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Arrays of neutral-atom qubits in optical tweezers are a promising platform for quantum com-
putation. Despite experimental progress, a major roadblock for realizing neutral atom quantum
computation is the qubit initialization. Here we propose that supersymmetry—a theoretical frame-
work developed in particle physics—can be used for ultra-high fidelity initialization of neutral-atom
qubits. We show that a single atom can be deterministically prepared in the vibrational ground
state of an optical tweezer by adiabatically extracting all excited atoms to a supersymmetric aux-
iliary tweezer. The scheme works for both bosonic and fermionic atom qubits trapped in realistic
Gaussian optical tweezers and may pave the way for realizing large scale quantum computation,
simulation and information processing with neutral atoms.

INTRODUCTION

Neutral atoms trapped in optical tweezer arrays have
emerged as a promising candidate for quantum compu-
tation and simulation [1–5] due to their attractive fea-
tures such as identical qubits, large scalability through
atom-by-atom assemblers [6–12], and high precision con-
trol and measurement. For neutral-atom qubits, high-
fidelity single qubit gates have been realized using mi-
crowave or two-photon Raman transitions [13–19]. Two-
qubit gates have been realized using short-range collisions
or long-range Rydberg interactions [20–28], with signifi-
cantly improved gate fidelity in recent years.

Significant experimental progress has been made on
high-fidelity neutral atom qubit initialization that re-
quires deterministic preparation of single atom on the
vibrational ground state of an optical tweezer, but major
obstacles still exist. For bosonic atoms, interaction block-
ade and single-atom rapid imaging allow the determinis-
tic preparation of a single atom in an optical tweezer,
and defect-free atom arrays with up to tens of single
atoms have been demonstrated by rearranging the occu-
pied tweezers [7–11]. However, atoms in the tweezers are
subject to imaging heating and the experimental ground-
state cooling is far from perfect due to photon recoil in
sideband cooling [29–35]. For fermionic atoms, high-
fidelity preparation of a few atoms is possible through
the method of trap deformation [36–39]. However, to ob-
tain a single fermion ground state, the trap need be tilted
and ramped down to an extremely low depth to spill the
excess atoms, making the process very sensitive to exter-
nal potential noises and requiring a long trap-deforming
time to avoid heating. For both bosons and fermions, the
fidelity to prepare a single atom in the ground state of a
tweezer is ∼ 90% [29–32, 37] in realistic experiments.

Supersymmetry was first introduced within the con-
text of particle physics and became one possible solution
to many important problems in high-energy physics [40].

Though supersymmetry remains to be observed in parti-
cle physics, it has found applications in areas including
condensed matter physics, cold atoms and optics [41–47].

In this Letter, we propose a supersymmetry-based
scheme to achieve ultra-high fidelity single atom ground
state preparation in an optical tweezer through adia-
batically extracting excited atoms to its supersymmet-
ric partner, an auxiliary tweezer. Specifically, the eigen-
states of two tweezers (except the main tweezer ground
state) are pairwise related to one another, yielding su-
persymmetry (either exact or approximate). For bosons,
we can prepare a sideband-cooled single atom [29–35]
and transfer its excited components to the supersym-
metric auxiliary trap, followed by postselecting the mea-
surement result with an empty auxiliary tweezer (i.e.,
the single atom stays on the ground state of the origi-
nal tweezer). For fermions, we start from a few atoms
[37] occupying the low-lying states and transfer all ex-
cited atoms to the supersymmetric auxiliary tweezer.
We consider realistic Gaussian optical tweezers and show
that ultra-high fidelity ground state preparation can be
achieved in a short time interval for both bosons and
fermions. In such qubit initialization process, super-
symmetry plays an essential role for simultaneously ex-
tracting all excited components or atoms from the main
tweezer to the auxiliary tweezer.

SUPERSYMMETRY

In quantum mechanics, supersymmetry theory involves
a pair of partner Hamiltonians such that for every eigen-
state |ϕ1,n〉 (except the n = 0 ground state) of one Hamil-
tonian H1, its partner Hamiltonian H2 has a correspond-
ing eigenstate |ϕ2,n〉 with the same energy [41]. This can
be established by factorizing the Hamiltonian in terms of
two operators A and A†

H1 = A†A,H2 = AA†, (1)
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FIG. 1: Schematic illustration of a trap potential and its su-
persymmetric partner. Except the ground state, all eigenval-
ues of the trap are exactly matched to those of its superpart-
ner. The corresponding eigenstates are related through the
action of A and A†.

which are isospectral with eigenstates (non-normalized)
pairwise related to one another through |ϕ2,n〉 = A|ϕ1,n〉
and |ϕ1,n〉 = A†|ϕ2,n〉. If the ground state of H1 is an-
nihilated by A, i.e., A|ϕ1,0〉 = 0, then it does not have
a corresponding state in H2, leading to exact supersym-
metry between the two Hamiltonians, as schematically
illustrated in Fig. 1.

For the nonrelativistic Schrödinger problems, one can
always identify two supersymmetric potentials, V1(x) and
the superpartner V2(x), that are entirely isospectral ex-
cept for the ground state of V1(x). Here we are inter-
ested in neutral atoms trapped in optical tweezers, and
only low energy bound states are relevant. We consider a
deep optical tweezer with Nb bound states that are filled
with Na non-interacting neutral atoms (Na � Nb). Only
the first N bound states (with N � Nb) are relevant if
the system is pre-cooled to a low temperature. Here we
still call V2(x) the superpartner tweezer of V1(x) if the
first N bound-state energies of V1(x) (except the ground
state) are exactly matched by the first N−1 bound-state
energies of V2(x).

ADIABATIC EXTRACTION

Although our scheme can be applied to any dimen-
sion, we will first limit our analysis to one spatial di-
mension to simplify the calculation. We assume sig-
nificantly strong trapping along transverse directions,
where only the ground transverse state is occupied.
We consider a main optical tweezer V1(x) with non-
interacting atoms populating only the first N bound
states (i.e., the populations on higher energy states are
negligible), and introduce an auxiliary empty tweezer
V2(x) that is the superpartner of V1(x). Within the
subspace spanned by the first N bound states, the
Hamiltonians read H1 =

∑N
n=0E1,n|ϕ1,n〉〈ϕ1,n|, H2 =∑N

n=1E2,n|ϕ2,n〉〈ϕ2,n| with E1,n = E2,n for n ≥ 1.
The adiabatic atom extraction is performed as follows:

(i) The auxiliary tweezer V2(x) is deformed such that
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FIG. 2: Schematic illustration of adiabatic extraction of all
excited atoms (or components) in the optical tweezer using
the superpartner as an auxiliary tweezer. J and ∆ are the
tunneling amplitude and detuning between two tweezers.

its eigenenergies are increased by ∆. (ii) V2(x) is trans-
ported toward the main tweezer V1(x) adiabatically, and
the bound state |ϕ1,n〉 is coupled with its counterpart
|ϕ2,n〉 for n ≥ 1. (iii) V2(x) is adiabatically deformed to
decrease its eigenenergies by −2∆ and then transported
away from the main tweezer V1(x). (iv) The original
empty V2(x) is restored for next extraction. After such
an adiabatic process, all atoms (or atom components) in
the excited states of the main tweezer are transported
to the auxiliary tweezer, while atom (component) in the
ground state |ϕ1,0〉 is unaffected, as illustrated in Fig. 2.
As a result, the remaining atom (component) in the main
tweezer is prepared in the vibrational ground state. Here
the pairwise energy levels due to supersymmetry play a
central role for the atom extraction. Steps (i) and (iv)
can be done very fast, we will focus on steps (ii) and (iii)
in the following.

The time-dependent effective Hamiltonian can be writ-
ten as Htot(t) = H1+H2+Hint(t) (see Appendix A) with

Hint(t) =

N∑
n=1

∆n

2
|ϕ2,n〉〈ϕ2,n|+ Jn(t)|ϕ1,n〉〈ϕ2,n|+ h.c.,

(2)
where we have neglected the far-off-resonance couplings
which do not affect the adiabatic extraction. In fact, the
adiabatic process is robust against perturbations, and the
deformation and transport of the auxiliary tweezer are
very flexible. The only requirement is that |∆n|, |Jn|
are small compared to the level splitting |E1,n −E1,n±1|
during the adiabatic process, such that all energy levels
are gapped (see Appendix B). Furthermore, even when
V2(x) is not initialized as the exact superpartner of V1(x)
with E1,n 6= E2,n, we can still extract all excited atoms if
we have approximate supersymmetry (i.e., the symmetry
breaking is weak with |E1,n − E2,n| � |E1,n − E1,n±1|)
(see Appendix C). The extraction would fail if the super-
symmetry is strongly broken.
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FIG. 3: (a) Gaussian optical tweezer and its superpartner
with additional transverse trap (TT). (b) Trap depth and
center of the auxiliary (superpartner) tweezer as functions of
time during the adiabatic extraction. The inset shows the adi-
abatic path. (c) Total eigenspectrum of the system along the
path in (b). Colors correspond to the population probability
in the two tweezers, with pink (light gray) and black rep-
resenting full population in the main and auxiliary tweezer,
respectively. (d) The fidelity Fn as a function of adiabatic
duration length τ .

PHYSICAL REALIZATION

Although our proposal does not rely on the specific
shape of the tweezer, here we consider a realistic Gaus-
sian trap function V1(x) = α1e

−2x2/w2
0 (see Fig. 3a),

where w0 is the width and α1 is the trap depth. As
an example, we choose a typical width w0 = 1 µm [7]
and the trapping wavelength λ = 810nm [7], and use the

recoil momentum kR = 2π
λ and energy ER =

~2k2R
2m as

the units (with m the atom mass). For a deep Gaussian
trap, the low energy dynamics is approximately charac-
terized by a harmonic oscillator with equal energy split-
ting. The superpartner of a harmonic trap can be easily
obtained by a constant shift of the trapping potential
that equals to the trapping frequency. Therefore, slight
change in Gaussian trap depth leads to an approximate
superpartner trap V2(x, t) = [α2 + δα(t)]e−2[x−xc(t)]2/w2

0 .
With proper choice of α1 and α2 (e.g., α1 = −12ER and
α2 = −10.76ER), the energy levels (we consider N = 5
here) of two optical tweezers are paired except for the
ground state of V1 (see Appendix C). The extraction is
realized by adiabatically tuning the depth δα(t) and cen-
ter xc(t) of V2, as shown in Fig. 3b. The creation and
manipulation of controlled optical tweezers can be ac-
complished with an electro-optic deflector which toggles
between two voltages on a sufficiently-fast time scale so
that the atoms experience a time-averaged effective po-
tential [48, 49]. Merging and separating the supersym-
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FIG. 4: (a) Two tweezers with longitudinal relative shift zc.
(b) Atom distributions during the extraction for the ground
state (bottom) and 5-th excited state (top) obtained from a
full 3D simulation of the Schrödinger equation. The inset
shows zc(t) and δα(t) during the adiabatic process with α1 =
200ER, α2 = 198.8ER, w0 = 0.9µm. Other parameters are
the same as in Fig. 3. The results for other excited state are
similar. The fidelities are Fn ∼ 1 − 10−4 (up to n = 5) with
adiabatic interval τ ∼ 20ms (τ ∼ 200ms) for Li (Rb) atoms.

metric tweezer pairs could be done by a programmed
sequence of voltages that are applied to an electro-optic
deflector.

In Fig. 3c, we plot the spectrum of the system during
the adiabatic process along the path in Fig. 3b, which
is obtained by solving the real-space Schrödinger equa-

tion
[
−~2∂2

x

2m + V1(x, t) + V2(x, t)
]
|ϕ〉 = E|ϕ〉. We see the

spectrum is gapped all the time, while the eigenstates in
the two tweezers exchange except for the ground state
of V1. In principle, the extraction fidelity can achieve
100% for sufficient long adiabatic interval τ . Assuming
an atom stays in state |ϕ1,n〉 at time t = 0, we define the
fidelity Fn as the probability to find the atom at time
t = τ on the ground state |ϕ1,0〉 of the main tweezer
for n = 0 or in the auxiliary tweezer for n > 0. In
Fig. 3d, we show the fidelities as functions of τ obtained
from numerical simulating the time-dependent real-space
Schrödinger equation. The extraction process is a mul-
tistate Landau–Zener problem (see Appendix B), and
there are couplings between different eigenstates when
τ is small, yielding fidelities that are far below 1. The
fidelity Fn can be close to 1 at a larger τ . For a realis-
tic shallow trap α1 = −12ER, the fidelity can be up to
Fn & 1 − 10−5 with a short adiabatic interval τ & 7ms
(τ & 70ms) for Li (Rb) atoms, which can be improved
further by optimizing the adiabatic loop or using deeper
tweezers.

We now consider the tweezer realized by a single
strong and tightly focused Gaussian beam without ad-
ditional transverse trapping (i.e., 3D). The trap is given

by V1(r) = α1
w2

0

w2
z

exp[−2(x2 + y2)/w2
z ] with the spot size

wz = w0

√
1 + z2

z2R
and Rayleigh range zR =

πw2
0

λ . In this

case, the tight transverse trapping, realized by the Gaus-
sian tweezer itself, is much stronger than the longitudinal
trapping. Therefore, atoms would stay in the transverse
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ground state with high-probability after sideband cool-
ing (laser culling) for bosons (fermions) [29, 30, 37], and
the overall fidelity is mainly limited by the residual exci-
tations in the longitudinal direction. We may 1) slowly
bring the auxiliary tweezer to the main tweezer with their
beam waists largely separated by zc along the longitudi-
nal direction (see Fig. 4a); 2) tune zc and δα along the
adiabatic path (see the inset of Fig. 4b); 3) slowly move
the auxiliary tweezer away from the main tweezer. Steps
1) and 3) can be done with high fidelity due to large sep-
aration of the two tweezers. Here we focus on step 2)
and solve the 3D Schrödinger equation numerically. We
find that the extract fidelity can be up to Fn ∼ 1− 10−4

with proper choice of parameters, as shown in Fig. 4b.
A longer extraction time is needed to achieve higher fi-
delity. Here the transverse and longitudinal modes do
not mix [50] for the two tweezers shown in Fig. 4a.

BOSON QUBIT INITIALIZATION

We assume an initial low-temperature single-atom
state (i.e., Na = 1). This is because, more than one
atom may be left on the ground state after the extraction
for Na > 1 non-interacting bosons, and the energy level
coupling with the auxiliary tweezer would be strongly
modified for interacting bosons. Fortunately, determinis-
tic preparation of a single boson in an optical tweezer has
been realized through single atom imaging and the atom
can be further sideband cooled with ground state popu-
lation ∼ 90% [7, 29, 31]. Assuming a thermal population
distribution, the total probability to find the atom on
n > N states is < 10−5 for N = 5. After the supersym-
metric adiabatic extraction process, all excited compo-
nents of the atom are transferred to the auxiliary tweezer,
in which the atom number is measured. If one atom is de-
tected in the auxiliary tweezer, we discard the atom qubit
in the main tweezer and the process fails. If no atom is
probed in the auxiliary tweezer, the atom must be on the
ground state of the main tweezer, therefore we keep the
atom qubit in the main tweezer. The process is successful
and we know with 100% probability that there is a sin-
gle atom on the ground state of the main tweezer. Such
postselection measurement leads to deterministic prepa-
ration of a single atom in the main tweezer with a total

ground-state fidelity ≥ 1 −
∑
n>0

Pn(1−Fn)
P0F0

≥ 1 − 10−5

(Pn is the n-th state occupation probability). Here post-
selection is to condition a probability space upon the
occurrence of a given event, and the fidelity is defined
as the probability to find the atom in the ground state
of the main tweezer upon the occurrence of an empty
auxiliary tweezer. Notice that the success probability
is P0F0 while the probability to find an empty auxil-
iary tweezer is P0F0 +

∑
n>0 Pn(1 − Fn). Therefore,

the fidelity is P0F0[P0F0 +
∑
n>0 Pn(1 − Fn)]−1 ≥ 1 −

∑
n>0

Pn(1−Fn)
P0F0

. The detection of the auxiliary tweezer
can be done by single-atom-resolved fluorescence imag-
ing technique [2, 15, 51], where a practical issue is that
the resulting scattered resonant light may be absorbed by
other qubits, degrading their fidelity (note that fermions
do not need resonant detection during preparation, which
is an advantage, see below). The resonant scattering
light could be avoided by first transferring the auxiliary-
tweezer atom to another hyperfine state (e.g., F = 2
state of 87Rb) with ∼GHz energy splitting [14], where
the imaging laser (focused on the auxiliary tweezer) is
far-off-resonance with the main-tweezer atoms in other
qubits, thus would not disturb their states.

FERMION QUBIT INITIALIZATION

For fermions, it is more convenient to start from sev-
eral atoms (e.g., Na = 4, 5) distributed on the low-
lying energy levels in the tweezer (see Appendix D),
then we apply the supersymmetric adiabatic atom ex-
traction process to obtain a single ground-state fermion.
Note that no postselection measurement of the auxiliary
tweezer is needed for fermionic qubits. We consider spin-
polarized fermions with negligible interactions due to the
antisymmetric wavefunction. The preparation fidelity is
≥ P0

∏Na−1
n=0 Fn. If one loads fermions from a reservoir

with typical temperature T/TF = 0.5 to a tweezer with
depth 5kBTF , one obtains P0 > 1− 10−5 [52]. The total
fidelity can be up to ∼ 1−10−5. To obtain a tweezer with
Na low-energy atoms, one can first load a large number
of fermions from a reservoir and spill excess highly ex-
cited atoms by varying the depth of the tweezer and the
strength of a magnetic field gradient [36, 37]. For a large
Na (e.g., Na = 4, 5), the tweezer depth remains much
higher than the ground state energy whose occupation
is hardly affected during the spilling process. Moreover,
imperfect spilling that change Na by ±1 or ±2 do not
affect our high-fidelity preparation as long as the ground
state is occupied with a high probability.

It is also possible to prepare a single fermion to the
ground state based on the spilling method in [36, 37],
however, the overall fidelity is very limited in realistic
experiments. This is because the trap need be tilted
and ramped down to an extremely low depth, which not
only makes the spilling process very sensitive to poten-
tial noises (induced by fluctuations in laser intensity and
magnetic field), but also requires a long trap-deforming
time to avoid heating.

DISCUSSION

The fidelity might be slightly suppressed by the com-
mon heating sources existing in the system. The atom
heating due to off-resonance light scattering (the rate is
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∼ V
∆e

Γ with V the trap depth and Γ the damping rate
of the excited state) is negligible for a large detuning ∆e

to the excited state [53]. Intensity fluctuations of the
trapping lasers can be very weak and dominated by low-
frequency (much smaller than the trapping frequency)
noise using intensity stability techniques [54–56], there-
fore the fluctuations have very minor effects in the adi-
abatic process [57, 58]. The fluctuation effects can be
further suppressed by using the same laser source for
both the main and auxiliary tweezers. Background gas
collision-limited lifetime is about 10 seconds [7–9], which
is much longer than the adiabatic duration. The adia-
batic transfer time for Li and Rb atoms is about 7 and
70 milliseconds, and both can be further improved using
deeper dipole traps (the shallow trap considered above
has a trapping frequency only about several kHz). Here
the adiabatic duration can be at the same order as the
sideband cooling (i.e., several milliseconds) [29]. There-
fore, our scheme can lead to high-fidelity and fast qubit
preparation even in the presence of these common heat-
ing sources in realistic experiments. We want to point
out that, for boson qubit preparation based on sideband
cooling only, one could improve the fidelity by decreas-
ing the Raman beam power and increasing the detun-
ing with the excited state [59], but the cooling time will
also increase significantly, which may enhance the heat-
ing from other sources. The cooling fidelity may also
be improved using very deep traps, which is, however,
quite limited for neutral atoms (typical tweezer trapping
frequency ranges from several kHz to several 10kHz, com-
paring to 10MHz for ion traps). More importantly, our
adiabatic extraction scheme applies to both fermion and
boson qubit preparation, while the sideband cooling can-
not be used for fermion qubit preparation with many
atoms in the tweezer initially.

Combined with the capability of rearranging tweezers,
our method can initialize a large array of neutral atom
(bosonic or fermionic) qubits to the vibrational ground
state. In addition to quantum computation, such ground
state single-atom tweezers can be used as building blocks
for generating entangled states such as Dicke and NOON
states [60] that are useful for high precision quantum
metrology beyond the standard quantum limit 1/

√
N .

The Dicke state is a symmetrized spin state with to-
tal spin J and z-component mz, corresponding to a two-
mode Fock state with J±mz atoms in spin up and down.
Such Dicke state can be realized by merging 2J single-
atom optical tweezers, with J ±mz tweezers containing
spin-up and down atoms (see Fig. 5). The repulsive inter-
action is turned on to ensure 2J atoms remaining on the
ground state [61] during the adiabatic evolution. Here
the many-body energy gap during the adiabatic merg-
ing is roughly given by the smaller one of two energy
scales: the interaction energy Eint (interaction between
two atoms in one tweezer) and excited state energy Ee

(when the barriers between neighboring tweezers vanish).

↑ ↓ ↑ 
… … 

Dicke NOON 

FIG. 5: Scheme to generate nonclassical entangled Dicke and
NOON states by merging and splitting many single-atom
tweezers. The spin states could be atomic hyperfine states.

For typical tweezers and atom scattering lengths, Eint

can be up to several tens Hz, and Ee ∼ ER

4J2 is around a
hundred Hz for J = 10 (i.e., 20 atoms), leading to the
adiabatic merging time ∼ 10ms.

With 2J atoms on the ground state of one tweezer, we
can slowly switch the repulsive interaction to attractive,
then split the tweezer into two identical tweezers (see
Fig. 5), generating a NOON state (i.e., a coherent super-
position of all particles in the left or right tweezer) [61]. If
the interaction energy is smaller than the single tweezer
trapping frequency, even a sudden switching of the inter-
action would not excite the system [61], which is still sat-
isfied with 20 atoms in one tweezer. During this splitting,
the many-body gap is enhanced by J times comparing to
the merging process, thus can be done much faster. Both
Dicke and NOON states can yield measurement precision
scaling as the Heisenberg limit ∼ 1/N [60].

Finally, the ability of generating a few-atom Fock state
in the tweezer provides a new platform for studying few-
body physics with the fixed atom number. For instance,
by tuning the interaction through Feshbach resonance, it
is possible to study the universality of Efimov trimer and
other multi-body bound states [62–65].

CONCLUSION

In summary, we propose a method to deterministically
prepare a single atom to the vibrational ground state of
an optical tweezer with high fidelity, using a supersym-
metric auxiliary tweezer. The supersymmetry is crucial
for tweezer geometry design and plays a central role for
extracting excited atoms. The scheme is built upon re-
cent experimental progress on single atom preparation
and sideband cooling, and applies to both fermionic and
bosonic atom qubits. It addresses one major roadblock
for realizing high-fidelity neutral atom qubit initializa-
tion, therefore may pave the way for the experimental
realization of intermediate-scale neutral atom quantum
computation and simulation. Our proposed qubit initial-
ization can also be used to generate nonclassical quantum
states which may find applications in other fields such as
high precision measurement and quantum sensors.
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APPENDIX A: EFFECTIVE HAMILTONIAN

Here we show how the simple model of Eq. (2) in the
main text can be used to describe the adiabatic process.
We first consider the 1D case, and a double well trap
V (x, t) = V1(x) + V2(x, t) is formed by the two tweezers
at time t during the adiabatic process. The low-energy
local modes |ϕ1,n(t)〉 of the left well (corresponding to
the main tweezer) can be approximately obtained by
solving a harmonic oscillator with curvature and center
determined by the left trap minimum, similarly for the
right well (auxiliary tweezer) |ϕ2,n(t)〉. Then the cou-
pling reads

Jn,m(t) =

∫
ϕ∗1,n(x, t)[−~2∂2

x

2m
+ V (x, t)]ϕ2,m(x, t)dx.

(3)
The integral Jn,m is nonzero even when the wave func-
tions ϕ1,n(x, t) and ϕ2,m(x, t) have opposite parity, since
their parity-symmetry centers are different. As the two
tweezers approach each other, the energy levels may also
shift slightly, since the curvature of the main (auxil-
iary) tweezer would be modified by the auxiliary (main)
tweezer. The full Hamiltonian reads Htot(t) = H1(t) +
H2(t) +Hint(t) with

Hi(t) =

N∑
n=1

E1,n(t)|ϕi,n〉〈ϕi,n|, (4)

and

Hint(t) =

N∑
n=1

∆n

2
|ϕ2,n〉〈ϕ2,n|+Jn|ϕ1,n〉〈ϕ2,n|+h.c. (5)

The off-resonance coupling terms Jn,m|ϕ1,n〉〈ϕ2,m|+h.c.
with m 6= n are neglected.

The effective Hamiltonian is similar for the 3D case if
we focus on the transverse ground-state subspace, which
reads

Jn,m(t) =

∫
ϕ∗1,n(r, t)[−~2∇2

2m
+ V (r, t)]ϕ2,m(r, t)dx.

(6)
Here ϕ1,n(r, t) is the wave function of the n-th longitu-
dinal mode in the transverse ground state. Notice that,
ϕ1,n(r, t) and ϕ2,m(r, t) have the same transverse parity-
symmetry center. They stay in the ground transverse
state and have the same transverse parity, therefore can
couple with each other. The two tweezers are parallel
with each other, and they have the same optical axis

as shown in Fig. 4a in the main text; therefore, trans-
verse and longitudinal modes do not mix for our system.
In fact, the extraction of excited longitudinal modes is
independent from the transverse state of the atoms in
the main tweezer. Generally, the transverse modes are
more confined, which typically have six (or more) times
larger trapping frequency than the longitudinal modes.
Therefore, high-fidelity transverse ground state can be
obtained by sideband cooling for bosons or by spilling
for fermions, with occupation only on the first N longi-
tudinal modes.

APPENDIX B: ADIABATIC CONDITION

The simple model given by Eqs. 4 and 5 describes
many independent two-level Landau-Zener processes. We
have assumed that the detuning ∆n and coupling Jn
are small comparing to the tweezer energy level split-
ting ωn = E1,n+1 − E1,n, so the off-resonance couplings
are neglected. The instantaneous eigenenergy levels and
eigenstates of the n-th Landau-Zener pair are εn,± =

E1,n ±
√
J2
n + (∆n

2 )2 and |ϕ±,n〉, with Htot|ϕ±,n〉 =

εn,±|ϕ±,n〉. The gap between the higher level of n-th pair
and the lower level of (n+ 1)-th pair is εn+1,− − εn,+ =

ωn − 2
√
J2
n + (∆n

2 )2. We see that even for small ∆n and

Jn (e.g.,
√
J2
n + (∆n

2 )2 ∼ 1
4ωn), the eigenenergy levels

εn,± would move by 1
2 their spacing as shown in Fig. 3

in the main text.

The adiabaticity condition of the two-level Landau-

Zener process is
〈ϕ+,n|ϕ̇−,n〉
εn,+−εn,−

� 1. That is, the process du-

ration should be long compared to the inverse of the gap,
leading to the speed proportional to the gap. We empha-
size that, the full description of the adiabatic process is
given by a multistate Landau-Zener problem by includ-
ing off-resonance couplings (Jn,m|ϕ1,n〉〈ϕ2,m|+h.c.). The

adiabaticity condition becomes
〈ϕ∓,n|ϕ̇±,m〉
εn,∓−εm,±

� 1, and the

adiabatic duration is long compared to all the eigenen-
ergy gaps εn,+−εn,− and εn+1,−−εn,+. Our full numer-
ical simulation has taken into account all these effects.

Since a larger gap leads to a faster qubit prepara-
tion, we would like to use larger Jn and ∆n during
the adiabatic process. As we discuss above, Jn and
∆n should still be small compared to ωn to ensure that
the all gaps are large enough. For example, one can

use
√
J2
n + (∆n

2 )2 ∼ 1
4ωn, such that (εn,+ − εn,−) ∼

(εn+1,− − εn,+) ∼ ωn

2 . Therefore, the speed is limited
by ωn. The speed can be very fast (10 ms or 100 ms
preparation time for Li or Rb atoms) for the tweezers
considered in this paper.
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FIG. 6: The energy levels and corresponding wave functions
for two Gaussian traps satisfying approximate supersymmetry
with w0 = 1µm, α1 = −12ER and α2 = −10.76ER. The
results are obtained by numerically solving the Schrödinger
equation. ER is the energy unit.

APPENDIX C: APPROXIMATE
SUPERSYMMETRY

Exact supersymmetry requires isospectrality such that
the corresponding eigenvalues of the two tweezers are ex-
actly matched initially [i.e., E1,n(t = 0) = E2,n(t = 0)].
In the presence of perturbations that weakly break the
energy degeneracy E1,n 6= E2,n with [E1,n(t = 0) −
E2,n(t = 0)] � ωn(t = 0), the supersymmetry be-
comes an approximate symmetry (an approximate sym-
metry arises when the symmetry is weakly broken). Our
scheme works for both exact and approximate supersym-
metries, i.e., in the region [E1,n(t = 0)− E2,n(t = 0)]�
{Jn(t),∆n(t)} < ωn(t = 0), such that all gaps remain
during the adiabatic process. If the supersymmetry is
strongly broken, we may have either unpaired states or
extremely small gap during the extraction. Therefore,
the supersymmetry (either exact or approximate) is cru-
cial for the design of our tweezer geometry and plays a
central role for the atom extraction process. Two tweezer
potentials that do not obey the supersymmetry would not
work.

Though it is possible to obtain exact supersymmetry
by tailoring the tweezer shapes, it is more realistic to
work in the approximate supersymmetry region. For
the 1D Gaussian example, the auxiliary tweezer corre-
sponds to an approximate supersymmetric partner of the
main tweezer (see Fig. 6). In particular, we are inter-
ested in the low-lying energy levels, therefore, the traps
V1(x) and V2(x) can be approximately characterized by
harmonic traps V1(x) ' α1(1 − 2x2/w2

0) and V2(x) '
α2(1− 2x2/w2

0) ' V1(x) + ∆α− 2∆αx2/w2
0. Besides the

constant shift ∆α ≡ (α2 − α1)� α1 compared to V1, V2

contains an additional small term 2∆αx2/w2
0 which only

leads to slight differences in the energy splittings between
the two traps, i.e., |E1,n−E2,n| ' ∆α

α1+α2
|E1,n+1−E1,n|.

For a constant shift equals to the energy splitting ∆α =
E1,n+1 − E1,n, we obtain V2 as the approximate super-
partner of V1 with |E1,n − E2,n| ' 1

20 |E1,n+1 − E1,n|, as
shown in Fig. 6. Such tiny difference in energy splitting
can be suppressed further by slightly modifying the beam
waist of the auxiliary tweezer which eliminates the cur-
vature difference 2∆αx2/w2

0. Similar results apply to the
3D tweezers.

APPENDIX D: DIFFERENCE BETWEEN
BOSON AND FERMION QUBITS

We start from the single atom (several non-interacting
atoms) in the tweezer for bosonic (fermion) qubit. In
both cases (single boson or several fermions), the atom
interaction is irrelevant in our ground state prepara-
tion scheme because of the Pauli exclusion principle for
fermions.

The tightly confined bosons strongly interact with each
other, therefore multi-occupation is avoided as one loads
the reservoir atoms to the tweezer. Through this method,
defect-free single-atom tweezer arrays have been exper-
imentally realized by post-selecting and rearranging oc-
cupied tweezers [7, 9, 11, 12]. The single atom after such
process is hot, and further sideband cooling could bring
the ground state occupation probability to ∼ 90%, which
means still a few excited vibrational states could be oc-
cupied. Then one can apply our supersymmetry cooling
proposal to achieve ground state preparation fidelity up
to ∼ 99.99%.

The case for fermionic qubits is very different because
two spinless fermions do not occupy the same motional
ground state and interact with each other. Therefore
the method for bosonic qubit does not apply for fermion
qubit. A different laser culling method [36] can be used
to prepare a few atoms in an optical tweezer from a reser-
voir of degenerate fermi gas through gradually reducing
the optical tweezer potential, as demonstrated in exper-
iments [37]. In this case, the ground state is already
occupied with a high probability, and the difficulty is
how to remove the last few low-lying excited state atoms
without affecting the ground state atom. In our fermion
qubit preparation, we start from a few spinless atoms
distributed on the low-lying energy levels, and the super-
symmetry scheme can extract all excited fermions out.
These spinless atoms have no interaction.

∗ Electronic address: chuanwei.zhang@utdallas.edu
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[27] V. Lienhard, S. de Léséleuc, D. Barredo, T. Lahaye, A.
Browaeys, M. Schuler, L.-P. Henry, and A. M. Läuchli,
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[60] L. Pezzè, A. Smerzi, M. K. Oberthaler, R. Schmied, and
P. Treutlein, Quantum metrology with nonclassical states
of atomic ensembles, Rev. Mod. Phys. 90, 035005 (2018).

[61] A. M. Dudarev, R. B. Diener, B. Wu, M. G. Raizen,
and Q. Niu, Entanglement Generation and Multiparticle
Interferometry with Neutral Atoms, Phys. Rev. Lett. 91,
010402 (2003).

[62] S. E. Pollack, D. Dries, and R. G. Hulet, Universality in
Three- and Four-Body Bound States of Ultracold Atoms,
Science 326, 1683 (2009).

[63] D. Blume, Few-body physics with ultracold atomic and
molecular systems in traps, Rep. Prog. Phys. 75, 046401
(2012).

[64] P. Naidon, S. Endo, Efimov Physics: a review, Rep. Prog.
Phys. 80, 056001 (2017).

[65] C. H. Greene, P. Giannakeas, and J. Pérez-Ŕıos, Univer-
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