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A cat-state is formed as the steady-state solution for the signal mode of an ideal, degenerate
parametric oscillator, in the limit of negligible single-photon signal loss. In the presence of signal
loss, this is no longer true over timescales much longer than the damping time. However, for sufficient
parametric nonlinearity, a cat-state can still exist as a transient state. In this paper, we study the
dynamics of the creation and decoherence of cat-states in degenerate parametric oscillation, both
with and without the Kerr nonlinearity found in recent superconducting-circuit experiments that
generate cat-states in microwave cavities. We determine the time of formation and the lifetime
of a cat-state of fixed amplitude in terms of three dimensionless parameters λ, g and χ. These
relate to the driving strength, the parametric nonlinearity relative to signal damping, and the Kerr
nonlinearity, respectively. We find that the Kerr nonlinearity has little effect on the threshold
parametric nonlinearity (g > 1) required for the formation of cat-states, and does not significantly
alter the decoherence time of the cat-state, but can reduce the time of formation. The quality of the
cat-state increases with the value of g. To verify the existence of the cat-state, we consider several
signatures, including interference fringes and negativity. We emphasize the importance of taking into
account more than one of these signatures. We simulate a superconducting-circuit experiment using
published experimental parameters and find good agreement with experimental results, indicating
that a nonclassical cat-like state with a small Wigner negativity is generated in the experiment.
Interference fringes however are absent, requiring higher g values. Finally, we explore the feasibility
of creating large cat-states with a coherent amplitude of 20, corresponding to 400 photons, and
study finite temperature reservoir effects.

I. INTRODUCTION

After Schrödinger’s famous paradox, a “cat-state” is
a quantum superposition of two macroscopically distin-
guishable states, often taken to be coherent states [1].
The cat-state plays a fundamental role in motivating ex-
periments probing the validity of quantum mechanics for
macroscopic systems [2]. More recently, it has been rec-
ognized that cat-states are a useful resource for quantum
information processing and metrology [3–11]. There has
been success in creating mesoscopic superposition states,
including in optical cavities, ion traps, and for Rydberg
atoms [12–25]. In microwave experiments that utilise
superconducting circuits to enhance nonlinearities, cat-
states with up to 80 photons [10] and 100 photons [26]
have been reported.

Recently, a two-photon driven dissipative process
based on superconducting circuits has been used to gen-
erate cat-like states in a microwave cavity [27, 28]. Fol-
lowing the proposal by Mirrahimi et al. [9], the exper-
iment demonstrates confinement of a state to a mani-
fold mostly spanned by two coherent states with opposite
phases. The creation of a cat-like state in a superposi-
tion of the two coherent states π out of phase is made
possible by the strong nonlinearity due to a Josephson
junction and a comparatively low single-photon damping
of the signal [9, 10, 26, 27, 29–31]. This process is an
example of degenerate parametric oscillation (DPO). In

an optical DPO, current setups give a much smaller non-
linearity and cat-states are not generated. Rather, the
system evolves to a bistable situation, being in a classical
mixture of the two coherent amplitudes, with quantum
tunneling possible between the two states [32, 33].

In this paper, we study the generation, dynamics and
eventual decoherence of a cat-state in a degenerate para-
metric oscillator (DPO). We extend previous quantum
treatments of the DPO to include the additional Kerr
nonlinearities that arise in the recent superconducting
experiments. In both the standard DPO (without Kerr
nonlinearity) and the DPO with Kerr nonlinearity, we
demonstrate the possibility of the formation of cat-states
in a transient regime if the two-photon effective nonlin-
ear driving is sufficiently strong. We fully characterize
the parameter regimes necessary for the formation of
the cat-states, determining the threshold nonlinearity re-
quired, and the time-scales over which the cat-states are
generated. In the presence of signal-photon losses from
the cavity, the cat-states eventually decohere. We deter-
mine the lifetime of the cat-states for the full parame-
ter regime. To fully evaluate the dynamics of cat-state
formation, we consider several signatures of cat-states,
including the negativity of the Wigner function and in-
terference fringes.

Understanding the dynamics of the formation of cat-
states in degenerate parametric oscillation is motivated
by applications in quantum information, and by the de-
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velopment of the Coherent Ising Machine (CIM), an op-
timization device capable of solving NP-hard problems
[34–36]. Although current realizations of the CIM use
the equivalent of a network of optical DPOs which do
not operate in a cat-state regime, the regime of cat-states
may be of interest in future devices. There already exist
proposals [37, 38] and experiments [39] generating itiner-
ant cat-states in a DPO, which will be useful in a DPO
network for adiabatic quantum computation [40–42] to
solve these NP-hard problems.

A DPO consists of pump and signal modes resonant
in a cavity at frequencies 2ω and ω respectively, and re-
sembles a laser in exhibiting a threshold behavior for the
intensity of the signal mode [43–47]. The signal pho-
tons leave the cavity with a fixed cavity decay rate γ1.
Unlike the laser, however, the steady-state solutions for
the amplitude of the signal field above threshold have a
fixed phase relation. A quantum analysis of the DPO was
given by Drummond, McNeil and Walls [48], who gave
exact steady-state solutions in the limit of a fast-decaying
pump mode, which acts to generate photon pairs at the
signal frequency. The possibility of generating a cat-state
as a superposition of the two coherent steady-state so-
lutions π out of phase was proposed by Wolinsky and
Carmichael [49]. While it was realized that the steady-
state solution forming over times much longer than γ−1

1

would not be a cat-state [50], it became clear that in the
limit of zero signal losses, a cat-state would form dynam-
ically from a vacuum state as a result of the two-photon
driving process [51–53]. Cat-states can be generated as a
transient over suitable timescales even in the presence of
signal losses (which give decoherence) provided the non-
linearity is sufficiently dominant [53].

In this paper, we provide a complete analysis of the
dynamics of the cat-states in terms of three parameters
that define the system. The parameters are the driving
strength λ, the parametric nonlinearity g (scaled relative
to cavity and pump decay rates), and the time of evolu-
tion τ (scaled relative to the signal cavity decay rate γ1).
Our study assumes that the pump field decays much more
rapidly than the intracavity signal field. Whether a cat-
state or a mixture is formed depends on the competition
between how fast one can generate a cat-state and how
fast one loses it, due to decoherence from signal-photon
loss. A minimum g > 1 is required for the formation of a
cat-like state. We find that the value of g also determines
the lifetime and quality of the cat state, in the presence
of the signal damping. We analyze the limit as g → ∞,
showing that the cat-state becomes increasingly stable,
consistent with the analysis of Gilles et al [51].

The Hamiltonian describing the superconducting cat-
system is that of the DPO, but with an additional term
due to a Kerr nonlinearity. This introduces a fourth
scaled parameter χ. Recent works by Sun et al. [54, 55]
have revealed that the cat-states can form in the pres-
ence of the Kerr terms, in the limit of zero signal loss,
but that the final steady-state solution where signal loss
is present cannot be a cat-state. The analysis presented

in this paper determines the threshold condition for the
formation of transient cat-states including the Kerr non-
linearity. The Kerr nonlinearity has little effect on the
threshold parametric nonlinearity required for the forma-
tion of cat-states. We also predict how fast a cat-state
can be generated for a given Kerr nonlinearity, and how
fast the cat-state decays. For cat-states of a fixed size,
the time of formation can be reduced for a fixed para-
metric nonlinearity, provided the driving field or Kerr
nonlinearity can be increased and that the parametric
nonlinearity satisfies g > 1.

The paper is organized as follows. In Section II, we in-
troduce the Hamiltonian modeling the degenerate para-
metric oscillator. In this work, we solve using the master
equation expanded in the number-state basis, which pro-
vides a set of partial differential equations for all matrix
elements of a density operator (up to a cutoff number).
The master equation and the corresponding steady states
in certain limits are described in Section III. In Appendix
A, we consider cat-state signatures, including both inter-
ference fringes in the quadrature probability distribution
[56, 57] and the photon-number distribution. The Q and
Wigner functions [58–60] are also considered. For cat-
states, the Wigner function becomes negative, and the
corresponding Wigner negativity [61] can be computed
from the Wigner function, as a signature of the cat-state.
The zeros of a Q function for a pure state [62] serve the
same purpose. Technical issues are also mentioned in this
section as some of the signatures are numerically hard to
compute.

In Sections IV-VII, we present the results for different
DPO parameters. In Section IV, we compute the dynam-
ics of a degenerate parametric oscillator at zero tempera-
ture without detuning and Kerr nonlinearity, and give a
full study the corresponding time evolution and decoher-
ence of the cat-state signatures. The effect of detuning
and Kerr nonlinearity are examined in Sections V and
VI. In Section VII, we simulate an experiment using
published superconducting circuit experimental parame-
ters, and find that our numerical results agree well with
the experimental observations. Based on these realistic
parameters, we explore the feasibility of generating large
transient cat-states, and study the effects of finite tem-
peratures. We conclude in Section VIII.

II. THE HAMILTONIAN

A. Degenerate parametric oscillation

The Hamiltonian for a degenerate parametric oscillator
(DPO) is given by [48]

H1 =~ω1a
†
1a1 + ~ω2a

†
2a2 +

i~
2

(
ḡa2a

†2
1 −ḡ∗a

†
2a

2
1

)
+i~ε

(
a†2e
−iωpt−a2e

iωpt
)

+

2∑
i=1

(
a†iΓi+aiΓ

†
i

)
. (1)
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Here ai are boson operators for the optical cavity modes
at frequencies ωi, with ω2 ≈ 2ω1. The modes with fre-
quency ω2 and ω1 are the pump and signal modes re-
spectively. The pump mode is driven by an external,
classical light field of amplitude ε with frequency ωp, and
ḡ is the coupling strength between the pump and signal
modes. The last term represents the couplings of the
cavity modes to the external environment and hence de-
scribes the single-photon losses of pump and signal from
the cavity to the environment [63–66]. We ignore ther-
mal noise in the pump, but will include the thermal noise
in the signal, if necessary.

In this work, we set the driving laser frequency ωp to
be on resonance with the pump mode frequency ω2, and
transform the system into the rotating frame of the driv-
ing frequency. The resulting Hamiltonian is then given
by

H2 = ~∆̄a†1a1 +
i~
2

(
ḡa2a

†2
1 −ḡ∗a

†
2a

2
1

)
+i~ε

(
a†2−a2

)
+

2∑
i=1

(
a†iΓi+aiΓ

†
i

)
(2)

where ∆̄ = ω1 − ωp/2. A nonzero ∆̄ implies that the
signal mode frequency ω1 is not exactly half the pump
mode frequency ω2.

When the pump mode single-photon decay rate is
much larger than the signal mode decay rate, i.e. γ2 �
γ1, the pump mode can be adiabatically eliminated [48].
In this case, the pump mode amplitude has a steady state
α0

2 =
(
ε− ḡα2

1/2
)
/γ2, which is determined by the signal

mode amplitude expectation value α1 [48]. The signal-
mode amplitude evolves in time according to a simpler
Hamiltonian involving only the signal mode [55]:

H = ~∆̄a†1a1 + i~
(
ḡε

γ2
a†21 −

ḡ∗ε∗

γ2
a2

1

)
+ a†1Γ1 + a1Γ†1 +

|ḡ|2

4γ2

(
a2

1Γ†2 + a†21 Γ2

)
. (3)

A simple semi-classical analysis (in which noise terms
are ignored) indicates that this system undergoes a
threshold when ε = εc = γ1γ2

ḡ [48, 67] i.e. when

λ = |ḡε| / (γ1γ2) = 1 . (4)

Below this threshold (λ < 1), the semi-classical mean
signal amplitude is zero. Above threshold (λ > 1), the
intensity of the signal field increases with increasing driv-
ing field.

In certain regimes of parameters above threshold, the
two-photon driven dissipative process (3) generates cat-
states of type [49, 51–53, 68]

|ψeven〉 = N+ (|α0〉+ | − α0〉)
|ψodd〉 = N− (|α0〉 − | − α0〉) (5)

where N± =
[
2
(

1± e−2|α0|2
)]−1/2

and | ± α0〉 are co-

herent states with amplitudes α0 = ±
√

2ε/ḡ respectively.

Here, thermal noise is ignored. The |ψeven〉 and |ψodd〉
are cat-states with even and odd photon number respec-
tively [52, 69, 70]. In particular, Hach and Gerry [52]
and Gilles et al. [51] show that cat-states survive in
this two-photon driven dissipative process provided the
single-photon losses for the signal a1 are neglected. Reid
and Yurke showed that the single-photon signal losses
eventually destroy the cat-state [50]. They calculated
the Wigner function of the steady state formed including
signal losses, showing that this function was positive and
therefore could not be a cat-state. For sufficiently strong
coupling ḡ, a cat-state can form in a transient regime
[53]. In Sections IV and V, we extend this earlier work,
by examining the full dynamics of the formation and de-
coherence of the cat-states over the complete parameter
range.

B. Degenerate parametric oscillation with a Kerr
medium

A promising system where single-photon signal damp-
ing can be small relative to the nonlinearity is the
superconducting circuit involving a Josephson junction
[10, 23, 26]. However, the implementation of the two-
photon driven dissipative process in Eq. (3) in a su-
perconducting circuit leads to an additional Kerr-type
nonlinear interaction. The resulting Hamiltonian for this
system (after the adiabatic elimination process) is given
by [54, 55]

H = ~∆̄a†1a1 + i~
(
ḡε

γ2
a†21 −

ḡ∗ε∗

γ2
a2

1

)
+

~χ̄
2
a†21 a

2
1

+ a†1Γ1 + a1Γ†1 +
|ḡ|2

4γ2

(
a2

1Γ†2 + a†21 Γ2

)
. (6)

It has been shown that the two-photon driven dissipa-
tive process (6) including χ̄ also gives the threshold Eq.
(4) [55]. Here thermal noise is ignored. Above threshold,
the process in the absence of single-photon loss generates
cat-states of type Eq. (5) [9, 55] but where | ± α0〉 are
coherent states with amplitude α0 given by [55]

α0 =

√
ε

ḡ
2

(
1 + i 2γ2

ḡ2 χ̄
) . (7)

As with the DPO, Sun et al. have shown that the cat-
states are destroyed in the limit of the steady-state if sig-
nal loss is nonzero [55]. In Sections VI and VII, we exam-
ine the dynamics of the signal mode as it evolves from the
vacuum, identifying the parameter regimes which show
the feasibility of the formation of transient cat-states.
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III. MASTER EQUATION AND STEADY
STATE SOLUTIONS

A. Master equation

A master equation takes into account the damping and
quantum noise fluctuations as well as the dynamics due
to the system Hamiltonian, in the Markovian approxi-
mation. The Hamiltonian in the previous section has a
corresponding master equation that describes the time
evolution of the signal mode a ≡ a1. The full master
equation corresponding to Eq. (6) including the effect of
thermal reservoirs is given by

∂

∂t
ρ = −i∆̄

[
a†a, ρ

]
+
|ḡε|
2γ2

[
a†2 − a2, ρ

]
− i χ̄

2

[
a†2a2, ρ

]
+

1

2

(
ḡ2

2γ2

)(
2a2ρa†2 − a†2a2ρ− ρa†2a2

)
+ (N + 1) γ1

[
2aρa† − a†aρ− ρa†a

]
+Nγ1

[
2a†ρa− aa†ρ− ρaa†

]
. (8)

With no loss of generality, we can choose the phase of ḡ
such that ḡε = ḡ∗ε∗ [33, 71]. Here, ρ is the density oper-
ator of the signal mode. The first term on the right side
of Eq. (8) is due to the detuning between the driving
field and signal mode frequency. The second term de-
scribes the driving of the signal mode by the pump. The
third term arises from the Kerr-type interaction, and the
fourth term describes the two-photon loss process where
two signal-mode photons convert back to a pump mode
photon, which then subsequently leaks out of the sys-
tem. The remaining terms describe single-photon damp-
ing due to the interaction between the system and its
environment, where the parameter N is the mean ther-
mal occupation number of the reservoir.

B. Steady-state solutions

The steady-state solution ρ (∞) that satisfies ∂ρ/∂t =
0 is typically hard to obtain for driven quantum sys-
tems out of thermal equilibrium. Using the generalized
P distribution [72], the steady-state solution in the quan-
tum case where damping and parametric nonlinearity are
present can be obtained using the method of potentials
[48, 49, 73]. This was recently extended to the general
quantum case where damping and both Kerr and para-
metric nonlinearity are present [54, 55].

1. Two-photon dissipation and driving with no signal
single-photon damping

First, the steady-state solution in the absence of ther-
mal noise where the single-photon losses are neglected
(γ1 = 0), and where the Kerr term (χ̄ = 0) is zero, has

been shown to be of the form [51, 52]

ρ (∞) = p++|ψeven〉〈ψeven|+ p−−|ψodd〉〈ψodd|
+ p+−|ψeven〉〈ψodd|+ p−+|ψodd〉〈ψeven| (9)

This is a classical mixture of the even and odd cat-
states |ψeven〉 = N+ (|α0〉+ | − α0〉) and |ψodd〉 =
N− (|α0〉 − | − α0〉) given by Eq. (5). Here we assume
no detuning ∆̄ = 0. The coherent amplitude is found to
be α0 = ±

√
2ε/ḡ, which can be given in terms of the

pump parameter λ (defined in Eq. (4) for the parametric
oscillator with signal damping)

λ ≡ |ḡε| / (γ1γ2) (10)

and a dimensionless two-photon dissipative rate

g ≡
√
ḡ2/ (2γ1γ2) (11)

via

α0 =
√
λ/g . (12)

This gives consistency with the work of Wolinsky and
Carmichael who had earlier pointed to the possibility of
cat-states with amplitude α0 =

√
λ/g in the limit of neg-

ligible signal damping [49]. The amplitudes α0 = ±
√
λ/g

correspond to the steady-state solutions derived in a
semi-classical approach where quantum noise is ignored.
The coefficients p++, p−− can be interpreted as proba-
bilities (p++ +p−− = 1) and are obtained from the initial
state of the system where these coefficients are the con-
stants of motion. Following this, if the system has an
initial vacuum state, the steady state is an even cat-state
|ψeven〉.

The steady-state solution of Eq. (8) for the system
with an additional Kerr-type interaction χ̄ has recently
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been analyzed by Sun et al. [55]. The steady-state is of
the form (9), except that the coherent amplitude becomes

α0 =
√
λ/ (g2 + iχ′) =

√
λ/g2 (1 + iχ) (13)

which is rotated in phase-space due to the nonlinear Kerr
term χ̄. Here, χ′ = χ̄/γ1 is the scaled Kerr interaction
strength, and χ ≡ χ′/g2 is the ratio of the Kerr strength
to the parametric gain, which will be used throughout
Section VI.

2. Steady-solution in the presence of signal single-photon
damping

The steady-state solution for the general case where
the single-photon damping is taken into account is calcu-
lated using the complex P-representation [48, 54, 55, 72].
Here, we ignore thermal noise. After adiabatic elimina-
tion of the pump mode, a corresponding Fokker-Planck
equation allows the analytical steady-state potential so-
lution to be obtained [48]. A steady-state solution in the
positive P-representation was derived by Wolinsky and
Carmichael [49], who pointed out the potential to create
cat-states in the large g limit. However, this approach is
not valid for strong coupling and Kerr nonlinearities.

From the complex P solutions, a Wigner function can
be derived which, being positive, demonstrated that the
steady-state solution itself cannot be a cat-state [50]. Be-
ginning with an even cat-state, for example, it is well-
known that the loss of a signal photon converts the sys-
tem into an odd cat-state [74]. The presence of single-
photon signal loss therefore leads to a mixture of the odd
and even cat-states being created. A 50/50 mixture of
the even and odd cat-states is equivalent to a 50/50 mix-
ture of the two coherent states | ± α0〉. This gives the

mechanism by which ultimately the mesoscopic quantum
coherence that gives the cat-state is destroyed.

An analysis of the steady-state solution given by Sun et
al. [55] yields that for the system where the signal mode
is initially in a vacuum state, the steady state solution for
g > 1 with an initial vacuum state is given by a density
operator in a mixture of the form [55]

ρss = Pss|ψeven〉〈ψeven|+ (1− Pss) ρmix (14)

where

ρmix =
1

2
|α0〉〈α0|+

1

2
| − α0〉〈−α0|

and

Pss = [1 + exp(−2 |α0|2)]/[exp(2 |α0|2) + exp(−2 |α0|2)].

where α0 is given by Eq. (13). The steady-state so-
lution in Eq. (9) is a good approximation when the
single-photon loss is low [53]. There are proposals in-
volving higher-order nonlinear interactions that involve
four-photon driven dissipation process which can reduce
the effect of single-photon losses [9]. These nonlinear in-
teractions can be easily incorporated into our formalism,
but are not dealt with in this work.

C. Number state expansion

In the presence of damping and noise, a transient cat-
state is nevertheless possible for large g [53, 68]. In order
to fully capture the dynamics of the system, we give a
numerical solution of the master equation Eq. (8), by
expanding in the number state basis {|n〉}. This leads to
time evolution equations for each density operator matrix
element ρnm ≡ 〈n|ρ|m〉:

∂ρnm
∂τ

= −i∆ (n−m) ρn,m +
λ

2

[√
n (n− 1)ρn−2,m+

√
m (m− 1)ρn,m−2−

√
(n+ 1) (n+ 2)ρn+2,m−

√
(m+ 1) (m+ 2)ρn,m+2

]
− iχ

′

2
[n (n− 1)−m (m− 1)] ρn,m + g2

√
(n+ 1) (n+ 2) (m+ 1) (m+ 2)ρn+1,m+2 −

g2

2
[n (n− 1) +m (m− 1)] ρn,m

+ 2 (N + 1)
√

(n+ 1) (m+ 1)ρn+1,m+1 − (N + 1)nρn,m − (N + 1)mρn,m

+ 2N
√
nmρn−1,m−1 −N (n+ 1) ρn,m −N (m+ 1) ρn,m (15)

where we introduce dimensionless parameters that are
scaled by γ1: τ = γ1t, ∆ = ∆̄/γ1, λ = |ḡε| / (γ1γ2),
χ′ = χ̄/γ1 and g =

√
ḡ2/ (2γ1γ2). For a given n and m,

the right side of Eq. (15) has contributions from indices
other than n and m. In other words, we can express Eq.
(15) as follows:

∂

∂τ
ρn,m =

∑
i

∑
j

Lijnmρi,j (16)

where
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Lijnm =
λ

2

√
n (n− 1)δin−2δ

j
m +

λ

2

√
m (m− 1)δinδ

j
m−2 −

λ

2

√
(n+ 1) (n+ 2)δin+2δ

j
m −

λ

2

√
(m+ 1) (m+ 2)δinδ

j
m+2

− iχ
′

2
[n (n− 1)−m (m− 1)] δinδ

j
m + g2

√
(n+ 1) (n+ 2) (m+ 1) (m+ 2)δin+2δ

j
m+2 −

g2

2
[n (n− 1) +m (m− 1)] δinδ

j
m

+ 2 (N + 1)
√

(n+ 1) (m+ 1)δin+1δ
j
m+1 − (N + 1)nδinδ

j
m − (N + 1)mδinδ

j
m

+ 2N
√
nmδin−1δ

j
m−1 −N (n+ 1) δinδ

j
m −N (m+ 1) δinδ

j
m − i∆nδinδjm + i∆mδinδ

j
m

Here, δin is a Kronecker delta function with δin = 1 if
i = n and δin = 0 otherwise.

Eq. (16) is solved numerically using the fourth-order
Runge Kutta algorithm. Depending on the coherent am-
plitude, a suitable photon-number cut-off is chosen. The
validity of this choice is checked by ensuring the diagonal
matrix elements with large photon number are not pop-
ulated, and also by computing the trace of the density
operator, to ensure Trρ = 1. Furthermore, the conver-
gence of the results is checked by increasing the cut-off
number. The time-step is chosen such that the time-step
error is negligible.

IV. TRANSIENT CAT-STATES WITH NO
KERR NONLINEARITY

In this section, we analyze the dynamics of transient
cat-states, assuming zero detuning (∆̄ = 0) and zero Kerr
nonlinearity (χ̄ = 0). We ignore thermal noise. We solve
the master equation above numerically in the number
state basis as explained in Section III and compute for the
quadrature probability distributions and their Wigner
negativities. These different cat-signatures are summa-
rized in the Appendix A, and allow us to determine the
onset of a cat-state.

We analyze for a complete range of parameters. In fact,
three parameters specify the transient behavior. These
are λ, g given by Eqns (10-11) and defined earlier by
Wolinsky and Carmichael [49], and the time τ = γ1t
scaled relative to the signal cavity decay time 1/γ1. In
fact, to analyze the strong coupling limit of large g, we
find it convenient to introduce a new set of parameters
which completely define the dynamics. These are: the
pump strength scaled relative to the oscillation threshold
(as given in Eq. (4))

Λ = |ḡε| /γ2 = γ1λ , (17)

the scaled coupling strength

G =
√
ḡ2/ (2γ2) =

√
γ1g , (18)

and the scaled time T = G2t. Using the parameters, the
master equation in Eq. (8) becomes
∂

∂T
ρ =

Λ

2G2

[
a†2 − a2, ρ

]
+

1

2

(
2a2ρa†2 − a†2a2ρ− ρa†2a2

)
+
γ1

G2

(
2aρa† − a†aρ− ρa†a

)
. (19)

To make clear the relation with the case of signal damp-
ing γ1 6= 0, we express Λ and G in terms of λ and g

∂

∂T
ρ =

λ

2g2

[
a†2 − a2, ρ

]
+

1

2

(
2a2ρa†2 − a†2a2ρ− ρa†2a2

)
+

1

g2

(
2aρa† − a†aρ− ρa†a

)
. (20)

The first term is proportional to α2
0, which gives the am-

plitudes ±α0 = ±
√

Λ/G = ±
√
λ/g of the cat-state (that

might be formed in the steady-state), as predicted by Eq.
(12). The last term in Eq. (20) is zero in the case without
single-photon damping (γ1 = 0, g →∞).

A. Two-photon driving and dissipation with no
single-photon signal damping

We would first like to understand the dynamics with-
out single-photon signal damping and at zero tempera-
ture. This corresponds to γ1 = 0, implying g → ∞.
Apart from the scaled time T of evolution, the mas-
ter equation Eq. (19) has only one free parameter
which corresponds to the steady-state coherent ampli-
tude α0 =

√
Λ/G. Here, we present a determination of

the interaction time T required for the onset of a cat-
state, as a function of α0 =

√
Λ/G, for the full range of

parameters, thus extending earlier work [51, 52].

In Figures 1 and 2 we fix α0 and determine the di-
mensionless time T for a transient cat state of ampli-
tude α0 to appear, as measured by the emergence of the
fringes in P (p) and the Wigner negativity δ. By compar-
ing the numerical result of the Wigner negativity time
evolution with the Wigner negativity for a pure, even
cat-state of amplitude α0 in Eq. (A19), the dimension-
less cat-formation time Tcat is obtained when the Wigner
negativity from the numerical simulation agrees with the
analytical result of the ideal cat-state (refer Appendix)
to four significant figures.
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Figure 1. The x-quadrature probability distribution (a, c)
and p-quadrature probability distribution (b, d) as a function
of scaled time T = G2t for α0 = 2.5 (a, b) and α0 = 10 (c,
d). Here, γ1 = 0.
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0
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Figure 2. The time evolution of the Wigner negativity δ for
α0 = 2.5, 5, and 10, in terms of the scaled time T = G2t.
The blue (dashed), black (solid) and red (dashed-dotted) lines
correspond to α0 = 2.5, 5, and 10 respectively. The blue
dashed horizontal line shows the Wigner negativity for a pure,
even cat-state for α0 = 2.5 as calculated from the analytical
Wigner function in Eq. (A19). The red dashed-dotted hori-
zontal line corresponds to the same quantity but for α0 = 5
and 10, which have the same Wigner negativity. The cat-
formation time is calculated as the time taken for the Wigner
negativity to reach the analytical value associated with the
pure cat-state.

These results demonstrate that larger cat-state ampli-
tudes α0 have shorter scaled cat-state onset times Tcat.
We next discuss the cat-formation time tcat = Tcat/G

2

for different cat-sizes α0 assuming γ1 = 0. Recall that
a cat-state in the lossless case has an absolute coherent
amplitude |α0| = |

√
Λ/G|. In order to obtain |α0| of a

certain amplitude, one can either fix G and change Λ
accordingly, or fix Λ and change G, or change both. If
G is fixed while Λ is changed to obtain |α0| of a certain
amplitude, then tcat can indeed be shorter for a larger

cat-state (Table I). However, Λ scales as α2
0G

2 and this
may quickly become impractical for large α0.

α0 Tcat
tcat = Tcat/G

2, tcat = Tcatα
2
0/Λ,

(fixed G) (fixed Λ)
2.5 1.75± 0.05 (35.0± 1.0)µs (35.0± 1.0)µs
5.0 0.45± 0.035 (9.0± 0.7)µs (36.0± 2.8)µs
10.0 0.14± 0.01 (2.80± 0.20)µs (44.8± 3.2)µs

Table I. The cat-formation times for fixed G and fixed Λ.
Here T = G2t is the scaled time and tcat is the real time
in seconds. In the third column, we use the estimated value
of G = 2.24 × 102

√
Hz for the experiment [27]. In the last

column, we fix Λ = 3.13× 105Hz.

To get a sense of the timescale in real times, we con-
sider the parameters from the experiment reported in
[27]. The nonlinear coupling strength is ḡ/2π = 225kHz,
and the Kerr-type interaction strength is χ̄/2π = 4kHz.
The single signal-photon damping rate is γ1/2π =
3.98kHz, and single pump-photon damping rate γ2/2π =
3.18MHz. In this section, we choose the pump field
amplitude to be ε/2π = 703kHz such that |α0| = 2.5,
without the Kerr term (χ̄ = 0), according to Eq. (7).
These correspond to parameter values G =

√
ḡ2/ (2γ2) =

2.24×102
√
Hz and Λ = |ḡε| /γ2 = 3.13×105Hz. In prac-

tice, it is better to modify both the parameters G and Λ
for different α0. For the sake of our discussion, however,
we consider the case where Λ = 3.13 × 105Hz is fixed
and we change G accordingly, where G scales as

√
Λ/α0.

Hence, tcat = Tcat/G
2 = Tcatα

2
0/Λ. The tcat for different

cat sizes are shown in Table I.

B. Single-photon signal damping

Next, we include the effect of the signal damping (γ1 6=
0). Apart from the time of evolution, the master equation
Eq. (20) has two free parameters α0 and g, which is the
effective ratio of the two-photon nonlinearity to the signal
decay rate. For sufficiently small g, cat-states cannot
form. As mentioned previously, the cat-size is given by
the amplitude α0 =

√
λ/g, and we fix this for each Figure

below. The parameter g is changed in order to find the
threshold value of g where interference fringes, and hence
a cat-state, emerge. We take α0 = 2.5 to be the minimum
value of α0 corresponding to a cat-state.

Figures 3, 4 and 5 indicate that g > 1 is the threshold
for the emergence of fringes (and hence of a cat-state),
regardless of the amplitude α0 of the cat size. For g > 1,
the Figures show the interference fringes to become more
pronounced as g increases. For long enough T , the fringes
vanish, as the system approaches a steady-state. The
steady state is not a cat-state, having a positive Wigner
function [50].
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Figure 3. The x-quadrature probability distribution as a func-
tion of scaled time T = G2t for g = 1 for various α0. The
distribution is unchanged for g = 1.5, 2.0 and 2.5. We note
that g = G/

√
γ1.
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Figure 4. The p-quadrature probability distribution as a func-
tion of scaled time T = G2t for different values of g = G/

√
γ1.

Here, α0 = 2.5. For (a), (b), and (c), the time range for T is
0− 1.6. For (d), the time range is 0− 2.5.
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Figure 5. The p-quadrature probability distribution as a func-
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√
γ1.

Here, α0 = 10.
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Figure 6. The evolution of Wigner negativity in time τ (in
units of the cavity lifetime γ−1

1 ) for different values of α0. In
each plot, the different lines correspond to different g values.
The blue, orange and black lines correspond to g = 2.5, 5 and
10 respectively.

It is interesting to know the experimental run-time
needed to obtain a cat-like state with the maximal non-
classicality. This is quantified by the Wigner negativity.
We computed the time evolution of the Wigner negativ-
ity. This allows us to estimate the time of formation
of a transient state with the largest Wigner negativity,
given α0 and g. In Fig. 6, we present the Wigner neg-
ativity results with different g’s, for α0 = 2.5, 5 and 10
respectively. The results are presented with respect to
the time τ = γ1t = T/g2 relative to the signal-cavity life-
time. We see first the formation of the cat-state, followed
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by its decay. Assuming the cavity lifetime is unchanged,
for fixed |α0| a larger g implies a quicker formation, but
also a quicker decay. Larger cat-sizes α0 imply quicker
timescales.

We define the cat-state lifetime as the time τ taken
for the Wigner negativity to reduce from the maximum
value to δ ≤ 0.05. We note that this choice is rather
arbitrary and is mainly motivated by the practical con-
sideration that a state with δ = 0.05 is too small to be
treated as a cat-state or any useful nonclassical state,
while at the same time not too small that the numerical
simulations remain tractable. A much longer simulation
time is needed to reach a state with δ = 0, which would
be a more natural choice as the cat-state lifetime. The
cat-state lifetimes for different values of g and α0 are tab-
ulated in Table II. From the table and Fig. 6, we see that
for a fixed α0, the cat-states with larger g have a shorter
lifetime, even though a larger Wigner negativity can be
reached. Also, for fixed g, the smaller cat-states have a
longer lifetime.

g
T τ

α0 = 2.5 α0 = 5 α0 = 10 α0 = 2.5 α0 = 5 α0 = 10

2.5 0.8206 0.2344 0.0625 0.1313 0.0375 0.0100
5 2.250 0.5950 0.1625 0.0900 0.0238 0.0065
10 7.880 2.000 0.50 0.0788 0.0200 0.0050

Table II. The cat-state lifetimes for different g and α0 values
as given in units of the signal cavity decay time, τ = γ1t.
Here, T = G2t. The cat-state lifetime is defined as the time
taken for the Wigner negativity to reach δ ≤ 0.05.

Figure 7 shows the photon-number probability distri-
bution at different times, evolving from the vacuum state.
The system evolves from a vacuum state into an even
cat-state (5). The single-photon loss, however, will cause
decoherence and the state evolves into a classical mix-
ture of even and odd cat-states. The time-step errors for
the results in Fig. 7 are negligible. The photon number
probability distribution at dimensionless time τ = 0.0150
centered around n = 100, which agrees well with the
steady state prediction |α|2 = λ/g2 = 100. This distri-
bution resembles a Poissonian distribution, as expected
for a coherent state.

The Wigner functions at different times are computed
according to Eq. (A15) and the results are presented in
Fig. 8. The function around the origin admits negative
values which demonstrates the nonclassical nature of the
cat-state.
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Figure 7. The photon number probability distribution at dif-
ferent times. Here g = 2.5 and α0 = 10. A state that only
allows even photon numbers eventually settles into a state
that has a Poissonian distribution. This can be seen in the
plot at time τ = 0.015, where a Poissonian distribution with
a mean photon number of 100 is fitted in red.

Figure 8. The Wigner function at different times. The pa-
rameters are g = 2.5 and α0 = 10.

V. DETUNING

We now briefly consider the effect of a detuning (ω1 −
ωp/2) between the signal mode and the external field fre-
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quency. Under conditions of detuning, the system can
display bistability in the intensity of the signal mode as
a function of the external driving intensity, which is man-
ifested as a hysteresis cycle [75, 76]. The system can also
display self pulsing where the outputs give oscillations in
their intensities [75, 76]. These behaviors can, in turn,
affect other quantum properties such as the squeezing
amplitudes. A full semiclassical analysis is given in Sun
et al. [54].

Here, we investigate the effect of detuning on the tran-
sient cat-state. In this work, we consider only the detun-
ing ∆ = (ω1−ωp/2)/γ1 of the signal mode, and only the
regime where ∆ ≤ λ in which case the steady-state semi-
classical solution has two stable values [54]. We ignore
thermal noise and select χ = 0.

The Wigner negativity and purity calculations given
in Fig. 9 reveal no observable differences in the physical
states in the cases with and without detuning. To this
end, we plot a Wigner function at an instant in time
in Fig. 10. This shows that the two mean values of the
Gaussian peaks are no longer situated along the real axis,
but are rotated and have acquired complex values. The
effect of detuning is to rotate the physical state in phase
space, as consistent with the steady state analysis given
by Sun et al. [54]. This explains the apparent reduction
in the visibility of the interference fringes as shown in
Fig. 11; the p-quadrature is not at an optimal angle to
observe the interference fringes.
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 = 50
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0
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Figure 9. The evolution of (left) the Wigner negativity and
(right) the purity for ∆ = 0 and ∆ = 50. The parameters are
g = 2.5 and λ/g2 = 100. Here χ = 0. The results show no
difference between the two cases with different detunings.

Figure 10. The Wigner function at dimensionless time τ =
0.0075. The parameters are g = 2.5 and α0 = 10. Here χ = 0.
The detuning is ∆ = 50. In the presence of detuning ∆, the
physical state is rotated in phase space.
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Figure 11. The p-quadrature probability distribution at di-
mensionless time τ = 0.0067. The parameters are g = 2.5 and
α0 = 10. Here χ = 0. The blue dashed line corresponds to
zero detuning and the orange solid line corresponds to ∆ = 50.
Since the detuning rotates the physical state in phase space,
the p-quadrature is not at an optimal angle to observe the
interference fringes. This leads to a reduction in fringe visi-
bility. The Wigner negativity and purity are unaltered from
the zero-detuning case.

VI. DEGENERATE PARAMETRIC
OSCILLATION WITH THE ANHARMONIC

KERR INTERACTION

A proposal to generate cat-states with a Kerr interac-
tion is put forward by Yurke and Stoler [56, 57]. They
showed that a coherent state can evolve into a multi-
component cat-state. Depending on the interaction time,
a two-component cat-state can also be created. The
mechanism of cat-state creation in a Kerr interaction
originates from the fact that the phase acquired by the
state is photon-number dependent. This means that this
method of creating a cat-state is hard to achieve in the
presence of single-photon losses. However, the Yurke and
Stoler proposal has been realized in a superconducting
circuit experiment [23], where the Kerr nonlinearity is
larger than 30 times the single-photon decay rate. Drum-
mond and Walls [77] have provided an exact steady-state
solution to a driven, dissipative system with a Kerr in-
teraction at zero temperature, which gives quantum pre-
dictions that are different from those of a semiclassical
analysis.

The combined Kerr and parametric case was studied
recently [54, 55]. These authors gave a derivation of the
adiabatic master equation and both semiclassical and ex-
act steady-state solutions. The semiclassical solutions
have bistable regimes. There are also tristable regimes,
with detunings included. Here, we assume there are no
detunings and ignore thermal noise. In this case, the
main effect of the additional Kerr nonlinearities is to
change the nature of the Schrödinger cat solutions.

Below, we will give more detail by solving the mas-
ter equation using a particular choice of scaled variables.
The master equation including the Kerr nonlinearity is
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given by

∂

∂t
ρ =

Λ

2

[
a†2 − a2, ρ

]
+ γ1

(
2aρa† − a†aρ− ρa†a

)
− i χ̄

2

[
a†2a2, ρ

]
+

1

2
G2
(
2a2ρa†2 − a†2a2ρ− ρa†2a2

)
(21)

where G =
√
ḡ2/ (2γ2) and Λ = |ḡε| /γ2 as defined previ-

ously. We consider
√
G4 + χ̄2 = G2

√
(1 + χ̄2/G4) which

defines a dimensionless time T =
√
G4 + χ̄2t. The mas-

ter equation is then

∂

∂T
ρ =

Λ

2
√
G4 + χ̄2

[
a†2−a2, ρ

]
− iχ̄

2G2

√
1 + χ̄2

G4

[
a†2a2, ρ

]
+

γ1

G2

√
1 + χ̄2

G4

(
2aρa† − a†aρ− ρa†a

)
+

1

2

1√
1 + χ̄2

G4

(
2a2ρa†2 − a†2a2ρ− ρa†2a2

)
. (22)

The steady state in the presence of Kerr nonlinearity
has a coherent amplitude α0 given by (13), with an ab-

solute value |α0| =
√
λ/
√
g4 + χ′2 ≡

√
Λ/G2

√
(1 + χ2)

where χ ≡ χ̄/G2 = χ′/g2. With this choice of scaling
factor, the master equation above can be expressed in
terms of α0, g, and χ as follows:

∂

∂T
ρ =

1

2
|α0|2

[
a†2 − a2, ρ

]
− i

2

χ√
1 + χ2

[
a†2a2, ρ

]
+

1

g2
√

1 + χ2

(
2aρa† − a†aρ− ρa†a

)
+

1

2

1√
1 + χ2

(
2a2ρa†2 − a†2a2ρ− ρa†2a2

)
. (23)

In the lossless case (γ1 = 0, g →∞), the third term does
not contribute.

A. No single-photon signal damping

To study the behavior, we first examine the case with
no signal damping, corresponding to γ1 = 0 (the third
term in the master equation is zero). From (23), we see
that the free parameters in this case are the coherent am-
plitude |α0| , g and χ ≡ χ̄/G2 = χ′/g2. We fix |α0| while
changing χ. To keep α0 constant for large r, we assume
a sufficiently large driving field, Λ or λ. Detunings are
assumed zero.

Figure 12. The evolution of the Wigner function (a, c, e) and
Q function (b, d, f) with no single-photon damping. In this
lossless case, the free parameters determining the dynamics
Eq. (23) are χ and |α0|. Here, χ = 5 and |α0| = 5.

In Fig. 12, we plot the evolution of the Wigner and
Q functions for |α0| = 5 with χ = 5. These phase space
distributions show the dynamics of the system under the
presence of Kerr interaction. Starting with an initial vac-
uum state, the state quickly turns into a squeezed state
with a curved distribution in the phase space distribu-
tions due to the large Kerr effect, as shown in Fig. 12
(a) and (b). Some time later, we observe the build up of
two Gaussian peaks that correspond to the complex am-
plitudes with opposite phases as predicted in Eq. (13).
Finally, the system reaches a steady state, as shown in
Fig. 12 (e) and (f), where the two Gaussian peaks are
fully separated. In particular, in the Wigner distribution
of Fig. 12 (e), negative values around the origin suggests
the presence of cat-states, which is confirmed by comput-
ing the corresponding Wigner negativities and compared
with the analytical Wigner negativity value of a cat-state
as given in Eq. (A19).
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Figure 13. The evolution of the Wigner negativity with dif-
ferent χ ratios for |α0| = 5, in the lossless case γ1 = 0. By
comparing the numerical Wigner negativity with the analyt-
ical Wigner negativity (black dashed horizontal line) for a
Wigner function in Eq. (A19), the cat formation time is de-
termined when the numerical value agrees with the analytical
value to four significant figures.

The evolution of the Wigner negativity for |α0| = 5,
for different values of χ is presented in Fig. 13. For
χ = 1, the Wigner negativity time evolution is similar to
that of the case without Kerr interaction. The Wigner
negativity increases until reaching a value corresponding
to a cat-state. For larger χ, however, the dynamics is
markedly different; the negativity rises steadily initially,
reaching a peak before decreasing and increasing again
until the value reaches the negativity corresponding to
that of a cat-state.

An understanding of this dynamics for large χ can be
obtained from the corresponding Wigner function time
evolution in Fig. 12. In the earlier stage of the dynam-
ics, the Kerr term dominates the parametric gain term
for large χ. The large contribution from the Kerr ef-
fect produces a nonclassical state; the larger the Kerr
strength, the larger the peak Wigner negativity. As the
two Gaussian peaks with the same amplitude but op-
posite phases are building, the Wigner negativity value
decreases, before increasing again due to the formation
of a cat-state as the system approaches the steady state.
We note that a cat-state corresponds to the case where
the Wigner function has two fully separated Gaussian
peaks with the presence of interference fringes around
the origin.

We also plotted the evolution of the rotated quadrature
probability distributions P (xφ) and P

(
xφ+π/2

)
, where

the angle φ is determined from the predicted complex
amplitude α0 = |α0|eiφ as given in Eq. (13). The results
are plotted in Figs. 14 and 15 for |α0| = 5 and |α0| = 10
respectively. In each figure, the rotated quadrature prob-
ability distributions for different χ values are also pre-
sented. For larger χ, it takes a similar dimensionless time
T for the quadrature probability distribution to reach
the one that corresponds to a cat-state, which implies a
shorter real time.
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Figure 14. The evolution of quadrature probability distribu-
tions x′ = xφ and p′ = xφ+π/2 respectively, for (a,b) χ = 5
and (c,d) χ = 10. Here, |α0| = 5 and the angle φ is deter-
mined from the predicted complex amplitude α0 = |α0|eiφ as
given in Eq. (13).
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Figure 15. The evolution of quadrature probability distribu-
tions x′ = xφ and p′ = xφ+π/2 respectively, for (a,b) χ = 5
and (c,d) χ = 10. Here, |α0| = 10 and the angle φ is deter-
mined from the predicted complex amplitude α0 = |α0|eiφ as
given in Eq. (13). The time range for all plots is 0− 0.15.

The cat-formation times for different χ and |α0| val-
ues, in both the dimensionless time Tcat and real time
tcat = Tcat/

(
G2
√

1 + χ2
)
, are presented in Table III us-

ing the value of G = 2.24 × 102
√
Hz as taken from the

parameters of the experiment of Leghtas et al. [27] (refer
Section IVA). The cat-formation time is determined by
comparing the numerical Wigner negativity with that of
a pure cat-state Wigner function in Eq. (A19). From
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the table, we see that for a cat-state of fixed amplitude,
a similar nonlinearity χ has a larger Tcat, in agreement
with the observations in Figs. 14 and 15. Also from the
table, a longer Tcat corresponds to a shorter tcat. Thus, a
larger Kerr interaction speeds up the cat-formation time.

χ
Tcat tcat = Tcat/

(
G2
√

1 + χ2
)
(µs)

|α0| = 5 |α0| = 10 |α0| = 5 |α0| = 10
0 0.40± 0.02 0.125± 0.005 8.00± 0.40 2.50± 0.10
1 0.44± 0.02 0.130± 0.005 6.22± 0.28 1.84± 0.07
2 0.52± 0.02 0.135± 0.005 4.65± 0.18 1.21± 0.04
5 0.74± 0.02 0.20± 0.005 2.90± 0.08 0.78± 0.02

Table III. The cat-formation times for different values of the
nonlinear parameter χ and |α0|. The parameter G = 2.24 ×
102
√
Hz is used to convert the dimensionless time Tcat to the

real time tcat.

B. Single-photon signal damping

Now we focus on the case where γ1 6= 0 i.e. g is finite.
We examine the transient behavior of the signal field as-
suming the initial state is the vacuum state. The free pa-
rameters in this case are the coherent amplitude |α0| , g
and χ, as well as the scaled time T =

(
g2
√

1 + χ2
)
t.

In the presence of single-photon damping, an ideal pure
cat-state cannot be formed even as a transient state. This
is true without the Kerr interaction, but becomes more
noticeable in the solutions we give for nonzero χ. Rather,
in an optimal situation, a cat-like state is formed where
two peaks are fully separated and interference fringes are
present around the origin. Here, we define the cat lifetime
as the time taken for the Wigner negativity to reach δ ≤
0.05, provided the quadrature distributions are initially
consistent with a cat-state, being two-peaked for x′ and
with fringes for p′.

It is reported that a cat-like state has been observed
in the experiment of Leghtas et al. [27]. In the follow-
ing, we carry out the numerical simulation of the ex-
periment using the published experimental parameters
where g = 1.41, χ′ = 1.01, giving χ = 0.5 and an es-
timated coherent amplitude |α0| = 2. The numerical
results are shown in Fig. 16 where the time evolution of
the quadrature probability distributions and the Wigner
negativity are plotted. We see from Fig. 16 (top left)
that the coherent peaks in x′ with opposite phases are
never fully separated for |α0| = 2. The largest Wigner
negativity value in the simulation, located around dimen-
sionless time T = 0.5 is small (∼ 0.025) and this is re-
flected by the absence of observable interference fringes
in the quadrature probability distribution in Fig. 16 (top
right). This supports that, while a nonclassical state is
produced in the experiment, the state is not a mesoscopic
cat-state: The coherent peaks are not fully separated
and the non-classicality of the state as quantified by the
Wigner negativity is weak.
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Figure 16. The quadrature probability distributions as a func-
tion of time (top left and right). The bottom left figure shows
the Wigner function at T = 0.5, which has the largest Wigner
negativity δ as given in the bottom right plot. Here, the ex-
perimental parameters [27] are g = 1.41, χ′ = 1.01, giving
χ = 0.5 and an estimated coherent amplitude |α0| = 2.

In Table IV, we evaluate the cat-lifetime as defined in
the previous section, by evaluating the time taken for a
cat-state to decay to a Wigner negativity smaller than
0.05. For the parameters of the experiment, we note
again that for |α0| = 2, the steady state corresponds
to two peaks in x′ that are not fully separated. From the
table, for g ≤ 1.5, the Wigner negativity does not exceed
0.05 and is too small (when compared to a pure cat-state
with amplitude |α0| = 2, which has a Wigner negativity
of 0.2937 as predicted by Eq. A19) to be considered a
cat-state at any point of the simulation. True cat-states
are generated for higher g, however. Next, we investigate
the non-classicality of transient cat-states with larger co-
herent amplitudes and Kerr strengths.

χ
Tlife tlife = Tlife/

(
γg2
√

1 + χ2
)

(µs)

g = 1 g = 1.5 g = 2.5 g = 2.5
0.5 0 0 1.225 7.01
1.0 0 0 1.375 6.22

Table IV. The cat-like state lifetime for different χ and g
values, for |α0| = 2. For comparison, the experimental pa-
rameters of Leghtas et al. [27] are g = 1.41, χ = 0.5 and
γ = 2π × 3.98kHz.

To study the effect of single-photon damping, we com-
pute the time evolution of the quadrature phase ampli-
tude distributions and Wigner negativity, varying g for
different values of χ and |α0|. Recall in Section VIA with
no signal single-photon loss that a large Kerr interaction
speeds up the cat-formation time. As a cat-state is highly
nonclassical, the system parameters that lead to earlier
cat formation might also lead to a quicker decay/decrease
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in the Wigner negativity and the corresponding cat-state
lifetime. This is confirmed by Table IV for the experi-
mental parameters of [27].
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Figure 17. The evolution of quadrature probability distribu-
tions x′ = xφ and p′ = xφ+π/2 respectively, in the presence
of single-photon damping. The angle φ is determined from
the predicted complex amplitude α0 = |α0|eiφ as given in Eq.
(13). Here, χ = 5, |α0| = 5 with g = 1 and 2.5.
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Figure 18. Description as for Figure 17. Here, χ = 10, |α0| =
5 with g = 1 and 2.5.
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Figure 19. Description as for Figure 17. Here |α0| = 10. The
time range for all plots is 0− 0.15.
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Figure 20. Description as for Figure 18. Here |α0| = 10. The
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Another question to be answered is whether the pres-
ence of a Kerr effect changes the threshold of g required
for a cat-state. We find that g > 1 is still required for the
generation of a cat state. The results for different χ and
|α0| are presented in Figs. 17, 18, 19, and 20. Figs. 17
and 18 show the time evolution of the quadrature prob-
ability distributions for |α0| = 5 with χ = 5 and χ = 10,
respectively. The same quantities are plotted in Figs.
19 and 20 for |α0| = 10. The emergence of interference
fringes corresponds to g ≥ 1 even in the presence of large
Kerr strength. These results are confirmed by the time
evolution of the Wigner negativity as presented in Figs.
21 and 22. When g is large enough to produce cat-like
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states, these figures also show larger Wigner negativities
with larger χ for the same α0 and g values.

We emphasize the need to compute several cat-state
signatures and caution the use of any single signature
alone to interpret the nonclassicality of the physical state.
For instance, the Wigner negativity is not sufficient to in-
fer the presence of a cat-state. The peak values of Wigner
negativity observed in Figs. 21 and 22 for χ = 5 do
not correspond to cat-states, despite the large negativity
values. These large negativities correspond to nonclas-
sical states that arise due to the large Kerr interaction
term, before the formation of cat-states. As previously
discussed, a cat-state is formed when two well-separated
peaks in P (x′) are observed and when interference fringes
in the corresponding P (p′) distribution exist. This can
be inferred from the quadrature probability distributions
or the Wigner function itself, but not directly from the
Wigner negativity.
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Figure 21. The evolution of the Wigner negativity with dif-
ferent χ values for (a) g = 1 and (b) g = 2.5. In both cases,
|α0| = 5. Note that a peak in the Wigner negativity does
not imply the formation of a cat-state (see main text). The
verification of a cat-state can only be drawn in conjunction
with other cat-state signatures such as in Fig. 17.
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Figure 22. The evolution of the Wigner negativity with dif-
ferent χ values for (a) g = 1 and (b) g = 2.5. In both cases,
|α0| = 10.

We also see that with a finite g (signal losses), as for the
earlier case without nonlinearity, the cat-state eventually
decoheres to a mixed state. More loss (lower g) gives a
faster decay, for fixed nonlinearity χ and α0. This is
quantified in the Table V which evaluates the Wigner
negativity. Also from the table, we see that for fixed g
and α0, the cat-state decoheres faster for the larger χ
value given here.

(a)
χ

Tlife tlife = Tlife/
(
γg2
√

1 + χ2
)

(µs)

g = 1 g = 1.5 g = 2.5 g = 2.5
5 0 0 0.68 0.85
10 0 0 1.25 0.80

(b)
χ

Tlife tlife = Tlife/
(
γg2
√

1 + χ2
)

(µs)

g = 1 g = 1.5 g = 2.5 g = 2.5
5 0 0 0.177 0.222
10 0 0 0.324 0.206

Table V. The cat-like state lifetime for different χ and g
values, for (a) |α0| = 5 and (b) |α0| = 10. Here, γ =
2π × 3.98kHz. We comment that for g = 1.5, the small value
of negativity is not associated with well-separated peaks in
the distribution of x′ (Figs. 17, 18, 19, and 20). Hence we do
not claim these are cat-states.

VII. LARGE TRANSIENT CAT

In this section, we investigate the feasibility of ob-
serving a transient cat state using physical parame-
ters that are achievable in an experiment similar to the
superconducting-cavity setup discussed in the previous
subsection. The effects of finite temperatures leading to
thermal noise are also included. We choose g = 2 and
|α0| = 20, which corresponds to a coherent amplitude of
20. We focus on the quadrature probability distribution
as a cat-state signature. In order to achieve g = 2 in an
experiment, either the signal decay rate has to be reduced
or the nonlinear coupling strength has to be enhanced,
or both.

We computed the evolution of the quadrature prob-
ability distributions both with and without the Kerr
nonlinear interaction at zero temperature. The results
are shown in Figs. 23 and 24. For the nonzero Kerr
case, it is the rotated quadrature probability distribu-
tions P (xφ) and P

(
xφ+π/2

)
that are plotted, where the

angle φ is determined from the predicted complex am-
plitude α0 = |α0|eiφ as given in Eq. (13). From these
figures, the interference fringes appear sooner in the pres-
ence of Kerr nonlinear interaction. This observation is
confirmed in Fig. 25, where snapshots of these interfer-
ence fringes in the quadrature probability distributions
are presented. We include plots with thermal noise of N
thermal photons present in the reservoir. Even though
we assume an initial vacuum state, as in previous calcu-
lations, the reservoir thermal noise causes a decoherence
that destroys the cat-state.
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Figure 23. The evolution of the quadrature probability dis-
tributions in scaled time τ = γt. Here, the parameters are
g = 2, |α0| = 20 and χ = 0 at zero temperature. The time
range for all plots is 0− 0.005.
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respectively. The angle φ is determined from the predicted
complex amplitude α0 = |α0|eiφ as given in Eq. (13). Here,
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temperature. The time range for all plots is 0− 0.005.
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The decoherence mechanism is known for this system.
The single-photon damping process switches the state
between even and odd cat-states with probabilities that
scale with the single-photon damping rate, and are fur-
ther enhanced by the thermal noise. Eventually, the sys-
tem reaches a steady state where it is a mixture of the
even and odd cat-states. A detailed mathematical analy-
sis of the decoherence process discussed here can be found
in Ref. [74].

It is appropriate to discuss a few points on the fac-
tors that might limit the achievable cat-state amplitude.
In the case without detuning and Kerr-nonlinearity, the
coherent state in the superposition has an amplitude of√
λ/g. Assuming all other cat-state destroying parame-

ters (γ1, N) remain the same, for larger g, an even larger
λ is needed to obtain the same cat-state amplitude, which
can be hard to achieve.

There are also difficulties from the point of view of
calculation. This work uses the number-state basis ex-
pansion of the density operator and the cutoff number
scales roughly with the coherent amplitude as |α0|2+|α0|,
where α0 is the coherent amplitude of the state. The
super-operator that dictates the time evolution of the
density operator has a size of n2

c×n2
c , where nc is the cut-

off number, and this quickly becomes problematic even
if the super-operator is represented as a sparse matrix.
Also, the cat-state signatures such as the Wigner func-
tion and its negativity are almost not computable even
with quadruple-precision computation. Other methods
such as the positive-P phase space representation are
available and are more suited for computations in this
regime. However, more sophisticated techniques [78] in
phase space methods have to be employed when the quan-
tum noise is large (g > 1). Even though the Q-function is
always positive and does not signify nonclassicality when
the state is a mixed state, it nevertheless has the merit
that its numerical computation is stable. Together with
other cat-state signatures, the Q-function can still serve
as a good nonclassicality indicator. Other cat-state sig-
natures such as the quadrature probability distributions
can be computed to a very large photon number cutoff
(much larger than 500, which is needed for cat amplitude
α0 > 20) though efficient algorithms such as the Clen-
shaw algorithm for evaluating sums involving orthogonal
polynomials are required.

VIII. CONCLUSION

It is known that a Schrödinger cat state is formed as
the steady state of a degenerate parametric oscillator, in
the limit where single-photon damping is zero and the
initial condition is a vacuum state [51, 52]. In the same
limit, under an additional nonlinear Kerr interaction, the
corresponding steady state is also a cat-state [55]. It is
illuminating to study the dynamics in the lossless case,
as the interplay between the different nonlinear interac-
tions affects the cat-formation time, providing a better

understanding of the physics involved in the formation
of a cat-state. In Sections IV.A, and VI.A, we have ex-
amined this limit, showing in Section VI.A how the Kerr
nonlinearity can enhance the formation of the cat-state.
In particular, we examine the effect of the Kerr nonlin-
earity on the threshold value of g, and illustrate how the
formation time and lifetime of the cat-state is affected by
the Kerr nonlinearity in the zero temperature limit.

In practice, the cavity single-photon damping is very
important. This causes decoherence and eventually
destroys the cat-state, as known from previous exact
steady-state results. In Section IV.B, we analyze the ef-
fect of this using a parameter g which gives the strength
of parametric nonlinearity relative to the single-photon
signal decay rate. A threshold value of g is necessary for
a cat-state to form. When g is large enough to form a
cat-state, we find that a larger g will lead to a physical
state with a larger Wigner negativity, implying the for-
mation of a more nonclassical state. However, the more
nonclassical the state is, the shorter is its lifetime.

We also examine the effects of detuning ∆, in Sec-
tion V. With all other DPO parameters being equal, the
presence of detuning rotates the physical state in phase
space, and does not affect the Wigner negativity and pu-
rity of the state throughout the dynamics of the system.
The Kerr nonlinearity also rotates the state in phase
space. Unlike detuning, however, the Kerr interaction
also changes the nonclassicality of the state. This is ex-
amined in Section VI.

For large χ, where the Kerr interaction strength is
larger than the parametric gain g, the Kerr term domi-
nates the dynamics of the system in the early stage. The
larger the Kerr strength, the larger the value of the cor-
responding Wigner negativity. As the two stable states
with equal amplitudes but opposite phases are gradually
formed due to the parametric term, the Wigner negativ-
ity decreases, before increasing again as the cat-state is
fully reached. A cat-state must have two well-separated
peaks along the phase space axis where the two ampli-
tudes lie, and hence the dynamical picture given here is
only clear when different cat-state signatures are com-
puted and compared. The Wigner negativity alone does
not provide conclusive evidence of a cat-state. Two dis-
tinct probability peaks and the presence of interference
fringes in the orthogonal quadrature are also necessary.
This can be seen in the quadrature probability distri-
bution and Wigner function, which confirms the macro-
scopic coherence between the two peaks.

With this physical picture established, we carried out
a numerical simulation in Section VI.B of a recent ex-
periment of Leghtas et al. [27]. While a nonclassical
state is produced, in agreement with experimental mea-
surements of Wigner negativity, it does not appear to
be a fully mesoscopic cat-state. The coherent peaks are
not fully separated and the nonclassicality is relatively
weak. This is indicated by absence of significant inter-
ference fringes in the quadrature probability distribution
and relatively small Wigner negativities. We neverthe-
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less agree that this was an important experimental step
towards demonstrating a fully developed mesoscopic su-
perposition of two well-separated coherent states.

By exploring the parameter space, we find that g > 1 is
still required for the cat-state generation, irrespective of
the Kerr interaction strength χ. When g is large enough
for cat formation, for a fixed coherent amplitude |α0|, a
larger χ takes a shorter time to form a cat-state and also
has a larger Wigner negativity. However, it has a shorter
lifetime, as defined by the Wigner negativity in Section
IV.

The ability to compute the time evolution of the phys-
ical state allows us to estimate the lifetime of a cat-state
including thermal noise. An example is given for large
|α0| in Section VII. To obtain a large cat amplitude in
the presence of thermal noise, which tends to destroy the
coherence of the cat-state, a large value of g is neces-
sary. Alternatively, a system that has a lower tempera-
ture or lower cavity decay rate is required. The engineer-
ing of the reservoir, for instance, with squeezed states,
as a means of noise reduction is also possible and will be
explored in a future publication.
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APPENDIX

Appendix A: Cat-state and signatures

Here we summarize the cat-state signatures that verify
the presence of cat-states in the system. We focus on the
simplest example, in which we use these signatures to
distinguish the difference between a cat-state

|ψcat〉 = Nθ
(
|α0〉+ eiθ| − α0〉

)
(A1)

which is a superposition of two coherent states | ± α0〉
well-separated in phase space (Nθ is a normalization con-
stant and θ a phase), and an arbitrary mixture of the two
coherent states given by the density operator

ρmix = P+|α0〉〈α0|+ P−| − α0〉〈−α0| , (A2)

where P± are probabilities and P+ + P− = 1.

The objective is to confirm that the system is not in
the coherent state mixture (A2). Thus, if we consider
systems confined to be in a mixture of the two coherent
states, or in a mixture of superpositions of the two co-
herent states, the exclusion of the mixture (A2) implies
some type of cat-like state, although not necessarily a
pure cat-state. For definiteness, we also require that a
cat-state have clear operational signatures of fringes or
Wigner negativity, as we explain below.

Realizing it is possible the system may be in a state
of reduced purity, the general confined density operator
can be written with off-diagonal terms as

ρ = P11|α0〉〈α0|+ P22| − α0〉〈−α0|
+P12|α0〉〈−α0|+ P21| − α0〉〈α0| (A3)

This state can also be written in terms of the odd and
even cat-states as

ρ = p++|ψeven〉〈ψeven|+ p−−|ψodd〉〈ψodd|
+ p+−|ψeven〉〈ψodd|+ p−+|ψodd〉〈ψeven| (A4)

We note that these “impure cat-states” may or may not
give a result that, for example, has interference fringes.
As a result, it is an open question whether such inter-
mediate states are identifiable by any of the criteria in
common use. It is also possible that the system cannot
be represented in terms of the two coherent states alone,
in which case a broader class of mixtures needs to be ex-
cluded. Alternative approaches to detecting mesoscopic
coherence are discussed elsewhere [2, 79–92] and include
those based on uncertainty relations [82, 84, 92, 93].

In this paper, we identify the cat-state using both in-
terference fringes and negativity of the Wigner function.
Where the distribution for one quadrature phase ampli-
tude (X) shows two well-separated Gaussian peaks cor-
responding to the two coherent states, the observation of
interference fringes in the orthogonal quadrature (P ) ex-
cludes all models of the form of (A2). This gives evidence
of a significant quantum coherence, which is one type of
signature of a Schrödinger cat-state.

However, if the associated Wigner function is observed
to be positive, then there exists a joint probability distri-
bution P (x, p) to correctly describe the marginal proba-
bility distributions P (x) and P (p) for the results x and
p of measurements X and P . It is then possible to con-
struct two “elements of reality”, the variables x and p,
that directly and simultaneously predetermine the results
for X and P . While these “elements of reality” x and
p do not describe quantum states (being simultaneously
precisely defined [93]), the system can nonetheless, with
respect to these variables, be interpreted as being in one
or other of states corresponding to the Gaussian peaks in
X. This interpretation is not possible for the ideal cat-
state (A1) which possesses a negative Wigner function.
Thus, the observation of interference fringes associated
with a negative Wigner function (consistent with that of
the state (A1)) gives strong evidence of a cat-state.
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1. Interference fringes in the quadrature
probability distribution

One of the earliest proposed cat state signatures is the
presence of interference fringes in the quadrature prob-
ability distribution [56, 57]. In order to understand the
origin of the interference fringes, consider an even cat-
state

|ψeven〉 = N+ (|α0〉+ | − α0〉) (A5)

Without losing generality, we assume that α0 is real, and
that |α0| is large. The x-quadrature for this state has
two contributions from two well-separated phase points
along x-axis. The corresponding x-quadrature probabil-
ity distribution has two significant Gaussian distributions
centered around these two phase points along the x-axis.
This gives us justification to assume the system is either
a superposition, or a mixture, as in (A3).

To exclude the statistical mixture (A2), one measures
the orthogonal quadrature p. For a cat-state (A1), the
probability amplitudes for these two possible contribu-
tions |±α0〉 have to be summed, and hence there will be
interference fringes in the p-quadrature probability dis-
tribution for this cat state. These fringes cannot arise
for the system given by the classical mixture (A2) which
is therefore excluded if fringes are observed. If we con-
sider the coherent-state manifold, with α0 ≥ 2.5 to allow
for distinct Gaussian distributions, the onset of fringes
implies failure of the mixture (A2), so that P12 and P21

defined by eq. (A3) must be nonzero.
More generally, a cat-state may be in a manifold

of superposition states spanned by two coherent states
{|α0〉, | − α0〉}, where α0 is a complex number and these
two coherent states can have any phase relation between
them. Therefore, we define a general rotated quadrature
operator xθ =

(
e−iθa+ eiθa†

)
/
√

2. The xθ-quadrature
probability distribution can be computed from a density
operator ρ which is expanded in the number state basis.
The probability distribution P (xθ) is then

〈xθ|ρ|xθ〉 = 〈xθ|

(∑
n,m

ρnm|n〉〈m|

)
|xθ〉

=
∑
n,m

ρnm〈xθ|n〉〈m|xθ〉 , (A6)

where

〈xθ|n〉 =
e−iθn√
2nn!
√
π
e−

x2θ
2 Hn (xθ) . (A7)

Here, Hn (x) is the Hermite polynomial. In particular,
for θ = 0, xθ=0 = x and for θ = π/2, xθ=π/2 = p, and
their inner products with a number state are given by

〈x|n〉 =
1√

2nn!
√
π
e−

x2

2 Hn (x) (A8)

〈p|n〉 =
(−i)n√
2nn!
√
π
e−

p2

2 Hn (p) (A9)

respectively. For an even cat-state with real-valued co-
herent amplitudes, α0, the p-quadrature probability dis-
tribution is given by [57, 92]

P (p) =
1√
π
N 2

+

{
2exp

(
−p2

) [
1 + cos

(
2
√

2pα0

)]}
,

(A10)

For comparison purposes, we plot P (p) for α0 = 5 in Fig.
26 using Eq. (A10).
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(p
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Figure 26. The p-quadrature probability distribution for a
pure, even cat-state with α0 = 5.

In this work, a number state cutoff of up to 500 is
used. There is a floating point number overflowing issue
in the numerical computation of Eqs. (A8) and (A9),
which arises from the evaluation of the Hermite polyno-
mials. This issue is overcome by using a Matlab function
[94] that employs logarithmic manipulation. Moreover,
this Matlab function is based on the Clenshaw algorithm
[95, 96] that computes orthogonal polynomials more effi-
ciently and accurately [97] than either naively computing
the summations involved or other methods using the Her-
mite polynomials recurrence relation such as the Forsythe
method [98].

2. Photon-number probability distribution

Yet another aspect where the quantum superposition
of a cat state is manifested is in the photon-number prob-
ability distribution. The even cat-state Eq. (A5)

|ψeven〉 = N+ (|α0〉+ | − α0〉)

= N+e
− |α0|2

2

∞∑
n

1√
n!

[αn0 + (−α0)
n
] |n〉 , (A11)

contains an even number of photons. Similarly, an odd
cat-state |ψodd〉 = N− (|α0〉 − | − α0〉) has an odd num-
ber of photons. For a classical mixture of |α0〉 and |−α0〉,
the photon number probability distribution is nonzero for
both even and odd numbers of photons. Hence, assuming
we are in the manifold of the superpositions of the two
coherent states (or their mixtures), the photon-number
probability distribution reveals both the nonclassicality
of a cat-state and its phase relation. It is possible that
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the system is in a superposition of both the even and
odd cat-states, and the photon number probability dis-
tribution does not distinguish between this state and a
classical mixture of the even and odd cat-states. With
that, we also computed the purity of the state given by

P=Tr
(
ρ2
)
. (A12)

3. Phase-space distributions

It is also useful to consider phase-space distributions
that can determine the entire quantum states, and dis-
play quantum features. In particular, we compute the
Husimi Q and Wigner functions.

a. Wigner function and its negativity

The Wigner function gives us the joint probability dis-
tribution of the real and imaginary parts of the coherent
amplitude of the quantum state, which allows the deduc-
tion of the form of a cat state. The Wigner function for
a density operator in a Fock state for a finite particle
number is given by [59, 99]

W (α, α∗) =

Nc∑
n

ρnnXnn + 2Re

(
Nc∑
m=1

m−1∑
n=0

ρnmXnm

)
,

(A13)

where n < m, ρnm is the matrix element of the density
operator ρ and Xnm is [59, 99]

Xnm =
2 (−1)

n

π

√
n!

m!
e−2|α|2 (2α)

m−n
Lm−nn

(
4 |α|2

)
.

(A14)

Here, Lab (x) is the associated Laguerre polynomial. For
large cutoff photon numbers Nc, the direct evaluation
of the Wigner function in Eq. (A13) leads to numerical
instabilities. These issues can be overcome by rewriting
the expression in Eq. (A13) as

W (α, α∗) =

Nc∑
n

ρnnXnn + 2Re

(
e−2|α|2

Nc∑
l=1

cl (2α)
l

)
,

(A15)

where

cl =

Nc−l∑
n=0

ρn,l+n
2 (−1)

n

π

√
n!

(l + n)!
Lln

(
4 |α|2

)
. (A16)

The first term in Eq. (A15) involving the sum of La-
guerre polynomials is evaluated using the Clenshaw al-
gorithm [95]. For the second term, the same algorithm is
used to compute cl which contains the sum of associated
Laguerre polynomials. Then the sum of polynomials 2α

is computed using the Horner’s method for polynomial
evaluation. We note that for α that has a large ampli-
tude, large numerical errors are found and these methods
cease to work.

In experiments, state tomography has to be carried
out. It has been proposed by Lutterbach and Davidovich
[100] that measurements of the photon number parity
amounts to the determination of a Wigner function. This
is based on the fact that a Wigner function is the expecta-
tion value of the number parity operator Π̂ = exp (iπn̂),
where n̂ is the number operator, for a physical state that
is displaced by a coherent amplitude α. Explicitly, it is
given as follows [59]:

W (α) =
2

π
Tr
(
D̂ (−α) ρD̂ (α) Π̂

)
, (A17)

where D̂ (α) is a displacement operator. This method
has been used to determine the Wigner function in ex-
periments [10, 26, 101–104].
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Figure 27. The Wigner negativity δ as a function of the coher-
ent amplitude α0, for both the ideal cat-state and the mixture
Eq. (A2).

The negativity of the Wigner function can be quanti-
fied as [61]

δ =
1

2

ˆ
[|W (α, α∗)| −W (α, α∗)] d2α . (A18)

A positive-valued Wigner function gives δ = 0 while δ
is nonzero in the presence of any negative values in a
Wigner function. The Wigner functions W+ and W−
for the even cat-state and odd cat-state respectively are
given by [92]

W± (α, α∗) =
2

π
N 2
± {exp [−2 (α∗ − α∗0) (α− α0)]

+exp [−2 (α∗ + α∗0) (α+ α0)]

±〈α0| − α0〉exp [−2 (α∗ − α∗0) (α+ α0)]

±〈−α0|α0〉exp [−2 (α∗ + α∗0) (α− α0)]} .
(A19)

which give negative values. For a mixture ρ of Eq. (A2)
which has purity given by P = P 2

+ +P 2
−+P+P−e−2|α0|2 ,
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the Wigner function is

Wmix (α, α∗) =
1

π
{exp [−2 (α∗ − α∗0) (α− α0)]

+ exp [−2 (α∗ + α∗0) (α+ α0)] (A20)

and does not admit any negative values. Fig. 27 plots
the value of δ, using Eq. (A18), for the cat-states |ψeven〉
and |ψodd〉 versus α0, and for the mixture ρ of Eq.
(A2) with P+ = P− = 1/2, which has purity given by
P =

(
2 + e−4|α0|2

)
/4. Hence, the magnitude of Wigner

function negativity δ quantitatively captures the nonclas-
sicality of the quantum state. This is because the mixture
Eq. (A2) has a non-negative Wigner function. Hence, if
we assume the system is constrained to the manifold of
superpositions of the two coherent state (or their mix-
tures), the negativity is a signature of a cat-state. We
note however that more generally, the negativity does not
always imply a cat-state, due to the possible presence of
microscopic superpositions.

Numerically, the computation of the Wigner negativ-
ity in Eq. (A18) requires schemes of numerical integra-
tion that have errors as a finite grid size is used. In this
work, a trapezoidal numerical integration as well as the
Gauss-Lobatto numerical integration are used. With the
same grid size, the Gauss-Lobatto method is known to be
much more accurate than the trapezoidal numerical in-
tegration. The Wigner negativities computed using both
of these methods agree up to four significant figures, in-
dicating that the grid size chosen is fine enough and the

Wigner negativities computed have small grid size errors.

b. Husimi Q function

The Husimi Q function is defined by Q (α, α∗) =
〈α|ρ|α〉/π. The expression of a Q function for a density
operator in the number state basis is given by

Q (α, α∗) =
1

π
〈α|ρ|α〉

=
1

π
〈α|

(∑
n,m

ρnm|n〉〈m|

)
|α〉

=
∑
n,m

ρnm
(α∗)

n
αm

π
√
n!m!

exp
(
− |α|2

)
. (A21)

Unlike the Wigner function which admits negative values
and is used as an indicator of nonclassicality, the Husimi
Q function is always positive. However, it has been shown
by Lütkenhaus and Barnett [62] that a highly nonclassi-
cal state will have zeros in the Q function, where the
corresponding Wigner function at these zero points have
equal positive and negative contributions. Also, in the
case where the calculation of the Wigner function is too
numerically intensive to be computed, the Q function can
serve as a phase-space visualization guide that comple-
ments other cat state signatures.
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