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Particle-wave duality has allowed physicists to establish atomic interferometers as celebrated
complements to their optical counterparts in a broad range of quantum devices. In particular,
interactions give rise to multi-particle correlations unavailable in linear interferometers. Here, we
show that interactions lead to dynamical quantum phase transitions (DQPT) between NOON states
in an atomic interferometer. These transition points result from zeros of Loschmidt echo, which
approach the real axis of the complex time plane in the large particle number limit, and signify pair
condensates, another type of exotic quantum states featured with prevailing two-body correlations.
Such DQPTs thus provide us with a new angle to understand many-body states emergent from
quantum non-equilibrium dynamics. Our work also suggests interacting atomic interferometers as
a new tool for creating highly entangled states to beat the standard quantum limit.

I. INTRODUCTION

Applications of atomic interferometers span a wide
spectrum of problems, ranging from measuring the grav-
itational acceleration and the fine-structure constant to
detecting gravitational waves [1–5]. Ultracold atoms
prompt a precise control of atomic interferometers, in-
cluding realizing highly tunable atomic beam splitters
[6–10] and accessing an atomic Hong-Ou-Mandel interfer-
ometer using optical tweezers [11–14]. Whereas mutual
interactions between particles may induce decoherence
[15–17], they could also generate squeezing and multi-
particle correlations unattainable in linear interferome-
ters [18].

Dynamical quantum phase transition [19–22] has
recently invoked enthusiasm in multiple disciplines.
A particular type of Loschmidt echo, |G(t)|2 =

| 〈ψ(0)| e− i
~ Ĥt |ψ(0)〉 |2, where |ψ(0)〉 is the initial state, is

considered as the temporal analog of the partition func-
tion. When |ψ(0)〉 is an equal superposition of all en-
ergy eigenstates, |G(t)|2 is exactly the partition function
with an imaginary temperature T = 1

ikBt
. t is therefore

identified as the tuning parameter as analogous to the
temperature in phase transitions at equilibrium. When
G(t) = 0, the dynamic free energy λ(t) = − 1

N ln |G(t)|2,
which is the rate function of the probability for the sys-
tem to return to its initial state, manifests nonanalytic-
ities and defines a critical time tc. N is the number of
degrees of freedom. Similar to conventional phase tran-
sitions triggered by Lee-Yang zeros or Fisher zeros in the
complex plane of certain parameters or the temperature
[23, 24], DQPTs can also be understood from zeros of
G(t) in the complex plane by extending the real time t
to the complex domain, t → z ≡ t + iτ . With increas-
ing N , discrete zeros merge to continuous manifolds and
eventually touch the real t axis, making physical observ-
ables nonanalytic. Whereas observations of DQPTs have
been reported in certain spin systems, showing deep con-
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nections with equilibrium quantum phase transition and
order parameter dynamics [19, 25–30], such novel concept
well deserves both theoretical and experimental studies
in a much broader range of systems.

In this paper, we show that interacting interferom-
eters host DQPTs between highly entangled quantum
states. Starting from a Fock state, pair condensates,
which are featured with vanishing one-body correlation
and prevailing two-body correlations [31–33], arise in
non-equilibrium quantum dynamics. In the largeN limit,
their appearance at critical times, tc, are triggered by
zeros of G(z) in the complex time plane that approach
the real axis, signifying DQPTs at which the many-body
wave function becomes orthogonal to the initial state
[19, 25, 27–30, 34–36]. tc characterizes transitions be-
tween NOON states, a particular type of Schrodinger’s
cat states formed by two Fock states. Such dynamically
generated NOON states are much more stable than those
at equilibrium. The energy mismatch between the two
single-particle states only needs to be suppressed as a
power-law of N , unlike the equilibrium case where the
energy mismatch has to be exponentially small.

Moreover, NOON states arise from an intriguing in-
terplay between interactions and the symmetry. When
the Hamiltonian remains unchanged after swapping the
two single-particle states, the dynamical phase induced
by interactions directly leads to a superposition of the
initial state and its counterpart created by the symme-
try operator, say |N, 0〉 and |0, N〉. Therefore, the NOON
states are protected by the symmetry in the sense that
any perturbations respecting this symmetry are no longer
important. For instance, adding weak multi-particle in-
teractions to the ordinary two-particle interactions does
not affect any qualitative results. Thus, our scheme ap-
plies to a large class of models and suggests a new mech-
anism to access highly entangled states, which could be
used to beat the standard quantum limit and improve
quantum sensing [37–40].
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FIG. 1. (color online) Dynamics of 8 bosons for U/J = 0.001. (a) Each small blue dot represents a simple zero of G(z) in the

complex plane, where z is the complex time z = t+ iτ . (b) Normalized s-body correlation 2|g1|
N

, 4|g2|
N(N−1)

, 2|gN |
N !

as functions of

the real time t. (c,d) and (e,f): Enlarged regimes of of (a,b) near t = 0 and t∗, respectively. Each big red dot in (c,e) are zeros
of G(z) of the non-interacting systems described by z = (k + 1/2)T, k ∈ Z. Each of them has multiplicity 8. The legend in (b)
also applies to (d) and (f).

II. HAMILTONIAN

We consider N bosonic atoms in an interferometer con-
sisting of two quantum states. The Hamiltonian reads

Ĥ = −J(â†1â2 + â†2â1) + g(n̂2
1 + n̂2

2) + 2g12n̂1n̂2, (1)

where J > 0 is the the coupling strength between the

two quantum states, â†i is the creation operator in the

ith state, and n̂i = â†i âi. g and g12 are the intra- and
inter-state interactions, respectively. This Hamiltonian
remains unchanged with two modes swapped. If we con-
sider two spatial modes, this is the inversion symmetry.
Though our results apply to generic models respecting
this symmetry, we focus on two-particle interactions to
concretize discussions. Multi-particle interactions, which
may arise from multi-band effects [41], are discussed in
Appendix F.

The Hamiltonian can be rewritten as

Ĥ = −J(â†1â2 + â†2â1)+
Ū

2
(n̂1 + n̂2)2 +

U

4
(n̂1− n̂2)2, (2)

where Ū = g + g12, U = 2(g − g12). Due to the con-
servation of the total particle number N = n1 + n2, Ū
only contributes a trivial total phase of the wave func-
tion in the dynamics. We thus focus on interaction ef-
fects caused by U . Though this Hamiltonian has been
well studied [15, 18, 42–46], our results, including zeros
of G(z) in the complex time plane, DQPTs, symmetry
protected NOON states and pair condensates, elude the
literature. We solidify the discussion for repulsive inter-
actions, U > 0. Attractive interactions lead to similar
results (Appendix B).

III. ZEROS IN THE COMPLEX PLANE.

We consider an initial state, |ψ(0)〉 = |N, 0〉 =
1√
N !
â†N1 |0〉. The dynamical evolution, |ψ(t)〉 =

e−
i
~ Ĥt |ψ(0)〉, is computed by expanding |ψ(0)〉 using ex-

act eigenstates of Ĥ. Whereas this can be done for any
parameters, we consider UN2 � J . Such energy scale
separation leads to a time scale separation,

T ≡ π~
J
� t∗ ≡ π~

U
, (3)

which allows us to access quantum dynamical evolutions
exhibiting extraordinary features. When U vanishes, the
quantum dynamics is governed by

â†1 → cos
Jt

~
â†1 + i sin

Jt

~
â†2, (4a)

â†2 → i sin
Jt

~
â†1 + cos

Jt

~
â†2. (4b)

Thus, |ψo(t)〉 = 1√
N !

(cos(Jt/~)â†1 + i sin(Jt/~)â†2)N |0〉,
where the superscript o represents the result of a non-
interacting system. Extending t to the complex plane, we
find that all zeros of G(z) are located on the real axis with
multiplicity N . When z = tok ≡ (k+1/2)T , where k is an

integer, the quantum state becomes |0, N〉 = 1√
N !
â†N2 |0〉,

and G(tok) = 0. One can view each identical boson as a
spin-1/2. All spin-1/2s initially at the north pole of the
Bloch sphere move to the south pole at the same times
tok, leading to a vanishing G(z).

As shown in Fig. 1(c), a weak interaction satisfying
UN2 � J has negligible effects at small times. A
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given multiple zero with multiplicity N splits into N
simple zeros, all of which are close to zeros of non-
interacting systems. Indeed, |ψ(t)〉 is very similar to
that of a non-interacting case, as shown in Fig. 2(a-
d). For instance, at time t = to ± T/4, |ψ(t)〉 is well

represented by 1√
2NN !

(â†1 ± iâ†2)N |0〉, corresponding to

a binomial distribution when expanded by Fock states
|l〉 ≡ |N/2+l, N/2−l〉. To simplify notations, we consider
even N here. See Appendix C for results of odd N . How-
ever, at large times, even a weak interaction has profound
effects. As shown in Fig. 1(a), the separation between dif-
ferent zeros of G(z) gets amplified greatly. Near t∗, these
zeros deviate largely from those of non-interacting sys-
tems. Whereas such zeros have finite imaginary parts,
they intrinsically affect physical observables in the real
time axis, as shown later.

IV. DYNAMICALLY GENERATED
ENTANGLED STATES.

We evaluate s-body correlation functions in the real

time axis, gs = 〈ψ(t)| â†s1 âs2 |ψ(t)〉 , s ∈ Z+. At t = 0,
the Fock state has vanishing gs for any s. As time goes
on, gs increases as a result of tunnelings between the two
quantum states. When U = 0, the dynamics is fully cap-
tured by Rabi oscillations. When U 6= 0, Fig. 1(b) shows
that one-body correlation function, g1(t), decays due to
interaction induced decoherence. However, normalized

two-body and N-body correlation functions, 4g2(t)
N(N−1) and

2gN (t)
N ! , reach their maxima around t = t∗. In the vicinity

of t∗, both |g2| and |gN | oscillate with a period T/2. This
indicates the rise of highly entangled states with multi-
particle correlations. As shown in Fig. 2(e-h), the four
states showing up alternatively near t∗ are well captured
by

t̃0 = kT, |C−〉 =
â†N1 − iâ†N2√

2N !
|0〉 ,

t̃1 = kT +
T

4
, |P−〉 =

N∑
n=0

iN−n − in+1

pn
â†n1 â†N−n2 |0〉 ,

t̃2 = kT +
2T

4
, |C+〉 =

â†N1 + iâ†N2
i1−N

√
2N !

|0〉 ,

t̃3 = kT +
3T

4
, |P+〉 =

N∑
n=0

iN−n + in+1

i1−Npn
â†n1 â†N−n2 |0〉 ,

(5)

where t̃ = t − t∗ and pn = n!(N − n)!
√

2N+1

N ! . |C±〉 are

NOON states with vanishing gs<N and |gN | = N !/2. We
have verified that any gs<N does vanish when NOON
states arise. For clarity of the plots, g2<s<N are not
shown in Fig. 1.
|P±〉 are called pair condensates, since their one-body

correction function g1 vanishes, and their two-body corre-
lation function g2 is of the order of N2. Correspondingly,
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FIG. 2. (color online) (a-d) depicts the wave function ex-
panded by Fock states |ψ(t)〉 =

∑
ψl

∣∣N
2

+ l, N
2
− l
〉

at four
times t = 0, T/4, 2T/4, 3T/4. (e-h) are the results at four
times near t∗. Numbers on top of bars represent relative
phases of ψl. All parameters are identical to those in Fig. 1.

their two-body reduced density matrix, 〈a†2i a2
j 〉, has only

one macroscopic eigenvalue proportional to N2. There-
fore, |P±〉 and |C±〉 have distinct properties. Eq. (4),
which can be regarded as a rotation of the quantiza-
tion of axis, swaps |P±〉 and |C±〉. There are always
two types of such different entangled states in any refer-
ence frames. As shown later, when studying |G(t)|2 =

| 〈ψ(0)| e− i
~ Ĥt |ψ(0)〉 |2 that characterizes the quantum

memory of the initial state, the chosen |ψ(0)〉 fixes the
quantization axis such that |P±〉 in Eq. (5) becomes or-
thogonal to |ψ(0)〉 when N →∞.

The energy spectrum in the limit UN2 � J (Appendix
A), which is written as

En = An+Bn2, n = 0, 1, .., N, (6)

B = −U
2
, A =

UN

2
+ 2J, r ≡ A

B
. (7)

For any initial state |ψ(0)〉 =
∑N
n=0 cn |En〉, the

wave function at a later time is given by |ψ(t)〉 =∑N
n=0 cne

− i
~Ent |En〉. Tuning J and U , when r = rm

is satisfied, where rm = 4m+ 2 or 4m, m ∈ Z, |C±〉 can
be easily identified. If r = 4m, we obtain

|Ψ(t∗)〉 =

N∑
n=0

cne
− i

~Ent
∗ |En〉 =

N∑
n=0

cn
1− i(−1)n√

2
|En〉 .

(8)
Because of the aforementioned symmetry of H in Eq. (2),
the energy eigenstates have well defined parity,

P̂ |En〉 = (−1)n |En〉 , (9)

where P̂ is the inversion operator, P̂ |n1, n2〉 = |n2, n1〉
and [Ĥ, P̂ ] = 0. Using Eq. (8) and (9), we conclude that

|ψ(t∗)〉 = (|ψ(0)〉 − iP̂ |ψ(0)〉)/
√

2. Whereas this result
is valid for any initial state, the initial state we chose
gives rise to |C−〉 emerging at t = t∗. Meanwhile, in-
teraction effects are negligible in a short time scale of a
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few T s. The time evolution in such time scale is well
captured by Eq. (4) if we replace t by t − t∗. Apply-
ing such transformation to |C−〉, it is straightforward to
show that the other three states in Eq. (5) show up in
corresponding times. If r = 4m+2, the same discussions
apply and the four states, |C+〉, |P+〉, |C−〉 and |P−〉,
show up at times t̃0, t̃1, t̃2, t̃3 in Eq. (5). It is also worth
mentioning that, for odd particle numbers, the pair con-
densates are described by another type of wave functions

∼∑l ψ
′
lâ
†2l
1 â†N−2l

2 |0〉 (Appendix C).
When r 6= rm, Eq. (8) can not be satisfied. Never-

theless, the states near t = t∗ are well approximated by
NOON states in the weakly interacting regime. We cal-
culate the fidelity,

P (t) = max(| 〈C+|ψ(t)〉 |2, | 〈C−|ψ(t)〉 |2). (10)

Near t∗, we obtain (Appendix E)

P (t) ≈
√

1

1 + N2

4 (π2 − U
2~ t)

2
×

∑
k

∣∣∣∣∣exp

(
− 1

2
N + i(π2 − U

2~ t)
(
kπ

2
− πN

4
− Jt

~
)2

)∣∣∣∣∣
2

.

(11)

Near t∗, P (t) consists of gaussian peaks centered at a
series of discrete times with a separation T/2. Since the
width of those peaks is about ~√

NJ
, only one peak con-

tributes to P (t) significantly at any t in the large N limit.
P (t) reaches its maximum at t∗′ = k0π~

2J − πN~
4J , and

max[P (t)] = (1 + (
NπUd

8J
)2)−1/2, (12)

where k0 is the integer nearest to 2J
U + N

2 , k0 ≡ Int( 2J
U +

N
2 ), and d ≡ | 2JU + N

2 − k0| 6 1
2 . When r = rm, previous

results are recovered because 2J
U + N

2 = − rm2 is an integer
and max[P (t)] = 1. For generic r 6= rm, the lower bound
of max[P (t)] is written as (1 + (πNU16J )2)−1/2. Thus, in
the weakly interacting limit, NOON states well represent
|ψ(t∗′)〉. Away from t = t∗, we have numerically com-
puted the overlaps between |ψ(t)〉 and the four states in
Eq. (5), and such overlaps reach their maxima near t∗

(Appendix D).

V. DQPT IN THE LARGE N LIMIT.

In a short time scale of a few T s, the dynamics near t∗ is
well captured by Eq. (4) with the substitution t̃ = t− t∗.
Zeros of G(z) are obtained analytically. For instance,
when r = 4m,

G(z) =
1√
2

((cos
J(z − t∗)

~
)N − i(i sin

J(z − t∗)
~

)N ).

(13)
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FIG. 3. (color online) (a) Zeros of G(z) near t∗ for N = 40
particles (t̃ ≡ t−t∗). (b) Distances between the real time axis
and the nearest zeros around t∗ as a function of 1/N . The
blue solid line is the analytical result from Eq. (14) and the
red dots are numerical results. (c) The rate function λ(t). (d)
λ(t) near t̃c. UN

2/J = 0.01 has been used.

Fig. 3(a) shows that real parts of these zeros are given by
Re z = t∗ + (π4 + m

2 π) ~
J ,m ∈ Z, i.e., they are aligned in

vertical lines in the complex plane. When N is odd, some
zeros reside on the real axis (Appendix C). However, for
a generic finite N , all zeros are away from the real axis.
With increasing N , zeros become denser and gradually
approach the real axis. The distance between the real
axis and the nearest zero is bounded by

Γ =
1

2
arccosh

1

| cos π
2N |

. (14)

In the large N limit, Γ ≈ π
4N . Such scaling behavior is

verified by numerical calculations, as shown in Fig. 3(b).
When N →∞, straight lines formed by continuous zeros
intersect with the real axis and lead to a vanishing G(z)
in the real axis. Correspondingly, λ(t) becomes nonan-
alytic, signifying DQPTs. As shown in Fig. 3(c,d), near
the transition point, λ(t) = ln 2−2J~ |t̃−t̃c| when N →∞,

where t̃c = (π4 + m
2 π) ~

J . Comparing DQPT points and
the times given in Eq. (5), we conclude that pair con-
densates, |P±〉, reside at DQPT points and characterize
the DQPT between two different types of NOON states,
|C±〉. This can also been seen from Fig. 1(e,f). Zeros
of G(z) near t∗ are aligned in a vertical line, directly
corresponding to maximized g2.

VI. EFFECTS OF PERTURBATIONS.

Whereas essentially all parameters in Eq. (2) can be
fine tuned, it is useful to consider effects of perturbations.
We consider two types of important perturbations. (a)
With increasing U , Eq. (6) includes high order terms
ns>2. (b) An energy mismatch ∆(n1 − n2) breaks the
inversion symmetry.
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Consider (a), the lowest order contribution is a cubic
term and we have En = An+Bn2 + Cn3, where Cn3 =
−n3U2/(8J). The wave function is written as

|Ψ(t)〉 =

n∑
n=0

cne
− i

~ (An+Bn2−U2

8J n
3)t, (15)

where cn = ( 2
πN )

1
4 e−

1
N (n−N2 − U

16JN
2)2 . If U2

8J n
3t∗ � 1

then the extra phase introduced by the cubic term is
negligible within the time scale that is relevant to the
emergent NOON states and DQPTs. Since cn is a Gaus-
sian with a width

√
N , which provides a natural cutoff

of n in the sum in Eq. (15), we replace n in the above

inequality by
√
N and obtain UN

3
2 � J . Thus, when

UN2 � J is satisfied, all these corrections are negligible.
Similar conclusions apply to ns>2 caused by multi-body
interactions (Appendix F).

For symmetry-breaking terms in (b), our calculation
shows that a finite ∆ suppresses gN by a factor,

gN
g0
N

= 1−
(

∆2N

2J2
+
U∆N(N − 1)

16J2

)
, (16)

where g0
N = N !/2 is the N -body correlation function of

a NOON state. Thus, when

8∆2N + ∆UN(N − 1)� 16J2 (17)

all characteristic features of NOON states retain.
We compare Eq. (17) to the criterion for a stable

NOON state at equilibrium [47], where a finite ∆ strongly
suppresses the superposition of |N, 0〉 and |0, N〉, as a
large N amplifies the energy penalty. Meanwhile, the
effective tunneling between |N, 0〉 and |0, N〉 is exponen-
tially small, as it requires N steps of single-particle tun-
neling to couple them. ∆N � Je−N is then required,
i.e., an exponentially small ∆ with increasing N . Here,
such a constraint does not apply in non-equilibrium dy-
namics. Eq. (17) shows that, with increasing N , ∆ only
needs to be suppressed as a power law. The dynamically
generated NOON states are much more stable than their
counterparts at equilibrium. Thus, our results suggest a
new route to access NOON states that can be potentially
used in precision measurements.

VII. EXPERIMENTAL REALIZATIONS AND
CONCLUSIONS

Whereas our results apply to generic atomic interfer-
ometers with any particle number, we comment on pos-
sible sceneries directly related to current experiments.
Optical tweezers has recently been used to create an
atomic Hong-Ou-Mandel interferometer [13]. Each sin-
gle tweezer corresponds to a quantum state in Eq. (2),
and both interaction U and tunneling J can be tuned.
Trapping multiple atoms is also possible [48, 49]. Using
realistic experimental parameters J/2π = 262(4)Hz in

[13], when U/J = 0.022 and N = 8, NOON states and
DQPTs emerge around a critical time about 86ms (Ap-
pendix G). Beside optical tweezers, other systems ranging
from double-well optical lattices to mesoscopic traps [50–
53], in which the total particle number can be controlled
precisely, are also suitable for testing our theoretical re-
sults. In addition, H in Eq. (2) can be mapped to a
spin-1/2 model with all-to-all interactions [54], which of-
fers another realization of our schemes in spin systems.

We have studied DQPTs in interacting atomic inter-
ferometers and shown that dynamically generated entan-
gled states have deep connections with zeros of Loschmidt
echo in the complex plane. DQPTs provide us with a new
angle to understand non-equilibrium dynamics. We hope
that our work will stimulate more interests of using inter-
acting interferometers to explore DQPTs and to produce
novel entangled quantum states.
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Appendix A: Eigenstates and energy spectrum of
the Hamiltonian

We consider the Hamiltonian Ĥ = −J(â†1â2 + â†2â1) +
Ū
2 (n̂1+n̂2)2+U

4 (n̂1−n̂2)2+∆(n̂1−n̂2). When U = ∆ = 0,

the eigenenergies E0
n and eigenstates

∣∣E0
n

〉
are

E0
n = 2J(n− N

2
), (A1)

∣∣E0
n

〉
=

1√
n!(N − n)!

(
â†1 + â†2√

2
)N−n(

â†1 − â†2√
2

)n |0〉 .

(A2)

When U,∆ � J , the first and second order corrections
to the eigenenergies are

E1
n =

U

4
(2nN − 2n2 +N), (A3)

E2
n =

U2

32J
(2n−N)(N − 1 + 2Nn− 2n2) +

∆2

2J
(2n−N).

(A4)

The eigenstates are

|En〉 =
∣∣E0

n

〉
− ∆

2J

√
(n+ 1)(N − n)

∣∣E0
n+1

〉
+

∆

2J

√
n(N − n+ 1)

∣∣E0
n−1

〉
+O(∆3)

− U

4

√
(N − n)(N − n− 1)(n+ 1)(n+ 2)

4J

∣∣E0
n+2

〉
+
U

4

√
(n− 1)n(N − n+ 1)(N − n+ 2)

4J

∣∣E0
n−2

〉
.

(A5)
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Appendix B: Attractive interactions

As discussed in the main text, when U > 0, t∗ = π~
U ,

and rm = 4m, |C−〉, |P−〉, |C+〉, and |P+〉 show up in
order starting from t∗. In contrast, rm = 4m + 2, |C+〉,
|P+〉, |C−〉, and |P−〉 show up in order starting from t∗.

Here we discuss U < 0 and t∗ = π~
|U | . (1) rm = 4m,

|C+〉, |P+〉, |C−〉, and |P−〉 show up in order starting
from t∗, and G(z) = 1√

2
((cos J(z− t∗)/~)N + i(i sin J(z−

t∗)/~)N ). (2) rm = 4m + 2, |C−〉, |P−〉, |C+〉, and
|P+〉 show up in order starting from t∗, and G(z) =
1√
2
((cos J(z − t∗)/~)N − i(i sin J(z − t∗)/~)N ).

If rm is not an even integer, Eq. (11) can be generalized
to

P (t) ≈
√

1

1 + N2

4 (π2 −
|U |
2~ t)

2
×

∑
k

∣∣∣∣∣∣exp

− 1
2
N + i U|U | (

π
2 −

|U |
2~ t)

(
kπ

2
− πN

4
− Jt

~
)2

∣∣∣∣∣∣
2

.

(B1)

Appendix C: Results for odd number of particles

The zeros of G(z) = 1√
2
((cos J(z − t∗)/~)N ±

i(i sin J(z − t∗)/~)N ) are written as

Re
J(z − t∗)

~
=
π

4
+
l

2
π, l ∈ Z, (C1)

Im
J(z − t∗)

~
=

1

2
arccosh

1

| cosπ( 1+2k∓1/2
N − 1

2 )|

× sgn sinπ(
1 + 2k ∓ 1/2

N
− 1

2
), k = 1, 2, ..., N.

(C2)

For a finite even N , zeros have finite imaginary parts.
For a finite odd N , some zeros reside on the real time
axis, as shown in Fig. 4.

In the large N limit: (1) If N is even, limN→∞ λ(t) =
−2 ln[max(| cos Jt̃/~|, | sin Jt̃/~|)], which has been ana-
lyzed in the main text. (2) If N is odd, λ±(t) =
− 1
N ln

(
1
2 | cosN Jt̃/~± sinN Jt̃/~|2

)
. The sign ± is de-

termined by the sign before i in G(t) and whether
N = 4p + 1 or 4p + 3, p ∈ Z. λ±(t) is nonanalytic
at t̃c = ~

J (π4 + k π2 ), k ∈ Z, when N → ∞. Especially,

limN→∞ λ−(t) = −2 ln[max(| cos Jt̃/~|, | sin Jt̃/~|)] ex-
cept at t̃c1 = ~

J (π4 + kπ), k ∈ Z. As shown in Fig. 4(d),

λ−(t) diverges at t̃c1 for any finite odd N . Similar con-
clusions apply to λ+(t).

The emerged pair condensates near t∗ for odd N are
also different from those for even N , Using Eq. (4), for

N = 2m+ 1,m ∈ Z, we obtain,

|P−〉 =

N∑
n=0

iN−n − in+1

pn
â†n1 â†N−n2 |0〉

=

N∑
n=0

in+1((−1)m+n − 1)

pn
â†n1 â†N−n2 |0〉 ,

(C3)

|P+〉 =

N∑
n=0

iN−n + in+1

pn
â†n1 â†N−n2 |0〉

=

N∑
n=0

in+1((−1)m+n + 1)

pn
â†n1 â†N−n2 |0〉 .

(C4)

Thus, some Fock states are suppressed by the factor
(−1)m+n − 1. For instance when N = 7, |P−〉 only
contains |0, 7〉 , |2, 5〉 , |4, 3〉 , |6, 1〉. Apparently both one-
body correction g1 and G(t) = 〈7, 0|P−〉 vanishes.

Appendix D: Overlaps between |ψ(t)〉 and |C±〉, |P±〉.

Away from t∗, there is no simple analytical expression
for the overlap between |ψ(t)〉 and the NOON states or
pair condensates. We thus evaluate such overlaps numer-
ically, as shown in Fig. 5. Near t∗ = π~

U , the four states
defined in Eq. (4) show up alternatively. The overlaps
reach maxima near t∗.

Appendix E: Detailed analyses of perturbations

When ∆ = 0, the initial state |N, 0〉 can be expanded
by energy eigenstates and the coefficients cn are

|cn|2 = | 〈En|N, 0〉 |2

=| 1

2N/2

√
N !

n!(N − n)!
(1− (N − 2n)

U(N − 1)

16J
)|2

≈
√

2

πN
e−

2
N ((n−N2 )−UN(N−1)

16J )2 .

(E1)

Assuming En = Cn3 +Bn2 +An and B < 0, the overlap
between |ψt〉 and the NOON state (|N, 0〉+ i |0, N〉)/

√
2

is

〈C+|ψ(t)〉 =

N∑
n=0

|cn|2e−i(
π
2 n

2+nπ)e−
i
~Ent

=
∑
m

√
2

πN
e−

2
Nm

2− iCt~ m3−i(π2−H2t)m
2+i(G1−π−H1t)m,

(E2)
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where m = n− N
2 + UN2

16J and

H2 =
|B|
~
− 3CN2U

16~J
− 3CN

2~
, (E3)

H1 =
A

~
− |B|N

2U

8~J
− |B|N

~
+

3CN4U2

256~J2

+
3CN3U

16~J
+

3CN2

4~
,

(E4)

G1 = −πN
2U

16J
− πN

2
. (E5)

What is required is that the phase contributed by the
cubic term is negligible when t ∼ π~

U . Since the width of

the gaussian factor is
√
N , we require

|Ct
~
m3| = |U

2

8J

π

U
N3/2| � 1⇒ |UN

3/2

J
| � 1, (E6)

where we have used the energy spectrum obtained from
second order perturbation. The cubic term is then
dropped and we employ Poisson summation formula to
obtain

〈C+|ψ(t)〉 =
∑
k

√
1

1 + iN2 (G2 −H2t)
×

exp

(
− 1

2
N + i(G2 −H2t)

(
(2k − 1)π +G1

H1
− t)2H

2
1

4

)
.

(E7)

Similarly, we obtain

〈C−|ψ(t)〉 =
∑
k

√
1

1 + iN2 (G2 −H2t)
×

exp

(
− 1

2
N + i(G2 −H2t)

(
(2k)π +G1

H1
− t)2H

2
1

4

)
.

(E8)

When Eq. (E6) is satisfied, H2 ≈ |B|
~ ≈ U

2~ ,

H1 ≈ A
~ ≈ 2J

~ , and G1 ≈ −πN2 . We define
the probability of finding a NOON state as P (t) =
max(| 〈C+|ψ(t)〉 |2, | 〈C−|ψ(t)〉 |2). Near t = G2

H2
, P (t) can

be written as

P (t) ≈
√

1

1 + N2

4 (π2 − U
2~ t)

2
×

∑
k

∣∣∣∣∣exp

(
− 1

2
N + i(π2 − U

2~ t)
(
kπ~
2J
− πN~

4J
− t)2 J

2

~2

)∣∣∣∣∣
2

.

(E9)

P (t) consists of multiple gaussian functions whose peaks
are located at t = kπ~

2J − πN~
4J , k ∈ Z, and their separation

is π~
2J . There is also a factor (1 + N2

4 (π2 − U
2~ t)

2)−1/2,
which suppresses peak heights. If the parameters are
fine tuned such that an integer k0 satisfies π

2 − U
2~ (k0π~2J −

πN~
4J ) = 0, then P (t) = 1 at t = k0π~

2J − πN~
4J . We thus

obtain a perfect NOON state. Without fine tuning the
parameters, we consider t = π~

U that lies in the middle
of two peaks. The two peaks get a suppression of (1 +
(πNU16J )2)−1/2. Again, because of Eq. (E6), this factor is
negligible when N is large.

If the energy mismatch ∆ is finite, we separate the
eigenstates into two parts according to their spatial par-
ity,

|En〉 = αn |En〉s + βn |En〉a , (E10)

P̂ |Em〉 = αn(−1)n |En〉s + βn(−1)n+1 |En〉a . (E11)

The time evolution of the wave function is writ-
ten as |N, 0〉 → |ψt〉 =

∑N
n=0 cnαne

−iEnt |En〉s +
cnβne

−iEnt |En〉a. From Eq. (A4), we see that, up to
the second order of ∆, the quadratic term in En remains

unchanged. Thus, when t∗ = π~
U , e−iEnt

∗
= 1+i(−1)n√

2
is

satisfied, and we obtain

|ψ(t∗)〉 =
N∑
n=0

αncn
1 + i(−1)n√

2
|En〉s

+ βncn
1 + i(−1)n√

2
|En〉a

= |cat〉+ |err〉 ,

(E12)

where |err〉 =
∑N
n=0 i

√
2(−1)ncnβn |En〉a is the correc-

tion to the NOON state at t∗, and

gN = 〈ψt∗ | â†N1 âN2 |ψt∗〉

=g0
N +

N !√
2
〈0, N |err〉+ i

N !√
2
〈err|N, 0〉

+ 〈err| â†N1 âN2 |err〉

(E13)

Using Eq. (A5), we obtain

βn |En〉a =− ∆

2J

√
(n+ 1)(N − n)

∣∣E0
n+1

〉
+

∆

2J

√
n(N − n+ 1)

∣∣E0
n−1

〉
+O(∆3).

(E14)

Up to the first order of U and ∆,

|err〉(1)
=

∆

2J

N∑
n=0

i
√

2
(−1)n+1

2N/2

√
N !

n!(N − n)!
(N − 2n)

∣∣E0
n

〉
.

(E15)

It is straightforward to verify that 〈0, N |err〉(1)
,

〈err|(1) |N, 0〉 and â†N1 âN2 |err〉(1)
vanish.

Up to the second order of U and ∆,

|err〉(2)
=

∆

2J
(

∆

2J
+
U(N − 1)

16J
)×

N∑
n=0

i
√

2
(−1)n+1

2N/2

√
N !

n!(N − n)!
(N − 2n)2

∣∣E0
n

〉
,

(E16)
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So,

〈0, N |err〉(2)
= −i

√
2

∆

2J
(

∆

2J
+
U(N − 1)

16J
)

N !

(N − 1)!
,

(E17)

〈err|(2) |N, 0〉 = 0. (E18)

Therefore,

gN = 〈ψ(t∗)| â†N1 âN2 |ψ(t∗)〉

=i
N !

2
− i( ∆

2J
(

∆

2J
+
U(N − 1)

16J
))

N !2

(N − 1)!

=g0
N (1− 2N(

∆

2J
(

∆

2J
+
U(N − 1)

16J
))).

(E19)

Appendix F: Multi-body interactions

Interaction induced inter-band couplings may lead to
virtual transitions of particles from the lowest energy
band to higher bands [41]. When the band gap is
small compared to the interaction strength, there ex-
ist effective multi-body interactions. As for the three
body interaction, U3(n3

1 + n3
2), it can be rewritten as

U3(n1 + n2)3 − 3U3n1n2(n1 + n2). Because of the con-
servation of the total particle number, the first term is
not relevant to the dynamics. The second term turns the
two-body interaction, U , discussed in the main text into
U → U + 3U3N , and does not change any qualitative
results.

Other multi-body interactions do not change our re-
sults neither, provided that they respect the inversion
symmetry. As discussed in the main text, NOON states
emergent in the dynamics are protected by the inversion
symmetry. Any multi-body interactions, Us>2(ns1 + ns2),
still respect this symmetry. Thus, the only effect that
they have on the dynamics is to add corrections, ns>2,
to the energy spectrum in Eq. (5) of the main text. Any
such small corrections would not affect the qualitative
results of the dynamics in short times, similar to the dis-
cussions on Eq. (14) of the main text.

Appendix G: Correlation functions and zeros of G(z)
in optical tweezers

Two coupled optical tweezers have been used to cre-
ate an atomic Hong-Ou-Mandel interferometer [12, 13].

Starting from an initial state, |2, 0〉, i.e., two bosons oc-
cupy the same optical tweezer, the time evolution of the
correlation functions can be calculated analytically,

g1 = − 2U√
16J2 + U2

αβ sin2

√
16J2 + U2t

2~

+ i2αβ sin

√
16J2 + U2t

2~
cos

Ut

2~

(G1)

g2 =
α4 + β4 − 1

2
+ α2β2 cos

√
16J2 + U2t

~

+i

(
sin

Ut

2~
cos

√
16J2 + U2t

2~

− U√
16J2 + U2

cos
Ut

2~
sin

√
16J2 + U2t

2~

)
,

(G2)

where α = 1√
2

√
1− U√

16J2+U2
, β = 1√

2

√
1 + U√

16J2+U2
.

If the parameters are fine tuned such that
√

16J2+U2

U =

2k, k ∈ Z, at t∗ = π~
U , we obtain, g1 = 0, g2 = i(−1)k,

and a small NOON state |2,0〉+i(−1)k|0,2〉√
2

. Using realistic

experimental parameters in Ref. [13],

J/2π = 262(4)Hz and U/J = 0.22(2), the correla-
tion functions and the zeros of G(z) are shown in Fig. 6.

When U � J ,
√

16J2+U2

U = 2k corresponds to r = rm in
the main text. Without fine tuning experimental param-
eters, there are corrections to the small NOON state at
t∗, similar to the results discussed in the main text. It
is worth mentioning that, starting from |1, 1〉, the cur-
rent experiment has shown that a small NOON state
can be produced in a Hong-Ou-Mandel interferometer.
However, this is only true when interactions are ignored.
We have verified that, in the presence of interactions,
|1, 1〉 cannot produce a small NOON state. Instead, |2, 0〉
should be used, as shown by the previous discussions.

It is possible that optical tweezers could trap multiple
particles. For 8 particles, UN2 � J is no longer satis-
fied if U/J = 0.22(2). Nevertheless, qualitative results
remain unchanged. As shown in Fig. 7, g8 is maximized
near t∗ while other correlation functions are suppressed.
With U/J decreased down to 0.022, all results in the
main text are recovered and the predicted NOON states
and DQPTs can be observed around t = 86ms.
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