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We show that recent high-precision measurements of relative on-site interaction energies ∆U in a
Mott insulator require a theoretical description beyond the standard Hubbard-model interpretation,
when combined with an accurate coupled-channels calculation. In contrast to more sophisticated
lattice models, which can be elaborate especially for parameter optimization searches, we introduce
an easy to use effective description of U valid over a wide range of interaction strengths modeling
atomic pairs confined to single lattice sites. This concise model allows for a straightforward com-
bination with a coupled-channels analysis. With this model we perform such a coupled-channels
analysis of high-precision 7Li spectroscopic data on the on-site interaction energy U , which spans
over four Feshbach resonances and provide an accurate and consistent determination of the associ-
ated resonance positions. Earlier experiments on three of the Feshbach resonances are consistent
with this new analysis. Moreover, we verify our model with a more rigorous numerical treatment of
the two atom system in an optical lattice.

I. INTRODUCTION

Precise knowledge and control of the atomic inter-
actions is essential to a wide range of modern ultra-
cold atom experiments. Coupled-channels models
can accurately describe ultracold collision proper-
ties [1] of a two-atom system by detailed interaction
potentials that are finetuned by just a few param-
eters, to match atom loss spectra [2], photoassocia-
tion rates and collisional cross sections [3], interfer-
ence patterns between s-wave and d-wave collisions
[4], and rf molecule association data [5]. Accurate in-
formation on the interaction strength close to Fesh-
bach resonances [6] is needed to determine the three-
body parameter of a strongly-interacting Bose gas
[7, 8]. Also the collisional energy-dependence can be
substantial, when operating a cesium microgravity
clock [9], or for the determination of the nature of a
spinor condensate [10, 11]. Approximate or effective
descriptions like a contact interaction or a harmonic
trapping potential are often required to embed the
microscopic collisional properties of two atoms into
the macroscopic environment of the ultracold gas,
where atoms may be held by magnetic or optical
traps [12–14], or by optical lattices [15]. Given the
collisional properties of two atoms one can then cor-
rectly account for collisional energy shifts, however,
the collisional properties themselves depend on those
energy shifts via the relative kinetic energy of the
colliding atoms that is linked to the total energy of
the two particles, which is shifted by the collisional
energy shift. Therefore a self-consistent approach
is needed and the accuracy of the coupled-channels
interaction parameters depends crucially on the ac-
curacy of the model connecting the microscopic pro-
cesses to the macroscopic environment. Using a less

accurate model may result in inconsistencies with re-
spect to the two-body parameters when comparing
between different experiments, or even when com-
paring data within a single experiment.

In this paper, we want to utilize a coupled-
channels model in combination with an accurate but
easy to use theoretical lattice model description of
the on-site interaction energy U , to find a consistent
description of high-precision spectroscopic data of
a two component Mott insulator with two particles
per site, where the on-site energy was varied by using
Feshbach resonances [16]. In this experiment, atoms
in different spin states were confined in a cubic op-
tical lattice geometry. Such systems can implement
a spin-Heisenberg model [17], which is of interest
to study quantum magnetism. In the Mott insu-
lating phase with doubly occupied sites individual
atom pairs localize around each lattice site [18, 19].
At the same time the interactions between different
spin components of the atoms can be controlled uti-
lizing Feshbach resonances. This condition results
in an ideal situation to study the isolated two par-
ticle system. Then, the strength of the atomic in-
teraction characterized by the scattering length aS
can be linked to the energy per localized atom pair
E(aS) and thus to the on-site interaction energy U
defined as U = E(aS)−E(0). In Ref. [16] high preci-
sion data on the on-site interaction energy has been
acquired in such a two component Mott insulator
using interaction spectroscopic techniques.

We show that the standard Hubbard model ap-
proximation [18] leading to a linear relation between
the on-site interaction energy U and the scatter-
ing length aS is not accurate enough to describe
the experimental data to the required precision even
for moderate scattering lengths. Instead we offer a
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simple effective description to approximate the ef-
fects of a cubic lattice potential for two identical
particles of mass m, in which the on-site interac-
tion energy U is parametrized by a harmonic oscil-
lator model with contact interactions [12]. The har-
monic oscillator frequency ωeff should be adjusted to
best represent the on-site potential. Note that this
is not necessarily the frequency related to the sec-
ond order approximation around a lattice potential
minimum. We choose ωeff, such that the harmonic
model matches the linear description from the Hub-
bard model close to the non-interacting case, where
the Hubbard model should give the correct descrip-
tion up to first order. The effective trapping fre-
quency ωeff is then completely determined by the
non-interacting lattice parameters

~ωeff = 2πEr

(
1

kr

∫
|w0(r)|4dr

)2

, (1)

where w0 is the lowest band Wannier function of
the one dimensional single particle system, Er =
~2k2

r /(2m) is the recoil energy with kr = 2π/λ and
λ is the wavelength of the lattice light. All in all our
effective model is meant to describe the two particle
system with contact interactions including the full
lattice potential. This system has been theoretically
studied in detail [15, 20]. To make the connection
to a more complete description of the inter-particle
interactions, the strength of the contact interaction
is gauged to match the free scattering properties of
the full coupled-channels system for a fixed collision
energy ε. In ultra-cold experiments it is often suffi-
cient to take ε ≈ 0 and thus to match the scattering
length aS . To achieve a more accurate description
we want to match the full coupled-channels and con-
tact system at the correct relative collision energies
ε in a self-consistent manner. We find an approxi-
mate expression ε(aS) ≈ E(aS)− E0, which is given
by the total energy per localized atom pair depend-
ing on the scattering length minus the energy in the
center of mass (c.m.) mode. For example in an har-
monic oscillator potential of frequency ω the energy
in the c.m. mode would be E0 = 3~ω/2.

By gauging the contact interaction strength and
matching the collision energy we can thus find the
on-site interaction energy U for a full coupled-
channels description in a lattice environment. To
check the validity and limitations of the effective de-
scription we compare to the full contact system in
the lattice using a direct diagonalization approach
as presented in [20, 21]. In addition we investigate
the collision energies from the full contact bound
state wave functions to match the contact to the
coupled-channels solution at the correct relative en-
ergies. This analysis also enables us to identify
regimes in which the simple contact approximation

is likely to fail, for example close to narrow reso-
nances, where the full systems scattering properties
show strong dependence on the relative collision en-
ergy. Finally we apply our approach to perform a
full coupled-channels analysis of recent experimen-
tal data on 7Li [16].

II. THEORY

We start with some remarks on the system we aim
to model. All in all we have a many-body system in
mind, but since we assume the system to be in a
Mott insulating phase with two atoms per lattice
site in a regime where the interaction with atoms
at neighboring sites may be neglected, we restrict
to a simple two particle model system with both
particles well localized at a single lattice site. The
two particle system in a lattice is described by the
following Hamiltonian

H =
p2

1

2m
+

p2
2

2m
+ Vopt(r1, r2) + Vint(r1 − r2) , (2)

with pi and ri the momentum and position opera-
tors of particle i ∈ {1, 2}, m the mass of the parti-
cles, Vint the interaction between the particles and
Vopt the lattice potential.

To simplify the system further one can mimic the
interactions between the particles with a contact in-
teraction of variable interaction strength. By ad-
justing this interaction strength we can correctly
represent the physics at length scales bigger than
the range r0 of the real interaction potential. Note
however that this approximation will only be good
around some fixed relative energy ε between the par-
ticles.

In the following we give a detailed analysis of the
contact interaction case and focus in the second part
on the connection of contact to coupled-channels
model. We include a discussion of effects related
to the non-conserved relative collision energy in the
lattice scenario.

A. Contact interaction

To mimic the interactions between the particles
we introduce a contact interaction of variable inter-
action strength, implemented with a Bethe-Peierls
boundary condition [22]. We parametrize the inter-
action strength by the scattering length aS of the
interaction such that we have

Vint(r1 − r2) =
4π~2aS
m

δ(r1 − r2) . (3)
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Let us first consider the case of a weakly interacting
system where aS → 0 and a perturbative analysis
is possible. We closely follow the derivation of the
Hubbard model and thus also make the connection
to the many body theory. We start from the non
interacting case (aS = 0), such that we can restrict
to the single particle scenario. We consider a cubic
optical lattice

Vopt(r1, r2) =
∑

i∈{1,2}

V0Er

[
sin(krxi)

2

+ sin(kryi)
2 + sin(krzi)

2
]
, (4)

with V0 the lattice depth in recoil energies Er. In
this case the band structure as well as the single
particle wave functions are known and can be ex-
pressed in terms of solution to Mathieu’s equation
[19]. However, the so called Bloch solutions to the
problem are not localized, but one can combine the
Bloch waves of each band n to find the band’s Wan-
nier function wn(rj) [23]. The Wannier function
is real valued and well localized around rj = 0
for deep lattices Er → ∞. Together with versions
wn(rj −Ri) shifted by a lattice vector Ri the Wan-
nier function provides a complete basis set for the
n-th band subspace. In addition the Wannier func-
tions wn approach eigenfunction solutions of a har-
monic approximation around the lattice sites in the
deep lattice limit and they are approximate solutions
to the Schrödinger equation up to the width of the
respective bands. To approximate the system’s low
energy part around a single lattice site it is therefore
reasonable to project onto the lowest band Wannier
function w0(rj) such that the first order correction
in energy will be

U = 〈W |Vint|W 〉 , (5)

where W = w0(r1)w0(r2). For the contact interac-
tion we therefore obtain

U =
4π~2aS
m

∫
|w0(r)|4dr , (6)

which leads to a linear correspondence between the
energy correction U and the scattering length aS .
Note that this corresponds exactly to the on-site
interaction energy in the Hubbard model. Further
we note that this treatment assumes the two-body
wave function and therefore also the atomic density
around a given lattice site to stay unaltered. To in-
clude the deformation of the wave function or atomic
density caused by the interaction potential a higher
order treatment is necessary.

To go beyond the linear regime Eq. (6) we can
approximate around a single lattice site with an in-

teracting harmonic model [12]

H0(ωeff) =
p2

1

2m
+

p2
2

2m
+

4π~2aS
m

δ(r1 − r2)

+
1

2
mω2

eff r2
1 +

1

2
mω2

eff r2
2 . (7)

The harmonic oscillator frequency ωeff should be ad-
justed to best represent the lattice potential. Note
that this is not necessarily the frequency related to
the second order approximation around a lattice po-
tential minimum. We rather adjust the harmonic
oscillator frequency such that it matches up with
the first order result from the Hubbard model close
to vanishing interaction strength (see Eq. (1). The
spectrum of this effective harmonic model can be de-
termined analytically and the shift in ground state
energy U is determined by [12]

√
2 Γ
(
− U

2EHO

)
`HOΓ

(
− U

2EHO
− 1

2

) =
1

aS
, (8)

where Γ denotes the gamma function, EHO = ~ωeff

and `HO =
√
~/(mωeff). Since the solutions to the

harmonic model Hamiltonian are exact it naturally
includes also the deformation of the wave function
caused by the interaction, which manifests itself in
the radial s-wave component of the relative wave
function ψn,`=0(r) given explicitly below in Eq. (16).

To analyze the accuracy and limitations of such an
effective harmonic approach we calculate the spec-
trum of the contact system described by H using
a direct diagonalization approach similar to [20, 21,
24] making use of the eigenstates of the harmonic
model. Such a numerical approach is accurate only
around a single lattice site, therefore the popula-
tion of neighboring lattice sites might be underesti-
mated. This can lead to slight deviations between
the numerical and Hubbard model description of the
system, which we will discuss later.

We start by singling out the harmonic Hamilto-
nian in the full system by adding and substracting
the harmonic potential

H = H0(ωeff) + Vopt(r1, r2)

− 1

2
mω2

eff

(
r2
1 + r2

2

)
(9)

= H0(ωeff) + V∆ . (10)

We will project on the eigenbasis of H0(ωeff) there-
fore the major task is to determine the coupling ma-
trix elements resulting from the deviation from the
lattice potential V∆. But before analyzing those in
more detail let us first change to relative r and c.m.
coordinates R with

r1 =
1√
2

(R− r) and r2 =
1√
2

(R + r) . (11)
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Note that this is not the standard definition of rel-
ative and c.m. coordinates. We adopted the con-
ventions of [12], where relative and c.m. directions
are rescaled to have equal effective mass. In ad-
dition we introduce units natural to the harmonic
model system H0(ωeff), so all energies will be given

in multiples of ~ωeff and all lengths in multiples of√
~/(mωeff). The difference in potentials V∆ sepa-

rates into x, y and z-direction

V∆ = v∆(X,x) + v∆(Y, y) + v∆(Z, z) , (12)

where the components v∆ are given by

v∆(X,x)

=
V0

2
√
Veff

[
sin2

(
X − x
√

2V
1/4
eff

)
+ sin2

(
X + x
√

2V
1/4
eff

)]
− 1

2
x2 − 1

2
X2 (13)

=
V0√
Veff

[
sin2

(
X

√
2V

1/4
eff

)
cos2

(
x

√
2V

1/4
eff

)
+ cos2

(
X

√
2V

1/4
eff

)
sin2

(
x

√
2V

1/4
eff

)]
− 1

2
x2 − 1

2
X2 (14)

=
∑
i,j

αij(V0, Veff)x2iX2j . (15)

In the last step we performed a taylor series ex-
pansion and we have introduced the effective lattice
depth parameter Veff = ~2ω2

eff/(2Er)
2. Note that in

the series expansion only even powers of x as well
as X occur. This leads to the symmetry properties
of the system that have been discussed in a more
general setting in [21].

We now change to a basis of eigenstates
|NX , NY , NZ , n, `,m〉 of the effective harmonic sys-
tem. The N◦ are integers labeling the Harmonic os-
cillator eigenstates in the respective c.m. direction,
whereas n, `,m are quantum numbers in the relative
direction, with ` the angular momentum quantum
number, m the magnetic quantum number and n la-
bels the solutions in the relative separation r. For
` 6= 0 the quantum numbers n, `,m just describe
the usual non-interacting harmonic oscillator states,
while for ` = 0, n labels the solutions of the in-
teracting harmonic model in the relative separation
r. The general solution with correct behavior for
r → ∞ and relative energy εrel(n) is given up to a
normalizing constant by

ψn,`=0(r) ∝ e− r2

2 rU

(
3

4
− εrel(n)

2
,

3

2
, r2

)
, (16)

where U is Tricomi’s confluent hypergeometric func-
tion. The quantization condition determining εrel(n)
is then given by the boundary condition at r = 0 and
can be expressed in terms of the scattering length aS

√
2Γ
(

1
4 (3− 2εrel(n))

)
Γ
(

1
4 −

εrel(n)
2

) =
1

aS
. (17)

We can now give the Hamiltonian H0(ωeff) in its
diagonal form

H0(ωeff)

=
∑

NX ,NY ,NZ ,n,`,m

[
E(NX , NY , NZ , n, `,m)

|NX , NY , NZ , n, `,m〉〈NX , NY , NZ , n, `,m|
]
,

(18)

where eigenenergies corresponding to the states
|NX , NY , NZ , n, `,m〉 are given by

E(NX , NY , NZ , n, `,m)

= ~ωeff [3 +NX +NY +NZ

+`+ δ`,0(εrel(n)− 3/2) + (1− δ`,0)2n] . (19)

To reduce the states we project on, we can use the
symmetry properties of the Hamiltonian as we men-
tioned earlier. We have reflection symmetries in
X → −X, Y → −Y and Z → −Z, therefore there
will be just coupling between even or odd values of
NX , NY and NZ respectively. We also have the
symmetry of inversion of r→ −r equivalent to par-
ticle exchange, which leads to separation between
even and odd values of `. For bosons we obvi-
ously need the even ` values. The symmetry under
(x, y)→ (−x,−y) leads to the restriction to even or
odd values in m. Finally we could also change to a
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base

|NX , NY , NZ , n, `, |m|〉S/A

:=
1√

2 + 2δm,0
(|NX , NY , NZ , n, `,+|m|〉

±|NX , NY , NZ , n, `,−|m|〉) (20)

of symmetric and antisymmetric combinations in the
sign of m. The reflection symmetry in z → −z guar-
anties the separation in S/A. We are interested in
the component with NX , NY , NZ , ` and |m| even
and symmetric combinations (S) in ±|m|, which cor-
responds to the ground state of the interacting har-
monic model H0(ωeff) and thus to our solution up
to zeroth order in the corrections V∆ introduced by
the full lattice potential.

We want to determine the spectrum of the
full Hamiltonian close to the ground state en-
ergy of the non-interacting full system. To do so
we restrict to a finite expansion of v∆(X,x) ≈∑max
i,j αij(V0, Veff)x2iX2j . We choose to expand up

to 10th order in 2i + 2j. This leads to a deviation
of less than 0.05V0Er to the full potential when re-
stricting to a region up to ±0.7d around the lat-
tice site at the origin. Here d denotes the lat-
tice constant. We then project on a finite set of
states |NX , NY , NZ , n, `, |m|〉S/A and obtain the en-
ergy spectrum by diagonalizing the resulting Hamil-
tonian matrix. The base set is chosen big enough to
obtain a converged spectrum around the energy of
the lowest band.

In Fig. 1 we compare the energy shifts U from the
first order perturbative and the effective description
to our full numerical solution for an optical lattice
of depth V0 = 35Er. We assume here a lattice
constant d of 532nm = 10053a0, but the result will
depend only on the ratio aS/d. We get good agree-
ment with the full result for the effective harmonic
model with a maximal relative deviation of about
< 0.8% for |aS | < 0.05d ≈ 500a0. Note that the nu-
merical results presented here rely on the two par-
ticle wave function to be localized around a single
lattice site ±0.7d, since we needed to cut the expan-
sion in v∆. We want to estimate the error caused by
this approximation. Therefore we compare the effec-
tive harmonic models determined from the numeri-
cal approach and the Wannier function of the system
(cf. Fig. 1 (b)). The models differ since the Wan-
nier function of the system possesses side peaks at
neighboring lattice sites. Those are absent in our nu-
merical approach since the neighboring lattice sites
lie in a classically forbidden region due to the finite
expansion in v∆. This leads us to an estimate of
the theoretical accuracy of our model indicated by
the gray shaded area in Fig. 1 (b). With that we
still have a maximal relative systematic error in U

of 1.3% for |aS | < 0.05d.
When interpreting experimental data on U the re-

fined harmonic description leads to corrections in the
position and width of Feshbach resonances as com-
pared to the linear model. With the refined model
one finds resonance positions shifted towards the di-
rection of negative scattering lengths as well as in-
creased resonance widths. The shifts in resonance
positions result from non anti-symmetric behavior
of U , while the increase in width is related to the
flattening off of U for diverging aS .
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FIG. 1. Comparison of the full contact system (gray
dots, black dotted line) to the linear model (blue dashed
line) and the effective harmonic model (orange full line)
for a lattice depth of V0 = 35Er. (a) Energy spectrum
as a function of the scattering length aS . The black dot-
ted line describes the energy of the state connected to
the lowest band Wannier state at aS = 0, the gray dots
crossing it are related to the deeply bound dimer state in
different excited center of mass bands, while the remain-
ing gray dots are connected to excited bands. (b) Energy
spectrum relative to the effective harmonic model. Lin-
ear model (blue dashed), the full contact model (black
dotted) or the effective harmonic model determined from
the systems Wannier function including side peaks (yel-
low full). The gray shaded array indicates our estimate
of the models theoretical error, which we estimate to
be the maximum of the deviation to the full numerical
and the effective harmonic model determined from the
systems Wannier function (black dotted and yellow full
lines).
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B. Connection to a coupled-channels model

So far we considered particles interacting via a
contact potential. In ultracold gas experiments
the collisions are usually considered to happen at
zero energy and thus the scattering lengths of the
coupled-channels and contact systems need to be
matched. For the considered lattice geometry how-
ever we can estimate the relative energy at which
the particles collide to be around the energy ε of
the lowest single particle band, which is for our pa-
rameters ε/kB ≈ 20µK. This is estimated from two
non-interacting particles in the lowest band with en-
ergy 2ε. Approximately half of this is relative energy,
which is also the collision energy at zero separation.
Adding a repulsive interaction leads to an increase
in collision energy since the wave function needs to
shift to higher energies, which also leads to an in-
crease in size of the wave function in relative direc-
tion. Despite the wider spatial and therefore nar-
rower momentum distribution at low momenta of
the two-particle wave function, there is an increase
in average relative kinetic energy due to an increase
in the high momentum tail.

In general a contact model can be adjusted to cor-
rectly represent the s-wave component of any short
range potential for far separation of the particles at
a fixed collision energy ε = ~2k2/(2µ). To do so one
has to choose the following scattering length for the
contact system [25]

1

aS(k)
= −kcot(δcc(k)) , (21)

with δcc(k) the scattering phase shift of the full
coupled-channels interaction. The right hand side
can be expanded in powers of k with

kcot(δcc(k)) = − 1

acc
S

+
Re
2
k2 +O

(
k4
)
, (22)

with acc
S the scattering length of the coupled-

channels model and Re the effective range. This
leads us to the implications of including collisions at
a finite energy. Effects due to finite collision energy
ε are relevant especially close to narrow resonances,
where the effective range Re can take large values.
For narrow resonances the resonance position at fi-

nite collision energy B0(ε) defined by

kcot(δcc(B0, k)) = 0 (23)

can thus be subject to shifts of order ∆B0(ε) ∼
ε/µB ≈ 0.3G.

Similar to the free case Eq. (21) we want to arrive
at a matching condition for the lattice environment.
Since the lattice system cannot be reduced to rela-
tive and c.m. motion there will be no well defined
collision energy. Instead the collision is happening in
different c.m. channels simultaneously, where each
of those c.m. channels has an assigned collision en-
ergy. The c.m. channels are not to be confused with
the internal spin channels of the coupled-channels
model, which describes the collision in the relative
direction. To see that the collision is happening in
different c.m. channels we first split the Hamiltonian
into three components

H =
P2

2m
+

p2

2m
+ Vint(r) + Vopt(r,R) (24)

=
P2

2m
+ Vopt(0,R)

+
p2

2m
+ Vint(r) + Ṽ∆(r,R) (25)

= HR +Hr + Ṽ∆(r,R) , (26)

one acting solely on the c.m. component HR, one
acting solely on the relative coordinate Hr, and a
part acting on both Ṽ∆(r,R). Here HR describes a
lattice system in the c.m. coordinate (cf. Eq. (28)).
We note that the c.m. lattice is effectively 4 times
deeper then the single particle lattice when tran-
formed to lattice units with all lengths in multiples
of d and all energies in multiples of ER = Er/2.

We can get an approximate expression for the full
Hamiltonian valid around a single lattice site by pro-
jecting on the c.m. Wannier functions |i〉 at that
given site, thereby neglecting the coupling to other
lattice sites in the c.m. direction

H ≈
∑
i,i′

|i〉〈i′|
[
δii′(Hr + Ei) + 〈i|Ṽ∆|i′〉

]
. (27)

Here i labels the c.m. bands with associated c.m.
energies Ei that we set to be in the center of the
corresponding c.m. bands. In addition we find that
the coupling term Ṽ∆ vanishes up to second order in
r as r → 0. For clarity we give the terms Vopt(0,R)

and Ṽ∆(r,R) explicitly
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Vopt(0,R) = 2ErV0

[
sin(krX/

√
2)2 + sin(krY/

√
2)2 + sin(krZ/

√
2)2
]

(28)

Ṽ∆(r,R) = ErV0

[
(1− cos(

√
2krx))cos[

√
2krX] + (1− cos(

√
2kry))cos(

√
2krY ) (29)

+(1− cos(
√

2krz))cos(
√

2krZ)
]

≈ (krr)
2Ṽ

(2)
∆ (r̂,R) +O((krr)

4) . (30)

For a contact interaction the inner boundary condi-
tion in all c.m. channels is determined by the scat-
tering length. Upon investigating the full numerical
contact solutions Ψ we can get a lower bound for the
population of the lowest c.m. channel |0〉 by

|〈Ψ| (|0〉〈0| ⊗ 1r) |Ψ〉|

≥ α2β2 − 2αβ
√

1− α2
√

1− β2 , (31)

with α = |〈0|0〉| and β = |〈Ψ| (|0〉〈0| ⊗ 1r) |Ψ〉|,
where |0〉 = |NX = 0, NY = 0, NZ = 0〉 denotes the
lowest harmonic oscillator state in the c.m. compo-
nent. For the bound state considered we find that
the lowest c.m. channel is always populated to more
than 99% in the considered scattering length regime.
Therefore we expect to get a good approximation by
matching the contact solution in this c.m. channel
to the full coupled-channels result.

The solution Ψ thus approximately obeys the fol-
lowing Schrödinger equation when the separation be-
tween the particles is small

EΨ ≈ HΨ (32)

≈ |0〉〈0|
[
(Hr + E0) + 〈0|Ṽ∆|0〉

]
Ψ (33)

−−−→
r→0

|0〉〈0| [(Hr + E0)] Ψ , (34)

here Hr describes the free scattering process in the
relative direction. The energy of this free collision is
determined by the energy E of the full state Ψ minus
the energy E0 stored in the center of mass component
of the system. Therefore the collision energy of the
particles is determined by

~2k2

2µ
≈ E − E0 = U(k) + E(0)− E0 . (35)

The strength of the contact interaction and thus the
scattering length aS(k) can then be determined from
a coupled-channels model by justifying the condition
(cf. Eq. (8))

√
2 Γ
(
− U(k)

2EHO

)
`HOΓ

(
− U(k)

2EHO
− 1

2

) = −kcot(δcc(k)) . (36)

This ensures that the full contact and the coupled-
channels wave function are properly matched in the
lowest c.m. band. The boundary condition in the
other populated collision channels is however not
exactly satisfied. Therefore this limits the contact
model approach to regimes where either the effec-
tive range correction terms are small or the lowest
c.m. channel is dominating.

To sum up in Eq. (36) we combine an effective
harmonic parametrization of U representing a con-
tact interaction model with the phase shift behavior
δcc(k) of a full coupled-channels calculation. This
enables us to perform a coupled-channels analysis of
on site interaction data [16] in the following section.

III. COMPARISON TO EXPERIMENT

Our new model is captured by Eq. (36). We apply
it to recent experimental data taken for 7Li [16]. For
6Li and 7Li the ultracold interatomic interactions
already have been accurately characterized by dif-
ferent experiments, however, also discrepancies are
known to exist directly related to the two-body inter-
actions, for instance in the determination of three-
body parameters near an |f,mf 〉 = |1, 1〉 Feshbach
resonance of 7Li [5, 26]. In [16] a sample of ultra-
cold 7Li atoms is prepared in a Mott insulating state
with doubly-occupied sites in a cubic optical lat-
tice with a dept of 35Er. The experiment involves
the two lowest hyperfine states labeled as |a〉 and
|b〉. More precisely, at each doubly-occupied lattice
site one of the three symmetric combinations in spin
|aa〉, |ab〉S = (|ab〉+ |ba〉)/

√
2 or |bb〉 can be realized

and correspond to one of three different interaction
channels. With the help of radio frequency pulses
transitions between the different spin states can be
driven. From the resonance frequency positions the
difference in on-site interaction energy between the
scattering channels (Uab −Uaa) and (Ubb −Uab) can
be inferred. This can be done for a wide range of
external magnetic fields B.

We note that the analysis presented here relies
on the effective harmonic model using the oscillator
frequency determined from the numerical model (or-
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ange line in Fig. 1 (a)). We include the gray shaded
area in Fig. 1 (b) as our theoretical error estimate.

As a first test we want to verify that the effective
model indeed leads to an improvement compared to
the linear Hubbard description. For that purpose,
we compare the experimental interaction spectro-
scopic data to a coupled-channels model gauged to
earlier experiments [5]. We use the scattering length
data determined from this model and map it with
either the linear Eq. (6) or the effective harmonic
description Eq. (8) onto the experimental data. In
Fig. 2 we show that the effective harmonic model
leads to improved agreement with the experimen-
tal data. There we compare the differences in on
site interaction energy ∆U by showing the devia-
tions ∆Uexp−∆Ucc between experiment and theory
for better visibility. We find as expected that the
resonance positions in ∆U for the linear conversion
appear at too high magnetic field values.

We use the effective harmonic approximation in-
cluding finite collision energy effects Eq. (36) to
map coupled-channels phase shift data δcc to on-
site interaction energy U . We take the coupled-
channels model presented in detail in [5], where it
was used to interpret rf-spectroscopy data taken for
7Li. The most crucial parameters in the coupled-
channels model are the van der Waals coefficient C6

and the adjustments in the singlet S and triplet T
boundary conditions parametrized in form of phase
parameters ∆φS and ∆φT [5]. We take those as
free parameters that we fit to the experimental data
by performing a χ2 minimization. Our fit results
are presented in Fig. 3 and Tab. I. The theoreti-
cal error estimate has been included into our error
analysis by adding the theoretical error determined
from the model of Ref. [5] to the experimental error
bars prior to the fit. We find good agreement with
the experimental data (cf. Fig. 3), just close to the
narrow resonance our model seems to underestimate
the width of the resonance. Note that we identified
the regime close to the narrow Feshbach resonances
to be less well approximated by the contact model.
In Tab. I we compare to the results obtained in [16]
with a linear Hubbard model in combination with
dispersive shapes to parametrize aS in the different
interaction channels. For the positions of the broad
resonances (at 738G, 795G and 894G) we find values
corrected by 0.2 to 0.7G to higher magnetic fields.
We attribute the major contribution to these correc-
tions to the effective harmonic model. However, for
the narrow resonance (at 845G) we find a correction
to lower magnetic fields of 0.1G as a result of the fi-
nite collision energy effects included. Comparing to
previous results we find improved agreement for the
broad resonances, while the deviation in the position
of the narrow resonance increased.

Similar good agreement can be achieved by fitting
with the effective harmonic model without finite col-
lision energy corrections Eq.(8). For comparison we
give those results also in Tab. I. The resulting res-
onance positions for the broad resonances are gen-
erally in agreement within the two different models
while the narrow resonance is significantly shifted to
lower values for the energy corrected model.

IV. CONCLUSION AND OUTLOOK

We presented a full coupled-channels description
of the on-site interaction energy U of a Mott insu-
lator state with two atoms per lattice site. Our de-
scription is based on a parametrization of the on-site
interaction energy with an effective harmonic model
adjusted to match the linear behavior at small in-
teraction strengths that can be determined from the
Hubbard model. A matching condition has been
obtained Eq. (36) that combines the effective har-
monic parametrization of U with the relative col-
lision energy in the lowest c.m. band from the
non-interacting scenario. We verified that for mod-
erate scattering lengths up to 0.05d and a lattice
dept V0 = 35Er our effective approach gives good
agreement with the full contact scenario. We ap-
plied our effective description to perform a success-
ful coupled-channels analysis of recent experimental
data on 7Li [16]. The high precision of the data en-
abled us to demonstrate that our effective harmonic
description is an improvement to the linear Hub-
bard model. We show that including finite collision
energy effects leads to a change in the predicted reso-
nance positions especially for narrow resonances. We
believe that the results including finite collision en-
ergy effects are more accurate. However since both
the model with and the model without finite colli-
sion energy lead to agreement with the experimen-
tal data, when the coupled-channels parameters are
adjusted accordingly, we cannot undermine the im-
proved accuracy of the refined model. Still a precise
independent determination of the resonance position
especially for the narrow resonance in the |bb〉 chan-
nel could easily lead to such a distinction. Overall
we find that our model is in good agreement with the
experimental data, but close to the narrow resonance
our model seems to slightly underestimate the width
of the resonance. Note that we identified the regime
close to narrow Feshbach resonances to be the one
least well approximated by the contact model. How-
ever a refined description valid also close to narrow
resonances could be obtained by matching the effec-
tive harmonic model to the coupled-channels model
for each base state involved before the direct diago-
nalization method is applied, or by introducing the
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FIG. 2. Comparison of the experimental to the coupled-channels model determined in [5]. We show the residuals
between experimental and theoretical data for the |aa〉 to |ab〉 transition (top) and the |bb〉 to |ab〉 transition (bottom).
The plots on the left hand side have been obtained with the linear the ones on the right hand side with the effective
harmonic model. The color scale indicates the shift δBres required in the theoretical resonance positions to reach
agreement. Thus the color scale can serve as a simple measure for the quality of agreement between the unfitted
coupled-channels model and the experimental data. The color map has been obtained starting from a dispersive
model fitted to the coupled-channels result.
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FIG. 3. Experimental data Uab −Uaa (orange (light gray) points) and Ubb −Uab (blue (dark gray) points) and best
fit with the coupled-channels description to the combined data set (orange (light gray) and blue (dark gray) lines),
the lower half shows the difference of the data points and the fitted model along with the experimental error bars
taken to be one σ of the fit to the resonance spectra, while the systematic error on the experimental side has been
estimated to 0.1kHz. Our estimate of the theoretical uncertainties is indicated by the orange (lighter gray) and blue
(darker gray) shaded areas.

lattice potential directly into the coupled-channels calculation, as it has been done for the single chan-
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TABLE I. Comparison of the coupled-channels (CC) fit results with collision energy corrections Eq.(36) and without
collision energy corrections Eq.(8) to the results obtained in [16] using the linear Hubbard model in combination
with dispersive shapes to parametrize aS and to previous works. Only the resonance positions have been determined
directly from our coupled channels fit. The error in the resonance positions is taken to be one standard deviation
and has been determined from the fit to the experimental data. We give the background scattering lengths abg and
resonance widths ∆ for completeness. abg and ∆ have been determined by fitting a dispersive model as in [16] to
the scattering length data obtained from our best fit with the coupled channels code. For that we chose magnetic
field values between 650G and 950G and restricted to points with accS /a0 < 1000. The errors we give on abg and ∆
are the errors of the fit to the best theoretical model. Note however that the values of abg and ∆ depend strongly
on the magnetic field range and the maximum scattering length used for the fit, since the dispersive shape is just an
effective description.

CC fit energy corrected previous works

channel abg/a0 ∆ [G] Bres [G] abg/a0 ∆ [G] Bres [G]

aa −20.75(2) −168.0(1) 737.81(2) −20.98 [5] −171.0 [5] 737.88(2) [5]

737.8(2) [27]

−20.0 [26] −174 [26] 737.69(12) [26]

ab −21.09(1) −133.4(1) 795.20(2)

bb −17.72(7) −19.02(8) 845.322(5) −18.24 [5] 845.54 [5] a

bb −17.72(7) −227.5(9) 894.00(4) −18.24 [5] 893.95(2) [5]

CC fit not energy corrected taken from [16]

channel abg/a0 ∆ [G] Bres [G] abg/a0 ∆ [G] Bres [G]

aa −20.62(2) −168.3(1) 737.88(2) −25.8(1.2) −135.9(6.9) 737.58(10)

ab −20.95(2) −133.6(1) 795.31(2) −29.8(1.3) −90.5(4.0) 794.64(07)

bb −17.60(3) −19.03(3) 845.505(5) −23.0(1.4) −14.9(0.9) 845.42(01)

bb −17.60(3) −227.8(4) 893.98(4) −23.0(1.4) −172.7(10.0) 893.34(12)

a There is no error bar given in [5]

nel case [21, 28]. The energy matching condition
could thus be satisfied exactly in those cases, but
the advantage of having a single matching condition
would be lost.

Measurements of the on site interaction energy
shift for different lattice depths could reveal the de-
pendence of the resonance positions as a function of
collision energy. Also note that the points in mag-
netic field, where the scattering lengths of two chan-
nels are equal should be independent of the conver-
sion model, in a regime where the scattering lengths
determines the interaction. These are the points
where (Uab − Uaa) or (Ubb − Uab) cross zero or each
other. A precise determination of those points might
be valuable information in addition to the resonance
positions.
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E. G. M. van Kempen, and B. J. Verhaar, Phys.

http://dx.doi.org/ 10.1103/PhysRevLett.89.283202


11

Rev. Lett. 89, 283202 (2002).
[3] E. G. M. van Kempen, S. J. J. M. F. Kokkelmans,

D. J. Heinzen, and B. J. Verhaar, Phys. Rev. Lett.
88, 093201 (2002).
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