
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Spatiotemporal graph states from a single optical
parametric oscillator

Rongguo Yang, Jing Zhang, Israel Klich, Carlos González-Arciniegas, and Olivier Pfister
Phys. Rev. A 101, 043832 — Published 23 April 2020

DOI: 10.1103/PhysRevA.101.043832

http://dx.doi.org/10.1103/PhysRevA.101.043832


Spatiotemporal graph states from a single optical parametric oscillator

Rongguo Yang and Jing Zhang∗

College of Physics and Electronic Engineering, Collaborative Innovation Center of Extreme Optics,
Shanxi University, Taiyuan 030006, P.R. China and

Department of Physics, University of Virginia, 382 McCormick Road, Charlottesville, Virginia 22904-4714, USA
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An experimental scheme is proposed for building massively multipartite entangled states using
both the spatial and the frequency modes of an optical parametric oscillator. We provide analytical
forms of the entangled states using the squeezed eigenmodes of Heisenberg equations, a.k.a. the
nullifiers of the corresponding graph state. This scheme can generate, in parallel, several cluster
states described by sparsely connected, bicolorable graphs, usable for one-way quantum computing.

I. INTRODUCTION

Quantum entanglement is an elementary and key re-
source for quantum information and quantum comput-
ing [1]. Cluster states, as 2D sparse graph states, are
of central importance for one-way quantum computing,
be it over discrete variables [2, 3] or continuous variables
(CV) [4–6]. It is important to note that CV quantum
computing [7] is a valid type of universal quantum com-
puting that features the same exponential speedup [8, 9]
as well as a quantum error correction encoding [10] and
a fault tolerance threshold [11, 12].

The experimental generation of photonic CV cluster
states first used “bottom up” quantum-circuit like ap-
proaches [13], based on the Bloch-Messiah decomposi-
tion [14] which yielded four-mode [15, 16] and eight-
mode [17] cluster states, using several optical parametric
oscillators (OPOs) and linear optical transformations. In
this approach the number of OPOs is proportional to the
number of entangled modes.

An alternative, top down approach was first proposed
in the frequency domain [18, 19], then in the time do-
main [20, 21]. Such an approach requires only one OPO
to generate two-mode squeezed states, a.k.a. Einstein-
Podolsky-Rosen (EPR) pairs, over the OPO’s optical fre-
quency comb or, alternatively, two frequency-degenerate
OPOs to generate two-mode squeezed states in tem-
porally pulsed modes. The first proposal featured a
square-grid cluster state, universal for quantum com-
puting, but required a single OPO with a triple (but
demonstrated [22]) nonlinear medium and, in particu-
lar, a complex pump spectrum [23]. Subsequent, simpler
proposals for building cluster states sequentially in the
time domain [20, 21] were adapted experimentally in the
frequency domain to build 15 independent quadripartite
square cluster states [24] and one 60-partite, and two 30-
partite, one-dimensional cluster states [25]. Note that,
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in the latter case, the demonstrated number of entangled
qumodes was not limited by the OPO phasematching
bandwidth, which extends to ∼ 104 modes [26], but by
the tunability of the local oscillator laser in the interfero-
metric squeezing measurements. Another approach used
a synchronously pumped OPO to yield a much broader
qumode frequency spacing, well suited for parallel quan-
tum processing [27]. In the temporal domain, entangled
modes are obtained sequentially, only two or four at a
time but the resulting polynomial overhead for quantum
processing is offset by scalability, the total number of en-
tangled modes being limited only by the stability of the
experiment. One-dimensional cluster states were thus
generated over 104 [28], then 106 [29] modes. Recently,
large-scale two-dimensional square-lattice cluster states
were generated [30, 31].

In this context, an interesting additional degree of free-
dom to explore is the transverse spatial one. Continuous-
variable entanglement between two spatial modes was re-
alized within one beam [32]. Linear cluster states were
produced among different spatial modes and all possi-
ble spatial modes of light were copropagated within one
beam [33]. The generation of a CV dual-rail cluster state
based on an optical spatial mode comb was proposed
via a four-wave-mixing process [34]. Proposals were also
made for large-scale CV dual-rail cluster state genera-
tion involving Laguerre-Gaussian (LG) modes in a large-
Fresnel-number degenerate OPO [35], and in a spatial
mode comb pumped by two spatial LG modes [36]. A
CV square quadripartite cluster state was experimentally
produced by multiplexing orthogonal spatial modes in a
single optical parametric amplifier (OPA) [37].

In this paper, we consider the process of optical
parametric amplification in a single OPO pumped by
two LG modes and the parallel generation of entangled
graph states in both the frequency and space domains.
Laguerre-Gaussian modes, which carry orbital angle mo-
mentum due to helical phase, bring about an additional
degree of freedom. This paper is organized as follows: In
Sec. II, we describe our system and solve its Hamiltonian
analytically to calculate the resulting multipartite entan-
glement using the CV graph state formalism through the
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FIG. 1. Schematic of experimental setup. the green and red arrows represent pump modes lg0 with the frequency ωp = 2ω±∆,
the green (red) solid/dashed (generate symmetrically) line connect two modes of down-converted process from the same pump.

G and A adjacency matrices for the H graph and canoni-
cal graph, respectively [19]. In Sec. III, we give numerical
illustrations of this result for 8 and 60 modes, and indi-
cate how finite squeezing would affect measurements of
weighted-graph states.

II. PHYSICAL SYSTEM AND ANALYTIC
SOLUTIONS

In our system, a nonlinear crystal is placed in a self-
imaging or large-Fresnel-number cavity, which can be si-
multaneously resonant for many transverse modes [38],
and its transverse eigenmodes are the complete set of
LG modes, longitudinal eigenmodes are spaced by the
free spectral range (FSR). This specially designed cav-
ity can guarantee simultaneous and sustainable non-
linear interaction and resonance of all the down con-
verted modes [39]. As is shown in Fig.1, the system is
pumped by two spatial LG modes lg0 with frequencies
ωp = 2ω ± ∆, where ∆ is the FSR, and µ = ±j in lgµ
mode denotes the OAM mode number. Here j= 0 for
the pump field and j = 1, 2, 3, ..., m for the correspond-
ing downconverted fields. The nonlinear crystal in the
cavity is a type I phase-matching crystal whose second
order nonlinear coefficient is ξ. The two pump fields of
frequency ωp can be downconverted into signal and idler
fields of frequencies ωs,i=ω ± n∆, n = 0,1,2... The non-
linear interaction must satisfy energy conservation (ωp =

ωs + ωi), phase-matching ( ~kp = ~ks + ~ki) and orbital an-
gular momentum conservation (µp = 0 = µs + µi). Each
pair of modes connected by a red or green line are from
the same optical down conversion process and can form
a high-connected entanglement state of optical frequency
and spatial modes.

The interaction Hamiltonian of the system is

H = i~ξ
n∑

i=−n

m∑
j=1

{G(−i,±j),(−1+i,∓j)b̂−1,0â
†
−i,±j â

†
−1+i,∓j

+G(i,±j),(1−i,∓j)b̂1,0â
†
i,±j â

†
1−i,∓j}+H.c., (1)

where the G matrix element is 1 when the parametric

process exists and 0 otherwise. b̂1,0 and b̂−1,0 denote
the annihilation operators of the two pump modes with
frequency 2ω ± ∆, respectively, their first and second
index corresponding to the frequency and OAM number,

respectively. The pump b̂−1,0 can thus produce â−i,±j
and â−1+i,∓j by down-conversion process, and the pump

b̂1,0 can produce âi,±j and â1−i,∓j .

Note that the spatial and spectral properties of the
eigenmodes are reasonably independent, the Gouy phase
being the same for spatial modes of same order in the
absence of dispersion.

Here, we only consider the first order LG modes, j =
1, µ=±1, in the down-conversion modes; similar reason-
ing can be used when considering higher order modes
j >1. The physical system and corresponding H graph
are shown in Fig.2. In Fig. 2(a), certain upper modes
of lg1 and certain lower modes of lg−1 are connected
by the red (green) lines, and the cross point of all red
(green) lines corresponds to the red (green) pump. In
Fig. 2(b), one can see the relation and structure of the
down-converted fields clearly. Actually, the symmetric
cluster state array can be produced simultaneously, as is
shown by dashed line in Fig.1. For convenience, we re-
name these modes from 1 to N = 2n (we always consider
a even number of modes). According to the interaction
Hamiltonian and the renamed modes, the G matrix can
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FIG. 2. (a) Physical picture of the mode entanglement with
different pumps. Downconverted modes (j=1 only) from each
pump are connected with red and green arrows. (b) H graph.

be written as

G =



...

· · ·

0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 1
0 0 0 0 1 0 1 0
0 0 0 0 1 1 0 0
0 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
1 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0

· · ·

...


. (2)

for any N -mode state. This matrix can be seen as the
adjacency matrix of the H(amiltonian) graph, which is
bipartite, or bicolorable, meaning that all qumodes are
distributed into two sets with no any two qumodes in
either set interacting with each other. It should also
be noted that Eq. (2) assumes that the phasematch-
ing bandwidth of the OPO has a flat-top shape and
“turns off” sharply between the last mode in the consid-
ered set and its neighbor. In practice, while the former
was experimentally demonstrated in periodically poled
KTP [25, 26], the latter is, however, not doable and
the coupling to wing modes will necessarily be tapering.
However, such boundary imperfections can be considered
confined to their location, the boundary, if the canonical
graph (see below) is sparse, i.e., local, enough. (In the
case of complete graphs, i.e., GHZ states, this can be
more of a problem.)

The spectrum of this graph can be derived analytically

(see Appendix for details). The eigenvalues of G are

λk = ±2

∣∣∣∣cos
kπ

2n+ 1

∣∣∣∣ , (3)

where k = 1, 2, 3, ..., n. Because there are n eigen-
values with each sign, the solutions of the Heisenberg
equations are n amplitude-quadrature squeezed and n
phase-quadrature squeezed eigenmodes, of squeezing fac-
tor exp(λkξt), t being the Hamiltonian interaction time
(or cavity lifetime in this simplified model).

For pure two-mode squeezing Hamiltonians such as
that of Eq. (1), the multipartite state resulting from the
quantum evolution can always be expressed as a cluster
state [19]. This means that the N eigenmodes always
have the following quantum standard deviation

∆[~P (t)−A~Q(t)] ∝ e−ξt, (4)

where ~P (t) = [P1(t), . . . , PN (t)]T , ~Q(t) =

[Q1(t), . . . , QN (t)]T , Pj = (aj − a†j)/(i
√

2),

Qj = (aj + a†j)/
√

2, and A is the adjacency matrix
of the canonical cluster graph, which is the CV equiva-
lent [4] of a qubit cluster state [2]. In order to determine
the corresponding cluster state, we need to derive this
adjacency matrix. This can be done analytically (see
Appendix for details), yielding

A =

(
0 STBTSJ

JSTBS 0

)
, (5)

where J is the anti-diagonal identity matrix, S is a per-
mutation matrix, and B is constructed from the eigen-
vectors of G. The matrices B in (5) are derived explicitly
in the appendix, with the result:

Bij =
(−1)i+j+n

1 + 2n

[
1

cos( (i−j)π
1+2n )

+
1

cos( (i+j−1)π
1+2n )

]
. (6)

The matrices S and J have the matrix elements Sij =
δj,2i−1 + δj,2i−2n−2 and Jij = δi,n−j+1.

The form (5) of A shows that the resulting cluster
graph is bicolorable.

III. ILLUSTRATIVE EXAMPLES

In this section, we give numerical examples of the ob-
tained graph states for two different scales.

A. Small scale

The possible H graphs for an eight-mode state are
shown in Fig.3, with each vertex corresponding to a dif-
ferent qumode. Red and green lines correspond to dif-
ferent pumps. It is interesting to note that both these
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FIG. 3. The two possible H graphs for an eight-mode state.

graphs have the same linear chain structure, i.e., that G
is a Hankel-like, and even centrosymmetric, matrix. As
shown in the previous section, the canonical (e.g., cluster)
graph state is obtained from its adjacency matrix A, cal-
culated from Eq. (5) and also using the method outlined
in Ref. 19, and displayed in Fig.4(a). This matrix cor-
responds, in general to a weighted complete bicolorable
graph, drawn in Fig.4(b).
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FIG. 4. (a), A matrix and, (b), corresponding canonical graph
for an 8-mode state.

B. Large scale

In order to gain perspective on the overall structure—if
any—of the graph state, we now expand to an arbitrary
larger, yet computable, number of modes, e.g. 60 modes.
Note that the maximum mode number depends on the
ratio of the phasematching spectral bandwidth with the
FSR. The phasematching bandwidth in PPKTP can be
very large, on the order of 10 THz for some interactions
with a 532 nm pump wavelength, as was calculated and
measured in Ref. 26. For a typical FSR on the order
of 1 GHz, this can yield ∼ 104 qumodes. Figure 5 dis-
plays the A matrix for 60 modes. Besides its aforemen-
tioned bipartite structure, A also has a skew-symmetric
structure that clearly mirrors that of G, Eq. (2) [40]. Al-
though A is nominally a complete bicolorable graph (i.e.,
nodes 1 to 30 are not linked to one another but are all
linked to all of the nodes 31 to 60), it is also strongly
weighted, as the absolute values of the nonzero A matrix

elements range from orders 10−4 to 1. A natural question
is then to ask what is the physical significance, and even
the relevance, of these very weak edges. An intuitive
answer to this question is to examine the edge weight
relative to the available squeezing [41]: in a nutshell, it
is well known that the edge between two qumodes de-
scribes their quantum correlations, as evidenced by the
formal equivalence between a two-mode cluster state and
a two-mode squeezed state [21]. The squeezing parame-
ter ξt used in experimentally realizing cluster entangle-
ment then naturally serves as the noise floor for observing
quantum correlations between modes and a rule of thumb
is that an edge of weight ε, i.e., an element of A of value
ε, will only be relevant if the squeezing is large enough,
i.e., if ε & exp(−2ξt); otherwise the quantum correla-
tions due to the edge of weight ε will be buried in the
squeezed quantum noise, therefore unobservable and, for
all intents and purposes, nonexistent.

With this criterion in mind, we examine matrix A
again after rounding down all elements below a certain
threshold to zero, the thresholds being chosen to corre-
spond to realistic values of squeezing: Fig.6 displays the
results of such “graph pruning” for three different, con-
tiguous threshold ranges. Because the graphs are regular,
save for local imperfections at the boundaries (chains’
ends), we only displayed central sections to clearly high-
light changes in graph valence and structure. It is re-
markable that the lowest squeezing amounts already yield
a 1D cluster wire spanning all qumodes in the consid-
ered set, a universal structure for single-qumode quan-
tum processing. As the squeezing increases, the graphs
gain “width” while retaining the 1D structure of the main
two skew diagonals of the A matrix, becoming a ladder
structure then a spiraling wire overlapping with three
parallel wires. Note the current record of optical squeez-
ing is -15 dB [42]. Being a cluster state, the graph can be
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FIG. 5. The A matrix for 60 modes.
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12 34 56 78 910 1112 1314 1516 1718 1920 2122 2324 2526 2728 2930 3132 3334 3536 3738 3940 4142 4344 4546 4748 4950 5152 5354 5556 5758 5960

(b) -6.6 dB to -7.2 dB
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(c) -7.4 dB to -8.2 dB
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FIG. 6. Graph states obtained from A with increasing squeez-
ing, by neglecting A elements below threshold. (a), thresh-
old range 0.55-0.23 (squeezing range -2.6 dB to -6.4 dB); (b)
threshold range 0.22-0.19 (squeezing range -6.6 dB to -7.2
dB); (c) threshold range 0.18-0.15 (squeezing range -7.4 dB
to -8.2 dB).

“trimmed” to a desired shape by measuring out the un-
wanted vertices [2, 3]. Moreover, such structures has been
shown to enable additional quantum processing options,
also decided by measurements and feedforward within
the model of one-way quantum computing [43, 44].

IV. CONCLUSION

We have shown that a single OPO specifically engi-
neered to add spatial degrees of freedom to the usual fre-
quency ones of its resonant modes, can generate, in one
fell swoop, sophisticated large-scale multipartite cluster
states. We have derived analytic solutions for the state
and have examined the physical significance of the edge
weighting of the generated graph state, in terms of the
available experimental squeezing. Three essential points
should be noted:

(i) These graphs being cluster states, they can be
shaped and trimmed by measurements of undesired
connected vertices.

(ii) Measurements and feedforward can also be used
in a more elaborate manner, by taking advantage

of the additional graph edge structure on a 1D
or 2D backbone for implementing additional, ar-
bitrary quantum operations [43, 44].

(iii) Such cluster states can also be produced in paral-
lel, by use of higher order spatial modes lg±2,lg±3,...
Although the effective coupling strength ξ will ini-
tially be expected to be smaller for these modes
due to the smaller overlap between the pump, sig-
nal and idler modes [35, 36], ξ can be effectively
enhanced by introducing a specially designed non-
linear crystal structure for matching the property
of LG modes and the structured transverse mode
of pump [45].
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Appendix A: Analytical expressions of the A and G
matrices

Here we provide the details on how we obtain the eigen-
values/eigenvectors of the G matrix and the analytical
expression of the A matrix.

1. Eigenvalues and eigenvectors of the G matrix

Let us write the 2n× 2n G matrix, Eq. (2), as:

G =

(
0 Q
QT 0

)
. (A1)

where:

Q =


... 0 0 1 0
0 0 ... 0 1
0 1 ... ... 0
1 0 1 0 0
1 1 0 0 ...

 (A2)

Let M = QQT . Note that G2 has the form:

G2 =

(
QQT 0

0 QTQ

)
=

(
M 0
0 JMJ

)
(A3)



6

where J is the anti-diagonal identity matrix, Jij =
δi,n−j+1. Here

M =


1 0 1 0 ... 0
0 2 0 1 0 ...
1 0 2 0 ... 0
0 1 0 ... 0 1
... 0 ... 0 2 1
0 ... 0 1 1 2

 (A4)

It is possible to transform M into a tridiagonal matrix
M ′ by a permutation of the indices, getting:

SMST ≡M ′ =


1 1 0 0 0 ...
1 2 1 0 0 0
0 1 2 ... 0 0
0 0 ... ... 1 0
0 0 0 1 2 1
... 0 0 0 1 2

 (A5)

where the permutation matrix S is defined by:

(ST ~α)j =

{
αi j = 2i− 1
αn−i+1 j = 2i

(A6)

As an example, for n = 12, the S matrix has the form:

S =


1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0
0 1 0 0 0 0

 . (A7)

The matrix M ′ is a simple tridiagonal matrix that has
known eigenvalues and eigenvectors [46]:

(vk)j =
2√

2n+ 1
sin

k(2j − 1)π

2n+ 1
(A8)

λ2k = 4 cos2
kπ

2n+ 1
. (A9)

Since the eigenvalues of M and JMJ are the same as of
M ′’s, we conclude that the eigenvalues of G2 are λ2k, with
a double degeneracy, and for the matrix G the eigenvalues
are

λk = ±2

∣∣∣∣cos
kπ

2n+ 1

∣∣∣∣ . (A10)

We note that

[G,J ] = 0 (A11)

J =

(
0 J
J 0

)
(A12)

and therefore the eigenvectors of G can be chosen as
eigenvectors of J as well, i.e. either symmetric or an-
tisymmetric around the middle. We find that the sym-

metric eigenvectors are given by

Vk,sym =

(
ST vk
JST vk

)
(A13)

with eigenvalues (−1)kλk and the antisymmetric ones are

Vk,asym =

(
ST vk
−JST vk

)
(A14)

with eigenvalue (−1)k+1λk.

2. Construction of the A matrix.

The A matrix is obtained as follows [19]. First, diago-
nalize G and separate into positive and negative blocks:

G = V DV T , D =


λ1 0 0 0 ... ...
0 .. 0 0 ... ...
0 0 λn 0 0 0
0 0 0 −λ1 0 0
... ... 0 0 .. 0
... ... 0 0 0 −λn


Then:

A =

(
0 A0

AT0 0

)
where

A0 = −V12 (V22)−1 ; V =

(
V11 V12
V21 V22

)
Fortunately, in our case, V has a simple form that allows
the inversion of the relevant block.

To construct V we use the eigenvectors (A13)
and (A14) as column vectors, which will automati-
cally yield a diagonalization of G. It is only left to or-
der them so that the first columns correspond to pos-
itive eigenvalues and the second half of columns corre-
spond to negative eigenvalues. To separate between pos-
itive and negative eigenvectors, we choose the ordering:
V1,asym, V2,sym, V3,asym, ....

Concretely, let

V11 = ST (v1, v2, .., vn) (A15)

Then our final form is of the form:

V =
1√
2

(
V11 V11

JV11L −JV11L

)
(A16)

where L = diagonal(−1, 1,−1, 1, ...) chooses the signs of
the second half of columns in V to correspond to the order
of asymmetric, symmetric, asymmetric, symmetric, ...
specified above.

The block V22 = −JV11L is clearly an orthogonal ma-
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trix, and we wind up with:

A0 = −V12 (V22)−1 = V11LV
T
11J = STBTSJ (A17)

where B is built from the eigenvectors (A8):

Bij =
−4

1 + 2n

n∑
k=1

(−1)k sin
k(2i− 1)π

2n+ 1
sin

k(2j − 1)π

2n+ 1

(A18)

=
(−1)i+j+n

1 + 2n

[
1

cos( (i−j)π
1+2n )

+
1

cos( (i+j−1)π
1+2n )

]
,

(A19)

where i = 1, 2..., n; j = 1, 2, ..., n. Finally, the A matrix is
eq A:

A =

(
0 STBTSJ

JSTBS 0

)
. (A20)
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