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Abstract

We theoretically define a complete class of partially coherent vortex beams of any radial and

azimuthal order, and characterize the behavior of their phase singularities and orbital angular

momentum. These beams are shown to exhibit a coherence vortex supplement to the van Cittert-

Zernike theorem, in which the vortex structure of the random beam reconstitutes on propagation.

This full characterization of a class of partially coherent Laguerre-Gauss beams of any order may

find application in free-space optical communication, among other uses.

I. INTRODUCTION

The study of vortex structures in optical fields, and other types of wavefield singularities,

has become a significant area of investigation in modern optics, named singular optics [1–

3]. Spatially coherent beams carrying optical vortices, which are called vortex beams, have

attracted much interest due to their potential usefulness in diverse areas such as coronag-

raphy [4], coherence filtering [5], and free-space optical communication [6]. Since Allen et

al. found that Laguerre-Gauss beams, possessing a phase vortex core, consequently carry a

well-defined orbital angular momentum (OAM) [7], vortex beams have also been employed

in optical trapping and rotation [8], and the design of light-driven machines [9].

In a seemingly unrelated development, beams which are partially coherent have also been

shown to be advantageous in many applications, including free-space optical communication

[10], particle trapping [11], and atom cooling [12]. The overlap between the applications of

vortices and the applications of partial coherence makes it quite attractive to consider their

synthesis, namely vortex structures in partially coherent beams. When dealing with such

a situation, however, the phase of the field is not well-defined, as it is a random variable

in space and time. Instead, researchers have investigated analogous phase singularities in

the two-point correlation function of partially coherent beams; the typical form of such

singularities are known as correlation singularities or coherence vortices [13–16].

For partially coherent beams carrying vortex structures, which are now referred to as

partially coherent vortex beams (PCVBs), it is known that optical vortices evolve into

coherence vortices when the spatial coherence is decreased [17]. Because coherence vortices

are robust under such a decrease, they may prove to be useful structures to carry information

in free-space optical communication. Furthermore, it was recently found that PCVBs have
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a more diverse set of OAM characteristics than their spatially coherent vortex counterparts,

making them interesting physical objects of study in their own right [18]. Simple classes of

PCVBs may exhibit an OAM density analogous to a fluid body rotator, a rigid body rotator,

or a Rankine vortex – a mixture of the two former classes [19].

Though there are now a number of publications on the properties of PCVBs, most of the

research has been restricted to Laguerre-Gauss beams of low azimuthal order. This work

began with the introduction of a “beam wander” model for a partially coherent vortex beam

of radial order n = 0 and azimuthal order m = 1 in the waist plane [17], to the study of

such beams on propagation [16]. Quite recently, this work was extended to the analysis of

PCVBs of radial order n = 0 and any azimuthal order m [20], introducing a whole class

of beams with different topological and OAM characteristics. But the radial order of the

beam will also affect these characteristics, and it has been shown that radial orders may

also be used for multiplexing and demultiplexing of signals [21]. It is therefore of interest to

study the behavior of PCVBs of any radial and azimuthal order. To date, only one other

paper has investigated such beams in detail; however, their model of a PCVB could only be

analyzed computationally [22].

In this paper, we determine a generalized analytic solution for partially coherent Laguerre-

Gauss beams of any radial order, any azimuthal order, and at any propagation distance. The

OAM properties of these beams are analyzed and the behavior of the coherence vortices for

different degrees of coherence and different radial and azimuthal orders are studied. The use

of an analytic solution allows us to examine in detail the origins of any unusual topological

features present in the beam, and we observe an unexpected reconstruction of the coherent

vortex structure on propagation, which we consider a vortex supplement to the van Cittert-

Zernike theorem. These results complete the characterization of analytic PCVBs and they

open the door for their use in applications such as free-space optical communications.

II. DERIVATION OF RADIAL ORDER PCVBS

Our derivation of PCVBs with any radial order follows the same general strategy applied

in our previous work [20]; here we outline this calculation, highlighting any new considera-

tions that arise when radial order is included.

To characterize the coherence properties, we will work in the frequency domain and
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calculate the cross-spectral density function W (r1, r2, z) of the beams, which can be written

as an average over an ensemble of monochromatic realizations of the field U(r, z) in the

form,

W (r1, r2, z) = 〈Ũ(r1, z)U(r2, z)〉, (1)

where 〈· · ·〉 represents the ensemble average and a tilde is used to represent complex conju-

gation throughout the paper.

In the modeling of a partially coherent vortex beam, we have great freedom in the choice

of ensemble, a point which we will find important in Section IV. Here we continue to use

the venerable “beam wander” model [17] introduced in 2004, in which every member of the

ensemble is a coherent beam but with a random central axis position r0. We may then write

W (r1, r2, z) =
∫

P (r0)Ũ(r1 − r0, z)U(r2 − r0, z)d
2r0, (2)

where P (r0) is the probability density of the axis position, which we take to be of Gaussian

form,

P (r0) =
1

πδ2
exp

(

−r20
δ2

)

, (3)

with r0 =
√

x2
0 + y20 the transverse radial position of the axis, and δ the variance of the

beam wander. In the limit δ → 0, the beam axis position is fixed and the beam is spatially

coherent; an increase in δ results in a decrease of spatial coherence.

In Ref. [20], the foundational member of the ensemble was taken to be a Laguerre-Gauss

(LG) beam of radial order n = 0 and arbitrary azimuthal order m. We now generalize this

and consider a foundational member of arbitrary radial order n and arbitrary azimuthal

order m, with m ≥ 0 for convenience. The field Unm(r, z) may be written in cylindrical

coordinates (r, φ, z) in the form [3, Chapter 2]

Unm(r, z) = C(z)Lm
n

[

2r2

w2(z)

]

exp

[

− r2

σ2(z)

]

rm exp[imφ] exp[−iΦ(z)(2n +m+ 1)], (4)

where Lm
n is an associated Laguerre function of order n andm. Other parameters are defined

in the usual way for LG beams, with w(z) representing the beam width, R(z) representing

the wavefront curvature, Φ(z) representing the Gouy phase shift, and σ(z) is a complex

propagation constant; these formulas are all given in Ref. [20]. We define w0 as the beam

waist width and z0 = πw2
0/λ is consequently the Rayleigh range of the beam, with λ the
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wavelength. The quantity C(z) is a normalization function, given by

C(z) =

√

2n!

πw2(z)(n +m)!

( √
2

w(z)

)m

. (5)

It is to be noted that the vortex is characterized by the term rm exp[imφ] = (x + iy)m;

this is the functional form of a vortex we will look for in our final results.

We may substitute from Eqs. (4) and (3) into Eq. (2). The resulting integrand contains

terms of Gaussian form and polynomials of x0 ± iy0, which can be readily integrated ana-

lytically. The exception are the associated Laguerre functions, which only appear when we

have n > 0. We take the direct approach of writing them in their power series form, namely,

Lm
n (x) =

n
∑

k=0

[−1]k

k!







n +m

n− k





xk, (6)

where the parentheses indicate a binomial coefficient. The argument of the associated La-

guerre functions in Eq. (4) is proportional to |r− r0|2, which may be written as

|(x− x0) + i(y − y0)|2 = |(x+ iy)− (x0 + iy0)|2. (7)

Therefore the Laguerre functions may also be written as polynomials of x0 ± iy0.

On further substituting this associated Laguerre representation into Eq. (2), everything

may be evaluated analytically, albeit with significant effort. The radial and azimuthal com-

ponents of r0 may be integrated separately, as was done in Ref. [20]. The result is given by

the lengthy expression

W (r1, r2, z) = πD(r1, r2, z)
n
∑

p=0

n
∑

q=0

m+p
∑

k1=0

p
∑

l1=0

q
∑

k2=0

m+q
∑

l2=0






n +m

n− p













n+m

n− q













m+ p

k1













m+ q

l2













p

l1













q

k2







× (−1)p+q+2k1+2k2
1

p!q!

(

2

w2(z)

)p+q
Γ(k1 + k2 + 1)

A2m+2p+2q−k1−k2+1

×
[

1

α2
(x1 − iy1)−

1

σ2
(x2 − iy2)

]m+p−k1 [ 1

α2
(x1 + iy1)−

1

σ2
(x2 + iy2)

]p−l1

×
[

1

α̃2
(x2 − iy2)−

1

σ̃2
(x1 − iy1)

]q−k2 [ 1

α̃2
(x2 + iy2)−

1

σ̃2
(x1 + iy1)

]m+q−l2

. (8)

This equation is an analytic expression for the entire class of PCVBs of any radial order n,

azimuthal order m, and at any propagation distance z. It is the main result of this paper.
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This expression has been derived for positive azimuthal order m, but the negative order

result can be derived by switching the sign of the imaginary part of each term of the form

(x+ iy) or (x− iy).

In Eq. (8) we have introduced the parameters

A =
1

σ̃2
+

1

σ2
+

1

δ2
,

1

α2
=

1

σ2
+

1

δ2
, (9)

and it is to be noted that the obvious dependence of A, σ and α on z has been suppressed

for brevity.

The origins of the summations in Eq. (8) are worth explaining. The sums
∑n

p=0

∑n
q=0

come from the expansion of the two associated Laguerre functions. The remaining four come

from the method of evaluating the integral: each term of the form [(xk − x0)± i(yk − y0)],

where k = 1, 2, must be expanded in a binomial expansion to extract the x0, y0 terms. The

associated Laguerre function arguments contain [(xk−x0)
2+(yk−y0)

2], and each requires two

binomial expansions; when n = 0, the Laguerre functions are constants and only two sums

are needed. The sums have the additional constraint that only terms with l1 + l2 = k1 + k2

are nonzero.

The term D(r1, r2, z) is of the form

D(r1, r2, z) =
|C|2
πδ2

exp

[

− r21
Aσ̃2δ2

]

exp

[

− r22
Aσ2δ2

]

exp

[

−(r1 − r2)
2

A|σ|4
]

, (10)

which is the expression of a Gaussian Schell-model beam [23]. The entire class of PCVBs

may therefore be said to have a global correlation length σµ of

σ2
µ = A|σ|4 = w2 2 + w2

δ2

1 + k2w4

4R2

. (11)

In this expression, k = 2π/λ is the wavenumber.

For n = 0, Eq. (8) reduces to the form of Eq. (27) of [20], which was the derivation

of PCVBs of any azimuthal order and radial order n = 0. Equation (8) generalizes that

previous result and provides us with a closed-form solution for PCVBs of any radial order

n and any azimuthal order m, at any propagation distance. We may now investigate what

effect the radial order has on the behavior of PCVBs.
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III. ORBITAL ANGULAR MOMENTUM

Most free-space optical communications schemes sort modes by their orbital angular

momentum. We therefore begin our analysis of our radial order PCVBs by considering their

OAM properties.

In general, the angular momentum of light is a combination of spin (polarization) and

orbital (phase) angular momentum, and must be treated vectorially. Here we consider a

paraxial scalar partially coherent beam, which on average has no spin angular momentum.

The OAM flux density Md(r, z) of such a field along the z axis can be expressed as [24]

Md(r, z) = −ǫ0
k
Im {y1∂x2

W (r1, r2, z)− x1∂y2W (r1, r2, z)}
r1=r2

, (12)

where ∂x2
and ∂y2 represent the partial derivatives with respect to x2 and y2, respectively.

On substitution from Eq. (8) into Eq. (12), we have

Md(r, z) =
ǫ0
k

|C|2
δ2

exp

[

− 2r2

βw2(z)

]

n
∑

p=0

n
∑

q=0

m+p
∑

k1=0

p
∑

l1=0

q
∑

k2=0

m+q
∑

l2=0

×







n+m

n− p













n+m

n− q













m+ p

k1













m+ q

l2













p

l1













q

k2







× (−1)p+q+2k1+2k2
1

p!q!

(

2

w2(z)

)p+q
Γ(k1 + k2 + 1)

Ak1+k2+1

× (m+ l1 − k1)r
2m+2p+2q−2k1−2k2+2

(

1

β

)2m+2p+2q−2k1−2k2−1

, (13)

with

β ≡
(

1 +
2δ2

w2(z)

)

. (14)

This complicated expression for the OAM flux density Md(r, z) describes the spatial distri-

bution of OAM within the cross-section of a beam. However, this expression alone obscures

the physics, because this flux depends not only on the strength of circulation of the phase at

a location, but also on the intensity of the beam at that location. To isolate the circulation,

we may consider a normalized OAM flux density md(r, z), which represents the average

OAM flux density per photon,

md(r, z) =
h̄ωMd(r, z)

S(r, z)
, (15)

where S(r, z) is the z-component of the Poynting vector. This quantity describes the average

OAM that would be measured for a photon at that particular point in space. The Poynting
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vector expression is given by

S(r, z) =
k

µ0ω
W (r, r, z)

=
k

µ0ω

|C|2
δ2

exp

[

− 2r2

βw2(z)

]

n
∑

p=0

n
∑

q=0

m+p
∑

k1=0

p
∑

l1=0

q
∑

k2=0

m+q
∑

l2=0

×







n +m

n− p













n+m

n− q













m+ p

k1













m+ q

l2













p

l1













q

k2







× (−1)p+q+2k1+2k2
1

p!q!

(

2

w2(z)

)p+q
Γ(k1 + k2 + 1)

Ak1+k2+1

× r2m+2p+2q−2k1−2k2

(

1

β

)2m+2p+2q−2k1−2k2

. (16)

A complementary quantity is the total average OAM per photon mt of the PCVBs, which

is given by

mt =
h̄ω

∫

Md(r, z)d
2r

∫

S(r, z)d2r
= mh̄. (17)

It is readily found that mt is simply proportional to the topological charge m of the un-

derlying vortex beam, and independent of the radial order n; this is not surprising, as our

ensemble is constructed entirely from pure Laguerre-Gauss beams with topological charge

m and OAM mh̄, and the OAM of Laguerre-Gauss beams has been shown to be intrinsic,

i.e. independent of the axis of measurement [25].

The radial order, however, will affect the distribution of OAM in the beam, as indicated

by the normalized OAM flux density. Figure 1 shows the normalized OAM flux density of

PCVBs with different radial order; as the beams are rotationally symmetric, only a cross-

section of this density is shown.

It can be seen that the beams in general act like Rankine vortices, with a quadratic radial

dependence near the core and a constant value in the outskirts, analogous to rigid body

rotation and fluid-body rotation, respectively. This follows directly from the asymptotic

behavior of Eqs. (13) and (16). It can be seen that higher radial order corresponds to a

wider quadratic region in the beam, i.e. a more Rankine-like behavior. This indicates that

radial order may be used as well as spatial coherence to adjust the distribution of OAM

within a beam. For PCVBs, in contrast to coherent vortex beams, the radial order provides

an extra degree of freedom to control OAM properties.

What is the origin of this increased width for n > 0? For n = 0, the Rankine vortex

behavior may be interpreted as arising from the random motion of the vortex core, which
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FIG. 1. The distributions of normalized OAM flux density md/h̄ at z = 0 for different radial order

n. Here we have taken w0 = 1 mm, δ = 5 mm, and m = 1.

results in rapid changes in phase near the central axis of the beam and on average disrupts

the helicity of the phase. For n > 0, the zero rings, across which the phase jumps by π, also

contribute to this rapid change of phase, resulting in a broader Rankine region.

Figure 2 shows the distribution of normalized OAM flux density at different propagation

distances. It can be seen that the beam looks increasingly like a pure fluid-like rotator as z

increases. As a coherent vortex beam has pure fluid-like OAM flux density, this observation

suggests that our beams appear to grow more coherent on propagation, at least with respect

to their OAM behavior. We will elaborate on this in the next section.

For large values of r, the normalized OAM flux density takes on the approximate form,

md ≈ mh̄

(

1 +
2δ2

w2
0(1 + z2/z20)

)

, (18)

in agreement with Fig. 2 which shows that the value of md at the beam outskirts decreases

with increasing propagation distance. It is also worth noting that this asymptotic value of

md is independent of radial order n.
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FIG. 2. The distributions of normalized OAM flux density md/h̄ at different propagation distances

with w0 = 1 mm, δ = 5 mm, m = 1, and n = 1.

IV. TOPOLOGICAL PROPERTIES

A coherent Laguerre-Gauss vortex beam has a discrete topological charge equal to its

azimuthal index ±m, which represents the number of multiples of 2π the phase changes

by as one takes a counterclockwise circuit around the beam axis. Because it is a discrete

and conserved quantity, the topological charge has also been considered as an alternative

means to encode information in a beam for free-space optical communications. In fact, it

has been shown that OAM and topological charge are related, but not equivalent, properties

of a wavefield [26]. In considering the use of topological charge for communications, it is

therefore of interest to understand how the topological structure changes with a change in

coherence.

As noted in the introduction, vortices of a coherent optical field evolve into vortices of the

cross-spectral density as the spatial coherence is decreased. As the cross-spectral density is a

two-point correlation function, the complete structure of the singularity is quite complicated

[27], and investigators have typically studied projections of the cross-spectral density onto

a lower-dimensional space. When one observation point, say r1, is fixed, the cross-spectral

density exhibits coherence vortices with respect to the other point.

10



The analytic form of Eq. (8) allows us to clearly see how the behavior of coherence vortices

depend on the radial order n of the beam. A careful examination of the highest-order terms

of the sum indicates that it is an (m+2n)th-order polynomial in x2+ iy2, and an (m+2n)th

polynomial in x2− iy2, or (m+2n) vortices of charge +1 and (m+2n) vortices of charge −1.

The net topological charge, considered over the entire infinite cross-section of the beam, is

zero. For n = 0 and m > 0, it has been shown [20] that a decrease of coherence results in

the original vortex m breaking into m vortices of charge +1, and m vortices of charge −1

approaching from infinity. We must now consider the origin of the additional zeros when

n > 0.

Correlation singularities exist at pairs of points r1 and r2 for which the spectral degree

of coherence µ(r1, r2, z) of the field vanishes, i.e.

µ(r1, r2, z) =
W (r1, r2, z)

√

S(r1, z)S(r2, z)
= 0, (19)

where S(r, z) is the spectral density of the field, defined as

S(r, z) = W (r, r, z). (20)

The spectral density is typically not equal to zero for partially coherent fields [28]; therefore

the zeros of the spectral degree of coherence will be the only zeros of the cross-spectral

density, and we may work with this mathematically simpler cross-spectral density in the

following simulations, with zeros at locations such that the expressions

Re[W (r1, r2, z)] = 0, Im[W (r1, r2, z)] = 0, (21)

are simultaneously satisfied.

For a fixed value of r1 and z, Eq. (21) represents a system of equations with two

constraints and two degrees of freedom x2 and y2; the solutions are therefore points in

any transverse plane of the beam. Going forward, we restrict our attention to the case

r1 = (0.1 mm, 0.0 mm) and take m = 1, w0 = 1 mm and λ = 632.8 nm.

For future comparison, we first review the case n = 0 in Fig. 3, as the spatial coherence

of the field is decreased. It can be seen that in the coherent limit, there exists a vortex core

with topological charge m = 1 at the center, which can be regarded as the phase vortex

of the coherent Laguerre-Gauss beam. As the coherence decreases, a new singularity with

topological charge m = −1 comes in from the point at infinity. And a further decrease of
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FIG. 3. Phase and corresponding zeros of real and imaginary parts of the cross-spectral density

for different values of the coherence parameter δ, with n = 0 and z = 0. The top row shows

color contours, while the bottom row shows only the solutions of Eq. (21). In all images, r1 =

(0.1 mm, 0.0 mm), m = 1, w0 = 1 mm and λ = 632.8 nm.

the coherence will result in the movement of the original vortex away from the center. The

result is consistent with Fig. 4 in [17]. It is to be noted that the singularities lie along the

horizontal, a consequence of our choice of the location of the fixed point r1, which breaks

the rotational symmetry of the cross-spectral density.

It can be difficult to identify singularities in colored phase plots, especially when there are

many closely packed together. For this reason, we often resort to plotting only the solutions

of Eq. (21); the intersection of the zeros of the real and imaginary parts of W (r1, r2, z)

present a clear way to identify coherence vortices, as can be seen in the bottom row of

Fig. 3. Any location where a solid red line and a dashed line intersects represents the

presence of a vortex.

We now consider the effect of the radial order on the behavior of correlation singularities.

Figure 4 illustrates their evolution for n = 1 as δ is increased. In the coherent limit, there

exists a vortex core surrounded by a single zero ring, which is the coincidence of circles with

Re[W ] = 0 and Im[W ] = 0. As the beam wander is increased to δ = 0.1 mm, the immediate

effect is that the zero ring breaks up, resulting in a new pair of first-order vortices of opposite
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charge. This is the result of the lines with Re[W ] = 0 and Im[W ] = 0 no longer perfectly

overlapping, but possessing two intersection points.

As the wander is increased further, to δ = 0.5 mm, we find that two things have happened.

First, a second vortex of opposite sign has come in from infinity, as in the n = 0 case,

resulting in two pairs of first-order vortices of opposite sign near the origin (two vortices at

x2 ≈ ±1 mm, and two at x2 ≈ ±2 mm). Second, a new zero ring has appeared with large

radius; this is apparently analogous to the appearance of the second vortex from infinity in

the n = 0 case, but for zero rings. Finally, that second zero ring also breaks up, resulting in

yet another pair of vortices of opposite sign. As δ is increased even more, the arrangement

of singularities stabilizes, resulting in three positive and three negative first-order vortices

along the horizontal, as in the case δ = 1.51 mm. This is in agreement with our observations

from Eq. (8), which indicated that there should be (m+ 2n) positive vortices and (m+ 2n)

negative vortices in the partially coherent field.

In summary, a decrease in coherence causes an mth order vortex to break up, and for m

vortices of opposite handedness to manifest from infinity. Each zero ring also has a comple-

mentary ring appear, and each ring breaks into a pair of vortices of opposite handedness.

A similar evolution happens for beams of larger radial order n, as illustrated in Fig. 5. In

this case, the two zero rings immediately break into pairs of positive and negative vortices,

and two new zero rings of large radius appear. For sufficiently low coherence, the result is

5 positive and 5 negative vortices along the horizontal axis, as m+ 2n = 5.

These results indicate one significant difficulty in using beams with n > 0 to carry infor-

mation in vortices. As soon as the spatial coherence is decreased, the rings will decompose

into vortex pairs. Though the net change in topological charge is zero, there is always the

possibility that one member of a pair will fall outside of the detector aperture, resulting in

an effective change in measured topological charge, as happens to coherent vortex beams in

atmospheric propagation [29].

We next consider the effect of propagation on the topological features of the beam. Fig. (6)

shows the evolution of the phase structure of a partially coherent beam over a 100 m prop-

agation range. Though the field starts out with the vortex structure characteristic of a

low-coherence source, as it evolves it takes on the very simple form of a coherent vortex

beam; compare with the left column of Fig. 3.

It can be shown that the same effect occurs for PCVBs of any radial and azimuthal order;
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FIG. 4. Zeros of real and imaginary parts of the cross-spectral density for different values of the

coherence parameter δ, with n = 1 and z = 0. In all images, r1 = (0.1 mm, 0.0 mm), m = 1,

w0 = 1 mm and λ = 632.8 nm.

in Fig. 7, we examine the evolution of a beam of order n = 2. Both the zero rings and the

central vortex core self-reconstruct on propagation, even though the source field was highly

random.

This result appears to be a topological version of the classic van Cittert-Zernike theorem

of optical coherence theory, in which it was shown that the light from an incoherent source

becomes increasingly more coherent as it propagates [23]. In this case, we see that not

only the spatial coherence increases on propagation, but the topological properties of the

field reconstruct themselves. It is well-known that vortex beams can “self-heal” after being

distorted by a deterministic obstacle [30], and these figures suggest that this self-healing can

also apply when a vortex beam is randomly distorted.

This result is surprising, in large part because PCVBs have been studied for some time

[31], but this topological reconstruction has evidently not been observed before, though there

is a hint of it in Fig. 3 of [32]. The discrepancy evidently arises because the evolution of the

topological features depends on the manner in which it is randomized. Most theoretical and

experimental treatments of PCVBs randomize the beam in the source plane using an SLM

14



FIG. 5. Zeros of real and imaginary parts of the cross-spectral density for different values of the

coherence parameter δ, with n = 2 and z = 0. In all images, r1 = (0.1 mm, 0.0 mm), m = 1,

w0 = 1 mm and λ = 632.8 nm.

or rotating ground glass plate, resulting in a source correlation function of the form

W (r1, r2) = U∗

nm(r1)Unm(r2)µ(|r2 − r1|), (22)

i.e. a beam of pure Schell-model form. It has been shown [33] that a beam wander model

beam may be constructed by putting this Schell-model beam in the focal plane of a lens;

the random angular diversity imparted on the beam by the SLM is therefore converted into

a random axis displacement by the lens.

The “self-healing” of a beam wander model source can be explained readily from the

mathematics. As the beam propagates, w(z) increases without bound while the wander

parameter δ is fixed. Therefore the ratio of δ/w(z) decreases on propagation, and the

relative wander of the beam decreases with respect to the width – it appears more coherent.

This effect occurs because all realizations of the partially coherent beam are propagating

parallel to each other, in contrast to the beam of Eq. (22).
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FIG. 6. Phase and corresponding zeros of the real and imaginary parts of the cross-spectral

density for different propagation distances z, with n = 0 and δ = 0.1 mm. In all images, r1 =

(0.1 mm, 0.0 mm), m = 1, w0 = 1 mm and λ = 632.8 nm.

FIG. 7. Phase and corresponding zeros of the real and imaginary parts of the cross-spectral

density for different propagation distances z, with n = 2 and δ = 0.1 mm. In all images, r1 =

(0.1 mm, 0.0 mm), m = 1, w0 = 1 mm and λ = 632.8 nm.
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The topological reconstruction can be seen directly from Eq. (8) with some effort. As z

increases, the width w(z) of the beam increases without limit, and α(z) → δ. We may then

rewrite all terms of the form (x± iy) in a normalized form (x± iy)/(wAδ2), which accounts

for the natural diffractive spreading of the beam. In doing so, it is found that the terms of

the sum have an additional factor w−(k1+l1+k2+l2). Asymptotically, then, the sums will be

dominated by the k1 = k2 = l1 = l2 = 0 term; overall, the cross-spectral density takes on

the asymptotic limit,

W (r1, r2, z) ≈ πw2mD(r1, r2, z)L
m
n

(

2r21
A2w2δ4

)

Lm
n

(

2r22
A2w2δ4

)

(

x1 − iy1
Awδ2

)m (x2 + iy2
Awδ2

)m

,

(23)

which has the form of a coherent Laguerre-Gauss beam multiplied by a Gaussian Schell-

model envelope, D(r1, r2, z). It is to be noted that, for this approximation to hold, the fixed

observation point r1 must lie close to the origin.

These results show that the manner of randomization of a partially coherent vortex

beam has a strong influence on its topological properties, and that van Cittert-Zernike style

reconstructions can occur for some types of randomization. These observations will be

explored further in future work.

V. SUMMARY AND CONCLUSIONS

This paper gives a derivation for a complete set of PCVBs, for any radial order, any

azimuthal order, and at any propagation distance, based on a beam wander model. It is

in a sense the completion of work on partially coherent vortex beams that started long ago

with the study of n = 0, m = 1 beams in Ref. [17]. It is found that the radial order of the

PCVBs provides an extra degree of freedom for controlling both coherence vortices and the

distribution of OAM density.

A study of radial order in PCVBs is timely, because recent research has shown that it is

possible to sort photons not only by azimuthal order (OAM), but by radial order, as well

[21, 34, 35]. If partial coherence is going to play a role in future optical communications

employing both azimuthal and radial orders, the influence of coherence on radial modes

must be understood.

As the coherence is decreased, a PCVB with larger radial order will evolve more pairs

of correlation singularities; as the beam propagates, however, the coherence vortices exhibit
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interesting “self-healing” characteristics, which we interpret as a van Cittert-Zernike-style

evolution that depends strongly on the manner in which the beam is randomized. Our

results indicate that a proper choice of randomization is essential in order to be able to

resolve the vortices of partially coherent vortex beams at a detector.

The radial order also influences the properties of the orbital angular momentum. Though

the total OAM is conserved, by adjusting radial order and propagation distance, we can get

different distributions of the density of OAM. This observation can be applied to fine-tune the

rotation of particles trapped in vortex beams, much like spin and orbital angular momentum

are combined for additional tuning in Ref. [8].
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