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Abstract

As a manifestation of cooperative interactions between a single photon and a cluster of atoms,

single-photon superradiance has attracted considerable attention recently but has been studied

insofar as that only quantum emitters are involved in the superradiance process. Here we expand

the scope of investigation to study single-photon superradiance in a waveguide-QED system con-

taining whispering-gallery-mode (WGM) resonators which are essential for many nano-photonic

devices. It is shown analytically and numerically that single-photon superradiance can also occur

when WGM resonators are present. The criteria for the emergence of the superradiant emission

peak and the enhanced atom-light coupling strength are derived. Finally, the general case of a cas-

cade of WGM resonators is investigated by a renormalization approach. Single-photon frequency

comb generation is demonstrated via a frequency-modulated superradiant effective atom in chiral

waveguide-QED systems with WGM resonators.
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I. INTRODUCTION

Superradiance, the cooperative spontaneous emission between quantum emitters, was

first discussed by Dicke in the system of a dense atom cloud [1]. It is a phenomenon due to

the phase locking of the atomic dipoles throughout the medium, resulting in a cooperative

emission process involving a collective mode of all the atoms of the sample [2]. In superra-

diance, atoms can spontaneously emit photons at a much higher decay rate than that of a

single atom and the peak intensity of the emitted light scales as the square of the number of

participating atoms, with a correspondingly narrowed temporal width [1]. Remarkably, the

burst emission and the enhanced intensity can also occur when only one photon is stored

in the atom cloud. Such a single-photon superradiance has recently attracted great atten-

tions. It has been shown that the cooperative interaction in single-photon superradiance

regime results in the collective Lamb shift [3, 4], the broadening of spectrum lineshape [5],

and directed spontaneous emission [6]. These features offer potential applications for quan-

tum control of spontaneous emission and ultrafast readout [7], and long-distance quantum

communication with atomic ensembles [8].

Early work on single-photon superradiance primarily focused on the cases wherein atoms

are in proximity with each other. Recently, single-photon superradiance is investigated for a

spatially distributed system, where the distance between atoms are not negligible compared

to photon wavelength [9–14]. On the other forefront, there has been an ever-increasing pace

of activity in optical devices consisting of optical waveguides and whispering-gallery-mode

(WGM) resonators (e.g., micropost, microdisk, microsphere, microtoroid, and ring), which

hold the promise of a new modality of light switching, amplification, and modulation [15,

16]. In both classical and quantum regimes, the solid-state WGM resonator-based photonic

devices have been shown to enable several unique functionalities, such as add/drop filter

for photon routing, slow light [17, 18], nano-particle sensing [19, 20], and scalable on-chip

photonic qubit entanglement [21]. For distributed waveguide systems, it has been shown that

single-photon multi-atom superradiance can be described by a single superradiant effective

atom with a maximized superradiant decay rate [22]. It is of great interest to extend

the single-photon superradiance phenomenon to functional configurations involving WGM

resonators.

Superradiance, as the fundamental consequence of constructive phase interference of light
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radiation paths, can take place in various systems involving the collective interaction be-

tween light and an ensemble of atoms. Several approaches have been developed to investigate

the collectivity of some spatially extended atom ensembles, such as classical scattering ap-

proach [13] and atomic excitation eigenfunction approach [9]. In the classical scattering

approach, the system dynamics are described by an effective Hamiltonian derived from mas-

ter equations based on atomic density matrix. The atoms are treated as oscillating dipoles,

where the atom-light interaction is characterized by classical scattering theory. Neverthe-

less it is fundamentally inadequate to apply a classical treatment in a photon Fock state

system. The classical scattering approach features the consequent dependence of collective

spontaneous decay rate on the geometry of an infinite atom lattice and sheds light on the

behavior of a finite lattice general state at long times. The atomic excitation eigenfunction

approach calculates the collective exponential decay rate of a dense atom cloud initially at

single excitation state with specific atom density distribution. The single excitation of the

system is described by a distribution function, with the collective decay rate of the atom

cloud denoted by the eigenvalue of its time derivative. In density-operator treatment to

describe an open quantum system, the degrees of freedom of the environment are traced

out, and the resultant reduced density operator characterizes the subsystem of interest in

terms of mixed states. Different from the density matrix treatment, our approach preserves

the full quantum entanglement of the entire system throughout the interaction process; the

subsystem of interest is then described in terms of restricted pure states and the dynamics

governed by a non-Hermitian Hamiltonian. In our case, the non-Hermitian Hamiltonian de-

scribes the non-reciprocal photon leakage into the environment mode. Such a non-Hermitian

Hamiltonian has also been adopted in recent works on the open quantum systems [23, 24].

In this article, Sec. II introduces the schematics of the system and the physical model

describing the system dynamics. Sec. III and Sec. IV discuss the single-photon superradiance

condition when multiple atoms couple to a single WGM resonator and when multiple atoms

couple to a cascade of resonators, respectively. In Sec. V, an example of potential application

of how ultra-strong superradiant coupling strength facilitates the generation of single-photon

frequency comb is presented. Finally, in Sec. VI, we draw a conclusion and briefly discuss

other potential applications regarding single-photon superradiance in WGM systems.

3



(a) (b) Effective atom

transmissionreflection transmissionreflection

input input

FIG. 1. (a) Distributed multi-resonator case. Shown is the case of two WGM resonators (blue

rings). Each resonator couples with a number of two-level atoms (green dots). (b) Renormalization

of the multi-resonator case: the atoms coupled to each resonator in (a) can be mapped to an

effective atom. The configuration of the multiple resonators, each now with a single effective atom,

is further mapped to an effective system consisting of a single resonator and a single atom.

II. THEORETICAL MODEL

Fig. 1(a) plots the wQED architecture studied in this article. The basic configuration

consists of multiple atoms evanescently couple to a WGM resonator. The next iteration

is the cascade of the basic configurations to form a distributed resonator system. As an

example, in Fig. 1(a), a 2-resonator configuration is illustrated in the gray-lined rectangle.

The resonators couple to an optical waveguide with a separation so that the inter-resonator

coupling can be neglected. The Hamiltonian describing the system in Fig. 1(a) can be

written as [25]

H

h̄
=

∫

dx

(

−ivgc
†
R(x)

∂

∂x
cR(x) + ivgc

†
L(x)

∂

∂x
cL(x)

)

+
M
∑

m=1

{

Nm
∑

n=1

[(Ωe − iγ)σ+
mnσ

−
mn + Ωgσ

−
mnσ

+
mn]

+ (Ωr − iγr)(a
†
mam + b†mbm) + (hmamb

†
m +H.C.)

+

∫

dxδ(x− xm)V
(

c†R(x)am + c†L(x)bm +H.C.
)

+
Nm
∑

n=1

(gamnσ
+
mnam + gbmnσ

+
mnbm +H.C.)

}

. (1)

c†R(x) (cR(x)) is the creation (annihilation) operator of a waveguided right-propagating pho-

ton at x, and c†L(x) (cL(x)) is similarly defined for the left-propagating photon. M is the

number of resonators, each of which couples to the waveguide at xm (m = 1, 2, 3, ...M), and
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a number of Nm atoms couple to the m-th resonator. σ
+(−)
mn is the raising (lowering) ladder

operator of the n-th atom coupling to the mth resonator. h̄Ωe and h̄Ωg are the energies

of the excited and ground state of the atom, respectively. In the excitation frequencies of

atoms and resonator modes, renormalized imaginary damping terms γ and γr are added

to characterize their interaction with the ambient environment [26, 27]. A validation of

such renormalized Hamiltonian approach and a comprehensive comparison between it and

other commonly used techniques has been clarified in Ref. [28]. In literature, many fruit-

ful approaches such as Lindblad superoperator, quantum Langevin approach and quantum

jumps have been widely used in describing the quantum noise and dissipations. However

in these approaches, the dissipations and noises are incorporated in the system’s equation

of motion by a phenomenological term describing the stochastic interaction between the

system and the environment, and the system-environment entanglement is inherently not

taken into full consideration. Also, for those calculations of dissipations and noises based

on the density matrix approach, the description is fundamentally incoherent and generates

mixed state results. In contrast, renormalized decay rates in the excitation frequencies can

readily preserve both the system-environment entanglement and the intra-system entan-

glement throughout the calculation, giving a coherent pure-state description of the system

with a precision up to an arbitrarily high order. Therefore, introducing non-Hermitian de-

cay rates in the Hamiltonian is advantageous in compactly calculating pure state solutions

and predicting non-trivial phenomenon of open quantum systems in a mathematically exact

manner. Ω ≡ Ωe − Ωg is the transition frequency. Ωr is the resonance frequency of the

resonator. a and b are the annihilation operators of the counter-clockwise and clockwise

mode of the resonator. Within the atom cluster coupling to the m-th resonator, the n-atom

(1 ≤ n ≤ Nm) in the cluster couples to the two WGMs of the resonator with a coupling

gamn = |ga|eiξθmn and gbmn = |gb|e−iξθmn respectively, where ξ is the order number of WGM

and θmn is the angular position of the atom [29]. V is the resonator-waveguide coupling

strength and Γ ≡ V 2/vg is the resonator decay rate to the waveguide. hm characterizes the

two WGMs conversion strength (backscattering) of the m-th resonator [29]. The general

5



form of the system eigenstates in the single-photon regime is

|Ψω〉 =
{
∫

dxφR,ω(x)c
†
R(x) +

∫

dxφL,ω(x)c
†
L(x)

+

M
∑

m=1

(αm,ωa
†
m + βm,ωb

†
m)

+
M
∑

m=1

Nm
∑

n=1

emn,ωσ
+
mn

}

|0,−〉, (2)

where h̄ω is the energy of the photon, and Eω = h̄(ω +
∑M

m=1NmΩg) gives the energy of

the eigenstate. φR,ω(x) and φL,ω(x) are the right and left propagating eigen-wavefunction.

αm,ω, βm,ω and emn,ω denote the excitation amplitude of two resonator modes and the atoms

respectively. |0,−〉 denotes the vacuum state containing zero photons in the waveguide with

resonator modes not excited and all atoms at the ground state.

III. SUPERRADIANCE IN N ATOMS COUPLED TO ONE WGM RESONATOR

N atoms couple to one WGM resonator : We seek to establish an effective mapping

(superradiance condition) so that the optical response of the configuration is identical to

that of a single effective atom coupling to the resonator, for the same single-photon input.

Also, the excitation amplitude and the entanglement information of the N atoms should be

preserved by the effective atom throughout the interaction. For this purpose, we expand the

quantum states of both systems as follows

|Ψ(t)〉 =
∫

dω

2π
e−i(ω+NΩg)t|Ψω〉〈Ψω|Ψ(0)〉, (3a)

|Ψ(t)〉 =
∫

dω

2π
e−i(ω+Ωg)t|Ψω〉〈Ψω|Ψ(0)〉, (3b)

where |Ψ(t)〉 denotes the state of the fundamental configuration at arbitrary time t, and the

overline denotes the physical quantities pertinent to the effective system. The properties of

the ground states of both systems are specified by |−〉 ≡ |−〉 and Ωg ≡ NΩg. For the initial

condition of a left-incident single photon, the photonic eigen wavefunctions takes the form

φR,ω(x) = [θ(x1−x)+ tωθ(x−x1)]e
iωx/vg and φL,ω(x) = rωθ(x1−x)e−iωx/vg [30] (the effective

system has the same form but not shown), and the projection 〈Ψω|Ψ(0)〉 = 〈Ψω|Ψ(0)〉 =
∫

dxφR(x, t = 0)e−iωx/vg . The expansion in Eqs. 3 reduces to tω = tω and rω = rω. The

preserved excitation and entanglement of atoms require
∑N

n=1 enωσ
+
n = eωσ

+, where σ+
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describes the single excitation of the collectivity among the atoms (subscript “m”=1 for the

resonator number is dropped). By solving H|Ψω〉 = Eω|Ψω〉 and H|Ψω〉 = Eω|Ψω〉, one
obtains

tω =
∆2δ + Γ2δ

4
−∆G2

+ − i
ΓG2

−

2
− I1 +

I2
δ
− |h|2δ

(∆ + iΓ
2
)(∆δ −G2

+ + iΓδ
2
)− |h|2δ + I2

δ
− I1

(4a)

tω =
∆2δ + Γ2δ

4
−∆G

2

+ − i
ΓG

2

−

2
− I1 − |h|2δ

(∆ + iΓ
2
)(∆δ −G

2

+ + iΓδ
2
)− |h|2δ − I1

(4b)

where ∆ ≡ ω−Ωr+iγr, δ ≡ ω−Ω+iγ, G2
+ =

∑N
n=1(|gan|2+|gbn|2), G2

− =
∑N

n=1(|gan|2−|gbn|2),
I1 =

∑N
n=1(g

∗
angbnh + gang

∗
bnh

∗) and I2 =
∑N

n=1

∑N
j=1[|gan|2|gbj|2 − (g∗angbn)(gajg

∗
bj)]. For the

effective system, δ = ω−Ω+iγ, G
2

+ = |ga|2+|gb|2, G
2

− = |ga|2−|gb|2, and I1 = g∗agbh+gag
∗
bh

∗.

rω (rω) and enω (eω) can also be obtained similarly (not shown). By equating tω = tω,

rω = rω, and
∑N

n=1 enωσ
+
n = eωσ

+, superradiance condition is equivalent to the followng set

of equalities

|gan|
|gbn|

=
|ga|
|gb|

, ∀n (5a)

ξ(θn − θ) = Cπ, ∀n, (C is integer) (5b)

|ga(b)|2 =
N
∑

n=1

|gan(bn)|2, (5c)

Ω− iγ = Ω− iγ, (5d)

σ+|0,−〉 =
N
∑

n=1

gan
ga

σ+
n |0,−〉. (5e)

The first one and the third one set constraints on the atom-resonator couplings; while the

second one indicates that the angular distance of any two atoms must be an integral multiple

of π. The fourth one specifies the properties (transition frequency and the dissipation rate)

of the effective atom; while the last one describes the excited state of the effective atom.

We note that although the superradiance conditions in Eqs. 5 are derived for the case with

an incident photon, it can be shown straightforwardly by applying time-reversal symmetry

argument that they also described the time-reversed process, i.e., the cooperative single-

photon emission of atoms. Thus the entangled state given by Eq. 5e is also the single-photon

superradiant state that gives the maximum spontaneous emission rate.

Numerical results : To validate the single-photon superradiance effective mapping, we

also carry out a rigorous numerical investigation of the system dynamics by solving the
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FIG. 2. (a) Reflected single-photon waveform for various atomic angular distance. The case

of one effective atom with 2 times coupling (4|g|2, open circle) is also shown for comparison.

Γ/|g| = 25. γr, γ, and h are negligible. (b) Transmission spectrum for cases in (a). (c) Total

atomic excitation (in log scale) for cases in (a). (d) Reflected waveform for N = 1 (blue/dot), 4

(green/dash), 40 (orange/solid), and the case of an effective atom with |g|2 = 40|g|2 (open circle),

when ξ(θn − θn−1) = π. Γ/|g| = 9. γr, γ, and h are negligible. (e) Transmission spectrum for cases

in (d). (f) Total atomic excitation (in log scale) for cases in (d).

Schrödinger equation ih̄∂t|Ψ(t)〉 = H|Ψ(t)〉 numerically, using none of the assumptions in

the aforementioned analytical approach. A single photon is injected into the waveguide from

the far left and propagates toward to the right. The equations of motion are evolved numeri-

cally in time to trace out the full spatiotemporal dynamics of the scattering process [31]. The

atoms are set to couple with two WGMs with the same strength |gan| = |gbn| = |g| and the

incident photon has a Gaussian waveform with a spatial standard deviation σ = 0.1vg/|g|.
The photon, resonator and atoms are all on resonance. Fig. 2(a)-(c) plot the case for N = 4

atoms with various atomic angular distance for Γ = 25|g|. For atoms with an angular dis-

tance ξ∆θ = π (orange solid curves), the system satisfies the superradiance condition and we

find numerically that the optical response of the effective system is exactly the same as that
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of a single atom with a coupling |g| =
√
4|g| (open circles). The reflected wave (Fig. 2(a))

exhibits a peak and then decays exponentially with a rate of 1.3|g|. The transmission spec-

trum (Fig. 2(b)) follows a Lorentzian shape with a total reflection at resonance point and

a full width at half maximum (FWHM) of 1.3|g|, same as the waveform decay rate. The

collective excitation of atoms
∑N

n=1 |en(t)|2 (Fig. 2(c)) decays exponentially at a fixed rate

also equivalent to 1.3|g| after absorbing the photon. However, when the angular distance is

changed to 0.3π (blue dot curves) and 0.5π (green dash curves), where coherent interaction

is broken and the superradiance condition is not satisfied, the dynamics is entirely different

with the effective atom case. The reflected wave now is weak or even eliminated, with the

exponential decay rate of the reflected waveform decreased to 0.5|g| (0.3π angular distance)

and 0 (no reflection for 0.5π angular distance). The transmission spectra do not show a

Lorentzian dip and photons merely get reflected due to the strong destructive interference.

Also, the collective excitations of atoms decay at a much slower rate of 0.5|g| (0.3π angular

distance) and 0.7|g| (0.5π angular distance).

Fig. 2(d)-(f) show the enhancement of single-photon spontaneous emission rate when the

atom number N increases from 1 to 40 under the superradiance condition for Γ = 9|g| (all
other parameters are unchanged). As N increases from 1 (blue dot curves) to 4 (green dash

curves) to 40 (orange solid curves), the peak in the reflected single-photon waveform becomes

increasingly more prominent (Fig. 2(d)), with exponential decay rate increased from 0.9|g|
to 4.2|g| to 5.7|g|, respectively. The transmission spectrum is broadened (Fig. 2(e)) with

the FWHM of the transmission spectrum broadened from 0.9|g| (N = 1) to 4.3|g| (N = 4),

and it is even split to three dips for N = 40. The collective atomic excitation (Fig. 2(f))

also decays at a faster rate, from 0.9|g| (N = 1) to 4.5|g| (N = 4) to 5|g| (N = 40).

Interestingly, for the N = 4 case, the collective atom excitation in Fig. 2(f) exhibits a

transient oscillation pattern which has a linear decay envelope in the semi-log plot. The

transient oscillation becomes more rapidly when N increases to 40. As N increases, the

coupling strength crossovers from weak-coupling regime Γ ≫
√
N |g| for N = 1 to the

strong-coupling regime Γ ≃
√
N |g| for N = 4 and 40 (which can be achieved even for small

|g|). Consequently, the small photonic relaxing rate Γ from the resonator to the waveguide

in the strong-coupling regime presents a bottleneck for photon transfer, and accordingly the

photon would jump coherently between the resonator and the atoms numerous times before

it is eventually leaked to the waveguide, resulting in such an oscillation of atomic excitation.
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FIG. 3. (a) Reflected waveform of a short Gaussian wavepacket input. Orange solid curve: N1 = 3,

N2 = 5, and the cascade system satisfies the superradiance condition. Open circle: the atoms on

each resonator are replaced by one effective atoms (|g1|2 = 3|g|2, |g2|2 = 5|g|2). Green dash curve:

the cascade system is replaced by a renormalized atom (coupling strength |gR|2 = 8|g|2) coupled

to one WGM resonator. Blue dot curve: a comparison case that a single atom (coupling strength

|g|) couples to a resonator. Γ/|g| = 25. γr, γ, and h are negligible. (b) Transmission spectrum. (c)

Total atomic excitation (in log scale).

In the strong-coupling regime, the atomic decay rate does not increase further when N is

increased, as the rate is fundamentally limited by Γ. Nonetheless, the optical responses of

N = 40 case and effective atom with |g|2 = 40|g|2 (open circles) (Fig. 2(d)) remain identical.

In the weak coupling regime, where cooperative atom number is small and |g|2 ≪ Γ2,

the transmission spectrum can be well approximated by a Lorentzian shape with FWHM

8|g|2/Γ, and the collective spontaneous decay rate of atoms scales linearly with atom number

N . When the number of cooperative atoms increases so that 8|g|2 > Γ2, the bottleneck

effect comes into play. The linear scaling of atomic decay rate fails, and the transmission

spectrum will split into three dips, with two off resonance total reflection dips at ω =

Ω ±
√

2|g|2 − Γ2/4. By further increasing superradiant coupling strength to the strong

coupling regime |g|2 ≫ Γ2, the FWHM of the center dip in the transmission spectrum and

the general decay rate of atoms both gradually approaches Γ as |g| → ∞.
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IV. SUPERRADIANCE IN CASCADED WGM RESONATORS

Cascaded WGM resonators : A solid-state WGM resonator typically has a size of order

10∼100 µm, thus a photon wavepacket (usually has a spatial size > 1 mm) can couple co-

herently to multiple resonators at the same time, indicating the possibility of single-photon

superradiance for cascaded systems. Our strategy for investigating the single-photon su-

perradiance phenomenon in a multi-atom multi-resonator configuration is through a renor-

malization process (Fig. 1(b)): first, the atoms coupled to each resonator is mapped to an

effective atom via the aforementioned single-resonator superradiance condition; next, the

configuration of the multiple resonators, each now is coupled with only a single effective

atom, is further mapped to an effective system consisting of one renormalized single res-

onator and one renormalized single atom that exhibits the single-photon superradiance. To

illustrate the process, we consider a two-resonator case, wherein each resonator couples to

an effective atom with coupling strength ga1, gb1 and ga2, gb2, respectively. To describe the

cascade system’s superradiance in the effective mapping picture, we search for the condi-

tions when the transport property of the two-resonator cascade (described by t
(2)
ω and r(2)ω )

are physically equivalent to that of a renormalized one-atom one-resonator effective system

(described by t
R
ω and rRω ; the superscript R denotes the renormalized single-resonator sys-

tem), i.e., |t(2)ω |2 = |tRω |2 and |r(2)ω |2 = |rRω |2. Due to the accumulated phase retardation of

the running waves propagating within multiple resonators, here we require only the equality

of the norm of the amplitude but not the phase. After some algebra, the two systems are

found to be physically equivalent under the following set of conditions: (1) The distance

between the resonators is an integer multiple of λ/2 (λ is the wavelength corresponding

to photon center frequency); (2) The resonators are identical, and are on resonance with

the atoms Ωr = Ω = Ω; (3) The atoms couple to two counter-propagating modes with the

same strength |ga1,2| = |gb1,2| = |g1,2|, and atom-resonator coupling is much weaker than

resonator-waveguide coupling Γ2 ≫ 2|g1|2 + 2|g2|2; (4) The angular positions of two effec-

tive atoms satisfy ξ(θ1 − θ2) = Cπ (C is integer); and (5) The back-scattering strength

|h1,2| and dissipations γr, γ are all negligible compared to |g1,2|. These sufficient condi-

tions leads to |t(2)ω |2 ≈ |tRω |2 with renormalized effective parameters Ω
R

r = Ωr, Γ
R
= Γ and

|gR| =
√

|g1|2 + |g2|2. That is, the two-resonator cascade now can be mapped to a renormal-

ized one-atom one-resonator effective system, wherein the renormalized resonator has ex-
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actly the same properties as those in the original two-resonator system but the renormalized

resonator-atom coupling is enhanced. The superradiance condition can be straightforwardly

generalized to a multi-resonator cascade, wherein the renormalized superradiant coupling

strength is |gR| =
√

∑M
m=1

∑Nm

n=1 |gmn|2.
Numerical results : For the two-resonator case, each resonator is coupled with a number

of identical atoms (N1 = 3 and N2 = 5, respectively; |ga| = |gb| = |g| for each atom; and

Γ/|g| = 25). The incident photon pulse has a width σ = 0.1vg/|g| and all parameters are set

to satisfy the superradiance condition. The results are shown in Fig. 3. Compared with the

one-atom one-resonator case with an atom-resonator coupling strength |g| (blue dot curve),
the cascade system (orange solid curve) exhibits a prominent reflection peak (Fig. 3(a)), a

broadened transmission spectrum (Fig. 3(b)), and an enhanced collective atomic excitation

decay rate (Fig. 3(c)), which are all signatures of single-photon superradiance. Also shown in

Fig. 3 (open circles) is the case wherein the atoms coupled with each resonator are replaced by

one effective atom (with |g1|2 = 3|g|2 and |g2|2 = 5|g|2 respectively). The agreement with the

cascade system (orange solid curve) provides a numerical support for the equivalence of the

two systems, as established previously. Moreover, the numerical results for a renormalized

system (a renormalized atom with |gR|2 = 8|g|2 coupled to a renormalized resonator with

Γ
R
= Γ), as shown by the green dash curves, indicate that single-photon superradiance for

the multi-atom two-resonator cascade system can be well-approximated by a renormalized

one-atom one-resonator system. Quantitatively, the decay rate of the emitted waveform, the

decay rate of the total atomic excitation, and the bandwidth of the transmission spectrum

share a same value of 2.88|g| for both the renormalized system (green dash curve) and the

cascaded system (open circles), while the single atom case (blue dot curve) has a value of

0.35|g|. We note that there exists a linear scaling in decay rate approximately proportional

to atom number N since the system is still in weak coupling regime.

V. SINGLE PHOTON FREQUENCY COMB GENERATION

The enhanced interaction between atoms and a single-photon under superradiance condi-

tions can be exploited to distinguish nontrivial optical phenomena that are otherwise subtle

for feeble atom-photon interactions. Here we describe the generation of single-photon fre-

quency comb via a slowly frequency-modulated superradiant effective atom with a chiral
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FIG. 4. Single-photon frequency comb generation. (a) Inset: Schematics. A frequency-modulated

effective superradiant atom (green dot) chirally couples to the counter-clockwise mode of a WGM

resonator. Transmitted single-photon wavepacket for a single atom (N = 1, blue dash curve) and

for superradiant atom consisting of four atoms (N = 4, orange solid curve), respectively. The input

photon has a long Gaussian waveform. (b) The frequency spectra of the output wavepforms in

(a). (c) Physical picture of an effective atom coupled to a resonator and the modulation of atom

transition frequency. The effective coupling strength determines both the rate of spontaneous

emission and the bandwidth of coupling (∼ 2|g|). The spontaneous emission occurs only when the

atom transition frequency is near resonance inside the coupling bandwidth.

coupling [32]. A single-photon frequency comb is an optical spectrum of a single-photon

pulse which consists of equidistant spectral lines over a wide bandwidth [33, 34]. Single-

photon frequency comb is an important tool for high-precision optical metrology and also

provides a means for encoding qubits in quantum communication. Although a number of
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frequency comb generation schemes exist, to date it is still challenging to generate frequency

combs at single-photon levels. Here we present a generation method based on strong atom-

light coupling in WGM resonators. The configuration is schematically plotted in the inset of

Fig. 4(a): an effective atom (green dot), which represents a cluster of atoms under the afore-

mentioned superradiance condition, asymmetrically couples to only one of the two WGMs

of the resonator (counter-clockwise mode in this case), where the transition frequency of

the atoms is modulated by a slowly-changing external electric field. One effect of the ex-

ternal modulation is the nonlinear frequency mixing between that of the single-photon and

the modulation frequency, in order to generate sideband components desired in a frequency

comb. The chiral coupling can be created by using strong light confinement to lock the

local polarization of the light to its propagation direction at the emitters [32]. As a result,

even though both counter-propagating WGMs are supported in the resonator, the quantum

emitters preferentially couple to light unidirectionally. With the couplings taken directly

from a recent experiment for a chiral waveguide QED system [35], the waveguide-resonator

coupling strength Γ is assumed to be 40 MHz, and each atom couples to the resonator with

a strength |ga| = 24 MHz (|gb| = 0 Hz due to the chiral coupling). The atoms are mod-

ulated by a slowly-varying external electric field with a frequency ωm = 10 MHz, which

is small compared to the typical atom transition frequency (≫ 1 THz in [35]). Via the

Stark effect, the transition frequency of the atoms now changes with time and becomes

Ω(t) = Ω + κ cos(ωmt), where the modulation amplitude κ is chosen to be 300 MHz [36].

Consider a long single-photon Gaussian wavepacket with a spatial width σ = vg × 500 ns

incident from the left port of the waveguide. After interacting chirally with the frequency-

modulated superradiant atom, the photon is scattered unidirectionally to the right output

port of the waveguide. Fig. 4(a) plots the output waveform for the case when the effective

atom consists of four atoms (orange solid curve). Instead of a single superradiant peak, the

modulation now gives rise to a series of narrow and strong superradiant peaks. Accordingly,

in the frequency domain, as shown in Fig. 4(b) (orange solid curve), the modulation of the

superradiant effective atom enables efficient conversion and redistribution of the photon en-

ergy into equidistant sidebands centered at Ω ± lωm, l = 1, 2, 3, ..., respectively, exhibiting

a single-photon frequency comb. The center frequency peak is largely suppressed so that

the output photon is mostly off-resonant to the superradiant effective atom. Also, by elim-

inating the far-detune frequency components with proper optical bandpass filters, the fast

14



oscillation noises in the wavepacket can be suppressed. As a comparison, in Fig. 4(a), we also

show the output waveform for the modulated single-atom case (blue dash curve), wherein

the modulation merely induces small-amplitude ripples superimposed on the single-photon

Gaussian profile. The modulation also causes weak sideband components in the frequency

spectrum, but most of the photon energy remains in the original bandwidth, as shown by

the strong center peak in Fig. 4(b) (blue dash curve). A physical picture of how frequency

comb is improved by superradiant coupling is depicted in Fig. 4(c). As the external electri-

cal field drives the transition frequency of the atoms to change sinusoidally between Ω + κ

and Ω − κ, the atom-resonator energy exchange is turned on and off periodically since it

only occurs when atoms are near resonance with the resonator (within the atom coupling

bandwidth ∼ 2|g|). Consequently, spontaneous emission peaks are imposed on the photon

wavepacket periodically and creates comb shaped equal-distant peaks in both space and

frequency domain. The distances between individual peaks are πvg/ωm and ωm in the space

and frequency domain, respectively. Each peak in the frequency domain follows the shape

and the FWHM with the initial input wavepacket. Since the effective coupling strength |g|
characterizes the rate of spontaneous emission, a stronger coupling results in more sharpened

peaks and correspondingly more high frequency components in the spectrum, i.e., better fre-

quency comb quality. However, an exceedingly high coupling strength does not generate an

ideal frequency comb, as the broad coupling bandwidth (2|g| ∼ κ) of the atoms will preserve

the resonator-atom coupling for most of time and degrades the periodic on/off modulation

to the atomic spontaneous emission. Under that situation, the physical picture is similar

to a photon coupled to atoms that are subject to a phonon mode, resulting in only two

Stocks and anti-Stocks sidebands at Ω − ωm and Ω + ωm in the output photon spectrum,

respectively.

VI. CONCLUSION

In this article, we present an effective mapping method to investigate single-photon super-

radiance for whispering-gallery-mode resonator systems in wQED systems. Such an effec-

tive mapping is a wavefunction based first principle method that focus on the fundamental

physics of cooperative atom-light interaction. The occurrence conditions for single-photon

superradiance in WGM systems are rigorously derived and the specific entanglement of
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atoms that gives the maximum superradiant spontaneous emission rate is uncovered. Fur-

thermore, as our method maintains the coherence between atoms and the photon wavefunc-

tion, it provides a comprehensive picture of the changed photon scattering properties under

superradiance such as peaked emission intensity, broadened transmission spectrum and os-

cillating resonator-atom energy exchange due to the bottlenecked resonator coupling, to a

high quantitative accuracy.

Our results provide a basis for potential applications of single-photon superradiance in

the atoms-WGM resonator systems. By exploiting the ultra-strong coupling strength in a

superradiant atoms-WGM resonator system, nontrivial optical responses can be engineered,

as what we have presented in the generation of single-photon frequency comb. Also, the ma-

nipulation of the effective coupling strength is potentially useful in efficient photon routing in

quantum circuits [35]. Furthermore, the entangled Dicke state maintained in a superradiant

atoms-WGM resonator system allows the control of phase coherence and synchronization of

dynamics between distant particles [37], which are the essential ingredients for large-scale

quantum information systems. Finally, as multi-photon nonlinearity is essential in various

fields, it would be of great importance to extend and generalize our approach for investigat-

ing multi-photon superradiance for generating novel and strong nonlinear quantum optical

properties.
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