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We introduce a method for efficient, in situ characterization of linear-optical networks (LONs) in randomized
boson-sampling (RBS) experiments. We formulate RBS as a distributed task between two parties, Alice and
Bob, who share two-mode squeezed-vacuum states. In this protocol, Alice performs local measurements on her
modes, either photon counting or heterodyne. Bob implements and applies to his modes the LON requested
by Alice; at the output of the LON, Bob performs photon counting, the results of which he sends to Alice via
classical channels. In the ideal situation, when Alice does photon counting, she obtains from Bob samples from
the probability distribution of the RBS problem, a task that is believed to be classically hard to simulate. When
Alice performs heterodyne measurements, she converts the experiment to a problem that is classically efficiently
simulable, but more importantly, enables her to characterize a lossy LON on the fly, without Bob’s knowing and
without changing anything at Bob’s end (this is what we mean by in situ). We introduce and calculate the
fidelity between the joint states shared by Alice and Bob after the ideal and lossy LONs as a measure of distance
between the two LONs. Using this measure, we obtain an upper bound on the total variation distance between
the ideal probability distribution for the RBS problem and the probability distribution achieved by a lossy LON.
Our method displays the power of the entanglement of the two-mode squeezed-vacuum states: the entanglement
allows Alice to choose for each run of the experiment between RBS and a simple characterization protocol based
on first-order coherence between complex amplitudes.

I. INTRODUCTION

It is strongly believed that quantum computers can perform certain computational tasks much faster than classical computers.
A universal fault-tolerant quantum computer, however, is still not available, so there is keen interest in intermediate models
of quantum computation, which can demonstrate quantum-computational speedups [1] with simpler physical systems and al-
gorithms [2]. A class of these intermediate models consists of sampling problems, i.e., generating samples from the output
probability distribution of a quantum circuit that is believed to be hard to simulate efficiently classically [3–6].

Just such a sampling problem is boson sampling, which has attracted much attention due to its simple physical implemen-
tations [3]. In boson sampling, single photons are injected into N input ports of an M -mode (passive) linear-optical network
(LON) that is described by an M ×M Haar-random unitary transfer matrix, and one samples from the output photon-counting
probability distribution. This sampling task is strongly believed to be classically hard to simulate, and hence it is proposed as
a candidate to demonstrate quantum-computational speedups in the near future. This has also led to small-scale experimental
demonstrations of boson sampling [7–14].

Randomized boson sampling (RBS) [15] is a generalized version of boson sampling in which single photons are injected into
random input ports of a Haar-random LON. RBS is generally believed to be classically hard to simulate. The standard protocol
for RBS uses two-mode squeezed-vacuum states, which are less demanding to prepare than the single-photon states required for
boson sampling. RBS has also been experimentally investigated in small-scale experiments [16, 17].

One important question confronting any sampling is that of how to verify efficiently that the generated samples are indeed
from the correct output probability distribution. A verification test is a classical algorithm that receives samples from a sampling
experiment and returns yes if they are drawn from a distribution sufficiently close to the correct probability distribution, which
cannot be sampled efficiently classically, and no otherwise [18]. A verification test must not pass samples that are generated
by an efficient classical algorithm. It is unlikely that an efficient verification test exists for classically hard sampling problems
without additional promises and assumptions [19]; even then, it is not clear what promises and assumptions are required.
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Other approaches with a different objective [20–30] seek to certify the workings of a quantum computing device instead of
trying to verify answers to a problem (here samples from a probability distribution). These approaches are usually formalized in
terms of a two-party scenario, a certifier with limited quantum capability and a prover, who supposedly has the quantum power,
but can cheat. The ultimate goal in certification approaches, which are based on some physical and/or computational hardness
assumptions, is to certify the operation done by the prover and check whether the prover has been honest.

If, on the other hand, one assumes honesty between experimenters and assumes certain types of error (these are typical assump-
tions in physics experiments), another, more basic task in a quantum-supremacy experiment, more akin to process tomography,
is to characterize fully the quantum device. Preferably, characterization should be done in situ, i.e., while the experiment is
running and without making any changes to the quantum device to perform the characterization. Characterization is the essential
physical prerequisite for the more information-theoretic tasks of certification and verification. Once one has the full characteri-
zation of the generally flawed actual device, one wants to have available performance measures that use the characterization to
assess the validity of the experiment.

In this paper, we introduce an efficient method for in situ characterization of linear-optical networks (LON) in RBS exper-
iments. Our characterization method is based on an interesting application of entanglement to convert RBS to a problem that
enables efficient characterization of the LON. We formulate RBS as a distributed task between two parties, Alice and Bob,
who share two-mode squeezed-vacuum states that are weakly squeezed. To perform RBS, Alice counts photons on her half of
the two-mode squeezed-vacuum states, Bob inputs the corresponding modes at his end into a Haar-random LON that he has
constructed based on instructions from Alice, and at the output of the LON, Bob performs photon counting, the results of which
he reports to Alice. Because of the photon correlations in two-mode squeezed vacuum, when Alice counts a single photon (no
photon) in her half of the state, a single photon (no photon) is injected into the corresponding port of Bob’s LON. The result is
to input single photons into random, but heralded ports of the LON; the photocounts that Bob reports to Alice are drawn from
the output photocount distribution for whatever heralded input applies in each RBS run.

If Bob has constructed the ideal LON, Alice and Bob are sampling from the joint probability distribution of the RBS problem.
Generally, however, Bob’s LON has losses; assuming that losses are the only kind of imperfection in the LON, Alice can
efficiently characterize the LON by performing heterodyne measurements at her end, instead of photocounting. The heterodyne
measurements prepare the inputs to the LON in coherent states. As we show, Alice can use the first-order coherence (second
moments) of the heterodyne outcomes, conditioned on the counts she receives from Bob, to characterize the LON on the fly. An
important point is that the characterization runs are interspersed with the RBS runs, without Bob’s knowing which is which and
without making any changes to the apparatus at Bob’s end. In our protocol, we assume that Bob is honest in implementing the
LON as best he can, but at his end, there can be losses at the input of the LON, within the LON, and in the detectors, all of which
can be modeled and absorbed into a lossy LON. Bob’s inability to know which are the characterization runs is a way of saying
that no changes are made to the LON during the characterization runs.

Our characterization protocol can be thought of as a many-mode version of SU(1,1) interferometry [31]. The connections of
our protocol to SU(1,1) interferometry and, more generally, to quantum metrology are explored in [32].

We go on to introduce a measure of distance between LONs, which is interesting in its own right and can be used as a
performance measure for other quantum experiments with a LON. This measure is the fidelity between the joint state shared by
Alice and Bob after the ideal LON and the joint state after the actual, lossy LON implemented by Bob. By using this measure,
Alice can obtain an upper bound on the total variation distance between the ideal probability distribution for the RBS problem
and the probability distribution achieved in the experiment. Thus, our in situ characterization procedure can check that a RBS
device samples from a probability distribution that is close to the ideal photocount distribution. We emphasize that this does not
address the problem of verification of RBS, i.e., distinguishing the samples generated by the experiment from ones generated by
some classical algorithm.

This paper focuses on in situ device characterization within the context of RBS; in future papers, we plan to address certifica-
tion of RBS experiments and verification of boson-sampling experiments. Section II describes the ideal RBS protocol cast as a
distributed task between Alice and Bob. Section III, the heart of the paper, describes and analyzes the protocol for characterizing
the LON, first generalizing the description of RBS runs to lossy LONs (Sec. III A), then showing how the statistics of the char-
acterization runs can be used to determine the transfer matrix of a lossy LON (Sec. III B), and finally introducing a measure of
distance between the ideal and lossy LONs and showing how this performance measure can be used to bound the total variation
distance between the ideal photocount distribution and the distribution achieved with a lossy LON (Sec. III C). Implications
and generalizations of our work are explored in a concluding section (Sec. IV), which unlike most concluding sections, is worth
reading for the several (at least three) important observations it makes.

Two appendices provide details that, though technical, are both important and instructive. Appendix A develops the formal
description of lossy LONs and gives the details of the bounds underlying the distance measures between ideal and lossy LONs.
Appendix B develops the full description of Alice’s conditional heterodyne statistics and then considers what kind of LON
characterization can be achieved in situations where only intensity correlations are available, instead of the first-order (complex-
amplitude) correlations used in our protocol.
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FIG. 1: M two-mode squeezed-vacuum states with the same squeezing parameter are generated by SPDC sources and shared between Alice
and Bob. Bob inputs his modes to the LON, makes photon-counting measurements at the output of the LON, and sends the outcomes to
Alice via a classical channel. Alice uses photon-counting measurements, denoted by Q, for the sampling runs of the RBS problem and makes
heterodyne measurements, denoted by C, for characterizing Bob’s LON. Because of the entanglement shared between the two parties, Alice
can switch from a problem, based on photon counting, that is classically hard and not useful for characterization to a problem, based on
heterodyne measurements, that is classically efficiently simulable and can be used for characterization.

II. DISTRIBUTED RBS BETWEEN TWO PARTIES

In the version of RBS we consider here (Fig. 1), Alice and Bob share M pairs of modes, with annihilation and creation
operators aj and a†j at Alice’s end and bj and b†j at Bob’s end, j = 1, . . . ,M . Spontaneous parametric down-conversion (SPDC)
sources generate identical two-mode squeezed-vacuum states in each pair of modes,

|ψAB〉 =
√

1− |χ|2
∞∑
n=0

χn |n〉A ⊗ |n〉B . (2.1)

Here |n〉A and |n〉B are Fock states for the A and B modes output by a SPDC source, and χ is a complex number satisfying
|χ| ≤ 1, which determines the amount and phase angle of the squeezing. It is convenient in what follows to set the relative phase
of the A and B modes by choosing χ to be real. The state for all M modes is

|ΨAB〉 =

M⊗
i=1

|ψAB〉i = (1− χ2)M/2
∞∑
N=0

χN
∑
nA

|nA|=N

|nA〉 ⊗ |nB = nA〉 . (2.2)

Here nA = nA,1, . . . , nA,M and nB = nB,1, . . . , nB,M are lists of the numbers of photons in the A modes and B modes;
because of the entanglement in the two-mode squeezed vacuum, nB = nA, as indicated. The total number of photons in the A
modes is denoted by

|nA| =
M∑
i=1

nA,i, (2.3)

and this is also the total number of photons in the B modes, i.e., |nA| = |nB |.
Alice’s modes (Amodes) are sent directly to photodetectors, and Bob’s modes (B modes) are directed to a LON, described by

a unitary operator U , followed by photodetections. The LON is characterized completely by an M ×M unitary transfer matrix
U that describes the transformation of modal creation operators from input to output:

U b†j U
† =

M∑
k=1

Ujkb
†
k . (2.4)

By using this relation, it is straightforward to see that coherent states transform according to the transfer matrix,

U |β〉 = |βU〉 . (2.5)
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where β =
(
β1 β2 · · · βM

)
is the row vector of coherent-state amplitudes.

In this setup, Alice and Bob sample from the joint probability distribution

PQ(nA,nB |U) =
∣∣ 〈nA,nB | (IA ⊗ U) |ΨAB〉

∣∣2 = (1− χ2)Mχ2|nA|
∣∣ 〈nB | U |nA〉 ∣∣2 , (2.6)

where nA and nB here denote counts in the A and B modes. Because U is photon-number preserving, the probability is zero
unless |nB | = |nA|. Here and throughout the paper, the subscript Q indicates the case of photon-counting measurements at
Alice’s end.

The marginal state of the A modes is an M -mode thermal state,

ρth,A = TrB
(
|ΨAB〉〈ΨAB |

)
= (1− χ2)M

∞∑
N=0

χ2NΠN = (1− χ2)Mχ2
∑

j a
†
jaj . (2.7)

where

ΠN =
∑
nA

|nA|=N

|nA〉〈nA| (2.8)

is the projector onto the subspace of N photons, which has dimension

Tr [ ΠN ] =

(
N +M − 1

N

)
≡ G(N,M) . (2.9)

The marginal state of the B modes at the input to the LON, ρth,B , is the same as the thermal state (2.7), with As swapped with
Bs in the notation; we omit the designation A or B on ρth when there is no risk of confusion.

The M -mode thermal state is a product of thermal states for each of the modes,

ρth =

M⊗
i=1

ρth,i =

M⊗
i=1

(
(1− χ2)

∞∑
n=0

χ2n |n〉〈n|
)
. (2.10)

The probability for photon record nA in the A modes is

PQ(nA) =
∑
nB

PQ(nA,nB |U) = 〈nA| ρth,A |nA〉 = (1− χ2)Mχ2|nA| . (2.11)

The mean and variance of the number of photons counted in a single A mode have the Bose-Einstein values,

n = Tr
[
ρtha

†
iai
]

=
χ2

1− χ2
, (2.12)

(∆n)2 = n(n+ 1) =
χ2

(1− χ2)2
. (2.13)

Hence the mean photon number counted from all the A modes is Mn = Mχ2/(1−χ2). The case of interest is weak squeezing,
characterized as χ2 . 1/

√
M . For weak squeezing, the mean total count from all the A modes, ' Mχ2 .

√
M � M , is

much smaller than M ; the number of photons counted almost certainly satisfies N .
√
M , and it is reasonably likely that

at most a single photon is counted in any A mode or in any mode at the output of the LON. Conditioned on detecting N
single photons in the A and B modes, 〈nB | U |nA〉 is equal to the permanent of an N × N submatrix of the LON transfer
matrix U . This N ×N submatrix is obtained by deleting rows and columns corresponding to no-click, i.e., nA,j = nB,j = 0.
Therefore, as multiplicative approximation of permanents of complex matrices is #P hard (very difficult) and following the
argument from [3], exact sampling from the joint output probability distribution (2.6) cannot be efficiently simulated classically,
unless the polynomial hierarchy in computational complexity theory collapses to the third level, which is highly implausible.

We can put a bit more flesh on the photon statistics by noting that the probability to detect N photons in the A modes is

PQ(N) =
∑
nA

|nA|=N

PQ(nA) = Tr [ ρth,AΠN ] = G(N,M)(1− χ2)Mχ2N , (2.14)

whereas the probability to detect N single photons in the A modes is

P̃Q(N) =

(
M

N

)
(1− χ2)Mχ2N . (2.15)
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The asymptotic Gaussian approximation for weak squeezing is

P̃Q(N) ∼ e−N
2/M√

2πMχ2
exp

(
− (N −Mχ2)2

2Mχ2

)
∼ e−N

2/MPQ(N) ; (2.16)

PQ(N) is a Gaussian with mean and variance both given by Mχ2, and the probability for detecting N single photons in the
A modes is smaller than PQ(N) by the factor e−N

2/M . For N within a few standard deviations of the mean of the Gaussian,
e−N

2/M is approximately constant with value e−Mχ4

.
Another way to characterize the strength of the squeezing is to maximize the probability to detect a particular number of

photons, N0, single or not. The maximum occurs for squeezing strength χ2 = N0/(M + N0). For N0 .
√
M , the maximum

corresponds to weak squeezing. The Gaussian approximation (2.16) looks the same with the replacement Mχ2 = N0, and the
factor by which P̃Q(N) is subnormalized is e−N

2
0 /M .

A standard choice for RBS is N0 =
√
M , which gives χ2 = 1/(N0 + 1) ' 1/N0; then PQ(N) is a Gaussian with mean and

variance both given by M/N0 =
√
M , and P̃Q(N) is the same Gaussian subnormalized by a factor 1/e. This factor of 1/e is the

reasonable probability cited above that the photocounts on the A modes are all single counts. In RBS, the cases of single counts
in theAmodes lead to single photons being injected into the corresponding input ports of the LON; that the populated input ports
into the LON are selected uniformly and randomly based on the A counts is the source of the appellation randomized boson
sampling (RBS). In this situation, modulo the two conjectures of [3], approximate sampling, i.e., sampling from probability
distributions close in the total variation distance to the output probability distribution (2.6) is also classically hard [3, 15].

We consider a RBS protocol that is formulated as a task distributed between two parties, Alice and Bob, as described more
precisely in the following and depicted in Fig. 1.

1. Alice generates and sends an M ×M random unitary matrixU to Bob. Bob, assumed to have the capability to implement
the LON corresponding to any U , implements this LON.

2. Modes A and B of the SPDC sources are shared between Alice and Bob.

3. Bob inputs the B modes to his LON. Then he detects the number of photons output into each of the B modes and sends
Alice the results, which are samples from the output photon-counting probability distribution.

4. By counting photons in each of the A modes and knowing the outcomes of Bob’s measurements, Alice samples from the
joint probability distribution of the RBS problem.

In the next section we show that by making a heterodyne measurement on each of the A modes, instead of photocounting, Alice
can characterize the LON that Bob has implemented, assuming that it is a LON with photon losses.

III. CHARACTERIZATION PROTOCOL

Here we describe how the characterization protocol works. As shown in Fig. 1, the output modes of M SPDC sources with
the same squeezing parameter χ are distributed between Alice and Bob. Bob is supposed to implement the LON according to
Alice’s description and send samples from the output photon-counting probability distribution to Alice. Alice can make either
heterodyne (C) or photon-counting (Q) measurements for each mode. Using the data from the heterodyne measurements, Alice
can characterize, we show, Bob’s actual, lossy LON; moreover, Alice can compare, we show, Bob’s actual LON to the ideal LON
using a measure of distance between transfer matrices and obtain from this measure an upper bound on the total variation distance
between the joint photon-counting probability distribution of the experiment and the ideal RBS probability distribution. Alice
can intersperse the characterization runs with the RBS runs, for which she makes photon-counting measurements, thus checking
whether Bob’s LON remains the same throughout the course of the RBS experiment.

Throughout this section, we often specialize to weak squeezing, with weak-squeezing results signaled by use of the ' in
χ2 ' 1/

√
M � 1.

A. Lossy network and RBS runs

In an ideal situation, Bob implements the LON that is requested by Alice, described by a unitary matrix U , and sends
samples from the output photon-counting probability distribution to Alice. Alice makes photon-counting measurements whose
POVM elements are the multimode number states |nA〉〈nA|. Hence, as described earlier, if Bob draws samples from the ideal
distribution, Alice samples from the joint probability distribution (2.6), which can be written as

PQ(nA,nB |U) = PQ(nA)PBS(nB |nA,U) = P (nB |U)PQ(nA|nB ,U) , (3.1)
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where the conditional distribution,

PBS(nB |nA,U) =
PQ(nA,nB |U)

PQ(nA)
=
∣∣ 〈nB | U |nA〉 ∣∣2 = PQ(nA|nB ,U) , (3.2)

is the boson-sampling probability distribution and

PQ(nA) = (1− χ2)Mχ2N = P (nB |U) (3.3)

are the marginal probability distributions, with N = |nA| = |nB |. Without knowledge of the outcomes of the other party’s
measurements, Alice’s photocounts and Bob’s photocounts at the output of the LON are drawn from the M -mode thermal
state (2.7),

〈n| ρth |n〉 = 〈n| U ρth U† |n〉 = (1− χ2)Mχ2|n| , (3.4)

which is independent of the LON. The marginal thermal state at the input to Bob’s LON is transferred to the output because U ,
being photon-number preserving, commutes with ρth, i.e.,

U ρth U† = ρth . (3.5)

In the presence of losses, Bob’s LON is not unitary, but it can be described uniquely by a transfer matrix L that is defined
through the relation between input and output amplitudes of coherent states; i.e., input coherent state |β〉 goes to output coherent
state |β′〉 = |βL〉. The (trace-preserving) quantum operation for the lossy LON, which we call a quantum process, is thus
defined by

EL
(
|β〉〈β|

)
= |βL〉〈βL| . (3.6)

Losses at the input to Bob’s LON and inefficiencies in Bob’s photodetectors can be incorporated into the transfer matrix L.
Notice that in general L†L ≤ I , so any LON can be thought of as part of a larger LON that is unitary (this approach is
developed in App. A 1). One reverts to the ideal, lossless network by setting L = U .

It is important to note the phase freedom in the transfer matrix L. We can absorb phases in the transfer matrix into the
definitions of output modes of the LON. We cannot change the phases of the input modes because those have been set relative
to the A modes by making χ real. This freedom allows us to choose the phase of one element of each column of L. What we
find most useful in Sec. III B is to make the diagonal elements Lii real and nonnegative.

With lossy LONs, instead of sampling from PQ(nA,nB |U), the samples generated by Alice and Bob are drawn from

PQ(nA,nB |L) =
〈
nA,nB

∣∣ IA ⊗ EL( |ΨAB〉〈ΨAB |
)∣∣nA,nB〉 = (1− χ2)Mχ2|nA|

〈
nB
∣∣EL( |nA〉〈nA| )∣∣nB〉 . (3.7)

Since EL is trace preserving, it is easy to see that

PQ(nA) =
∑
nB

PQ(nA,nB |L) = (1− χ2)Mχ2|nA|Tr
[
EL(|nA〉〈nA|)

]
= (1− χ2)Mχ2|nA| (3.8)

is the same as for a unitary LON—this is obvious because the A modes do not see any losses—and thus that the (conditional)
boson-sampling distribution becomes

PBS(nB |nA,L) =
PQ(nA,nB |L)

PQ(nA)
= 〈nB | EL (|nA〉〈nA|) |nB〉 . (3.9)

Not so simple is the conditional probability in the other direction, since the lossy LON reduces the number of counts in the B
modes in a nondeterministic way, as one sees from

P (nB |L) =
∑
nA

PQ(nA,nB |L) = (1− χ2)M
∞∑
N=0

χ2N 〈nB |EL(ΠN )|nB〉 = 〈nB | EL(ρth,B) |nB〉 , (3.10)

where ΠN is the projector onto the B subspace with N photons, as in Eq. (2.8).
The questions now are how Alice can characterize the quantum process associated with Bob’s LON, how different it is

from the ideal LON, and how far the lossy boson-sampling distribution PBS(nB |nA,L) departs from the ideal distribution
PBS(nB |nA,U) in total variation distance.
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B. Characterization

The aim in the characterization protocol is to determine efficiently the lossy transfer matrix L of the actual LON that Bob
has implemented, as best he can, according to Alice’s specification of the ideal matrix U . In the next subsection, we show how
Alice, with the characterization of L in hand, can compare the ideal and lossy LONs and obtain an upper bound on the distance
(in total variation) between the joint probability distribution of the experiment and the ideal RBS probability distribution.

We note now the polar decomposition of the transfer matrix,

L =
√
LL† V = V

√
L†L , (3.11)

where the matrix
√
LL† (

√
L†L) represents the losses referred entirely to the input (output) of the LON, and V is the ideal

network associated with L. The transfer matrix L is subunitary, i.e., LL† ≤ I (L†L ≤ I). Characterizing L is a matter of
determining the network V and the losses

√
LL† (or

√
L†L) that go with it. Notice that knowing both loss matrices,

√
LL†

and
√
L†L, determines V and, hence, the entirety of L.

If we diagonalize the loss matrices with a further unitaryW ,
√
LL† = Wdiag(t1, . . . , tM )W † , (3.12)
√
L†L = V †Wdiag(t1, . . . , tM )W †V , (3.13)

the transfer matrix becomes

L = Wdiag(t1, . . . , tM )W †V . (3.14)

The elements ti of the diagonal matrix are the (real and nonnegative) singular values of L; the subunitarity of L implies that
ti ≤ 1. The singular values describe the losses from a set of decoupled, pure-loss modes; physically, they are the transmissivities
of a set of M beamsplitters that remove photons from these decoupled modes, as in the loss model developed in App. A 1. The
transfer matrix can be thought of as an initial unitaryW that transforms from the input modes to the pure-loss modes, followed
by the pure losses and a final unitaryW †V that transforms to the output modes.

1. Setup for characterization runs

For the characterization runs, Alice uses heterodyne measurements, whose joint POVM elements are multiples of multimode
coherent-state projectors, |α〉〈α| /πM . For outcome α of the heterodyne measurements, the state at the input of Bob’s LON is
projected to the multimode coherent state |χα∗〉,

1

πM/2
〈α|ΨAB〉 =

1

πM/2

M∏
i=1

〈αi|ψAB〉i =
(1− χ2)M/2

πM/2
e−(1−χ2)|α|2/2 |χα∗〉 , (3.15)

with

α∗ =
(
α∗1 α∗2 · · · α∗M

)
, |α|2 = α∗αT = αα† =

M∑
i=1

|αi|2 . (3.16)

It is known that one can characterize a LON from the photocount statistics obtained when the network is illuminated with a
particular set of coherent states [34, 35], so it is not surprising that we can devise a protocol for characterizing the LON from the
joint statistics of Alice’s heterodyne measurements and Bob’s photocount records.

Given heterodyne outcome α, the state at the output of the LON is the coherent state |χα∗L〉. More precisely, we have

1

πM
〈
α
∣∣IA ⊗ EL( |ΨAB〉〈ΨAB |

)∣∣α〉 =
1

πM
EL
(
〈α|ΨAB〉 〈ΨAB |α〉

)
=

(1− χ2)M

πM
e−(1−χ2)|α|2 |χα∗L〉〈χα∗L| . (3.17)

Further projecting onto the photon-counting outcome nB at Bob’s end gives the joint probability for outcomes α and nB ,

PC(α,nB |L) =
(1− χ2)M

πM
e−(1−χ2)|α|2∣∣ 〈nB |χα∗L〉 ∣∣2 , (3.18)
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where

∣∣ 〈nB |χα∗L〉 ∣∣2 =

M∏
i=1

∣∣ 〈nB,i|χα∗Li〉 ∣∣2 = χ2|nB |e−χ
2α∗LL†αT

M∏
i=1

∣∣α∗Li∣∣2nB,i

nB,i!
. (3.19)

Here

α∗Li = (α∗L)i =

M∑
j=1

α∗jLji , (3.20)

with

Li =
(
L1i L2i · · · LMi

)T
(3.21)

being the column vector made from the ith column of L.
We can split up the joint probability as

PC(α,nB |L) = PC(α)PC(nB |α,L) , (3.22)

where

PC(α) =
∑
nB

PC(α,nB |L) =
(1− χ2)M

πM
e−(1−χ2)|α|2 =

1

πM
〈α| ρth,A |α〉 (3.23)

is the unconditional probability for heterodyne outcome α at Alice’s end. For this unconditional probability, α is drawn from
the thermal state (2.7); the probability (3.23) is the Husimi Q distribution [36] of this thermal state. The conditional probability
for Bob’s photocounts, given heterodyne outcome α,

PC(nB |α,L) =
∣∣〈nB |χα∗L〉∣∣2 , (3.24)

can be efficiently classically computed using Eq. (3.19), as opposed to the distribution (3.2), which is #P hard to compute.

2. Bob’s unconditional photostatistics

We pause briefly to give an account of what can be learned from the unconditional (marginal) photostatistics at Bob’s end.
The unconditional probability (3.10) for photocount record nB ,

P (nB |L) =

∫
d2MαPC(α,nB |L) = 〈nB | EL(ρth,B) |nB〉 , (3.25)

is independent of what happens at Alice’s end and describes sampling from the output marginal state EL(ρth,B), which is the
input marginal thermal state at Bob’s end processed through the lossy network. Since the unconditional photocount distribution
P (nB |L) is independent of any measurement Alice performs, we omit the subscript C in Eq. (3.25) and, previously, the subscript
Q in Eq. (3.10).

The M -mode thermal state (2.10) can be represented by its Glauber-Sudarshan P function [37, 38] in the coherent-state
expansion

ρth,B =

∫
d2Mβ

e−ββ
†/n

(πn)M
|β〉〈β| . (3.26)

The M -mode marginal state at the output of Bob’s LON is

EL(ρth,B) =

∫
d2Mβ

e−ββ
†/n

(πn)M
|βL〉〈βL| =

∫
d2Mγ

e−γ(nL†L)−1γ†

(πn)M det(L†L)
|γ〉〈γ| , (3.27)

where γ = βL. Notice that det(L†L) = t21 · · · t2M . This state has, as shown, a Gaussian P function with, in general, correlations
between the output modes. If L is unitary, the marginal output state is identical to the input thermal state, as was noted in
Eq. (3.5). Diagonalizing the output loss matrix L†L, as in Eq. (3.13), expresses the output marginal state (3.27) in terms of
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decoupled pure-loss modes, transformed from Bob’s output by the matrix V †W ; these decoupled loss modes are each in a
thermal state, but of different temperatures and thus with different mean photon numbers, nt2i ≤ n.

The lesson here is that the output marginal state is determined by the output loss matrix L†L and is independent of the
associated lossless transfer matrix V . Hence, the unconditional photostatistics at Bob’s end—more generally, the unconditional
statistics of any measurement at Bob’s end—can tell one about L†L, but provide no information about V . Keep in mind
that we can collect the unconditional photostatistics from all the runs, both RBS runs and characterization runs. It should be
possible to reconstruct the entire output loss matrix L†L, up to the phase freedom, from photon-number correlations among the
output modes. First we consider the unconditional photostatistics of each output mode separately, which determine the diagonal
elements of L†L; we comment on the general problem of determining all of L†L at the end of this subsection.

The photocount probabilities P (nB |L) are proportional, in general, to permanents of positive, Hermitian matrices [39]—these
are submatrices of L†L—and are #P hard to compute [40]. Nonetheless, as discussed in [39], it is easy to construct an efficient
classical protocol, based on sampling from the well-behaved positive P function in Eq. (3.27), for sampling from P (nB |L);
moreover, Bob’s photocount statistics can be used for characterization of L†L. These considerations indicate that hardness of
computing a distribution, hardness of sampling from it, and characterization based on sampling from it are independent.

To get the marginal state in mode i at Bob’s end, it is easiest to work with the normally ordered characteristic function of
the M -mode output state (3.27), which is the Fourier transform of the P function and is given by the expectation value of the
normally ordered displacement operator,

Φ
(
ξ|EL(ρth)

)
= Tr

[
e−bξ

†
EL(ρth)eξb

†]
= e−ξ(nL

†L)ξ† . (3.28)

Here

b =
(
b1 b2 · · · bM

)
(3.29)

is the row vector of annihilation operators. Marginalization to the normally ordered characteristic function of output mode i is
achieved by setting ξj = 0 for j 6= i,

Φ
(
ξi|EL(ρth)

)
= e−n`i

2|ξi|2 , (3.30)

where

` 2
i = (L†L)ii =

M∑
j=1

|Lji|2 = L†iLi ≤ 1 (3.31)

is the ith diagonal component of L†L or, equivalently, the squared length of the column vector Li. The characteristic func-
tion (3.30) is that of a thermal state with mean photon number

ni = n` 2
i =

χ2` 2
i

1− χ2
' χ2` 2

i . (3.32)

The final, approximate expression here and in similar circumstances below holds for weak squeezing and is good to first order
in χ2 ' 1/

√
M . The probability to count ni photons from output mode i is thus

P (ni|L) =
1

1 + ni

(
ni

1 + ni

)ni

=
1− χ2

1− χ2(1− ` 2
i )

(
χ2` 2

i

1− χ2(1− ` 2
i )

)ni

. (3.33)

For weak squeezing, this distribution simplifies to P (0i|L) ' 1− χ2` 2
i and P (1i|L) ' χ2` 2

i .
By using all the data reported by Bob, from the RBS runs and the characterization runs, Alice can estimate ` 2

i for each output
mode. With these estimates in hand, Alice can determine a measure of how far L departs from being unitary, i.e.,

E(L) =
1

M
‖I −L†L‖1 = 1− 1

M
Tr[L†L] = 1− 1

M

M∑
i=1

` 2
i , (3.34)

where the 1-norm (also called the trace norm) is defined by ‖A‖1 = Tr
[√
A†A

]
. This quantity, which satisfies 0 ≤ E(L) ≤ 1,

can be interpreted as the average loss per mode and is also given by the singular values ti, i.e.,

E(L) = 1− 1

M

M∑
i=1

t2i . (3.35)
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As noted above, it should be possible to reconstruct the entire output loss matrixL†L from photon-number correlations among
the output modes. The second-order correlations provide information about the magnitudes of the off-diagonal components of
L†L. Third-order correlations provide information about the phases of the off-diagonal components ofL†L, but this information
is not complete information. Moreover, the relevant parts of the second- and third-order correlations are proportional to n̄2 ∝ χ4

and n̄3 ∝ χ6, thus making it difficult to read out the relevant information from the statistics.
A more important question is what kind of LON characterization can be achieved using the joint photocount statistics in

the RBS runs. This question, suggested to us by a comment from a referee, we had not considered to be within the purview
of this paper, but it can be addressed and answered using the techniques developed in App. B for determining what kind of
characterization can be achieved when the input two-mode squeezed state is replaced by the classical-classical state of Eq. (4.1).
The answer, buried in the final subsection, App. B 4, of that appendix, deserves more than an afterthought, so we intend to
exhume the analysis and give it the attention it deserves in a separate publication.

For now, however, we set aside all questions of characterization using photostatistics, this not being the point of our paper,
and turn to analyzing the heterodyne characterization runs, which can determine the entirety of the transfer matrix L.

3. Characterization runs

The conditional probability for heterodyne outcomes,

PC(α|nB ,L) =
PC(α,nB |L)

P (nB |L)
=

PC(α)

P (nB |L)

∣∣〈nB |χα∗L〉∣∣2 , (3.36)

obtained from combining Eqs. (3.18) and (3.25), is the Husismi Q distribution of the state for Alice’s modes, conditioned on
a particular photocount record at Bob’s end. We now show how, by sampling from this conditional distribution, Alice can
characterize fully the transfer matrix L associated with Bob’s LON. To see clearly what information is available from the
heterodyne statistics, we notice that |α∗Li

∣∣2 = (α∗Li)(L
†
iα

T ) = α∗(LiL
†
i )α

T = L†iα
Tα∗Li and stress that LiL

†
i is the

matrix multiplication, i.e., outer product, of the column vector Li and the row vector L†i . This in mind, we write the crucial part
of the distribution (3.36) in a form subtly different from Eq. (3.19),

∣∣ 〈nB |χα∗L〉 ∣∣2 = χ2|nB | exp

[
− χ2α∗

( M∑
i=1

LiL
†
i

)
αT
] M∏
i=1

∣∣α∗LiL†iαT ∣∣nB,i

nB,i!
, (3.37)

which makes clear that what we can hope to characterize from the heterodyne statistics are the matrix elements of the outer
products LiL

†
i . A little thought shows that determining all these outer products is sufficient to determine L, with respect to

the reference phases of Alice’s modes, which make χ real for every mode, and within the phase freedom of the transfer matrix
already discussed. Appendix B gives a general account of where and how information about L is stored in the conditional
heterodyne distribution of Eq. (3.36).

To do this characterization, however, we need not consider, nor should we consider the conditional heterodyne distribution
for all of Bob’s photocount records; indeed, to have an efficient characterization procedure, we should consider the most likely
photocount records. In particular, we focus on the situation where the only condition is that the ith mode on Bob’s side reports no
photocounts. The joint probability PC(α, 0i|L) for heterodyne outcomes α and for no photocounts in the ith mode is obtained
by summing PC(α,nB |L) over all possible photocounts for modes other than i and setting nB,i = 0 and thus is given by

PC(α, 0i|L) =
(1− χ2)M

πM
e−(1−χ2)|α|2 ∣∣ 〈0|χα∗Li〉 ∣∣2

=
(1− χ2)M

πM
e−(1−χ2)|α|2e−χ

2|α∗Li|2

=
(1− χ2)M

πM
e−α

∗Siα
T

,

(3.38)

where Si is the positive (Hermitian) matrix

Si = (1− χ2)I + χ2LiL
†
i . (3.39)

It is productive to write

Li = `iL̂i , (3.40)
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where `i is the length of Li, given by Eq. (3.31), and L̂i is a (complex) unit vector. This gives LiL
†
i = ` 2

i L̂iL̂
†
i and allows us

to write Si in the diagonalized form,

Si = (1− χ2)
(
I − L̂iL̂†i

)
+
[
1− χ2(1− ` 2

i )
]
L̂iL̂

†
i , (3.41)

from which it is trivial to see that

detSi = (1− χ2)M−1
[
1− χ2(1− ` 2

i )
]
. (3.42)

The unconditional probability for the ith mode to have no photocounts is

P (0i|L) =

∫
d2MαPC(α, 0i|L) =

(1− χ2)M

detSi
=

1− χ2

1− χ2(1− ` 2
i )
' 1− χ2` 2

i , (3.43)

which follows immediately from the integral or from the thermal photocount distribution for mode i in Eq. (3.33). The joint
distribution (3.38) and the no-count distribution (3.43) together give rise to the conditional distribution for heterodyne outcomes
α, given no counts in the ith output mode of the LON:

PC(α|0i,L) =
PC(α, 0i|L)

P (0i|L)
=

detSi
πM

e−α
∗Siα

T

. (3.44)

This conditional distribution is a normalized, zero-mean Gaussian function of α—it is the Husimi Q distribution of the state of
Alice’s modes, conditioned on no counts in Bob’s mode i—which depends only on χ and Li and is characterized completely by
the covariance matrix (because this is a zero-mean Gaussian, this is also the correlation matrix),

〈αTα∗〉i =

∫
d2MααTα∗P (α|0i,L) = S−1

i . (3.45)

This general result holds for any zero-mean Gaussian; in our case, the inverse is easily seen to be

S−1
i =

1

1− χ2

(
I − L̂iL̂†i

)
+

1

1− χ2(1− ` 2
i )
L̂iL̂

†
i =

1

1− χ2

(
I − χ2LiL

†
i

1− χ2(1− ` 2
i )

)
. (3.46)

The variance along the complex direction (mode) L̂i is

υ2 =
1

1− χ2(1− ` 2
i )
' 1 + χ2(1− ` 2

i ) , (3.47)

and the variance along the M − 1 complex directions (modes) orthogonal to L̂i is

υ2
0 =

1

1− χ2
' 1 + χ2 . (3.48)

Notice that υ2
0 ≥ υ2 ≥ 1. For a lossless LON, for which L is unitary, `i = 1 and thus υ = 1. Written with less abstraction, the

correlation matrix (3.45) has the form

〈αjα∗k〉i = (S−1
i )jk =

1

1− χ2

(
δjk −

χ2LjiL
∗
ki

1− χ2(1− ` 2
i )

)
' δjk(1 + χ2)− χ2LjiL

∗
ki . (3.49)

A nice way to think of the distribution (3.44) is in terms of a covariance ellipsoid defined as the unit level surface of the
quadratic form α∗Siα

T ; this ellipsoid is nearly a sphere with radius υ0, except that along the (complex) axis L̂i, it has radius
υ ≤ υ0. The covariance ellipsoid deviates from a sphere as much as possible when L is unitary. As the distribution (3.44) is
Gaussian, it can be efficiently characterized from the outcomes of the heterodyne measurements; i.e., the heterodyne outcomes
can efficiently estimate the orientation of the covariance ellipsoid and its radius along the one special axis, thus determining the
ith column of L. Since the covariance ellipsoid determines and is determined by the correlation matrix of the distribution—i.e.,
by the covariance matrix—what we do is to estimate the second-moment correlations from the heterodyne outcomes and use
these second moments to estimate the vector Li.

For the ith mode, Alice needs to estimate the M moments that have k = i,

〈αjα∗i 〉i =
1

1− χ2

(
δji −

χ2LjiL
∗
ii

1− χ2(1− ` 2
i )

)
(3.50)
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(thus, overall, for all modes i, she not surprisingly estimates M2 moments); particularly, we have for j = i and j 6= i,

〈|αi|2〉i =
1

1− χ2

(
1− χ2|Lii|2

1− χ2(1− ` 2
i )

)
' 1 + χ2(1− |Lii|2), (3.51)

〈αjα∗i 〉i = − χ2LjiL
∗
ii

(1− χ2)
[
1− χ2(1− ` 2

i )
] ' −χ2LjiL

∗
ii, j 6= i . (3.52)

These moments confirm our earlier discussion of the phase freedom in the transfer matrix: once the diagonal elements Lii are
chosen to be real and nonnegative, a choice we make henceforth, the phases of the off-diagonal elements of L are determined
by the heterodyne statistics. The variance 〈|αi|2〉i gives the diagonal element

Lii =

√
1−
〈|αi|2〉i − 1

χ2
, (3.53)

and the cross-moments 〈αjα∗i 〉i give the off-diagonal elements,

Lji = −
〈αjα∗i 〉i
χ2Lii

, j 6= i . (3.54)

The form of the estimates (3.53) and (3.54) assumes weak squeezing.
From the heterodyne outcomes of Ti characterization runs for which Bob’s output mode i has no counts, we can determine

the elements of the ith covariance matrix with uncertainty ∼ 1/
√
Ti, which means that we can determine the elements of the ith

column of L with uncertainty ∼ 1/χ2
√
Ti. In a total of T characterization runs, Ti is a binomial random variable governed by

the probability pi = P (0i|L) of Eq. (3.43) and thus having mean 〈Ti〉 = Tpi ' T (1−χ2` 2
i ) and variance Tpi(1−pi) ' Tχ2` 2

i .
Thus, from T characterization runs, we have, for each output mode, a subset of nearly T runs that have no count in the chosen
output mode. This means that we can estimate all the elements of the transfer matrix with uncertainty δ ∼ 1/χ2

√
T '

√
M/T ,

so the required number of characterization runs,

T ∼M/δ2 , (3.55)

grows linearly with problem size. It is worth emphasizing that this result comes from the ability of the characterization runs
to extract complete information about the transfer matrix from heterodyne second moments, i.e., from the first-order coherence
of interfering field complex amplitudes in Alice’s modes. Were we to need higher-order moments, involving higher-order
coherences, the required number of characterization runs would be a polynomial of higher order than linear.

Another point worth stressing is the difference between the Alice’s conditional heterodyne statistics and Bob’s unconditional
photocount statistics. The conditional heterodyne statistics of the characterization runs provide information about all the columns
Li of the transfer matrix L = V

√
L†L and thus provide complete information about both the lossless matrix V and the output

loss matrix L†L. In contrast, measurements on Bob’s marginal output state only provide information about the output loss
matrix, whose matrix elements,

(L†L)ij =

M∑
k=1

L∗kiLkj = L†iLj , (3.56)

are the inner products of the column vectors. These inner products are invariant under unitary transformations, so cannot
provide any information about V . Physically, this is the statement that Alice’s conditional heterodyne statistics are sensitive to
interference effects within the LON that Bob’s marginal output state does not know about.

C. Comparing probability distributions

Having characterized Bob’s LON, Alice can determine whether Bob’s RBS samples are drawn from a probability distribution
that is close enough to the desired, ideal probability distribution. This determination is based on a comparison of the ideal and
lossy joint distributions, PQ(nA,nB |U) and PQ(nA,nB |L). In developing this comparison, we come upon a measure of the
distance between the ideal and lossy LONs and show that this measure provides a sufficient condition to determine whether the
samples of the joint experiment by Alice and Bob are drawn from a probability distribution that is close enough to the desired,
ideal probability distribution.
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We begin by reviewing measures for comparing two probability distributions or two quantum states (density operators) [41].
There are two well-known classical measures for comparing two probability distributions, P and Q, which are defined on the
same sample space [41], labeled by outcomes x: the total variation distance (Kolmogorov distance or l1 distance),

D(P,Q) =
1

2

∑
x

|P (x)−Q(x)| , (3.57)

and the classical fidelity (Bhattacharyya overlap),

F (P,Q) =
∑
x

√
P (x)Q(x) . (3.58)

The corresponding measures for two quantum states, ρ and σ, are the trace distance,

D(ρ, σ) =
1

2
‖ρ− σ‖1 =

1

2
Tr |ρ− σ| = max

{Ex}
D(P,Q) , (3.59)

and the fidelity,

F (ρ, σ) = Tr
[(√

ρσ
√
ρ
)1/2]

= min
{Ex}

F (P,Q) . (3.60)

The final expressions relate the quantum measures between states ρ and σ to the classical measures between probability distribu-
tions P and Q obtained from measurements on those states; in these expressions, {Ex} denotes a POVM, and P (x) = Tr[ρEx]

and Q(x) = Tr[σEx]. All these measures are real and symmetric. If ρ = |ψ〉〈ψ| is a pure state, F (ρ, σ) = 〈ψ|σ |ψ〉1/2. The
classical and quantum measures obey an important set of inequalities [41], which are summarized in the following array:

1− F (P,Q) ≤ D(P,Q) ≤
√

1− F 2(P,Q)

≥ ≥ ≥
1− F (ρ, σ) ≤ D(ρ, σ) ≤

√
1− F 2(ρ, σ)

. (3.61)

The total variation distance between distributions P and Q has an operational interpretation as the probability of error in
distinguishing the two distributions: the probability of error given a single draw from the distributions is 1

2 [1 −D(P,Q)] [41].
Through the connection to measurements, the trace distance is directly related to the probability of error in distinguishing density
operators ρ and σ: the probability of error, given an optimal measurement, is 1

2 [1 − D(ρ, σ)]; this is known as the Helstrom
bound [42].

In the context we are considering, we want to compare the RBS distributions (3.2) and (3.9) for the ideal and lossy networks
using both the total variation distance and the classical fidelity,

D
(
PBS|nA,U , PBS|nA,L

)
=

1

2

∑
nB

∣∣PBS(nB |nA,U)− PBS(nB |nA,L)
∣∣ , (3.62)

F
(
PBS|nA,U , PBS|nA,L

)
=
∑
nB

√
PBS(nB |nA,U)PBS(nB |nA,L) . (3.63)

What we are really interested in—and what we bound in App. A 2—are the averages of these two quantities over PQ(nA), which
are the corresponding quantities for the joint distributions (2.6) and (3.7),∑

nA

PQ(nA)D
(
PBS|nA,U , PBS|nA,L

)
=

1

2

∑
nA,nB

∣∣PQ(nA,nB |U)− PQ(nA,nB |L)
∣∣ = D

(
PQ|U , PQ|L

)
, (3.64)

∑
nA

PQ(nA)F
(
PBS|nA,U , PBS|nA,L

)
=

∑
nA,nB

√
PQ(nA,nB |U)PQ(nA,nB |L) = F

(
PQ|U , PQ|L

)
. (3.65)

In the following we focus on two related bounds on these quantities, which involve the quantum measures for Alice and Bob’s
joint states after processing through the ideal and lossy LONs. In App. A 3, we formulate fidelity bounds that instead of averaging
over all input photon records nA, average over records with a fixed total photon number.

To state the bounds compactly, we need to introduce more efficient notation for the joint quantum states. For this purpose, let
ρAB = |ΨAB〉〈ΨAB | denote the joint input state, let

|ΨAB|U 〉 = IA ⊗ U |ΨAB〉 (3.66)
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be the joint (pure) state after the ideal LON, and let

ρAB|U = |ΨAB|U 〉〈ΨAB|U | = IA ⊗ EU (ρAB) , (3.67)

ρAB|L = IA ⊗ EL(ρAB) (3.68)

be the joint density operators after the ideal and lossy LONs.
The first bound we consider involves the fidelities,

F
(
PQ|U , PQ|L

)
≥ F

(
ρAB|U , ρAB|L

)
=
√〈

ΨAB|U
∣∣ρAB|L∣∣ΨAB|U

〉
=

(1− χ2)M∣∣det(I − χ2LU †)
∣∣ . (3.69)

We explicitly derive this bound in App. A 2, not relying on the inequality implicit in Eq. (3.60), because this derivation identifies
the conditions for saturating the bound and provides the explicit form for the quantum fidelity shown here. The entirety of
App. A is as instructive as the main text, both in the derivation of fidelity bounds and in the formulation of a lossy LON in terms
of auxiliary modes into which lost photons leak, but telling that story here would interrupt the flow too much. Appendix A 3
builds on the apparatus of App. A 2 with a brief investigation of other fidelity measures, which involve input number states rather
than thermal states, and how these are related to the transfer matrices.

The second bound weaves through the array (3.61) to put a bound on the total variation distance,

D
(
PQ|U , PQ|L

)
≤ D

(
ρAB|U , ρAB|L

)
≤
√

1−
[
F
(
ρAB|U , ρAB|L

)]2
=

√
1− (1− χ2)2M∣∣det(I − χ2LU †)

∣∣2 . (3.70)

As expected, if L = U , the fidelity bound (3.69) goes to unity, and the bound (3.70) on total variation distance goes to zero,
meaning that the probabilities and density operators are the same.

It is useful to relate the measurement-independent distance measures we are considering to measures for comparing quantum
processes. The trace distance in Eq. (3.70) can be written in a form,

D
(
ρAB|U , ρAB|L

)
=

1

2

∥∥ρAB|U − ρAB|L∥∥1
=

1

2

∥∥IA ⊗ (EU − EL)(ρAB)
∥∥

1
, (3.71)

which invites one to think of it as a species of diamond norm [43] between the ideal and lossy quantum networks. The diamond
norm, however, involves a maximization over input states ρAB . In infinite-dimensional Hilbert spaces, the maximum is generally
meaningless, so instead one contemplates maximizing over states with a constraint on, say, the mean energy of the state; measures
of this sort have been explored, with the constraint on the energy of the system B [44, 45] or on the joint system AB [46], and
are called energy-constrained diamond norms. The trace distance (3.71) does not involve any state maximization, but rather
probes the LONs with the entangled multimode squeezed state |ΨAB〉, with the squeezing parameter χ acting as an energy (or
photon-number) scale on which |ΨAB〉 probes the LONs. Hence, for an energy constraint that is set by the squeezing parameter,
the trace distance (3.71) is a lower bound for the energy-constrained diamond norm. Because |ΨAB〉 is symmetric between the
identical sets of modes, A and B, the energy scale set by the squeezing parameter can be regarded either as joint property of all
the modes or as a property of the B modes.

More directly relevant to a comparison of LONs as quantum processes than a diamond norm is the quantum fidelity that
provides the bound, whose square we manipulate in the following way:[

F
(
ρAB|U , ρAB|L

)]2
=
〈
ΨAB

∣∣IA ⊗ U†IA ⊗ EL(ρAB)IA ⊗ U∣∣ΨAB

〉
=
〈
ΨAB

∣∣IA ⊗ (E−1
U ◦ EL

)(
ρAB

)∣∣ΨAB

〉
= Fe

(
ρth,B , E−1

U ◦ EL
)
.

(3.72)

The square is the entanglement fidelity [47] of the marginal thermal state of the B modes subjected to a quantum process that is
the lossy LON followed by the inverse of the ideal LON. Despite its appearance, the entanglement fidelity depends only on the
state of the B modes, here the thermal state ρth,B , and the quantum process, here E−1

U ◦ EL, and is independent of the particular
purification of the marginal state, here the two-mode squeezed state |ΨAB〉. We suggest that the entanglement fidelity,

Fe
(
ρth,B , E−1

U ◦ EL
)

=
〈
ΨAB|U

∣∣ρAB|L∣∣ΨAB|U
〉

=
(1− χ2)2M∣∣det(I − χ2LU †)

∣∣2 , (3.73)

is a good, measurement-independent measure for comparing a lossy LONLwith an ideal, lossless networkU . The entanglement
fidelity does depend on the marginal thermal state ρth,B input to the LON. In App. A 3 we develop related fidelity bounds that
instead of using the canonical ensemble of the thermal state, are based on microcanonical ensembles, i.e., mixed states spread
uniformly over all states with the same total number of photons.
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FIG. 2: F is the fidelity (3.75) between the ideal state, ρAB|U , which is the (pure) state shared by Alice and Bob after Bob inputs his half of the
M two-mode squeezed-vacuum states into the ideal LON described by transfer matrix U , and the corresponding lossy state, ρAB|L, for the
case that the LON has uniform loss, i.e., has transfer matrix L = tU , with t being the uniform transmissivity. The plots assume χ2= 1/

√
M .

As shown, the fidelity drops exponentially as the transmissivity decreases. For 15% loss (t2 = 0.85) the fidelity reduces to around 53% for 50
modes, 16% for 500 modes, 8% for 1000 modes and below 5% for 1500 modes.

We can now formulate the results of this subsection as the following condition: If after characterization of Bob’s LON, Alice
finds that the right-hand side of Eq. (3.70) is ≤ ε, i.e.,

Fe
(
ρth,B , E−1

U ◦ EL
)

=
[
F
(
ρAB|U , ρAB|L

)]2 ≥ 1− ε2 , (3.74)

then the performance of Bob’s LON is acceptable. This does not mean, however, as we have discussed, that the photocount
samples are efficiently distinguishable from ones that can be generated by a classical algorithm.

As a specific example of our bounds, consider the very special case L = tU , where t represents an overall, uniform transmis-
sivity through the LON and ranges from 0 to 1, with 1 being no loss. In this case the fidelity becomes

F
(
ρAB|U , ρAB|L

)
=

(
1− χ2

1− χ2t

)M
' e−Mχ2(1−t)e−Mχ4(1−t2)/2 . (3.75)

Figure 2 plots how this fidelity scales with the transmissivity t, for different values of M .

IV. DISCUSSION AND CONCLUSION

We present in this paper a protocol for characterizing randomized boson sampling that is implemented jointly by two parties,
Alice and Bob, who share weakly squeezed, quantum-entangled, two-mode squeezed-vacuum states produced by a set of spon-
taneous parametric down-converters. Alice instructs Bob to construct a linear-optical network into which he inputs his half of
the two-mode squeezed-vacuum states. Bob performs photon-counting measurements on the outputs of the LON and reports the
results to Alice. Alice performs either photon-counting measurements or heterodyne measurements on her half of the squeezed-
vacuum states. In the case of photocounting, it is reasonably likely that, given Alice’s photocount record, Bob samples from a
boson-sampling distribution with random single-photon inputs to the LON. In the case of heterodyne measurements, Alice can
use the results, in combination with Bob’s photocount record, to characterize in situ the transfer matrix of the LON that Bob
implemented, including losses at the input and through the LON and sub-unit efficiency of the photodetectors.

Once Alice has characterized Bob’s LON, she can compare the RBS distribution for the ideal network she asked Bob to
construct to the photocount distribution for the lossy network Bob managed to implement. In developing measures for comparing
these distributions, we find that the natural measure for comparing the ideal and lossy LONs is the fidelity between the state
shared by Alice and Bob after the ideal LON and the shared state after Bob’s lossy LON; this fidelity can equivalently be
thought of as the entanglement fidelity of a thermal state processed first through the lossy network and then through the inverse
of the ideal network. In our work, this natural measure is important because it provides an upper bound on the total variation
distance between the ideal RBS distributions and the photocount distributions at the output of Bob’s lossy LON. This measure
has a simple expression in terms of the transfer matrices for the ideal and lossy LONs; along with the related fidelity measures
developed in App. A 3, it might find application in other quantum protocols involving linear-optical networks.

Our characterization method is different from methods that require changing the measurement strategy at both ends in order
to estimate a lower bound on the fidelity between the output state and the target state [22] or to characterize the output state [48].
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Indeed, the key idea of our method is that by changing the measurement strategy from photocounting to heterodyne at Alice’s end,
without the need for any changes at Bob’s end or Bob’s even knowing what is going on, Alice converts RBS, a classically hard
problem, to a problem that is classically efficiently simulable and, more importantly, enables complete, efficient characterization
of Bob’s LON. This strategy, changing measurements on an entangled system to convert a classically hard problem to one that is
easy and also can be used to characterize the quantum device that does the hard problem, might be of interest for other quantum
technologies.

We stress that not all kinds of imperfections at Bob’s end can be dealt with by our characterization procedure. In particular,
dark counts in the photodetectors and mode-mismatched photons that, though lost from the correct mode, nonetheless make their
way through the LON to be counted by the photodetectors—these are somewhat like dark counts [49]—are not described by a
transfer matrix and thus cannot be handled by our current characterization procedure. In addition, excess, presumably Gaussian
noise introduced into Bob’s network cannot be handled within our current formulation. We plan to generalize our procedure to
include such additional noise sources, both to certify whether such additional noise is present and, if it is, to find procedures
to characterize both the noise and Bob’s LON. In the case of mode-mismatched photons, however, no generalization of the
transfer-matrix description to include mode mismatching is currently fully worked out. Note also that the characterization runs,
in practice, can introduce another mode-matching issue, that of matching the modes of local oscillators Alice uses for heterodyne
detection to the mode shape of the modes Alice receives from the SPDC sources.

The RBS runs do not require the quantum correlations of the two-mode squeezed-vacuum state |ΨAB〉 of Eq. (2.1). Indeed,
as pointed out in [50], the RBS runs work in exactly the same way if one uses the state obtained by decohering |ΨAB〉 in the
number basis, a so-called classical-classical state,

ρCC = (1− χ2)M
∑
nA

χ2|nA| |nA〉〈nA| ⊗ |nB = nA〉〈nB = nA| , (4.1)

which has perfect, but purely classical photon-number correlations between the A modes and the B modes. This state can be
obtained from |ΨAB〉 by applying random phase operations to Alice’s modes (or equivalently to Bob’s modes before the LON);
since photon-counting measurements are phase insensitive, this state leads to the boson-sampling distribution (3.9), just as for
the two-mode squeezed-vacuum state.

What the quantum entanglement of |ΨAB〉 enables is not the RBS runs, but rather the characterization runs. A heterodyne
outcome α on the A modes of |ΨAB〉 prepares the input to Bob’s LON in the coherent state |χα∗〉 of Eq. (3.15). It is known
that appropriately chosen coherent-state inputs to a LON, with photocounting at the output, can be used to characterize the
LON [35]; the ability of our protocol to prepare essentially random coherent-state inputs to Bob’s LON, an ability that comes
from the quantum entanglement in the two-mode squeezed-vacuum state, is what allows our characterization protocol to work.
In contrast, given the classically correlated state (4.1), the state input to the B modes after a heterodyne measurement, is
proportional to

1

πM
〈α| ρCC |α〉 = (1− χ2)M

∑
nB

χ2|nB || 〈α|nB〉 |2 |nB〉〈nB | = PC(α)ρCC|α . (4.2)

Here PC(α), the probability for heterodyne outcomeα, is the same as for |ΨAB〉 and thus given by Eq. (3.23), and the normalized
state input to the LON,

ρCC|α =
∑
nB

∣∣ 〈nB |χα∗〉 ∣∣2 |nB〉〈nB | = ∫ dΦ

(2π)M
∣∣χ(αeiΦ)∗

〉〈
χ(αeiΦ)∗

∣∣ (4.3)

is the coherent state |χα∗〉 phase-randomized and thus diagonal in the Fock basis. The final form writes ρCC|α in terms of a
coherent-state expansion that is an explicit randomization of the phases, with dΦ = dφ1 · · · dφM denoting integration over the
randomizing phases and eiΦ = diag(eiφ1 , . . . , eiφM ) being the diagonal unitary matrix formed from the randomizing phases.

The phase randomization means that ρCC does not provide access to all the interference effects available when using two-
mode squeezed vacuum as input. In particular, it is obvious that the phase randomization wipes out the first-order coherence,
i.e., the interference between complex amplitudes of Alice’s modes, which is the basis for the characterization procedure of
Sec. III B 3 and is expressed in the second moments of Eq. (3.49). Nonetheless, as we show in App. B 3, the CC state does
provide, in principle, nearly completely information about the transfer matrix—what is missing is that the heterodyne statistics
cannot distinguish L from its complex conjugate L∗, i.e., cannot remove an overall phase-reversal ambiguity in L—but this
information, because it is contained in coherences higher than first-order, is difficult to extract from the heterodyne data.

Notice now that even with the state ρCC, one can use Bob’s unconditional photostatistics to recover the lossy part,
√
L†L, of

the transfer matrix (3.11), just as we discussed in Sec. III B 2. We stress that the ability to get at this output loss matrix from
Bob’s unconditional photostatistics is a capacity made available by randomized boson sampling; this facility is not available in
the original boson sampling, which injects single photons into a fixed set of input ports of the LON.
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It has been suggested [50] that since there is evidently something nonclassical going on in the RBS runs, something that is
not captured by thinking in terms of the classical correlations between photon-number eigenstates in the CC state (4.1), this
nonclassicality might be that of quantum optics, arising from the nonclassical phase-space description of the state ρCC, i.e., that
it has a negative Glauber-Sudarshan P -function [51]. Yet the photon-number correlations in ρCC are just a photon-mode way of
describing the correlations with any classical device at Alice’s end that selects number-state inputs to Bob’s LON from a thermal
probability distribution; such a classical device, e.g., flipping coins to select the inputs to Bob’s LON or using random-number
generation on a classical computer, generally has no phase-space description. In the case of the CC state, the results of the
coin flipping are stored in number states at Alice’s end, which are orthogonal and thus distinguishable; this distinguishability,
automatic if the coin flipping is regarded as a classical device, is what makes the correlations completely classical, not having
even the quantum correlations of quantum discord [52–54].1

The nonclassicality of RBS lies in what Aaronson and Arkhipov discovered, that the propagation of single photons through
a LON produces a photon-number distribution that cannot be simulated efficiently classically. There is no need for some
other, additional nonclassicality to account for how the inputs to Bob’s LON are populated. Indeed, what we contend is that
in the version of RBS that uses two-mode squeezed-vacuum states, the genuine entanglement of these states is incidental to
the nonclassicality of RBS, but instead plays the crucial role of enabling the ability to characterize the LON from first-order
coherence when Alice switches from photocounting to heterodyne measurement.

We close with a story. Alice and Bob, having successfully run their randomized boson-sampling experiment, are in Stockholm
to pick up the Nobel Prize in Physics for a demonstration of quantum supremacy. As the King of Sweden approaches to present
the Nobel medals, Alice rummages through her backpack to find the famous data to present to the King. Suddenly, she cries out
in alarm, “I have the data from the characterization runs, so I know Bob implemented the LON I requested to good accuracy, but
I have lost the records of my photocounts in the RBS runs. Without those records, Bob was sampling from a thermal distribution
processed through his network.” The startled King turns to the secretary of the Swedish Royal Academy of Sciences, who gives
a thumbs down, remarking that he samples from such a distribution every time he goes outside on a sunny day. As Bob and
Alice beat a hasty retreat, the Nobel ceremony descends into chaos.

Is there a moral here? There is a cliché: always preserve your data. There is perhaps some discomfort with experiments that
rely on post-selection. But beyond cliché and post-selected queasiness might be something more. The probability for a particular
input |nA〉 into Bob’s LON is

PQ(nA) = (1− χ2)Mχ2N ' χ2Ne−Mχ2

e−Mχ4/2 ∼ 1√
e

(
√
Me)−

√
M . (4.4)

The third form assumes weak squeezing, χ2 . 1/
√
M . The final form makes the standard choice, χ2 = 1/

√
M , and for

that choice uses the typical number of photons, N =
√
M . No matter how you slice it, the probability for any particular

input and thus for any particular boson-sampling distribution at the output of the LON decreases exponentially with problem
size. To sample twice from the same boson-sampling distribution thus takes an exponential number of runs, so verification
that any particular sampling distribution is hard, no matter how efficient the verification test, takes an exponential number of
runs. Characterization of the sort proposed in this paper, which can provide confidence that Bob is sampling from something
close to the ideal distribution, is almost certainly the best one can hope to do. Randomized boson sampling that uses two-mode
squeezed-vacuum states makes exponentially harder the already problematic task of verifying that one is doing a hard sampling
problem, but provides the capability for in situ characterization of a lossy linear-optical network. Now there is a moral.
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Appendix A: Lossy networks and fidelity bounds

In this Appendix we derive the fidelity bound and the explicit form of the fidelity given in Eq. (3.69). In App. A 3 we proceed
to related fidelity bounds that, instead of averaging over all input photocount records nA, average only over photon-number
sectors with a fixed total number of photons.

1. Lossy networks using auxiliary loss modes

To make progress, we need to do some preliminary work by developing the description of the lossy network as part of a larger,
lossless network that has M̃ auxiliary modes; the auxiliary modes are initialized in vacuum and receive the photons lost from
Bob’s original network. This larger network is characterized by a unitary operator Ũ and a corresponding unitary transfer matrix

Ũ =

(
L R

S L̃

)
, (A1)

which describes, as in Eq. (2.4), how the larger network transforms the creation operators. In Eq. (A1), Ũ is divided up according
to the originalB modes,M in number, and the auxiliary B̃ modes, M̃ in number. The four submatrices are interrelated in various
ways by the fact that U is unitary, but the only one of these constraints we need is that

LL† +RR† = I . (A2)

It is useful below to consider the polar decomposition (3.11) of the lossy transfer matrix. It is also useful to examine the M × M̃
matrix R. Without loss of generality, we can let the number of auxiliary B̃ modes equal the number of B modes, i.e., M̃ = M .
Then we have a polar decomposition,

R =
√
RR†O =

√
I −LL†O , (A3)

in which we can always choose the unitary matrix O, by redefining the auxiliary B̃ modes, to be the identity, in which case
R =

√
I −LL†.

The transfer matrix Ũ describes how the larger network takes coherent states to coherent states, i.e.,

Ũ |β, β̃〉 =
∣∣ (β β̃

)
Ũ
〉

= |βL+ β̃S,βR+ β̃L̃〉 . (A4)

In the case of interest, the auxiliary modes begin in the vacuum state, symbolized by β̃ = 0̃, which gives

Ũ |β, 0̃〉 = |βL,βR〉 . (A5)

Equation (3.6), for the action of the quantum operation of Bob’s network on coherent states, follows immediately:

EL
(
|β〉〈β|

)
= TrB̃

[
Ũ |β, 0̃〉〈β, 0̃| Ũ†

]
= |βL〉〈βL| . (A6)

We can write the quantum operation EL in a way better suited to Eq. (3.63) by taking the trace over the auxiliary modes in the
number basis,

EL(ρB) = TrB̃
[
ŨρB ⊗ |0̃〉〈0̃| Ũ†

]
=
∑
nB̃

〈nB̃ | Ũ |0̃〉 ρB 〈0̃| Ũ
† |ñB̃〉 =

∑
nB̃

KnB̃
ρBK†nB̃

, (A7)

where in the final form, we recognize Kraus operators that act on the B modes,

KnB̃
= 〈nB̃ | Ũ |0̃〉 . (A8)

To get back to how EL acts on coherent states, we can use that the Kraus operators act on coherent states according to

KnB̃
|β〉 = 〈nB̃ | Ũ |β, 0̃〉 = |βL〉 〈nB̃ |βR〉 , (A9)

which is just what Bob’s LON does, except that each Kraus operator includes the square root of the probability, | 〈nB̃ |βR〉 |2,
for the photon record nB̃ to be left in the auxiliary modes. There is no linear operator that takes |β〉 to |βL〉 when L is not
unitary; the Kraus operators do this job by sub-normalizing the output coherent state in a particular way.
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From here on we omit the reference to the auxiliary modes in the subscript on the Kraus operators, writing the subscript as n,
and simply remembering that this is a record of counts left in the auxiliary modes.

What we need shortly is just one special case of Eq. (A9), for the Kraus operator

K0 = 〈0̃| Ũ |0̃〉 , (A10)

which corresponds to no photons lost into the auxiliary modes; for this special case, we have

K0 |β〉 = |βL〉 〈0̃|βR〉 = |βL〉 e−βRR
†β†/2 = |βL〉 e−β(I−LL†)β†/2 , (A11)

where we use the unitarity constraint (A2) to write the final expression in terms of the lossy transfer matrix L.
We can manipulate Eq. (A9) so that it gives an explicit expression for all the Kraus operators in terms of K0,

Kn |β〉 = |βL〉 e−βRR
†β†/2

M∏
j=1

[
(βR)j

]nj

nj !

= K0 |β〉
M∏
j=1

[
(βR)j

]nj

nj !
,

= K0

M∏
j=1

[
(bR)j

]nj

nj !
|β〉 ,

(A12)

where b is the row vector (3.29) of annihilation operators. We can read off an explicit form for Kn, which we display below in
Eq. (A21).

It is both useful and instructive to find an explicit expression for K0. Even though we can do without this explicit form in
what follows, it elucidates the nature of the lossy LON. Let V be the unitary operator that implements the lossless transfer
matrix V , i.e.,

V |β〉 = |βV 〉 , (A13)

for any coherent state |β〉. We recall the formula

e−β(I−LL†)β†/2∣∣β√LL†〉 = L |β〉 , (A14)

where

L = exp

(∑
j,k

Hjkb
†
kbj

)
(A15)

is a Hermitian, photon-number-conserving operator on the B modes, with

H = ln
(√
LL†

)
. (A16)

Combining Eqs. (A13) and (A14) into Eq. (A11) gives

VL |β〉 = |βL〉 e−β(I−LL†)β†/2 = K0 |β〉 . (A17)

which implies that

K0 = VL. (A18)

The polar decomposition (3.11) of L thus leads to a corresponding polar decomposition of K0: V is the unitary operator for the
lossless network V ;

L =

√
K†0K0 (A19)

comes from the remaining part of the polar decomposition,
√
LL†, which describes the losses.

Formula (A14) is the multimode generalization of the single-mode formula

e−(1−λ2)|α|2/2 |λα〉 = λa
†a |α〉 , (A20)
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which proves useful whenever one considers a quantum process that take coherent states to coherent states. It is often used to
provide the single-mode Kraus-operator description of losses [55], for which the present description is the multimode general-
ization, and it has been used productively in analyzing nondeterministic linear amplifiers [56], where λa

†a emerges, just as here,
in a Kraus operator, one that describes, when λ > 1, probabilistic amplification of an initial coherent state to a coherent state of
higher amplitude.

Returning now to the Kraus operators, we extract the explicit form of Kn from Eq. (A12),

Kn = K0

M∏
j=1

[(
b
√
I −LL†

)
j

]nj

nj !
=

M∏
j=1

[(
bL−1

√
I −LL†

)
j

]nj

nj !
K0 . (A21)

Here the latter form uses

K−1
0 bK0 = bL, (A22)

which follows immediately from the action (A10) of K0 on coherent states (likewise, we have V†bV = bV and L−1bL =

beH = b
√
LL†).

2. Fidelity bound (3.69)

We turn now to the fidelity bound (3.69) and start with the fidelity (3.63) between the ideal and lossy RBS distributions,

F
(
PBS|nA,U , PBS|nA,L

)
=
∑
nB

√
PBS(nB |nA,U)PBS(nB |nA,L)

=
∑
nB

|nB |=|nA|

| 〈nA| U† |nB〉 |
√
〈nB | EL (|nA〉〈nA|) |nB〉 .

(A23)

The factor
∣∣ 〈nB | U |nA〉 ∣∣ is zero unless |nB | = |nA|, so it gives the indicated restriction on the sum. We remind the reader that

although nA is the record of photocounts at Alice’s end, it is better thought of here as specifying the state input to Bob’s LON.
Indeed, the analysis here is carried out within the state space of the B modes and the auxiliary B̃ modes; the only time Alice’s
end comes into play is in relating the fidelity bound to the quantum fidelity of Eq. (3.69).

We now substitute the Kraus-operator expansion (A7) of EL into the fidelity (A23), noting that the restriction |nB | = |nA|
means that we only need to keep the single Kraus term that corresponds to no photons leaking into the auxiliary modes, thus
obtaining

F
(
PBS|nA,U , PBS|nA,L

)
=

∑
nB

|nB |=|nA|

∣∣ 〈nA| U† |nB〉 〈nB | K0 |nA〉
∣∣ , (A24)

where

〈nB | K0 |nA〉 = 〈nB , 0̃| Ũ |nA, 0̃〉 . (A25)

From here on, we omit the restriction |nB | = |nA|, it being enforced by both factors in the sum. Notice that if Bob’s network
is the desired, ideal one, we can choose Ũ = U ⊗ I, which means that K0 = U is the only nonzero Kraus operator, and the
classical fidelity (A24) is 1, as it should be, since L = U .

Equation (A24) is an equality, not a bound. We now take the step away from equality to a bound by pulling the absolute value
outside the sum:

F
(
PBS|nA,U , PBS|nA,L

)
≥
∣∣∣∣∑
nB

〈nA| U† |nB〉 〈nB | K0 |nA〉
∣∣∣∣

=
∣∣∣ 〈nA| U†K0 |nA〉

∣∣∣
= F

(
U |nA〉 , EL

(
|nA〉〈nA|

))
.

(A26)

The condition for equality here is that all the terms in the sum have the same phase.
The bound is now in a very neat form—it is the fidelity between the states U |nA〉 and EL

(
|nA〉〈nA|

)
or, equivalently, the

overlap of the states U |nA〉 and K0 |nA〉 = VL |nA〉—but to get a bound involving the transfer matrices U and L requires
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further massaging. The first step is to average over PQ(nA), as in Eq. (3.65) (in App. A 3 we formulate bounds based on
averaging over fixed-photon-number sectors). This gives us

F
(
PQ|U , PQ|L

)
=
∑
nA

PQ(nA)F
(
PBS|nA,U , PBS|nA,L

)
≥
∑
nA

∣∣PQ(nA) 〈nA| U†K0 |nA〉
∣∣

≥
∣∣∣∣∑
nA

PQ(nA) 〈nA| U†K0 |nA〉
∣∣∣∣

=

∣∣∣∣Tr
[(∑

nA

(1− χ2)Mχ2|nA| |nA〉〈nA|
)
U†K0

]∣∣∣∣
=
∣∣∣Tr
[
ρth,B U†K0

]∣∣∣ ,

(A27)

where we use that the state in large parentheses in the fourth line is the thermal state of Eq. (2.10). The condition for equality in
the third line is that all the terms 〈nA| U†K0 |nA〉 have the same phase. A little reflection shows that the overall condition for
equality is an extension of that expressed above, that the terms 〈nA| U† |nB〉 〈nB | K0 |nA〉 have the same phase for all input
and output photocount records. The bound is now in terms of the operator overlap of U and K0 = VL, as measured in the
thermal state.

We now show in a rush that the bound (A27) is the quantum fidelity of Eq. (3.69),

F
(
ρAB|U , ρAB|L

)
=
〈
ΨAB|U

∣∣ρAB|L∣∣ΨAB|U
〉1/2

=
〈

ΨAB

∣∣∣IA ⊗ U†EL( |ΨAB〉〈ΨAB |
)
IA ⊗ U

∣∣∣ΨAB

〉1/2

=
∣∣ 〈ΨAB | IA ⊗ U†K0 |ΨAB〉

∣∣
=
∣∣TrAB

[
IA ⊗ U†K0 |ΨAB〉〈ΨAB |

]∣∣
=
∣∣TrB

[
U†K0ρth,B

]∣∣ ,
(A28)

thus confirming, in this particular case, the general bound implicit in Eq. (3.60).
One final step is left, to write the fidelity bound in terms of the transfer matrices. To do that, use the coherent-state expan-

sion (3.26) of the thermal state and Eq. (2.12) to write

Tr
[
ρth,B U†K0

]
=

(
1− χ2

χ2

)M ∫
d2Mβ

πM
exp

(
−1− χ2

χ2
ββ†

)
〈β| U†K0 |β〉 . (A29)

We are really cooking now because we can use Eqs. (2.5) and (A11) to convert the coherent-state matrix element to a form that
involves the transfer matrices U and L,

〈β| U†K0 |β〉 = e−ββ
†/2eβLL

†β†/2 〈βU |βL〉 = e−β(I−LU†)β† . (A30)

What is left is a Gaussian integral,

Tr
[
ρth,B U†K0

]
=

(
1− χ2

χ2

)M ∫
d2Mβ

πM
exp

[
−β

(
1

χ2
I −LU †

)
β†
]

=
(1− χ2)M

det(I − χ2LU †)
, (A31)

which puts the fidelity bound into its final form,

F
(
PQ|U , PQ|L

)
≥ F

(
ρAB|U , ρAB|L

)
=
∣∣Tr
[
ρth,B U†K0

]∣∣ =
(1− χ2)M∣∣det(I − χ2LU †)

∣∣ . (A32)

Notice that LU † =
√
LL†V U †, emphasizing again that the lossy network L is weighed against the ideal network in two ways

based on its polar decomposition: first, on how well its associated unitary transfer matrix, V , matches U and, second, on how
close its nonunitary, lossy piece,

√
LL†, is to the identity matrix.

An important special case occurs when the lossless network that is associated with L is the same as the ideal network, i.e.,
V = U , which is equivalent to V = U . In this case the quantum fidelity becomes

F
(
ρAB|U , ρAB|L

)
=
∣∣Tr[ρth,BL]

∣∣ =
(1− χ2)M

det
(
I − χ2

√
LL†

) =
(1− χ2)M

(1− χ2t1) · · · (1− χ2tM )
, (A33)
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where ti are the singular values of L. We note that when V = U , only the pure loss in Bob’s LON needs to be characterized,
and that can be done using Bob’s unconditional photostatistics, without any need for the heterodyne characterization runs.

An even more special case, which we consider in the main text (and plot in Fig. 2), to get an idea of the scaling due to losses,
occurs whenL = tU . Here t is an overall, uniform transmissivity through the LON. In this case, V = U ,

√
LL† = tI , V = U ,

and

L = t
∑

jb
†
jbj . (A34)

The fidelity bound is tight, since 〈nA| U† |nB〉 〈nB | K0 |nA〉 = t|nA|| 〈nA| U |nB〉 |2 is always real and nonnegative. Thus, in
this very special case, we have

F
(
PQ|U , PQ|L

)
= F

(
ρAB|U , ρAB|L

)
=
∣∣∣Tr
[
ρth,B t

∑
j b
†
jbj
]∣∣∣ =

(
1− χ2

1− χ2t

)M
. (A35)

3. Fidelity bounds in fixed photon-number sectors

In App. A 2 we formulate bounds on the classical fidelity between the joint distributions PQ|U and PQ|L of Eqs. (2.6) and (3.7).
At Eq. (A27), this involved averaging the fidelity between the ideal and lossy boson-sampling distributions over all input photo-
count records nA. In this section, we formulate fidelity bounds that involve averaging only over photon-number sectors with a
fixed total number of photons N = |nA|.

To state these bounds compactly, we need to introduce additional states that correspond to knowing the total number of
photons at the input to Bob’s network. We start by projecting the input two-mode squeezed state to theN -photon sector by using
Eqs. (2.8), (2.9), and (2.14),

|ΨAB|N 〉 =
1√

PQ(N)
ΠN ⊗ΠN |ΨAB〉 =

1√
G(N,M)

∑
nA

|nA|=N

|nA〉 ⊗ |nB = nA〉 , (A36)

and we let

ρAB|N = |ΨAB|N 〉〈ΨAB|N | (A37)

denote the associated density operator. The corresponding marginal state at the input to Bob’s LON is the microcanonical
ensemble for a fixed number of photons,

ρB|N = TrA[ρAB|N ] =
1

G(N,M)
ΠN =

1

PQ(N)
ΠNρth,BΠN ; (A38)

as indicated, this state is obtained by projecting the canonical-ensemble thermal state (2.7) into the N -photon sector. The
corresponding states after propagation through the ideal and lossy networks are

|ΨAB|N,U 〉 = IA ⊗ U |ΨAB,N 〉 =
1√

PQ(N)
ΠN ⊗ΠN |ΨAB|U 〉 , (A39)

ρAB|N,U = |ΨAB|N,U 〉〈ΨAB|N,U | = IA ⊗ EU (ρAB|N ) , (A40)

ρAB|N,L = IA ⊗ EL(ρAB|N ) . (A41)

In this section we are interested in the fidelity between the joint photocounting distributions, PQ|N,U and PQ|N,L, constructed
from the states (A40) and (A41),

PQ(nA,nB |N,U) = | 〈nA,nB |ΨAB|N,U 〉 |2 = PQ(nA|N)PBS(nB |nA,U) , (A42)

PQ(nA,nB |N,L) = 〈nA,nB | ρAB|N,L |nA,nB〉 = PQ(nA|N)PBS(nB |nA,L) , (A43)

where

PQ(nA|N) =
δ|nA|,N

G(N,M)
(A44)

is the probability for photocount record nA, given N total photocounts, and PBS(nB |nA,U) and PBS(nB |nA,L) are the ideal
and lossy boson-sampling distributions of Eqs. (3.2) and (3.9).
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To get the desired fidelity bounds, we start with Eq. (A26) and proceed through the same steps as in Eqs. (A27) and (A28) to
obtain

F
(
PQ|N,U , PQ|N,L

)
=
∑
nA

PQ(nA|N)F
(
PBS|nA,U , PBS|nA,L

)
≥
∣∣∣Tr
[
ρB|N U†K0

]∣∣∣ = F
(
ρAB|N,U , ρAB|N,L

)
. (A45)

The condition for equality is that the terms 〈nA| U† |nB〉 〈nB | K0 |nA〉 have the same phase for all input and output photocount
records with |nA| = |nB | = N . It should now be clear that whereas the states introduced in Eqs. (A36)–(A41) are not the states
that are used in our RBS protocol, they are the states that arise naturally in considering the average fidelity between the ideal and
lossy boson-sampling distributions when the average is restricted to a particular total photon number N .

The final step of writing the bound in terms of the transfer matrices follows from realizing that the marginal thermal state at
the input to Bob’s LON,

ρth,B =

∞∑
N=0

PQ(N)ρB|N , (A46)

provides a generating function for the bounds (A45),

1

det(I − χ2LU †)
=

Tr
[
ρth,B U†K0

]
(1− χ2)M

=

∞∑
N=0

χ2NG(N,M)Tr
[
ρB|N U†K0

]
, (A47)

where the generating function is evaluated in terms of the transfer matrices using Eq. (A31). We end up with

Tr
[
ρB|N U†K0

]
=

(M − 1)!

(N +M − 1)!

∂N

∂(χ2)N
1

det(I − χ2LU †)

∣∣∣∣
χ2=0

. (A48)

To illustrate what is going on, consider the very simple case of a single photon, N = 1, input to Bob’s LON,

F
(
PQ|1,U , PQ|1,L

)
≥
∣∣Tr
[
ρB|1 U†K0

]∣∣ =
1

M

∣∣Tr[LU †]
∣∣ . (A49)

A single photon propagates through the network with quantum amplitudes that are the same as the coherent-state amplitudes, so
it is not surprising that the fidelity bound reduces to an overlap of the transfer matrices that describe the propagation of coherent
states. When V = U , we have

F
(
PQ|1,U , PQ|1,L

)
≥
∣∣Tr
[
ρB|1 U†K0

]∣∣ =
1

M

M∑
i=1

ti . (A50)

For the case of uniform loss, L = tU , the bound is saturated, and we have F
(
PQ|1,U , PQ|1,L

)
= t.

Using the same considerations as in Sec. III C, the fidelity bound for the N -photon sector, given by Eqs. (A45) and (A48), can
be related to a bound on total variation distance, and the fidelity bound can be related to an entanglement fidelity.

Appendix B: Conditional heterodyne statistics, the CC state (4.1), and RBS-only characterization

1. Conditional heterodyne statistics

Starting with a joint probability distribution P (α,nB |L), we want to condition the heterodyne outcomes on photocount
records at Bob’s end. The only conditioning we use below is on a fixed set of modes having no counts, but for generality here,
we introduce a set ∆ of photocount records and the projector onto the subset spanned by these records,

Π∆ =
∑
n∈∆

|n〉〈n| . (B1)

The set has indicator function

∆(n) = 〈n|Π∆|n〉 =

{
1 , n ∈∆

0 , n /∈∆
. (B2)
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We then have joint and conditional distributions for the set ∆,

P (α,∆|L) =
∑
nB∈∆

P (α,nB |L) = P (α|∆,L)P (∆|L) , (B3)

P (∆|L) =

∫
d2MαP (α,∆|L) =

∑
nB∈∆

P (nB |L) . (B4)

The mean value of a function F (α,α†) of heterodyne outcomes is〈
F (α,α†)

〉
∆

=

∫
d2MαF (α,α†)P (α|∆,L) =

∑
nB∈∆

P (nB |L)

P (∆|L)

〈
F (α,α†)

〉
nB

, (B5)

where 〈
F (α,α†)

〉
nB

=

∫
d2MαF (α,α†)P (α|nB ,L) . (B6)

A good way to write this is

P (∆|L)
〈
F (α,α†)

〉
∆

=
∑
nB∈∆

P (nB |L)
〈
F (α,α†)

〉
nB

. (B7)

We are generally interested in cases where P (∆|L) ' 1−cχ2 ' 1−c/
√
M , for some constant c, meaning that the probability

P (∆|L) of the record set ∆ goes to 1 asM goes to∞, thus allowing us to use essentially all trials in the characterization. Record
sets that have this property are those that have no counts for the modes in a string i = i1 . . . ir and include all counts for the
other modes; we denote this set by ∆ = 0i. Notice that changing the conditioning for just one mode in the string i from no
count to a single count changes the scaling of P (∆|L) to χ2 ' 1/

√
M , thus making this kind of conditioning essentially useless

for characterization runs.
The probabilities that control our characterization runs are those given in Eqs. (3.18), (3.36), and (3.37). We can put these

together in a little bit different way,

PC(α,nB |L) = PC(α|nB ,L)P (nB |L) =
(1− χ2)M

πM
e−α

∗SαT
M∏
i=1

∣∣χ2α∗LiL
†
iα

T
∣∣nB,i

nB,i!
, (B8)

where

S = (1− χ2)I + χ2
M∑
i=1

LiL
†
i (B9)

is a positive (Hermitian) matrix and Li is the column vector defined by Eq. (3.21). An important, but easily verified property,

PC(α∗,nB |L) = PC(α,nB |L∗) , (B10)

says that conjugating the heterodyne outcomes is the same as conjugating the LON, i.e., reversing the phase of all the matrix
elements in L. Equation (B10) implies that P (nB |L) = P (nB |L∗), so the conjugation property extends to the conditional
probabilities,

PC(α∗|nB ,L) = PC(α|nB ,L∗) . (B11)

Moreover, these properties extend to any photocount record ∆,

PC(α∗,∆|L) = PC(α,∆|L∗) , (B12)
PC(α∗|∆,L) = PC(α|∆,L∗) . (B13)

We now focus on the photocount sets 0i we are most interested in. The relevant probability distributions are

PC(α, 0i|L) =
(1− χ2)M

πM
e−(1−χ2)|α|2

r∏
s=1

∣∣ 〈0|χα∗Lis〉 ∣∣2 =
(1− χ2)M

πM
e−α

∗Siα
T

, (B14)

P (0i|L) =

∫
d2MαPC(α, 0i|L) =

(1− χ2)M

detSi

, (B15)

PC(α|0i,L) =
PC(α, 0i|L)

P (0i|L)
=

detSi

πM
e−α

∗Siα
T

, (B16)
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where

Si = (1− χ2)I + χ2
r∑
s=1

LisL
†
is

(B17)

is a positive (Hermitian) matrix. These distributions and the matrix Si are generalizations of the distributions found in
Eqs. (3.38), (3.43), and (3.44), which apply to conditioning on a single no-count mode. For a single no-count mode, it is
easy to find the inverse of the matrix Si of Eq. (3.39). For two or a few modes, it would not be hard to to find the exact inverse
of Si, but for present purposes, it is simpler and more instructive to approximate the inverse for weak squeezing as a series,

S−1
i =

1

1− χ2

(
I +

χ2

1− χ2

r∑
s=1

LisL
†
is

)−1

=
1

1− χ2
I − χ2

(1− χ2)2

r∑
s=1

LisL
†
is

+
χ4

(1− χ2)3

r∑
s,t=1

LisL
†
is
LitL

†
it

+ · · · .
(B18)

2. Conditional heterodyne moments

Our characterization procedure runs on conditional heterodyne moments. The moment-generating characteristic function,

Φ(ξ, ξ†|∆,L) =
〈
eξα

†−αξ†〉 =

∫
d2MαP (α|∆,L)eξα

†−αξ† , (B19)

is the Fourier transform of the relevant distribution and corresponds to F (α,α†) = eξα
†−αξ† . The characteristic function

generates moments via its Taylor expansion about ξ = ξ† = 0,

Φ(ξ, ξ†|∆,L) =

∞∑
n,m=0

(−1)n

n!m!

〈
(αξ†)n(ξα†)m

〉
∆

=
∑
n,m

(−1)n

n!m!

〈 ∑
n1,...,nm

n!

n1! · · ·nM !
(α1ξ

∗
1)n1 · · · (αMξ∗M )nM

×
∑

m1,...,mM

m!

m1! · · ·mM !
(α∗1ξ1)m1 · · · (α∗MξM )mM

〉
∆

=
∑

n1,...,nM

m1,...,mM

(−1)n

n1! · · ·nM !m1! · · ·mM !

〈
αn1

1 (α∗1)m1 · · ·αnM

M (α∗M )mM

〉
∆

(ξ∗1)n1 · · · (ξ∗M )nM ξm1
1 · · · ξmM

M ;

(B20)

thus the heterodyne moments are given by〈
αn1

1 (α∗1)m1 · · ·αnM

M (α∗M )mM

〉
∆

= (−1)n
∂n+mΦ(ξ, ξ†|∆,L)

∂(ξ∗1)n1 · · · ∂(ξ∗M )nM∂ξm1
1 · · · ∂ξmM

M

∣∣∣∣
ξ=ξ∗=0

. (B21)

For the Gaussian distribution of Eq. (B16), the characteristic function is

ΦC(ξ, ξ†|0i,L) =
detSi

πM

∫
d2Mα e−αS

∗
i α
†
eξα

†−αξ† = e−ξ(S
∗
i )−1ξ† = e−ξ

∗S−1
i ξT . (B22)

For any Gaussian distribution, characterized by a positive, Hermitian matrixA in the characteristic function, the characteristic
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function expands as

Φ(ξ, ξ†) = e−ξ
∗AξT

=

∞∑
n=0

(−1)n

n!
(ξ∗AξT )n

=

∞∑
n=0

(−1)n

n!

∑
j1,...,jn
k1,...,kn

ξ∗j1 · · · ξ
∗
jnξk1 · · · ξknAj1k1 · · ·Ajnkn

=
∑

n1,...,nM

m1,...,mM

(
(−1)nδnm

n!

∑
j,k

Aj1k1 · · ·Ajnkn
)

(ξ∗1)n1 · · · (ξ∗M )nM ξm1
1 · · · ξmM

M .

(B23)

where

n =
∑
j

nj , m =
∑
j

mj , (B24)

with n = m enforced by the Kronecker delta in the sum. The sums over products of matrix elements of A are over strings
j = j1 . . . jn containing n1 1s, n2 2s, and on up to nM Ms, the number of such strings being n!/n1! · · ·nM !, and, similarly,
over strings k = k1 . . . kn containing m1 1s, m2 2s, and on up to mM Ms, the number of such strings being m!/m1! · · ·mM !.
Comparison with Eq. (B20) shows that the heterodyne moments are given by〈

αn1
1 (α∗1)m1 · · ·αnM

M (α∗M )mM

〉
= δnm

n1! · · ·nM !m1! · · ·mM !

n!

∑
j,k

Aj1k1 · · ·Ajnkn . (B25)

We can simplify this expression by noting that for every string j, the sum over k produces the same result. This allows us to use
a standard string j (e.g., the string that has n1 1s followed by n2 2s up to nM Ms) and thus to reduce the double sum to a single
sum, giving 〈

αn1
1 (α∗1)m1 · · ·αnM

M (α∗M )mM

〉
= δnmm1! · · ·mM !

∑
k

Aj1k1 · · ·Ajnkn . (B26)

Furthermore, if we restrict to the nonzero moments, i.e., those that have n = m, we can write the moment in a different way and
turn the sum into a sum over all permutations π of n elements:〈

αj1 · · ·αjnα∗k1 · · ·α
∗
kn

〉
=
∑
π∈Sn

Aj1,π(k1) · · ·Ajn,π(kn) . (B27)

For our protocol using two-mode squeezed-vacuum inputs, the heterodyne moments, conditioned on the photocount record
0i, are obtained by setting Ajk = (S−1

i )jk, giving〈
αj1 · · ·αjnα∗k1 · · ·α

∗
kn

〉
i,C =

∑
π∈Sn

(S−1
i )j1,π(k1) · · · (S−1

i )jn,π(kn) . (B28)

The characterization protocol developed in Sec. III B 3 relies on the first-order coherence, i.e., amplitude interference, of the
heterodyne second moments (3.49), which are conditioned on a single no-count mode, i.e., the moments 〈αjα∗k〉i,C = (S−1

i )jk.
These second moments are sufficient to reconstruct the entire transfer matrix L, so there is no need either for conditioning on
more no-count modes or for considering higher moments, which express higher-order coherence between the complex ampli-
tudes of Alice’s modes.

The ultimate reason for introducing the general formalism for heterodyne moments, aside from completeness, is to analyze
characterization using the classical-classical (CC) state (4.1), a task to which we now turn. Just before doing so, notice that we
now decorate the moments derived ultimately from the distribution PC(α|∆,L) with a subscript C, this to distinguish them from
the moments derived similarly from the CC state, to which we attach a subscript CC.

3. Characterization using CC state

The classical-classical (CC) state (4.1) has perfect, but purely classical photon-number correlations between the A modes and
the B modes; thus it can be used for randomized boson sampling in exactly the same way as the two-mode squeezed-vacuum



27

input |ΨAB〉 of Eq. (2.2). For both these states, the marginal state of either the A or B modes is the thermal state. Hence,
the information available from the marginal photocount records at Bob’s end is the same for both inputs, and this is the ability
to read out the output loss matrix L†L, as discussed in Sec. III B 2. What the quantum entanglement in |ΨAB〉 enables is
the characterization protocol based on first-order coherence of the complex amplitudes of Alice’s modes. In this section we
investigate what information is contained in the heterodyne statistics of the CC state—and where one has to look to find this
information.

A quite interesting additional question is what kind of characterization can be done with Alice’s conditional photostatistics in
RBS runs. For this question, it doesn’t matter whether the input is two-mode squeezed vacuum or the CC state. It turns out, as
we confirm in App. B 4, that the characterization achievable using only the RBS runs is precisely what can be achieved using the
conditional heterodyne statistics derived from the CC state. This serves as additional motivation to suffer through the analysis
presented in this subsection.

What we are interested in now is the joint probability for heterodyne outcomes and a photocount record at Bob’s end, which
can be expressed in terms of a phase randomization of the corresponding joint probability (B8) for |ΨAB〉,

PCC(α,nB |L) =
1

πM
〈
α,nB

∣∣IA ⊗ EL(ρCC)
∣∣α,nB〉

= PC(α)
〈
nB
∣∣EL(ρCC|α)

∣∣nB〉
=

∫
dΦ

(2π)M
PC(αeiΦ)

∣∣∣〈nB∣∣χ(αeiΦ)∗L
〉∣∣∣2

=

∫
dΦ

(2π)M
PC
(
αeiΦ,nB

∣∣L) .
(B29)

Here we project ρCC onto heterodyne outcome α to obtain the input state ρCC|α to Bob’s modes [see Eq. (4.2)]; we use Eq. (4.3)
to write ρCC|α in terms of a P function, which is a uniform distribution in the modal phases; and we use that the probability
PC(α) for heterodyne outcome α [see Eq. (3.23)] is invariant under modal phase changes. The conditional probability for
heterodyne outcomes, given Bob’s photocount record, is

PCC(α|nB ,L) =
PCC(α,nB |L)

P (nB |L)

=

∫
dΦ

(2π)M
PC
(
αeiΦ

∣∣nB ,L)
=

PC(α)

P (nB |L)

∫
dΦ

(2π)M

∣∣∣〈nB∣∣χ(αeiΦ)∗L
〉∣∣∣2 .

(B30)

These are formal ways of writing what we already know, that these probabilities are obtained from those for the two-mode
squeezed-vacuum input by randomizing the phases of the heterodyne outcomes. They imply that

PCC(α,nB |L) = PCC(αeiΦ,nB |L) . (B31)

One thing to note at this point is the freedom we have to adjust phases in the LON. In the case of two-mode squeezed-vacuum
input, choosing the squeezing parameter χ to be real sets relative phases between Alice’s modes and Bob’s modes and forbids
further phase changes of the modes at the input to Bob’s LON; the remaining phase freedom is the ability to absorb phases into
the definition of the output modes. In contrast, when using ρCC as input, there is no phase relation between Alice’s modes and
Bob’s modes, so we have the freedom to absorb phases into both the input and the output modes of the LON. This means that
we can choose one element of each row and one element of each column of L to be real and nonnegative.

The crucial property of the CC joint probability follows from Eqs. (B10), (B30), and (B31):

PCC(α,nB |L) = PCC(α∗,nB |L)

=

∫
dΦ

(2π)M
PC
(
α∗eiΦ,nB

∣∣L)
=

∫
dΦ

(2π)M
PC
(
αe−iΦ,nB

∣∣L∗)
=

∫
dΦ

(2π)M
PC
(
αeiΦ,nB

∣∣L∗)
= PCC(α,nB |L∗) .

(B32)
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This property is inherited by the conditional probabilities, i.e., PCC(α|nB ,L) = PCC(α|nB ,L∗), and hence by the heterodyne
probabilities for photocount record sets ∆,

PCC(α,∆|L) = PCC(α,∆|L∗) , (B33)
PCC(α|∆,L) = PCC(α|∆,L∗) . (B34)

What this property means is that the heterodyne statistics with CC input cannot distinguish the transfer matrix from its conjugate,
i.e., from changing the sign of the phase for all the matrix elements in the transfer matrix. We remind the reader that PCC(α|∆,L)
is the Husimi Q distribution for the state of Alice’s modes conditioned on the photocount record ∆.

We stress that this conclusion is more general than for the CC state: if the input states to a LON and the output measurements
are phase symmetric, the output probability distribution is invariant under exchanging L for L∗. To show this, one expresses
the phase-symmetric input state in terms of phase-randomized coherent states with either a regular or singular weight function,
which is the phase-averaged P function.

The remaining question is whether the conditional heterodyne statistics with CC input contain all the information about the
transfer matrix except this global phase reversal. To answer this question, we look at the conditional heterodyne moments.
The key point in doing so is that the mean value of any function F (α,α†) of the heterodyne outcomes using the CC state is
obtained by randomizing the phases of the heterodyne outcomes in the corresponding mean value using the two-mode squeezed-
vacuum input:

〈
F (α,α†)

〉
∆,CC =

∫
d2MαF (α,α†)PCC(α|∆,L)

=

∫
dΦ

(2π)M

∫
d2MαF (α,α†)PC

(
αeiΦ

∣∣∆,L)
=

∫
dΦ

(2π)M

∫
d2Mα′ F (α′e−iΦ, eiΦα′†)PC

(
α′
∣∣∆,L)

=

∫
d2MαPC

(
α
∣∣∆,L) ∫ dΦ

(2π)M
F (αe−iΦ, eiΦα†)

=
〈
G(α,α†)

〉
∆,C .

(B35)

Here

G(α,α†) =

∫
dΦ

(2π)M
F (αe−iΦ, eiΦα†) . (B36)

For moments, which have F (α,α†) = αn1
1 (α∗1)m1 · · ·αnM

M (α∗M )mM ,

G(α,α†) =

∫
dΦ

(2π)M
αn1

1 (α∗1)m1e−i(n1−m1)φ1 · · ·αnM

M (α∗M )mM e−i(nM−mM )φM

= δn1m1
· · · δnMmM

|α1|2n1 · · · |αM |2nM ,

(B37)

which leads to 〈
αn1

1 (α∗1)m1 · · ·αnM

M (α∗M )mM
〉

∆,CC = δn1,m1
· · · δnM ,mM

〈
|α1|2n1 · · · |αM |2nM

〉
∆,C . (B38)

It is clear what is lost by going to the classical-classical input state: one can only get at the “diagonal” moments of those
available from the squeezed-vacuum input; these diagonal moments express intensity correlations, but lack entirely the amplitude
interference that is expressed in the “off-diagonal” moments.

When conditioning on a single no-count mode i, i.e., for the record set ∆ = 0i, it is obvious that the first-order coherence on
which our characterization protocol operates is missing when one uses the CC state:

〈αjα∗k〉i,CC = δjk〈|αj |2〉i,C = δjk(S−1
i )jj =

δjk
1− χ2

(
1− χ2|Lji|2

1− χ2(1− ` 2
i )

)
. (B39)

What can be determined from these second moments are the magnitudes of the matrix elements of the transfer matrix, with
nothing about the phases of the matrix elements. What is not so obvious is that this is not a special property of the second
moments, but for a single no-count mode, a result that holds for all moments. The easiest way to see this is to work directly with
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probability distributions,

PCC(α|0i,L) =

∫
dΦ

(2π)M
PC
(
αeiΦ

∣∣0i,L)
=

detSi
πM

∫
dΦ

(2π)M
e−α

∗e−iΦSie
iΦαT

=
detSi
πM

e−(1−χ2)α∗αT

∫
dΦ

(2π)M
exp
(
−χ2α∗e−iΦLiL

†
ie
iΦαT

)
.

(B40)

Letting

Lji = |Lji|eiθji , (B41)

we can transform the phase integral,∫
dΦ

(2π)M
exp
(
−χ2α∗e−iΦLiL

†
ie
iΦαT

)
=

∫
dφ1 · · · dφM

(2π)M
exp

(
−χ2

(∑
j

α∗j |Lji|e−i(φj+θji)

)(∑
k

αk|Lki|ei(φk+θki)

))

=

∫
dφ′1 · · · dφ′M

(2π)M
exp

(
−χ2

(∑
j

α∗j |Lji|e−iφ
′
j

)(∑
k

αk|Lki|eiφ
′
k

))

=

∫
dφ1 · · · dφM

(2π)M
exp

(
−χ2

∑
j,k

α∗je
−iφj |Lji||Lki|eiφkαk

)
,

(B42)

where φ′j = φj + θji. The integral over phases certainly restricts the moments to the “diagonal” moments, but this form makes
clear that the CC probability PCC(α|0i,L), conditioned on a single no-count mode, depends only on the magnitudes, not the
phases of the matrix elements of the transfer matrix.

To get phase information requires conditioning on more than one no-count mode. Consider the second moments for the record
set ∆ = 0i,

〈αjα∗k〉i,CC = δjk〈|αj |2〉i,C
= δjk(S−1

i )jj

=
1

1− χ2
− χ2

(1− χ2)2

r∑
s=1

|Ljis |2 +
χ4

(1− χ2)3

M∑
l=1

r∑
s,t=1

LjisL
∗
lisLlitL

∗
jit + · · · ,

(B43)

where we use Eq. (B18) for S−1
i . At order χ2, there is no phase information, but there is phase information at order χ4 and

higher. The fourth moments get at this same phase information better,

〈αjαkα∗l α∗m〉i,CC = δjkδjlδkm〈|αj |4〉i,C + (1− δjk)(δjlδkm + δjmδkl)〈|αj |2|αk|2〉i,C
= 2δjkδjlδkm(S−1

i )2
jj + (1− δjk)(δjlδkm + δjmδkl)

[
(S−1

i )jj(S
−1
i )kk +

∣∣(S−1
i )jk

∣∣2 ] , (B44)

particularly the very last term. All the terms provide phase information, but only at order χ4 and higher. To see what can be
done, specialize to the case of just two no-count modes, one chosen to be the first mode and the other mode i, i.e., i = 1i. In
this situation, we have for j 6= k,

〈|αj |2|αk|2〉1i,CC − 〈|αj |2〉1i,CC〈|αk|2〉1i,CC =
∣∣(S−1

1i )jk
∣∣2 ' χ4

∣∣Lj1L∗k1 + LjiL
∗
ki

∣∣2 . (B45)

Choosing the elements of the first column, L1, to be real and nonnegative leads to, for j 6= k,

|(S−1
i )jk|2 ' χ4

∣∣Lj1Lk1 + |Lji||Lki|ei(θji−θki)
∣∣2

= χ4
[
L2
j1L

2
k1 + |Lji||Lki|2 + 2Lj1Lk1|Lji||Lki| cos(θji − θki)

]
.

(B46)

By choosing, say, the first row of the transfer matrix to be real and nonnegative, we can use this to read out, for k = 1, the cosines
of all the phases in column i and, for k 6= 1, the cosines of all the phase differences in column i. This determines the phases
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in Li up to reversing the sign of all the phases in column i. Though this leaves an independent phase reversal for each column
of the transfer matrix, by considering triples of modes, i = 1ij, one can reduce the ambiguity to an overall phase reversal that
corresponds to the inability, shown above, to distinguish the transfer matrix L from its conjugate L∗.

This procedure, though tedious, shows that one can use the intensity correlations in the conditional heterodyne statistics of
the CC states to read out the transfer matrix up to an overall phase reversal, but it involves working with moments at order
χ4. Reprising the argument leading to Eq. (3.55) shows that in this case, to determine the complex matrix elements of L with
uncertainty δ requires T ∼ M2/δ2 characterization runs. This quadratic increase with problem size, as opposed to the linear
increase for the characterization procedure based on inputting two-mode squeezed vacuum, is the ultimate cost of using the
classical-classical state ρCC.

4. RBS-only characterization

A reward—really quite a considerable reward—for having done the analysis of heterodyne statistics and the CC state is that
we can now address and answer the question of what kind of characterization can be done with Alice’s conditional photostatistics
in the RBS runs of our protocol.

If we are interested only in photocounting at both Alice’s end and Bob’s end, as we are for the RBS runs, it doesn’t matter
whether the initial state of Alice and Bob’s modes is the two-mode squeezed-vacuum state |ΨAB〉 or the CC state ρCC, since
both these states give the same photostatistics. Indeed, Alice’s photostatistics, conditioned on Bob’s photocount record ∆, are
derived from the conditional state of Alice’s modes whose Husimi Q distribution is PCC(α|∆,L). The corresponding moments
of Alice’s photocounts can be written as 〈

(a†1a1)k1 · · · (a†MaM )kM
〉

∆,CC , (B47)

where the subscripts indicate that the expectation value is taken in the state whose Husimi Q distribution is PCC(α|∆,L).
Having the photocount moments (B47) is equivalent to having the rising-factorial moments〈

(a1a
†
1)k1 · · · (aMa

†
M )kM

〉
∆,CC =

〈
ak11 (a†1)k1 · · · akMM (a†M )kM

〉
∆,CC (B48)

where the rising factorial is given by Pochhammer’s symbol,

(aa†)k = aa†(aa† + 1) · · · (aa† + k − 1) = (a†a+ 1)(a†a+ 2) · · · (a†a+ k) = ak(a†)k , (B49)

and where, as indicated, the rising-factorial moments are the same as antinormally-ordered photocount moments. These anti-
normally ordered photocount moments are precisely the conditional heterodyne moments (B38) that are available from the
CC-state:〈

ak11 (a†1)k1 · · · akMM (a†M )kM
〉

∆,CC =
〈
(α1α

∗
1)k1 · · · (αMα∗M )kM

〉
∆,CC =

〈
(α1α

∗
1)k1 · · · (αMα∗M )kM

〉
∆,C . (B50)

What this burst of equations means is that the photostatistics of the RBS runs provide exactly the same information about
the transfer matrix—nothing more and nothing less—as do the conditional heterodyne statistics when the input is the CC state.
Thus the RBS-only photostatistics can be used, in principle, to reconstruct the entire transfer matrix, except for the inability to
distinguish L from L∗. The reason for this is that both the RBS photostatistics and the CC conditional heterodyne statistics
provide access to all of the intensity correlations, but to none of the first-order, amplitude coherence that is used by our protocol
for reconstructing L. This means that the RBS photostatistics must consult higher-order moments than does our protocol and
thus suffer from the reduction in efficiency of reconstruction that is discussed at the end of App. B 3.

These conclusions deserve more attention than they are likely to receive at the end of an appendix of a long paper, so we
intend to redo the analysis and present the conclusions in a more straightforward way in a separate publication, thereby giving it
the prominence it deserves.
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C.-Z. Peng, S. Höfling, C.-Y. Lu, and J.-W. Pan, High-efficiency multiphoton boson sampling, Nat. Photon. 11, 361 (2017).

[13] J. C. Loredo, M. A. Broome, P. Hilaire, O. Gazzano, I. Sagnes, A. Lemaitre, M. P. Almeida, P. Senellart, and A. G. White, Boson sampling
with single-photon Fock states from a bright solid-state source, Phys. Rev. Lett. 118, 130503 (2017).

[14] Y. He, X. Ding, Z. E. Su, H.-L. Huang, J. Qin, C. Wang, S. Unsleber, C. Chen, H. Wang, Y.-M. He, X.-L. Wang, W.-J. Zhang, S.-J. Chen,
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[26] J. F. Fitzsimons, M. Hajdušek, and T. Morimae, Post hoc verification of quantum computation, Phys. Rev. Lett. 120, 040501 (2018).
[27] Y. Takeuchi and T. Morimae, Verification of many-qubit states, Phys. Rev. X 8, 021060 (2018).
[28] S. Ferracin, T. Kapourniotis, and A. Datta, Reducing resources for verification of quantum computations, Phys. Rev. A 98, 022323 (2018).
[29] M. Hayashi and Y. Takeuchi, Verifying commuting quantum computation via fidelity estimation of weighted graph states, 2019,

arXiv:1902.03369.
[30] S. Ferracin, T. Kapourniotis, and A. Datta, Accrediting outputs of noisy intermediate-scale quantum computing devices, 2018,

arXiv:1811.09709.
[31] B. Yurke, S. L. McCall, and J. R. Klauder, SU(2) and SU(1,1) interferometers, Phys. Rev. A 33, 4033–4054 (1986).
[32] C. M. Caves, Reframing SU(1,1) interferometry, submitted to Advanced Quantum Technologies, 2019, arXiv:1912.12530.
[33] R. J. Glauber, Optical coherence and photon statistics, in Quantum Optics and Electronics, edited by C. DeWitt, A. Blandin, and

C. Cohen-Tannoudji (Gordon and Breach, New York, 1965), pp. 65–85.
[34] S. Rahimi-Keshari, A. Scherer, A. Mann, A. T. Rezakhani, A. I. Lvovsky, and Barry C. Sanders, Quantum process tomography with

coherent states, New J. Phys. 13, 013006 (2011).
[35] S. Rahimi-Keshari, M. A. Broome, R. Fickler, A. Fedrizzi, T. C. Ralph, and A. G. White, Direct characterization of linear-optical

networks, Optics Express 21, 013450 (2013).
[36] K. Husimi, Some formal properties of the density matrix, Proc. Phys.-Math. Soc. Japan 22, 264 (1940).
[37] R. J. Glauber, Photon correlations, Phys. Rev. Lett. 10, 84 (1963).
[38] E. C. G. Sudarshan, Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams, Phys. Rev. Lett. 10,

277 (1963).
[39] S. Rahimi-Keshari, A. P. Lund, and T. C. Ralph, What can quantum optics say about computational complexity theory?, Phys. Rev. Lett.

114, 060501 (2015).
[40] D. Grier and L. Schaeffer, New hardness results for the permanent using linear optics, in 33rd Computational Complexity Conference

(CCC 2018), edited by R. A. Servedio, Leibniz International Proceedings in Informatics, Art. No. 19, p. 19:1.



32

[41] C. A. Fuchs and J. van de Graaf, Cryptographic distinguishability measures for quantum mechanical states, IEEE Trans. Inf. Theory 45,
1216 (1999).

[42] C. W. Helstrom, Quantum Detection and Estimation Theory, Mathematics in Science and Engineering 123 (Academic Press, New York,
1976), pp. 106.

[43] D. Aharonov, A. Kitaev, and N. Nisan, Quantum circuits with mixed states, in Proceedings of the 30th Annual ACM Symposium on
Theory of Computing (STOC ’98) (ACM Press, New York, 1998), p. 20.

[44] M. E. Shirokov, On the energy-constrained diamond norm and its application in quantum information theory, Prob. Inf. Trans. 54, 20
(2018) [Original Russian text: Problemy Peredachi Informatsii 54(1), 24 (2018)].

[45] A. Winter, Energy-constrained diamond norm with applications to the uniform continuity of continuous variable channel capacities,
2017, arXiv:1712.10267.

[46] S. Pirandola, R. Laurenza, C. Ottaviani, and L. Banchi, Fundamental limits of repeaterless quantum communications, Nat. Comm. 8,
15043 (2017).

[47] B. Schumacher, Sending entanglement through noisy quantum channels, Phys. Rev. A 54, 2614 (1996).
[48] R. A. Abrahao and A. P. Lund, Continuous-variables boson sampling: Scaling and verification, 2018, arXiv:1812.08978.
[49] S. Rahimi-Keshari, T. C. Ralph, and C. M. Caves, Sufficient conditions for efficient classical simulation of quantum optics, Phys. Rev. X

6, 021039 (2016).
[50] F. Shahandeh, A. P. Lund, and T. C. Ralph, Quantum correlations in nonlocal boson sampling, Phys. Rev. Lett. 119, 120502 (2017).
[51] E. Agudelo, J. Sperling, and W. Vogel, Quasiprobabilities for multipartite quantum correlations of light, Phys. Rev. A 87, 033811 (2013).
[52] W. H. Zurek, Einselection and decoherence from an information theory perspective, Ann. Physik (Leipzig) 9, 855–864 (2000).
[53] H. Ollivier and W. H. Zurek, Quantum discord: A measure of the quantumness of correlations, Phys. Rev. Lett. 88, 017901 (2001).
[54] M. D. Lang, C. M. Caves, and A. Shaji, Entropic measures of non-classical correlations, Int. J. Quant. Info. 9, 1553–1586 (2011).
[55] H. M. Wiseman and G. J. Milburn, Quantum Measurement and Control (Cambridge University, Cambridge, England, 2009), Chap. 3.
[56] S. Pandey, Z. Jiang, J. Combes, and C. M. Caves, Quantum limits on probabilistic amplifiers, Phys. Rev. A 88, 033852 (2013).


