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We use a gradient-based optimization scheme to find single-qubit rotations to be interwoven
between timesteps of a noisy logical two-qubit entangling gate in order to suppress the effects of
arbitrary logical and leakage noise in the two-qubit gate. We show how the sequence fidelity is
affected by imperfections in the single-qubit operations, as well as by various relative strengths of
the logical and leakage noise. Our approach is completely general and system-independent, allowing
for application to any two-qubit system regardless of the experimental implementation details.

I. INTRODUCTION

Reliable implementation of two-qubit entangling gates
is a key step towards creating a useful quantum com-
puter. In order for fault-tolerant quantum computing
to be possible, operations on qubits must be performed
with error rates less than the “error correction thresh-
old”, with the exact value of the threshold varying with
the qubit encoding scheme. One of the highest error cor-
rection thresholds is around 1%, offered by surface codes
[1]. However, it is still desirable to reduce errors as much
as possible, in order to reduce the surface code overhead.

The difficulty in physical implementation arises when
environmental effects are taken into consideration. In-
teractions between the system and environment can en-
tangle the two, causing a collapse of the wavefunction,
thus destroying the quantum properties of the system.
These are called incoherent errors, and cannot be re-
versed via unitary operations on the system. However,
system-environment interactions can also introduce ran-
dom perturbative effects within the system Hamiltonian,
causing the coherent evolution of the qubit to differ from
the unperturbed evolution. Such effects are known as
coherent errors, and it is possible to dynamically correct
these errors via unitary operations on the system [2, 3].
In this work, we focus on such reduction of coherent er-
rors.

For single qubits, coherent errors are often reduced
through a wide variety of composite pulse sequences,
which typically consist of piecewise constant values of
the system parameters chosen such that the errors in-
curred during each timestep cancel with those of the
other timesteps in the evolution, causing the final evolu-
tion to be error-free up to a given order in the perturba-
tion [4–6]. For two-qubit entangling gates, that approach
is complicated by the larger dimensionality of the Hilbert
space. However, the potential benefit is even greater than
in the single-qubit case because the errors are generally
larger. That is due to the longer evolution times required
for two-qubit entangling gates since the qubit-qubit in-
teraction term in the system Hamiltonian is often weak
compared to the single-qubit terms.

It is known that high-fidelity single-qubit operations
can be used as a resource in two-qubit pulse sequences
to suppress the effects of arbitrary coherent noise within
the two-qubit logical subspace. These two-qubit pulse

sequences are typically found analytically and are re-
stricted to either small numbers of single-qubit rotations,
or allow for larger numbers of single-qubit operations at
the cost of restricting them to simple π rotations for sim-
plicity [7–12]. However, this ease of experimental imple-
mentation typically comes at the cost of reduced noise
suppression.

This contrasts with pulse shaping through optimal con-
trol methods, where parameters in the system Hamilto-
nian are varied in time according to numerically gener-
ated waveforms, so that a desired outcome is achieved,
e.g., a noise-free system evolution. Krotov’s method and
gradient-ascent-pulse-engineering (GRAPE) are common
gradient-based optimal control methods [13–18], while
CRAB and DCRAB [19–21] are common gradient-free
methods. The efficiency of gradient-based and gradient-
free methods depends on the number of optimization
parameters, as well as the behavior of the optimization
functional. Thus, different methods are chosen based on
the specific optimization problem.

Such methods have proven to be successful in a range
of more general quantum control problems [22–27], as
well as for optimal control of two-qubit gates [28–35]. We
have also applied similar techniques previously, where we
showed that a GRAPE method can be used to find op-
timal single-qubit rotations to suppress arbitrary logical
noise in a two-qubit gate [36]. It was shown via sim-
ulations that the numerically optimized sequences were
generally more effective at suppressing arbitrary logical
noise than the analytically derived sequences discussed
previously, at the cost of being somewhat more difficult
to implement experimentally since the single-qubit rota-
tions were not restricted to simple rational multiples of
π.

While our previous method focused on suppressing log-
ical noise only, we are also interested in the possibility of
suppressing leakage noise, as may be the case in a system
like a superconducting qubit with multiple energy levels
[37–39]. In this paper, we present a variant of the nu-
merical optimization scheme developed in Ref. [36] that
now addresses both leakage and logical errors simulta-
neously. We optimize single-qubit rotations inserted be-
tween applications of a noisy two-qubit entangling gate
such that the final sequence performs a logical entan-
gling operation while suppressing all coherent noise. De-
spite the fact that the inserted rotations are restricted
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to act within the logical subspace whereas the error acts
in a much larger space, our method is surprisingly ef-
fective. We also show that it is relatively unaffected by
imperfections in the interwoven single-qubit operations
and we demonstrate how the performance changes with
varying logical and leakage noise strengths. The mod-
ular, system-independent nature of our approach facil-
itates application to any two-qubit setup, regardless of
the details of the Hamiltonian.

II. MODEL AND OPTIMIZATION SCHEME

We model each qubit as a two level system, coupled to
a third leakage level of higher energy. This could be, for
example, an excited state of a weakly anharmonic super-
conducting qubit or an excited valley state of a silicon
spin qubit. Although more than one leakage level may
exist, the population of such levels becomes increasingly
unlikely as the energy of the leakage level increases. We
therefore consider only a single leakage level. In order
for the numerical optimization scheme to be effective for
a wide range of noise values, we sample M total noise
realizations and require that the optimized single-qubit
operations perform well over the average of these realiza-
tions [31].

Within a noise realization m, we assume that there
exists an evolution operator U (m), such that the system
state |ψ(t)〉 evolves according to |ψ(T )〉 = U (m) |ψ(0)〉,
where T is the gate duration. The single-qubit evolu-
tion operators reside in SU(3), which is generated by the
Gell-Mann matrices, λi, with i ∈ [0, 8]. The forms of the
matrices are shown in Appendix A. We denote the upper
2 × 2 block of U (m) as the logical subspace. The logi-
cal subset of operations is generated by λ1, λ2, and λ3,
since they are respectively equal to the Pauli matrices
σX , σY , and σZ within the logical subspace and are zero
outside of it. Leakage effects are generated by λ4 through
λ8, since they contain terms which couple the logical sub-
space to the leakage subspace.

Following Ref. [36], we choose a time evolution opera-
tor composed of a series of N time steps with the form

U (m) =

1∏
n=N

exp

[
− iπ
N
λ3,3

]
exp

[
− i

N
∆(m)

]
Rn, (1)

where λi,j = λi ⊗ λj and the Rn’s are arbitrary single-
qubit rotations. Within each step of the evolution,
exp [−iπλ3,3/N ] is equal to the Nth root of a 2π con-
ditional phase gate within the logical subspace and an
identity operation outside of it. We do not make any as-
sumptions as to how this effective logical Ising-like opera-
tion is implemented. While a strictly logical σZZ Hamil-
tonian is one possibility, such an operation can also be
formed by any strictly logical entangling operation plus
the appropriate logical single-qubit operations. The ex-
act Hamiltonian, while relevant in an experimental im-
plementation, is not directly relevant for the theory pre-
sented here.

Imperfections in the evolution operator are introduced
through the term exp

[
−i∆(m)/N

]
, where

∆(m) =
∑
ij

δ
(m)
i,j λi,j (2)

and the δ
(m)
i,j are randomly chosen (generally small rela-

tive to 2π) numbers. We refer to δ
(m)
i,j as the noise coeffi-

cients in the evolution operator since they serve as small
perturbations multiplying all possible evolution genera-
tors λi,j . The sum over i and j ensures that both logi-
cal and leakage noise coefficients are considered. Logical
noise coefficients are those with i, j ∈ {0, 1, 2, 3} (not
including the identity-multiplying coefficient i = j = 0)
which serve as perturbations within the two-qubit logical
subspace. Leakage noise coefficients are those with the
remaining i, j which serve to couple the logical subspace
to terms outside of the logical subspace.

We have assumed that the strength of the noise
coefficients scales with the phase of the entangling
gate. This is clearly true in the most straightfor-
ward case where the entanglement is generated by a
Hamiltonian H = λ3,3 + δHdrift. Then the leading
order effect of the random drift term on the evolu-
tion is exp (−iπλ3,3/N) exp (−iπδHdrift/N). Similarly,
if the entanglement is generated by a Hamiltonian
like H = λ1,1 + λ2,2 + δHdrift, then the desired
building block can be obtained via the sequence
σHH exp (−iπH/2N)σXI exp (−iπH/2N)σXIσHH =
exp (−iπλ3,3/N) exp (−iO (δ/N)), where σHH is short-
hand for application of a local Hadamard on each qubit
and σXI is a local X gate on one qubit. In this example,

if one works out the δ
(m)
i,j corresponding to Eq. (2) one

finds they have additional sinusoidal dependences on
N , but that is irrelevant since we average over noise
realizations. The key point is that there is again an
overall scale factor of δ/N . More generally though,
when the entangling gate is implemented via some other
time-dependent entangling Hamiltonian, possibly with
local rotations interspersed, the noise coefficients do not
necessarily scale as 1/N in this way. Nonetheless, we
will proceed with this heuristic assumption.

Note that the model for the noise does not depend on n
and is therefore the same throughout multiple timesteps
in the evolution operator U (m). This corresponds to noise
which would be generated through a static physical pro-
cess, i.e., one which is not varying in time. Besides this
static constraint, we do not reference any specific phys-
ical noise process in our work. Any common physical

noise process would likely have most of the δ
(m)
i,j equal to

0, and only a few would be nonzero. However, we take

all δ
(m)
i,j to be nonzero in order to show that our method

is effective for the worst case scenario when all of the
evolution generators are affected by noise, even though
such a case is unlikely for a real system.

The form for the evolution operator essentially con-
sists of splitting a noisy 2π conditional phase gate into N
timesteps and inserting arbitrary single-qubit rotations in
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between them. We denote such a sequence of operations
as a length-N sequence. The single-qubit rotations steer
the evolution dynamics, so that the final interaction be-
tween qubits in the logical subspace is not limited to the
σZZ interaction that would be generated in the absence
of the single-qubit rotations. We choose a Pauli vector
parametrization for the single-qubit operations,

Rn = exp [i (α1,nλ1 + β1.nλ2 + γ1,nλ3)]

⊗ exp [i (α2,nλ1 + β2.nλ2 + γ2,nλ3)] , (3)

where α1,n . . . γ2,n are the free parameters for optimiza-
tion. While the exact details of the implementation of
the single-qubit operations are not directly relevant in
our work, we consider the case when the error (both co-
herent and incoherent) from the single-qubit rotations is
negligible compared to the error from the entangling seg-
ments. This can be ensured by performing the rotations
much faster than the entangling gates or via a dynami-
cally corrected pulse to reduce their error.

The optimal free parameters are the ones that mini-
mize the optimization function we choose. There are two
requirements for our functional: reduce the effects of the
noise coefficients in the final operation (both in the logical
and leakage subspace) and generate a perfect entangler
within the logical subspace. A perfect entangler is a gate
which can produce a maximally entangled state from an
unentangled one [40]. The suppression of the effects of
the noise terms can be measured by first comparing the
noisy gate U (m) to the gate in the absence of noise. We
denote this quantity as the gate fidelity and it is given
by

F
(
U (m)

)
=

1

81

∣∣∣tr(O†U (m)
)∣∣∣2 , (4)

where

O =

N∏
n=1

exp

[
− iπ
N
λ3,3

]
Rn. (5)

The gate error due to noise is then defined as

ε
(
U (m)

)
= 1− F

(
U (m)

)
. (6)

Note that the target gate includes the single-qubit rota-
tions and is therefore changing over the course of the op-
timization. Thus, the final operation is not known ahead
of time and is arbitrary. However, the final single-qubit
operations Rn will be known, and thus O will be known
at the end of the optimization. Thus, optimization of the
gate error due to noise with respect to the free parame-
ters will produce a known final operation which is robust
against noise.

Although this would produce a dynamically corrected
operation, it is unlikely to be a perfect entangler within
the logical subspace, since the single-qubit rotations will
affect the entanglement dynamics. Since U (m) is in
SU(9), we quantify the qubit-qubit entanglement it pro-
duces by first projecting onto the SU(4) logical subspace

in order to obtain a nonunitary effective logical evolution,

U
(m)
proj, then examining the Makhlin invariants of the pro-

jected operation, g1

(
U

(m)
proj

)
, g2

(
U

(m)
proj

)
, and g3

(
U

(m)
proj

)
[41]. Although this definition is strictly valid only when
the total leakage vanishes, since the leakage is being mini-
mized via Eqs. (4) and (5), it is an effective way to quan-
tify entangling power within the cost function for the
purposes of optimization. Specifically, the distance be-
tween a logical two-qubit operation and the nearest per-
fect entangler can be expressed according to the Makhlin
invariants as [42]

d
(
U

(m)
proj

)
= g3

√
g21 + g22 − g1. (7)

This distance measure can take on negative values for
certain operations, which can be problematic for the op-
timization routine [36]. To check when these problematic
operations occur, we calculate the quantity

s
(
U

(m)
proj

)
= π − cos−1(z1)− cos−1(z3) (8)

from the ordered roots (z1, z2, z3) of the equation [43]

z3 − g3z2 +

(
4
√
g21 + g22 − 1

)
z + (g3 − 4g1) = 0, (9)

and note that the actual distance metric that should be
minimized in order to realize a logical perfect entangler
is

D
(
U

(m)
proj

)
=


d d > 0 and s > 0

−d d < 0 and s < 0

0 otherwise.

(10)

This is a true metric, in the sense that it is positive for
non-perfect entanglers and equal to zero for perfect en-
tanglers.

The total functional for optimization is the sum of the
gate error due to noise and the distance to the nearest
perfect entangler averaged over all noise realizations,

J =
1

M

M∑
m=1

ε
(
U (m)

)
+D

(
U

(m)
proj

)
. (11)

Minimization of the functional serves to produce a per-
fect entangler within the logical subspace that is robust
against logical and leakage noise.

We use the L-BFGS-B gradient-based minimization al-
gorithm [44], which is implemented within the SciPy op-
timization package [45]. We choose a gradient-based min-
imization algorithm, since we have found that it is more
efficient than gradient-free algorithms for the numbers of
optimization parameters we consider [46]. The L-BFGS-
B algorithm also offers an increase in convergence speed
through the estimation of the Hessian of the functional.
SciPy’s implementation of the algorithm also allows the
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gradient of the functional to be estimated numerically, so
we do not need to calculate the analytic gradient of J .

Since the L-BFGS-B algorithm is a local search
method, the convergence of the routine is highly depen-
dent on the initial “guess” parameters we choose at the
start of the minimization. In order to choose an effective
initial guess, if the greatest divisor of N is d, we repeat
the solution for the length d sequence N/d times to use
as the guess for the length N sequence. This ensures that
longer-length sequences will be constructed from shorter-
length sequences which have already been optimized ac-
cording to our criteria. For prime length sequences, we
set the guess for the free parameters to be all zeroes, so
that the single-qubit operations are initialized as identity
operations.

III. RESULTS

When evaluating the success of the optimization rou-
tine, we separately track our two criteria: suppressing
the effects of noise on the final operation and generat-
ing a logical perfect entangler. In order to determine the
noise present in the final operations, we calculate the final
gate error due to noise via Eq. (6). In order to determine
the entanglement dynamics of the final operations, we
consider the entanglement fidelity of an SU(4) operation,
U , which is given by

FPE (U) =
1

16

∣∣tr (V †U)∣∣2 , (12)

where V is the closest perfect entangler to U . Eq. 12
thus serves as a measure of overlap between U and the
nearest perfect entangler, which is an effective measure of
the entanglement capabilities of U . Since U is in SU(4),
it can be written in terms of a Cartan decomposition as,

U = k1Ak2, (13)

where k1, and k2 are purely local operations and A =
exp [−i/2 (c1σXX + c2σY Y + c3σZZ)] is a purely non-
local operation in SU(4) \ SU(2) ⊗ SU(2) [47, 48].
c1, c2, and c3 are known as the Weyl chamber coordi-
nates of U [43].

Ref. 42 shows that this fidelity can be simplified to

FPE(U) =


cos4

(
c1+c2−π

2

4

)
c1 + c2 ≤ π

2

cos4
(
c2+c3−π

2

4

)
c2 + c3 ≥ π

2

cos4
(
c1−c2−π

2

4

)
c1 − c2 ≥ π

2

1 otherwise.

(14)

Note that Eqs. (12) and (14) are squared, unlike in Ref.
42. This is done to be consistent with our definition of
gate fidelity, Eq. (4), which is also squared.

The error associated with the distance to the nearest
perfect entangler, averaged over noise realizations, is then

εPE =
1

M

M∑
m=1

1− FPE

(
U

(m)
proj

)
, (15)

FIG. 1. Gate error due to noise, Eq. (6), in relation to se-
quence length for a logical σZZ interaction, assuming access
to perfect single-qubit rotations.

where U
(m)
proj is the projection of our final optimized SU(9)

operation onto the logical subspace. The projection is
necessary since Eq. (14) requires a logical 4 × 4 opera-
tion. Since this quantity is between 0 and 1, it is a more
direct measure of the final entanglement capabilities of
the operations, compared to the metric D that was used
in the optimization. Note that this entanglement error
is completely independent from the earlier defined gate
error due to noise ε(U (m)). The entanglement error is
meant to quantify the distance between a gate and a
perfect entangler, while ε(U (m)) quantifies the effects of
noise on the gate.

The noise coefficients δ
(m)
i,j are drawn randomly from

a normal distribution with a standard deviation of
σnonlocal = 0.065. This value is chosen so that when
no rotations are inserted, the gate error due to noise is
around 10%, which is a realistic situation [49]. We find
that M = 100 is enough to ensure that our results are
robust against a general noise realization, i.e., the op-
timized solutions obtained by running the routine over
different sets of 100 noise realizations do not change sig-
nificantly.

The results of the optimization are shown in Fig. 1.
While there are two separate quantities that track the
optimization performance, Eqs. (15) and (6), Fig. 1 shows
only the gate error due to noise, ε, and not the perfect
entangler error εPE. This is due to the fact that εPE is
equal to 0 for all sequences with N > 2 and thus does
not need to be shown. As seen in the plot, the gate error
due to noise initially decreases rapidly with increasing
N , but the gains diminish as the sequence grows longer.
We do not know what causes this saturation at large N ,
but it is useful that order-of-magnitude improvements in
the gate error due to noise can be obtained already with
N ∼ 10. A supplementary data file is available which
contains the solutions for all sequence lengths for this
case and all further cases we consider [50].

We also consider the effects of imperfections in the
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FIG. 2. Gate error due to noise, Eq. (6), in relation to se-
quence length for a logical σZZ interaction, for the case of
noisy single-qubit rotations

local operations on the performance of the optimiza-
tion routine. Like the two-qubit operations, we assume
that the local operations have both logical and leakage
noise. Noise within the logical subspace is modeled by
introducing perturbations into the control parameters
ηi ∈ {α1,i, . . . , γ2,i} according to

ηi → η′i = ηi(1 + δη), (16)

where δη is a noise coefficient drawn randomly from a
normal distribution with a standard deviation of σlocal.

The leakage noise is introduced by multiplying the lo-
cal operations Rn by the factor

8∏
k=4

exp
(
i
√
α2
1,n + β2

1,n + γ21,nδkλk

)
⊗ exp

(
i
√
α2
2,n + β2

2,n + γ22,nδ
′
kλk

)
, (17)

where the δk and δ′k are noise coefficients drawn randomly
from a normal distribution, also taken to have a standard
deviation of σlocal for simplicity. The choice for the form
of the leakage noise ensures that the noise introduced is
proportional to the magnitude of the logical rotations be-
ing performed. This is a realistic situation, since larger
rotations generally correspond to longer gate times and
thus introduce more noise. The standard deviation for
the distribution of the local noise coefficients is taken to
be σlocal = 0.002, so that the local rotations have a fi-
delity of approximately 99.9% when calculated according
to

FR =
1

81

∣∣tr (R† (α′1, . . . , γ
′
2)R (α1, . . . , γ2)

)∣∣2 , (18)

and averaged over 1000 sets of error coefficients and 1000
sets of angles drawn randomly from a uniform distribu-
tion ranging from −2π to 2π.

The results of this optimization are shown in Fig. 2.
We again only show the gate error due to noise, ε, and

FIG. 3. Gate error due to noise for the N = 16 solution
obtained in the absence of local noise, in relation to varying
standard deviations for the logical and leakage noise. The
solution obtained was optimized at σlogical = σleakage = 0.065
(marked on plot).

not the perfect entangler error, εPE, since all optimized
results with N > 2 have εPE = 0. The scaling in this case
is similar although slightly worse than the noise-free local
rotation case, achieving a maximum gate fidelity of 98.8%
compared to 99.0%. Thus, imperfections in the local op-
erations have only marginal effects at the small sequence
lengths we consider. As the sequence length increases,
previous work has shown that the effects of single-qubit
noise can accumulate to the point where gate errors due
to noise begin to increase with increasing N [36]. Fur-
thermore, the solutions obtained in the presence of local
noise will perform just as well if the noise is nonlocal only,
whereas solutions obtained in the absence of local noise
will not significantly decrease the gate error if local noise
is introduced.

While the optimization producing Fig. 1 was per-
formed assuming equal strengths for the logical and leak-
age noise (i.e., that the δi,js of Eq. (2) are all drawn from
the same distribution), we wish to see how the solutions
hold as we separately vary these noise strengths. Figure
3 shows the results of the N = 16 solution obtained in
the absence of local noise, in relation to varying stan-
dard deviations for the logical and leakage noise. The
solution is taken from Fig. 1 case, which was optimized
with σlogical = σleakage = 0.065. From Fig. 3, we see that
the optimized solution is more sensitive to leakage noise
than logical noise. This is reasonable, since the terms in
Eq. (2) which generate logical noise have i, j ∈ {0, 1, 2, 3}
(not including the identity term, i = j = 0), while the
rest of the terms generate leakage noise. This gives 15
logical noise generators and 65 leakage noise generators,
making the overall sequence more susceptible to leakage
noise.

So far we have only considered a two-qubit λ3,3 inter-
action in Eq. (1), i.e, a σZZ interaction in the logical
subspace. However, the performance of the optimization
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FIG. 4. Gate error due to noise, Eq. (6), in relation to se-
quence length for a logical σXX + σY Y interaction, for the
case of noisy single-qubit rotations with error-free logical σZ

rotations

routine is not limited strictly to this form for the in-
teraction. We can also consider a logical σXX + σY Y
interaction, which is relevant for many superconduct-
ing qubit setups [51]. This is reflected by changing
λ3,3 → λ1,1 + λ2,2 in Eq. (1). In these types of sys-
tems, one can also typically perform “virtual Z gates,”
in which local logical σZ rotations can be performed in-
stantaneously in software by changing the reference phase
of the microwave pulses that drive single-qubit rotations
[52]. Allowing these noise-free logical σZ rotations in
our optimization corresponds to setting δγ1 = δγ2 = 0.
(We have already observed that the optimization is not
strongly affected by small local noise values, so account-
ing for virtual gating actually doesn’t make a big dif-
ference, but we do so just to show that it is not diffi-
cult to incorporate such considerations.) We again take
σnonlocal = 0.065 and σlocal = 0.002. The results of this
optimization are shown in Fig. 4. The performance of the
optimization routine is similar to the logical σZZ inter-
action case, achieving a maximum gate fidelity of 98.6%.
As with the previous cases, all sequences with N > 2
have εPE = 0. Thus, the optimization routine is not
significantly affected by changing the logical two-qubit
interaction from σZZ to σXX + σY Y .

IV. CONCLUSION

We have shown that two-qubit logical entangling gates
with fidelities around 90% can be used in conjunction

with logical single-qubit operations to construct two-
qubit entangling gates with errors of around 1%. The
logical single-qubit operations are interwoven between
timesteps of the entangling operation and effectively sup-
press the effects of both arbitrary logical and leakage
noise present in the entangling gates.

We have shown that our numerical optimization is ef-
fective even when imperfections in the single-qubit oper-
ations are considered. In addition, we have shown that
our method is effective both for a logical two-qubit σZZ
interaction and a σXX + σY Y interaction. For the σZZ
interaction case, we have shown how the optimized solu-
tions depend individually on the strengths of the logical
and leakage noise present. The modular nature of this
approach allows for application to any two-qubit system,
regardless of the Hamiltonian.
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Appendix A: Gell-Mann Matrices

For completeness, the Gell-Mann matrices are pre-
sented here. They are given by

λ0 =

1 0 0
0 1 0
0 0 1

 , λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 ,

λ3 =

1 0 0
0 −1 0
0 0 0

 , λ4 =

0 0 1
0 0 0
1 0 0

 , λ5 =

0 0 −i
0 0 0
i 0 0

 ,

λ6 =

0 0 0
0 0 1
0 1 0

 , λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

1 0 0
0 1 0
0 0 −2

 .
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