j
mn αj(Y) (D25)

Consider now the sum over j:
∑
j A1j

mn αj(Y) =

A11
mnα1(Y) +A12

mnα2(Y). By Proposition C.3:

A11
mn =

(
a? σ0 + ã11 iσ2

)
mn

and

A12
mn = b? ( σ3 − i σ1 )mn .

Therefore,∑
j

A1j
mn αj(Y) =

(
a? σ0 + ã11 iσ2

)
mn

α1(Y)

+ b? ( σ3 − i σ1 )mn α2(Y)
(D26)

and finally we have:

Term 2 of (C15), l = 1:

2
∑
j

〈Φ1,∇y · ξ U(Y) ∇yΦj〉 αj(Y)

= −2
∑
m,n

Umn(Y)
∑
j

A1j
mn αj(Y)

= −2
∑
m,n

Umn
(
a? σ0 + ã11 iσ2

)
mn

α1

− 2 b?
∑
m,n

Umn ( σ3 − i σ1 )mn α2

= −2 a? tr(U) α1

− 2 b? ( tr(σ3U) − i tr(σ1U) ) α2, (D27)

where we have used: σ>2 = −σ2, U> = U and finally
tr(V >U) =

∑
m,n VmnUmn. Similarly, we have for

Term 2 of (C15), l = 2:

2
∑
j

〈Φ2,∇y · ξ U(Y) ∇yΦj〉 αj(Y)

= −2
∑
m,n

Umn(Y)
∑
j

A2j
mn αj(Y)

= −2 a? tr(U) α2

− 2 b? ( tr(σ3U) + i tr(σ1U) )α1. (D28)

We now complete the proof of Theorem D.1. Substitu-
tion of (D21) and (D27) into (C15) for l = 1, and (D22)
and (D28) into (C15) for l = 2 yields the system:

[vD(−i∂Y1
+ ∂Y2

)− 2b? (tr(σ3U)− itr(σ1U))]α2

− 2a?tr(U)α1 = E1α1[
vD(−i∂Y1

− ∂Y2
)− 2b? (tr(σ3U) + itr(σ1U))

]
α1

− 2a?tr(U)α2 = E1α2, (D29)
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where we recall from Proposition A.5 that vD = vD and
b? = b?. Using Pauli matrices, σi, the system (D29) can
be expressed as (D1).

Appendix E: Matrix elements via symmetry; proof
of Proposition C.3

Let x 7→ Rx denote a rotation on R2 by 2π/3

R =

(
− 1

2

√
3

2

−
√

3
2 − 1

2

)

and recall the rotation operator: R[f ](x) = f(R∗x).
Recall from Proposition A.3 that

R[Φj ](x) = τ jΦj(x), j = 1, 2, where τ = e2πi/3.

Proposition E.1 Let Aij (i, j = 1, 2) denote the matri-
ces given in (C17). Then,

1. For any i, j: Aij = τ j−i R>AijR

2. i = j: Ajj = R>AjjR

3. i 6= j: A12 = τ R>A12R, and A21 = τ R>A21R

Proof of Proposition E.1: Fix κ = (κ1, κ2) ∈ R2. Then,
with summation over repeated indices implied,

κ> Aij κ =
〈
∂yαΦi, ξ ∂yβΦj

〉
κακβ

=
〈
R ∂yαΦi, ξ R ∂yβΦj

〉
κακβ

=
〈
Rnα∂yn R[Φi], ξ Rqβ∂yq R[Φj ]

〉
κακβ

=
〈
Rnα∂yn τ

iΦi, ξ Rqβ∂yq τ
jΦj
〉
κακβ

= τ j−i
〈
Rnα∂yn Φi, ξ Rqβ∂yq Φj

〉
κακβ

= τ j−i
〈
∂yn Φi, ξ ∂yq Φj

〉
Rnακα Rqβκβ

= τ j−i
〈
∂yn Φi, ξ ∂yq Φj

〉
(Rκ)n (Rκ)q

= τ j−i (Rκ)> Aij(Rκ)

= τ j−i κ>
(
R>AijR

)
κ

Since κ is arbitrary, we conclude:

Aij = τ j−i R>AijR, i, j = 1, 2.

We have three cases:


i = j : Ajj = R>AjjR, j = 1, 2

(i, j) = (1, 2) : A12 = τ R>A12R

(i, j) = (2, 1) : A21 = τ R>A21R

(E1)

This completes the proof of Proposition E.1.

We now deduce Proposition C.3 using Proposition E.1.

Proof of Proposition C.3: The 2π/3 rotation matrix is
given by

R =

(
− 1

2

√
3

2

−
√

3
2 − 1

2

)
(E2)

Case 1, i=j: By (E1) we have(
− 1

2

√
3

2

−
√

3
2 − 1

2

)(
a b
c d

)
=

(
a b
c d

) (
− 1

2

√
3

2

−
√

3
2 − 1

2

)
,

where a, b, c and d are to be determined. Equating en-
tries, yields that c = −b and a = d. Hence,

Ajj = ajj I2×2 + ãjj
(

0 1
−1 0

)
, j = 1, 2.

We claim further that a11 = a22. Indeed, we have:

a11 =

∫
Ω

∂Φ1(x)

∂x1
ξ(x)

∂Φ1(x)

∂x1
dx

=

∫
Ω

∂Φ1(−y)

∂y1
ξ(−y)

∂Φ1(−y)

∂y1
dy

=

∫
Ω

∂Φ1(−y)

∂y1
ξ(−y)

∂Φ1(−y)

∂y1
dy

=

∫
Ω

∂Φ2(y)

∂y1
ξ(y)

∂Φ2(y)

∂y1
dy = a22.

We therefore set a? ≡ a11 = a22. Finally, taking the in-
ner product of the equation (−∇ · ξ∇ + V ) Φj = E ρ Φj
with Φj and using that 〈Φi,Φj〉ρ = δij gives:∫

Ω

ξ(y) |∇Φj(y)|2 dy +

∫
Ω

V (y) |Φj(y)|2 dy = ED

(E3)

with j = 1, 2. Hence,

a? =
1

2
ED −

1

2

∫
Ω

V (y) |Φj(y)|2 dy , j = 1, 2. (E4)

This proves (C19), (C20) and (C21), and in conclusion
we have:

Ajj = a? I2×2 + ãjj
(

0 1
−1 0

)
, j = 1, 2 ,

where ã22 = −ã11. This proves part (1) of Proposition
C.3.

Case 2, (i,j)=(1,2): By (E1) we have(
− 1

2

√
3

2

−
√

3
2 − 1

2

)(
a b
c d

)
= τ

(
a b
c d

) (
− 1

2

√
3

2

−
√

3
2 − 1

2

)
.

Equating entries, we obtain a system of four homo-
geneous linear equations, Mz = 0, for the unknowns
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z = (a, b, c, d)>. The matrix M has rank three and
its null space is spanned by the vector (1,−i,−i,−1)>.
Thus,

A12 = b?

(
1 −i
−i −1

)
,where b? = 〈∂y1Φ1, ξ ∂y1Φ2〉 .

Furthermore, since Aljαβ = Ajlβα, we find:

A21 = b?

(
1 i
i −1

)
.

This proves part (2) of Proposition C.3.

Appendix F: vD ≥ 0 and b? ≥ 0; Proof of Proposition
A.5

We begin by recalling the expressions for vD and b? in
(A13) and (A14):

vD = 〈Φ1,A1Φ2〉, b? = 〈∂x1
Φ1, ξ ∂x1

Φ2〉 .

We will consider two coordinate systems (with coordi-
nates denoted by x and x′) that differ by a rotation. We
define vD and b? as the quantities in the x coordinate
system and v′D and b′? as the quantities in the x′ coordi-
nate system. We will assume that v′D and b′? are complex
and then demonstrate that, by rotating the unprimed co-
ordinate system relative to the primed coordinate system
(as well as making an appropriate phase choice for the
eigenstates), vD and b? can be made to be real.

Introduce a rotation of coordinates from x = (x1, x2)
to x′ = (x′1, x

′
2) related by:

x′ =

(
x′1
x′2

)
=

(
cos θ − sin θ
sin θ cos θ

) (
x1

x2

)
= Rθ x.

We therefore have

∂

∂x1
=

∂x′1
∂x1

∂

∂x′1
+

∂x′2
∂x1

∂

∂x′2

= cos θ
∂

∂x′1
+ sin θ

∂

∂x′2
= ζ · ∇x′ , ζ = (cos θ, sin θ). (F1)

Now given any function f(x), we define

f ′(x′) = Rθ[f ](x′) = f (R∗θx
′) ,

and introduce the rotated Bloch eigenfunctions:

Φ′j(x
′) = Rθ[Φj ](x′) , j = 1, 2.

These satisfy the equations for the structure defined by
ξ′ = Rθ[ξ], ρ′ = Rθ[ρ], and V ′ = Rθ[V ]:

[−∇x′ · ξ′ ∇x′ + V ′] Φ′j = ED ρ′ Φ′j .

Using the notation,

A′m =
1

i
ξ′∂x′

m
+

1

i
∂x′

m
(ξ′ ·)

and the identities (equation (A11)): 〈Φ′1, A′1Φ′2〉 =
v′D, 〈Φ′1, A′2Φ′2〉 = iv′D, we have:

vD ≡ 〈Φ1, A1Φ2〉
= 〈Φ′1, ζ · A′Φ′2〉
= cos θ 〈Φ′1, A′1Φ′2〉 + sin θ 〈Φ′1, A′2Φ′2〉
= v′D eiθ. (F2)

We now turn to considering b? in a rotated coordinate
system. Recalling the notation:

Aljαβ =
〈
∂yαΦl, ξ ∂yβΦj

〉
, j, l, α, β = 1, 2 ,

we have

b? = 〈∂x1
Φ1, ξ ∂x1

Φ2〉
= 〈(ζ · ∇x′)Φ′1, ξ

′ (ζ · ∇x′)Φ′2〉
= cos2 θ

〈
∂x′

1
Φ′1, ξ

′ ∂x′
1
Φ′2
〉

+ sin2 θ
〈
∂x′

2
Φ′1, ξ

′ ∂x′
2
Φ′2
〉

+ sin θ cos θ

×
( 〈

∂x′
2
Φ′1, ξ

′ ∂x′
1
Φ′2
〉

+
〈
∂x′

1
Φ′1, ξ

′ ∂x′
2
Φ′2
〉 )

= cos2 θ (A′)12
11 + sin2 θ (A′)12

22

+ sin θ cos θ
(

(A′)12
21 + (A′)12

12

)
The previous expression may be simplified using Propo-
sition C.3, yielding

b? = (cos2 θ − sin2 θ) b′? − 2i sin θ cos θ b′? = e−2iθ b′?
(F3)

Explicitly, (F2) and (F3) state:

〈Φ1, A1Φ2〉 = eiθ 〈Φ′1, A′1Φ′2〉
〈∂x1

Φ1, ξ ∂x1
Φ2〉 = e−2iθ

〈
∂x′

1
Φ′1, ξ

′ ∂x′
1
Φ′2
〉
, (F4)

where θ is to be chosen. Here, Φ′1(x) ∈ L2
K,τ and Φ′2(x) =

Φ′1(−x) ∈ L2
K,τ are any choice of Bloch states in the

primed coordinate system.
We next exploit the phase degree of freedom in the

choice of these states. In particular, replace Φ′1 by
eiφΦ′1 ∈ L2

K,τ and hence Φ′2 by e−iφΦ′2 ∈ L2
K,τ , where

now both θ and φ are to be determined. Therefore, (F4)
becomes

vD ≡ 〈Φ1, A1Φ2〉
= ei(θ−2φ) 〈Φ′1, A′1Φ′2〉
= ei(θ−2φ) v′D

b? ≡ 〈∂x1
Φ1, ξ ∂x1

Φ2〉
= e−2i(θ+φ)

〈
∂x′

1
Φ′1, ξ

′ ∂x′
1
Φ′2
〉

= e−2i(θ+φ) b′? . (F5)
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Hence, if we choose

θ = −1

3
arg v′D +

1

3
arg b′?

φ =
1

3
arg v′D +

1

6
arg b′?

then we obtain vD ≥ 0 and b? ≥ 0. This completes the
proof of Proposition A.5.

We now confirm that the effective Hamiltonian trans-
forms as expected under a rotation of coordinates. Let
Heff and H′eff be the effective Hamiltonians written in the
x and x′ coordinate systems, respectively. We choose the
x coordinates so that vD and b? are real (as shown above,
this is always possible). As before, we take the two coor-
dinate systems to be related by x′ = Rθx with

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
(F6)

In the primed coordinate system, v′D and b′? are in general
complex. Let U and U ′ be the strain matrices computed
in the x and x′ coordinate systems, respectively, and de-
note p = −i∇x and p′ = −i∇x′ . From Eq. D29 (com-
bined with the convention for the eigenvalue problem in
Eq. D5), we have

H′eff =

(
0 v′D (p′1 − ip′2)

v′D (p′1 + ip′2) 0

)
− 2

(
0 b′?

(
tr(σ3U

′) + i tr(σ1U
′)
)

b′?
(
tr(σ3U

′)− i tr(σ1U
′)
)

0

)
− 2a′?tr(U

′σ0)

(
1 0
0 1

)
. (F7)

The effective Hamiltonian in the unprimed coordinates
is given by Eq. D5

Heff = vD (p−Aeff) · σ + Weff σ0 (F8)

with

Weff = −2a? tr (Uσ0)

Aeff =
2b?
vD

(
+tr (Uσ3)
−tr (Uσ1)

)
. (F9)

As discussed above, we have

v′D = vDe
−iθ b′? = b?e

2iθ (F10)

We now simplify each of the three terms in Eq. F7. Using
Eq. F10 gives for the first term:(

0 v′D (p′1 − ip′2)
v′D (p′1 + ip′2) 0

)
= vD

(
p′1(cos θ σ1 − sin θ σ2) + p′2(sin θ σ1 + cos θ σ2)

)
= vD p′ · σ′ (F11)

where in the last line we have defined rotated Pauli ma-
trices σ′j = VσjV∗ with V = eiθ(σ3/2). Equivalently, the
rotated Pauli matrices are given by:(

σ′1
σ′2

)
=

(
cos θ − sin θ
sin θ cos θ

)(
σ1

σ2

)
. (F12)

Using Eq. F10, we have for the second term of Eq. F7(
0 −2b′?

(
tr(σ3U

′) + i tr(σ1U
′)
)

−2b′?
(
tr(σ3U

′)− i tr(σ1U
′)
)

0

)
= −2b?

(
[ tr(σ3U

′) cos 2θ + tr(σ1U
′) sin 2θ ]σ1

+ [ tr(σ3U
′) sin 2θ − tr(σ1U

′) cos 2θ ]σ2

)
= −2b?

(
[ tr(σ3U

′) cos 3θ + tr(σ1U
′) sin 3θ ]σ′1

+ [ tr(σ3U
′) sin 3θ − tr(σ1U

′) cos 3θ ]σ′2

)
= −vDA′eff · σ′ (F13)

where we have defined

A′eff =
2b?
vD

(
cos 3θ − sin 3θ
sin 3θ cos 3θ

)(
+tr(σ3U

′)
−tr(σ1U

′)

)
. (F14)

To relate A′eff to Aeff , we note that U ′ = RθUR
T
θ . Hence,

Eq. F14 becomes

A′eff =
2b?
vD

(
cos 3θ − sin 3θ
sin 3θ cos 3θ

)(
+tr(RTθ σ3RθU)
−tr(RTθ σ1RθU)

)
=

2b?
vD

(
cos 3θ − sin 3θ
sin 3θ cos 3θ

)(
cos 2θ sin 2θ
− sin 2θ cos 2θ

)
×
(

+tr(σ3U)
−tr(σ1U)

)
=

2b?
vD

(
cos θ − sin θ
sin θ cos θ

)(
+tr(σ3U)
−tr(σ1U)

)
= RθAeff . (F15)

Note also that p′ = Rθp. Finally, from the expression
for a? in Theorem D.1, it is clear that a′? = a?. Hence,
for the third term in Eq. F7, we have

W ′eff ≡ −2a′?tr(U
′σ0) = −2a?tr(UR

T
θ σ0Rθ)

= Weff . (F16)

Putting all of this together, we have

Heff = vD (p −Aeff) · σ + Weff σ0

H′eff = vD (p′ −A′eff) · σ′ + W ′eff σ′0 (F17)

where

A′eff = RθAeff p′ = Rθp

W ′eff = Weff σ′j = VσjV∗

with V = eiθ(σ3/2).
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